The Annals of Probability
1991, Vol. 19, No. 1, 83-141

FLUCTUATIONS OF THE WIENER SAUSAGE FOR
SURFACES

By Isaac CHAVEL,! EnGAR FELDMAN! AND JaY ROSEN?2

City University of New York

We define a renormalized intersection local time to describe the amount
of self-intersection of the Brownian motion on a two-dimensional Rieman-
nian manifold M. The second order asymptotics of the area of the Wiener
sausage of radius ¢ on M are described in terms of the renormalized
intersection local time.

1. Introduction. In this paper we consider a given two-dimensional Rie-
mannian manifold M, with associated Laplace-Beltrami operator A and heat
operator 3A — 3/dt acting on functions on M and M X (0, +«), respectively.
Associated, in turn, to the heat operator is its kernel p,(x,y) with attendant
Brownian motion X and probability measures P, on the spaces of continuous
paths on M starting at x € M.

When M is compact, the heat kernel is unique; when M is noncompact, we
only consider the minimal positive heat kernel. When M is compact one
automatically has

(1.1) [ play)dy =1,

for all (x,#) € M X (0, +x), where dy denotes the Riemannian measure on M;
for M noncompact, we assume the validity of (1.1) for all (x,¢) € M X (0, +).
For each ¢ > 0 and time interval [r, ¢], we associate to each path X the
Wiener sausage S (r,t)X(X) defined as the tubular neighborhood of X([r, ] of
radius ¢, i.e.,
S.(r,t)(X) = {y € Mld(y, X([r,t])) < ¢},

where d( , ) denotes the Riemannian distance induced by the metric tensor.
Let A (r,tXX) denote the Riemannian area of S,(r,t}X) and, for conve-
nience, set A_(¢) = A0, ¢). Then it is known that

(1.2) lin}) (logl/e) A (t) = mt.

When M is compact, the convergence is in L2*(dP,); similarly, when M is
noncompact Riemannian complete with Gauss curvature bounded from below.
When M is arbitrary noncompact and satisfies (1.1), the convergence is in
probability with respect to P,.
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84 I. CHAVEL, E. FELDMAN AND J. ROSEN

In this paper we determine the second order fluctuations of A_(¢). To state
the main result, define the random variable y,(¢), on the path space, by

t(logl/¢)

t S
v.(8) = [[ds [ p(X,, X,) dr — ——

and the renormalized intersection local time v(¢) by
y(£) = limy,(¢)
e—0

(see Proposition 5.1 on the existence of the limit). Also, we say that M has
bounded geometry if the injectivity radius of M is strictly positive and if the
Gauss curvature and its gradient vector field are bounded on all of M. It is
standard [18] that if M is Riemannian complete with Gauss curvature bounded
from below on all of M, then one has the conservation of heat property (1.1).

THEOREM 1.3. We always have for Riemannian complete M with bounded
geometry, the existence of the limit y(¢) and the asymptotic formula

(14) eh_r)r(l) (log1/¢)((logl/e) A (t) — wt) = wt/2(x — log2) — w2y(¢),

where « is Euler’s constant and the convergence is in LX(dP,). For M arbitrary
noncompact and satisfying (1.1), we also have the existence of y(t) and (1.4) is
valid with the convergence in probability with respect to dP,.

REMARK 1. This is a generalization to surfaces of Le Gall’s expansion in R?
[12], while the results on the expectation of (1.4) (in the R? case) go back to
Spitzer [15].

REMARK 2. The best uniformity in ¢ that can be expected, for the limits
involved, is for ¢ bounded above by any T, > 0. We shall therefore assume
such an upper bound in all that follows.

ReMARK 3. The result (1.2) was first proved for M = R? in [11], as direct
consequence of a result of [15]. It was extended to the differential geometric
setting in [2—4], via the study of the radial asymptotics of the hitting times of
small geodesic disks. The problem has also been considered recently in [16] for
general diffusions in R? and, as a result of our arguments here, one has the
convergence of (1.2) a.e. dP, for arbitrary two-dimensional M for which (1.1)
is valid. .

We also note that in [11] and [2-4] the results were given for dimensions 3,
or more generally greater than or equal to 3, with just a remark mentioning
the corresponding results for the two-dimensional case. As the results here use
the arguments of [2—4], the details for (1.2) will appear here.

Finally, we note that our heat operator, here, is A — 3/dt, in contrast to
[2-4], where formulae and calculations are carried out for A — 9 /dt.
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REMARK 4. Formally,

flas [ pu(X,, Xy dr~ [ [ox(X,) dr

as ¢ — 0, so the limit intuitively describes the amount of self-intersection of
X,. However, the limit is always infinite; hence, the renormalization by sub-
tracting the singularity (¢/2m)log 1/¢ of the double integral on the left.

It is useful to subtract the conditional expectation of p.(X,, X,) (which
already contains the singularity) and consider the random variable

7.(t) = [lds (X, X,)dr - ['ds[ 'E,(p.(X,, X,)I3,) dr,

where E, denotes expectation with respect to dP, and §, is the o-algebra
generated by X,, 0 < s < r. In the case of bounded geometry we are able to
show that ¥,(¢) converges in L2(dP,) (cf. Proposition 5.7), which easily implies
the convergence of v,(¢) in L% dP,). One can then promote the convergence of
¥.(t) and v,(¢) in probability, for the general case. The respective limit func-
tions y(t) and ¥(¢) are renormalized intersection local times. The random
variable ¥(¢) is relatively independent of our choice of approximate identity p,.
In fact, one has the existence of a large class of approximate identities, with
kernels q,, for which

Ta(t) = [ds '0.(X,, X,) dr - ['ds[ 'E(q.(X,, X.I3,)) dr

converges to y(¢) in L*(dP,) (when M has bounded geometry).

Renormalized intersection local time for Brownian motion in the plane was
first discussed in [17], and more recently in [9, 12, 14, 19] (cf. the review article
by Dynkin [10]).

The existence of y(¢) for diffusions in the plane is established in [14] via a
Tanaka-like formula involving stochastic integrals and this approach may also
be used in the present context. However, in Section 5 we present a self-con-
tained and direct exposition of y(#).

REMARK 5. Our theorem was inspired by [12], where it was proved for the
plane. The general outline of the proof below follows [12]; however, the fact
that we no longer have translation invariance and independent increments
necessitates a completely new approach to the individual components of the
proof.

REMARK 6. Here we note the universal differential geometric character of
Theorem 1.3. It states that any differential geometric corrections to the
formula in R? that might exist for

(log1/¢)((log1/¢) A,(¢) — mt)

are perfectly balanced by corresponding corrections in w?y(#). Differential
geometric corrections certainly exist as evidenced by the formula for M
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compact and small ¢z,

(log—i—)((log )E (A.(2)) - wt) ~ ——(K + 1 — log2t)

2

Tt 9
- —EK(x) + o(t?)

as ¢ —» 0, where K(x) is the Gaussian curvature of M at x. Note that larger
Gaussian curvatures induce smaller area A (¢) and larger intersection local
time y(2).

REMARK 7. It is worth noting that if one views (1.2) as a law of large
numbers, then one would look for the right-hand side of (1.4) to be normally
distributed (up to constant multiple), but it is not. However, for M = R® one
has normally distributed (up to constant multiple) fluctuations of volume of
the Wiener sausage (see [12]).

REMARK 8. Certainly if M is compact, then M is Riemannian complete
with bounded geometry. It may be worth noting that our definition of bounded
geometry serves to preserve the pointwise validity and global uniformity of the
estimates of Lemmas 2.8, 2.17, 4.9 and 4.12, which are standard in the
compact case. The discussion of these issues is reserved for the Appendix, in
order not to disturb the flow of the argument.

We now outline the proof of Theorem 1.3. As mentioned above, E, denotes
expectation with respect to P,.
We start by noting that

A (t) =A0,t/2) + A (t/2,t) — A(S.(0,t/2) N S.(t/2,¢)).

If one further evenly subdivides the intervals (0,¢/2) and (¢/2, ¢) and contin-
ues the process of even subdivision, one obtains for all integers p > 1,

A(t) = [(J - 1)¢ Jt]

(1.5)

~ f) %‘A( [(212— 2)t’ (212—l l)t] ﬂse[(zjz_l l)t’ % )
I=1j=1
The equation (1.5) suggests that we consider the triangle
A(1;0) = {(r,s) € R%:0 < r <5 < 1)
as follows: To each p > 1, associate

A j — 1)t
A(j;p) = {(r,s)E[Rzz—(-J—z;,lerSs

9

2
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for j=1,...,27 and

. 2j—2)t (2j -1 2j—1)t 2
BGjsl) = (le )t’(le )t] [(_127_)£ 2jlt]

forl=1,...,p,j=1,...,2"1 Then
. p 2t
A(1;0) = UA(J p)u U U ByU;D.

I=1j=1

To every Borel set B in R? associate the random variable a,(B) on the
Wiener path space by

a(B)(X) = [ [ p(X,, X,) drds.

Then
o logl/e
7(8) = a (A(1;0)) - 82
2° N logl/e p 27t .
- X adGin) - 5 4 T a(BGD).
E= Pl

To prove Theorem 1.3 it suffices to show

(1.6) 31_1;1’(1) (log;)((log%)Ae(t) - wt) + 72y, (t) = w.

We rewrite the left-hand side of (1.6) as

(log%)((log )A (t) - wt) + w2y, (1)

2° 1 1 (j— ¢ jt mt mt 1
= ng (log;)((log;)As 2—p’ ? - F) - ?loglog;
27 . ¢ 1 it 1
+1T2J§1(a28(A(j;p)) Y log ) + ?loglog;
p 2% (J - 2)t (j—-1)¢
+Z E TraZs(B(J’l))_(IOg 7 ]
I=1j=1 2

NS

2t 2l

&

(j-1Dt jt ))
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The proof of Theorem 1.3 will then consist of showing:

LeEmMa 1.7. With 2P = log1/e we have
27 1 (=1 Jjt it wt 1
log— || (1 = |-=]|-= -
,§1(°ge)((°g ) T 2P) 5 o8lo8;
mt(1 + k — log2t)
2

_+
in L*(dP,) as € = 0.

LEmMmA 1.8. With 2P =log 1/ we have

t 1 wt 1 logt—1
™ E (a2a(A(J P)) 2p+1 Og ) + ?loglog; —>7'rt———2—

in L2(dPx) as & = 0.

LEmMA 1.9. With 2P = logl/e we have

p 20} 2j — 2 2j -1
Z Z (77 “25(3(.1,1)) - (log (Se ( le )t’( le )t]
s 22 24]) o

in L3(dP,) as ¢ — 0.

The study of the radial asymptotics of the area of the Wiener sausage is
reduced to the study of hitting times of small geodesic disks as follows: For any
set E in M which is a countable union of compacta, define the random
variable Ty on the path space by

Tg(X) =:inf{s > 0: X, € E}.
For y € M, we set
B(y;e) = {z€M:d(y,z) <¢&},
S(y;e) = {z€M:d(y,2) =},
Ts(y) = TB(y;s)‘
Then one easily has .
S(t)(X) ={y e M: T.(y)(X) <1},
which implies ’

(1.10) E(A(1) = [ PAT(y) st)dy
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and

(111)  E(4%#) = [[ P.((T.(y) <¢t)and (T.(2) <?))dydz.
MXxXM
We therefore start the proof of Lemmas 1.7-1.9 with a close study of
P(T.(y) <t). .

2. The hitting times of small disks. We use the approach of [3]: Since
the argument will become quite technical, we first illustrate the method with a
heuristic calculation in R2 In R? we have

e le—y1%/2s
p(2,5) = ——
For any Borel set E in R we have
(2.1) P(X,€E) = fps(x, 2) dz.
E

The strong Markov law, along with (2.1), then implies (cf. [4], pages 58-59) for
fixed x # ¥,

fotds'/;} ps(x,2) dz

(y;8)

B[,

For the left-hand side of (2.2), one has

(2.2)

( )Ps(XTe<y>, z)dz; T,(y) <t|.
Y €

(2.3) /tdsf ps(x,2)dz = wazftps(x,y) ds + O(te*),
0 B(y;e) 0

as ¢ — 0. For the right-hand side of (2.2) one has, for any w € S(y;¢), T > 0,

1 52 D
(2.4) desf ps(w,z) dz = e2log— + —(log2T — k) + O(2*2°T "),
0 B(y;e) € 2

as ¢ — 0, for any given a € (0, 1] (cf. Lemma 2.8). [Note that the left-hand side
of (2.4) is independent of where w is located in S(y;¢).] The leading terms of
the right-hand sides of (2.3) and (2.4) are then inserted into (2.2) to yield

t
fops(x,y} ds.

T
logl/e

(2.5) P(T(y) <t)

Thus (we are rather causal at this juncture) we have for dP,(T,(y) < s) (the
Lebesgue-Stieltjes measure with respect to s) the asymptotic formula

dP(T.(y) <s) ~ p,(%,y) ds.

T
logl/e
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The right-hand side of (2.2) now has expansion
1 we?
2 —_\P - _ _ 2a _ -a
(s logs) (T (y) <t) + 210g1/8[0(log2(t s) —k + 0(e%(t —s)™%))

Xp,(x,y) ds,
which implies

P(T.(y) <t) ~

T
logl/e

fotps(x,y) ds

il "(log 2(¢ d
210g21/8f0(0g (¢ —s) —x)p,(x,y)ds,

as & — 0. If we integrate with respect to y, then by (1.10) and (1.1) we obtain

E.(A[(2)) ~

Tt N Tt
logl/e 2log®l/e

(1 + « —log2t),

as ¢ — 0.

In what follows, we give a version of the above that legitimizes all the limit
operations involved and that takes into account the differential geometric
variants of the above argument.

Of course, (2.1) remains as is. The equality (2.2) will be replaced by the pair
of inequalities (derived with the same argument)

fHads )ps(x,z) dz

(2 6) 0 B(y; €
>P,/(T.(y) <t) inf Bdsf ps(w, z) dz
weS(y;e)70 B(y;e)
and
ftdsf p.(x,2)dz
(2 7) 0 B(y;¢)

<P(T.(y) <t) sup ftdsf p(w, z) dz.
weS(y;e) 0 B(y;e)

LEMMA 2.8. For w € S(y; ¢) we have

j;)Tds[B p(w,z) dz

(y;€)

(2.9) 1 1
=¢e2log— + 0(82 log— + 82+2“T_“)

€ T
1 log2T — « )

(2.10) =s2log— + sz—g—z——— + O(e2+2Te)
&

1 log2T -k TK

(2.11)  =¢log— + 82( g 5 + ?fy) + O(Tz)) + O(g2*t2T*).

&

[ All of the above expressions are uniform with respect to y, except (2.11).]
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This is proved in the Appendix.
Assume d(x,y) > 4¢. Then (2.6) and (2.9) imply the existence of ¢, > 0
such that

[l pinrs

1 collog1/8 + (£2/8)"
>P(T.(y) < t)sz(log;) (1 - 0( log1/e ) .
Therefore, when
(2.12) co(log1/8 + (22/8)") 1
' logl/e T4’
we have
PAT(y) <) 1 ( 4c, log1/8 + (82/5)“)
AL Y) =t) < 57— .
(2.13) e“logl/e 3 logl/e
t+8
X ds s(x,2)dz.
‘/(.) ‘[B(y;e)p ( )

For the same ¢, > 0, (2.7) and (2.9) imply (arguing separately for ¢ < § and
t>9)

t
P 2 —
fo ds[B p.(x,2)dz < P(T(y) <t)e (log logl/e

(y;€) 2

1)(1 . co(log1/8 + (£2/8)") )

which implies

1 co(log1/8 + (£2/8)°)
P(T, <t)> 1-
(2.14) (T(y) <t) = e2(log1/¢) ( logl/e
t
dz.
Xj;)dsj;g(y;e)ps(x,z) z

Set A(y; ¢) to be the area of B(y;¢). Then (2.13), (2.14) and
A(y;e) ~ we?,
as ¢ — 0, easily imply (2.5) for all x # y.
For the discussions to follow, it will be convenient to let g,, « > 0, denote a
monotone decreasing C* function on (0, +=) for which there exist positive
constants so that

’ _ 2 r_a, 0<rS1,
g.(r) < Cexp(—Cr ){1, o<r

Similarly we let g denote a C* function on (0, +») for which there exist
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positive constants so that
logl/r, O0<r<lpe,
g(r)sCexp(—Crz){lg / 1/e <r. /
Finally, we set
l(%,y) = g.(d(x,5)), Ux,y) =g(d(x,y)).

Note: The reader should not confuse [, with /.
To estimate the difference |(log1/e)P(T.(y) < t) — w[ip,(x,y) ds| we have

ProposiTiON 2.15. For d(x,y) > 4¢ and a,y € (0,1) there exists > 0
such that for all v € (1,2) we have

(108 |BUZ.0) <) == [(p,(x.9) ds

(2.16)

t v/v
By
sCa,ylzy(x,y)max(e la(x’y)’(logl/s) )’
for all sufficiently small ¢ > 0.
Proor. We first state the following lemma.

LemMa 2.17. For vy € (0,1) we have

(2.18) j:rps(x,y) ds < C, (o —7)"15(%,5).
Also,
(2.19) fops(x,y) ds <Cl(x,y).

For d(x,y) = 4¢ and a,Ty € (0, 1) we have
(2.20) [T”[B(y;e)ps(x, 2)dz < C,e%(0 — 7)1y (%, )
and

[ [pen) - 2 pi) | d
x,2) — s(x, 2
7 YB(y;¢) Ps A(y;e)p Y

= O(ty€3+all+a+27(x’y))
01, (3 9))

(2.21)

.The proof of Lemma 2.17 is given in the Appendix.
We now start with small ¢, viz., ¢ € (0, £#) with

B = min(1/8007 1, a/Y)‘
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Pick 8 = ¢”. Then there exists ¢, > 0 such that (2.12) holds for all ¢ € (0, &,).
Then (2.13), (2.20) and (2.18) imply

<c, &Pl (x,y).

(2.22)  |P(T.(y) <t)log1/e - ['p,(x,y) ds
0
Assume now that ¢ > ¢#. Pick

5 t 1/v
- (logl/s) ‘

Then there exists ¢, < &, for which (2.12) holds for all ¢ € (0, &,). For all such
€, using (2.13), (2.14) and Lemma 2.17, we have

1 t
P(T.(y) < t)log— — m [ p,(x,y) ds
2 0

<

1
P.(T.(y) <t)log— — e‘zftdsf ps(x,2) dz
€ 0 B(y;¢)

+e72

A e I

log1/8 + (s2/8)"
e2logl/e

t+8
+g72 ds x,2) dz
‘/; '/;R(y;e)pS( )

heel,

o oo logl/s + (e2/8)°
-3 logl/e
+C,870,,(%,5) + Cy 671, 5 (,7)
-C (loglog 1/¢ + log1/t £@=B/v)a
-7 vlogl/e (log1/e)* ™"

400 t+6
< — d ,2)d,
<3 [o s » ps(x,2) dz

y;€)

(2.23)

we?

(ps(x,z) - _——ps(x:y)) dz

+e72
A(y;e)

(y;¢)

(¢ +8)715,(x,5)

)(t +8)715,(x,5)

t /v
+Cy(log1/8) Ly (%,9) + Coy 880 ,(%,9).

We fix
1/v
S 1-1/v

and determine &3 < &, for which ¢? < (log1/¢)~" for all ¢ € (0, ;). Consider

N



94 I. CHAVEL, E. FELDMAN AND J. ROSEN

the case where
e? <t < (loglye) V.
Then ¢ < §, which implies, via (2.12) and the next to last inequality in (2.23),

1 t
P(T.(y) < t)log— — m [ p,(x,) ds
2 0

(2.24) o
= Cv(im) Loy(2,9) + Cy et 15, (%,5).

If, on the other hand, ¢ > (log1/s)™™ > ¢#, then & < ¢, and from (2.23) we
have

1 t
P(T.(y) < t)log— — m [ p,(x,y)ds
3 0

N + 1 loglog1/e g@=B/va
<C +
"\ v logl/e  (loglye)'Te”

(2.25)

)tYZZy(x’ y)

y/v
CY(logl/s) l2y(x,y) + Ca’yé‘atyla_'_zy(x,y).
The proof of the proposition now follows from (2.22), (2.24) and (2.25). O

PROPOSITION 2.26. For any given positive integer N and positive constant
¢y, the restriction

(2.27) d(x,y) = c,(logl/e) N*!
implies
. 1 t (loglog1/¢)?
(2'28) Px(Te(y) < t)log; - Wj;ps(x:y) ds| < CN’CITW—ZO(x’y)'

Proor. We give a variant of the chain of inequalities (2.23), viz.,

1 t
P(T.(y) < t)log— — m [ p,(x,) ds
3 0

log1/8 + (£2/8)" 145
e2logl/e f

t+6
+e‘2[ ds[
¢ B

t
fas]
0 B(y;e)

(log 1/8 + (s2/8)"
<C
logl/e

4c
< TO ds p(x,2) dz
)

0 B(y;e

ps(x,2) dz
(y;€)

(ps(x, Z) -

7T€2

A(y;e)

+e72 ps(x,y)) dz

)l(x,y) +C,8%1,,(x,y) + C, &%, 5. (%,).
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The restriction (2.27) implies, using (2.19),

1
P,(T.(y) < t)log= — 7 ['p,(x,y) ds
2 0

Y

log1/6 + (£2/5)° 1V N
SC( g /loglﬁz /) )log(log;) Lo(x, ) +Cy(8(log;) ) Lo(x,y)

N(a+2y)
) lO(x’y),

+ Ca,ys“(log;
which implies (2.28), by choosing 6§ = (log1/e)™*, y = 2. O

3. The expected area of the Wiener sausage. For fixed x,7, ¢, the
function u(x, s) =t P(T,(y) < s) is nondecreasing with respect to s. Further-
more, for fixed y, ¢, u(x, s) is known to be a solution to the heat equation in
M \ B(y;e) and is therefore smooth with respect to s. Since u(x,s) is
actually a solution to an initial-boundary value problem on {M \ B(y;z)} X
(0, +), one also has that, as a measure with respect to s on [0, +),
P(T,(y) < s) has no mass at s = 0.

Integration by parts then implies:

ProposiTION 3.1. For f € C! we have

w

[j7(t =) APATLY) 5 8) = e [ = )y, 7) ds

BAT.») <) = 1o [(x,9) do

<(82) =< (I (O + If()D)

ds.

BAT) <8) = 1o o= y)

4
+ [ 1f'(¢t = s)|
[ir =)
PropOsSITION 3.3. Given sufficiently small p € (0, 1), we have

(log%)((log%)Ex(As(t)) - wt) = %(1 + k — log 2¢)t

(34) t 1-p
1_
+0(t2+(10g1/8) +¢ P).

Proor. We start with

Ex(AE(t)) = fMPx(TE(y) = t) dy N ‘[B(x;4e) * '[M\B(x;‘“).
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Certainly
(3.5) / P(T.(y) <t)dy < Cs?.
B(x;4¢e)
Also,
(3.6) w/tdsf p,(x,y) dy < C et ™,
0 B(x; 4¢)

for any given a € (0, 1) by integrating (2.18) over B(x;¢).
For d(x,y) > 4¢, rewrite (2.16) as

P15 < )|l0gy | = [, (x.) d

t 1/v Y
B
¢ ’(logl/s) )) ’
with «,y picked so that a + 2y < 1. If
t 1/v
< gB
(logl/s) =

t <ePlogl/e,
then (3.5), (3.6) and (3.7) imply
|(log1/¢)E (A (t)) — 7t| < CeP.

(3.7)

=< Ca,'yla+2'y(x7 y) (max

ie.,

To consider larger times, viz.,
t>eP’logl/e,

we first note that d(x,y) > 4¢ implies

s‘zj;)t+8dsf3

_ t+86—T.y)
=€ 2Ex(j; ds/B(y;g)pS(XTE(y), Z) dZ; Te(y) <t

p,(x,2) dz
(y;€)

= (log1/2) P(T.(y) <),

+§fot(log2(t +8—5) —k+O((t+8) +£2267%)) dP,(T.(y) <),
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by (2.10), which implies

(108 |2uT.9) ) = ') ds

t+6 ps(x’z) wps(x,z) t+6
< d - dz + ,y) d.
<l P T e[ e a

&

1
~5 [[(log2(¢ + 5 = 5) =« + O((¢ + 8) + £26~%)) dP(Ti(y) = 5)
0
t+6
Cooy(t+8) 6™ o (%,5) + 7 /t "p(x,5) ds

+ (5 +0((t +8) + 52“6‘“))Px(Ts(y) <t)

flog(t +6— s)l gl/ ps(x,y) ds

[log(t + &)l + |log 26| t e
+C ( ) a+2'y(x y)

@y logl/e logl/e
by (2.21), (2.19), (3.2) and (3.7).
Now integrate the above over M \ B(x;4¢) with respect to y. Then we have

(108 | E.(4.009) - =t
= {[ros )P0 <) = 7 (.. )

= +
B(x;4¢) M\ B(x;4¢)

, K
<Ce® +C, (t+8) el + 78 + (5 +0((t+9) + 52“8‘“))

X P(T(y) <t)dy
M\ B(x;4¢)

Wflog2(t+6 - 8)ds

— [ + 6 —
+ oo 7 o2t 5 —s)ds[  p.(x,y)dy

[log(t + &)| + |log 25| t L
@y logl/e logl/e

< C(e® + (t +8)7el + 8) + (g +0((¢ +8) + 52“8‘“))

w

1
logl/e

: t v/v
X d ,¥)ds + C
(ﬂ- M~\B(x; 4e) y[ops(x y) (log 1/8) )
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o
———(tlog2 — t + (¢t + 6)I] +6) —61
210g1/8( 0g2 —t + (¢ + &)log(¢ + 8) — 5log )
llog 26]e2*"t1 ~«" t  \"” |log2(t + 8)| + |log 8|
logl/e logl/e logl/e

<C(e® + (t+8) e +5) + (g +O0((t +8) + 52“3‘“))

1 t "
Xlogl/s wt+(log1/e) )
o
——(t(log2) — t+ 6)l +6)—461
Tiog Tz (11082) —t + (¢ + 8)log(t +5) ~ 5 1og 3)
t " log 2(¢ + 8)| + |log 8|
logl/e logl/e )

Now pick § = ¢/log?1/e. Then one obtains, by substituting into the previous
estimate,

(log;)Ex(Ae(t)) -7t < (1 + k — log2t)

Tt
2logl/e

c t \'™*
+ 2+ +glr
logl/e (t (logl/e) ¢ )
for suitably chosen p € (0, 1).
For the lower bound of (log1/¢)E, (A (¢)) — wt we have by (2.10),

8'2/;)tds[]3(y;s)ps(x,z) dz

- g‘zEx(fot_T‘(y)dsz

_ t—T.(y)
<eg 2Ex(j; dsj;e(y;e)pS(XT‘(y)’ 2)dz; T(y) <t - 6)

 pXa2) s ) = t)
Y€

_ 5
+e 2Ex([0 dsz(y;e)ps(XTAy)’ z)dz;t — 8 < T.(y) < t)
t—5 1 1
=f (log— + —(log(t — s) — k + log2)
0 g 2
L0t + 82“6“")) dP(T.(y) < s)

1 1
+ft (log— + —(log286 — k) + O(8 + 82“8“")) dP(T.(y) <s)
t-s e 2 .

’ 1 log2 -« 2ere—
< (log; + — + C(t + €°*6 "‘))Px(Ts(y) <t)

+ 5 Q0g )Pt~ 3 < T.(y) <1) + 3 [ log(t ~ 8) dP(T(y) ),
2 2/
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which implies as before, for d(x,y) > 4e,

(log%)Px(Ts(y) <t)- wfotps(x,y) ds

t ps(x’z) Wps(x’y)
> - d
fofB(y;e)( &? A(y;e) ¢
log2 — «
=3

+ C(t+ 82“6'“))Px(T£(y) <t)

log & 1 .-
- 2Pt -8 <T(y) <) — 5 [ log(t — ) dP.(T.(y) < 5)
2 2/
log2 — «

5 + C(t +&2*67) | P(T.(y) < ¢t)

> —CteM U, 0y, (%,5) — (

log 6| = ¢
d.
s Toglye ft_aps(x,y) s

t
logl/e ( logl/e

*(log(t — 5)) p,(x,y) dx

v/v
—|log 6| ) Lyroy(%,)

o t—
_Zlogl/afo

C t y/v
~logl/e (logl/g) Las2y(x,5)(llog 8] + logtl),

by (2.20), (3.2) and (3.7).
~ Now integrate over M, with respect to y. Then we have, as for the upper
bound, with 6 = ¢ log=21/s,

1 Tt
(log;)Ex(As(t)) —mt > ——1/;(1 + k — log 2t)

2log

C ¢\
t2 + l—p
+log1/e( (logl/a) te )

for suitably chosen p € (0, 1). This completes the proof of Proposition 3.3. O

4. The proof of Lemma 1.7. We first estimate the variance of A,(¢).

ProprosITION 4.1. We have
 Var(A,(1) = E(A.(1)°) - E(A,())°
(4.2) _ O(¢3-P + ¢3/2-PlogP~11/e + £'7°)
log®1/¢ ’

for sufficiently small p > 0.
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It will be helpful to rewrite (3.4) as
mt

logl/e M 2log?1/e
O(t2 + (t/(log1/e))* ™" + el"’)
log?1/¢

e
= 1-p
0(log1/s +¢ )

Standard considerations imply

E,(A(1)) = /f P,((Ty) <t) N (T,(2) <t))dydz

E.(A.(2)) = (1 + k — log2t)

(4.3)

—2M/f P(T.(y) < T.(z) <t)dydz

=2 [[ E,(Py, (T.(2) <t - T.(y)); T.(y) <t)dydz
MXxM

-2 f[ Py, (T.(2) st = T,()); T/(2) < T.(y) <t) dydz.

Note: We are using T.'(z) and T.(2) to distinguish between the two first hitting
times.
Now, using (4.3),

2 | BuPry(T(2) 5t = L) T.02) 5 t) dyds

(Exy (At = T(9))); T(y) < t)dy

m(t - T(y) 7t~ T.(y))
logl/e 2log?1/¢

(1 +k —log2(t - T,(y)))

JE
2 fMEx

1 t \'"*
-2 2 1-p|.
+(log E)O(t + (logl/e) +¢ ),Ts(y) st) dy

¢ w(t —8) a(t —s)
/0( logl/e * 210g 1/¢e

=2fMdy
1 1=r
(log )O(t2 " (log 1/e) ’ El_p)E"(AE(t))
=2f dy

1+« —log2(t - s))) dP(T.(y) <s)

w(t — s) a(t —s)
-/;)( logl/e 210g2 1/¢

1 t \'"™*
-3 _ 2 1—p|41—p
+(log E)O(t + (logl/s) +e )t :

1+« — log2(t — s))) dP.(T.(y) <s)
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Integration by parts implies

¢ m(t—s) w(t —
[( logl/e * 2 log? 1/

(1 + k — log2(t — s))) dP(T.(y) <s)

t T
= fo(logl/e + 2 Tog? 1/E(K —log2(¢t — s)))Px(Ts(y) < s)ds

and we have, using (4.3) again,

t o o
2fMdy[0 ( logl/s + Slog” 1z (k — log2(t — s)))Px(Te(y) <s)ds

t o T
B 2fo(logl/s " 2log? 1/3(" ~ log2(z - s)))Ex(As(S))ds

Y p— i log 2
- -/;)(logl/e M 2log21/s(K_ 8 (t—s)))

T +1-1log2
X —
logl/e  2log?iye 0g2s)

1-p
+ log‘21 ot + i + el | ds
€ logl/e

2t2

w22

" logZl/e | logPlje
1 b\ tlogt t2log? ¢
+{log 2 —)O[ [ + +el 7P|t + + .
(og 8) ( (logl/a) ¢ )(t logl/s) logl/e
Therefore we have

2 JI| EdPr,(T(2) 5t = T3 T.09) < ) dyde

T

3
( + Kk — log2t)

'77'2t2 2t2

" log? 1/¢ log 1/e

1_
+ 1= log‘31 ot + ! ’ + gl77|.
€ logl/e

We now consider

2 /[ PXTU(T(z)<t—T(y)) ’(z)sT;e(y)st)dydz.

ko

(4.4) (3 + K- loth)

Since

E,(Py, (T(2) <t = T.(y)); T.(2) < T(y) <t) < P(T.(y) <),
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we have
2 [ E(Px, (T2) st -T(y); T.(2) < T(y) <t)dydz
d(y,z)<4e
(4.5) < Ce’E,(A(2))
tl—p82
- Clog 1/¢’
It remains to consider the integral over
= {(y,2) € M X Mld(y, z) > 4¢}.

because of (4.3).

First
2 [[ Bu(Px, (T(2) <t = T.(9)); T(2) < T.(y) < t)dydz
Q,

= 2ffE (EXTg(z)(PXTo(T(z) <t-T/(2) - T(y))

T(y) <t = T/(2)); T/(2) <t)dydz

—2ffE (Exyy o Pag(Te(2) < £ = T2(2) = TU(9));

t

T.(y) <t - T/(2)); T.(y) < T(2) < t) dydz
=: Bl - CI'

. Note that

inf d(Xr.,), 2), d(Xr. 2y ) = 3¢,

so we may apply (3.7), albeit with different constants. For convenience we only
consider the case of larger times, viz.,

t>ePlogl/e.
Then by (3.7) and (2.18),
PXTEO,)(TS(z) S 0’)

(,2)(0/(log1/e))"”"
4. — a+2y
(4.6) logl/gf Py(Xr,y,2) ds + O( log1/e
v/v
Y
= Togl/s (” * (logl/s) )l“+27(y’z)

: v/v

(4‘7) =< lOgl/Eo la+2'y(y7 Z).
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Therefore (4.7) implies that for sufficiently small « and 3y close to 1, we have

C, < Lt%/VE (A (t)) < ﬂt?w/v
1= log31/e e ~ log*l/e
by (4.3). So
Ct2~r
4. —_—
(4.8) Ci= log*1/s

for sufficiently small p > 0. For B, we must work more precisely with (4.6).
But first we require the following estimate.

LEMMA 4.9. Fory,y',z € M we have, when d(y, y") < 3d(y, 2),

= Cd(yl, y)TI—Il-l3_2M(y’ Z) .

(4.10) ’ [ 2) ~pi(3,2) ds

See the Appendix for details.
So

< Csol_"la_z#(y, z)

lj;a(ps(XTt(y)’ Z) - ps(y’ 2)) ds

for u € (0, 1), which implies by (3.7),
PXTO,(T (2) <o)

(4.11) logl/e f pu(y,2) ds

1 o 14
+(log—l;)0(301—#13_%(3/,,2) + (m) la+27(y,z)).

‘ Then (4.11) with y close to 1, (4.7) with vy close to 0 and the argument leading
to (4.8) imply

B, - //E (Bxyy o Prno(Tu(2) <t = T/(2) = T(9));
T(y) <t- Ts'(z)); T./(z) < t) dydz
s BB [ [ s

T(y)<t-— Te'(z)); T/(z) < t) dydz

t3/2—p

1
- + log—1—P)—
- log® 1/.~:O("3 8. e)

1
: By + O(t3/2"’ log‘“f"—).

€
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To study B, we have
-T.(y)
EXTg (z)(/(;u yps(y, 2) dS; Te(y) < u)
u u—o
B -/(‘) dPXTé(Z)(Ts(y) = 0-)]; ps(y7 Z) dS.
= /‘upu—a(y ,2) Py, (,,(Te( y) <o) (implied by integration by parts)
0 £

ko

) dof’, d
g 17z Jy Pu-e9:2) do['p,(y,2) ds

+

1 t "
1-p
logl/eo(st l3—2y.(y7z) + (logl/s) la+2y(y7z))

Xt"ly (y,2) [implied by (4.11) and (2.18)].
By the argument leading to (4.8) we have

il =T T.ly)
B2 - IOg]./.‘;‘ !;/‘Ex(EXTg(z)(/; ps(y7 Z) dsy

T(y) <t- T;(z)); T/(2) < t) dy dz

2m? t—T(2)
B log?1/e !;f Ex(/; Pi-1)-0(¥,2) do

vaps(z,y) ds; T.(2) < t) dydz
0
1
+ O(t3/2“D 10g‘4+”'—),
&

which implies by (2.18),
2m? t—T.(2)
B, = W M[[MEx(/(‘) pt—Tt(z)—a(y, z)do
x[aps(z,y) ds; T.(z) < t) dydz
.70

+ O(t3/2“’ log"‘*"'l)
£
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27? t— T(z)
= —l;)gz—l/g[MEx(j;) 0/ Pi-1,0)-0+5(2,2) ds; T,(2) St)

+0(t3/2“’ log“‘*”'}—)
E

f Ex(ftnT‘(Z)Tp,(z, 2)dr; T(2) < t) dz
M Yo

+o log =7 ).

&€

27?2

N logZ1/¢

LEMMA 4.12. For all z € M we have

1
(4.13) ps(2,2) = Y + 0(1),

ass — 0.

See the discussion in the Appendix.
Therefore

B, = W([ dz[ (t — s) dP,(T.(2) < s) + O(£?E,(A, (t))))

$3/2-p

$3—F £3/2-p
f dsz (T.(2) <s)ds + O(log3 1/s + o7 1/s + el—P)
[by integration by parts and (4.3)]

m2t? £3¢" £3/2-p
2log®1/¢ T O( log®1/e " log*~*'1/¢ " eI_P) [by (4.3)].

Substitute B, back into B, [see (4.3)]. Then substitute B;, C; [see (4.8)]
and (4.5) to evaluate

2 || BdPr (=) st = T0) Ti(2) < T(y) <) dyde.

Combining this result with (4.4) and (4.3), one has the result (4.2). O

- log? 1/8

Proor oF LEMMA 1.7. Recall, we wish to show that, with 27 = log1/¢, we
have
2P
Y (log ( log

Jj=1

(J—l)t jt1 wt\ wt 1
5] F) -3

- —) - —loglog;

mt(l + k — log2t)
2

-
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in L*(dP,) as ¢ > 0. Well,
(-1t Jt] ﬂ't)

2° 1
log— ™
(oo ) (o7) 5 5]-
mt i 1
- —(1 + k — log2t) — —loglog—
€
2" (j - l)t Jt wt
log - - —
' P log1/e2?
mt
- ——2”+110g2 1/z (1 + k — log2t + log2?P)
12 (-1t jt
lOg £ ng (Ae[ 9P ’ 2_p
(G-Dt jt |
_Ex(AS[T or Fj-1ya-r| + O(log™***1/¢)

(j— 1t jt] ))
(G-1yp2"P

1 2 (-1t jt
=10g2; El(Ae[z—p,§ —E|A| 55

Jj=

|

using (4.3) and the fact that 27 = log1/s
Therefore, it suffices to show that because of our conditioning the conver-

el

+O(log‘1+” -1,
€

gence to zero of
(j—- Dt jt ]

1 2° (j— ¢t jt
4 At Al Mo
log .‘-:Ex ng(As[ 9P ' 9p E A, 9P  ’9p
1z (G-Dt jt
=log*— Y} E
og J§1 x e[ op 2p
2
(-1t jt
—Ex(Ae[—zp—@; Bj-1ezr
1 2° t \\*
" g Ex(EX«j-lm/zp(Ae[zp] - X(u-lm/zp( 8[2_17])) )
o1 - t ‘
= log ;ngEx VaI‘X«j_m)/zp AB 5';

= O(log”‘l/2 —)
E
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by (4.2), which implies Lemma 1.7. (We note that, three lines up, X ;_1y/2»
denotes the same time in both uses of the expression.) O

5. The renormalized intersection local time and proof of Lemma
1.8. Let us recall that

T [t T 1
= t — —log{ —|.
y.(T) fofope(Xs,Xt)dsd 21Tlog(£)

PROPOSITION 5.1.  ,(T') possesses a limit in L*(dP,) as ¢ — 0.
This limit is called the renormalized intersection local time. We will give a

completely self-contained proof of its existence.
If we let {Y}, = Y — E_(YIF,), we consider the random variable

7.(T) —/ / (X, X,)}, dsdt.
We note the following:

(52) Ex(pe( Xt’ Xs)lgs) = ]pe(z’ Xs)pt—s(z7 Xs) dz = pt—s+e(Xs’ Xs)’

1
(5.3) p,(z,2) = Ey + h(z,0),

where h(z, o) is uniformly bounded and smooth (cf. Lemma 4.12 and its proof
in the Appendix) so that

(5.4) [T [in(X,,t - s + &)l dsdt < CT*
0“0

" in the worst case. Now

T (t 1 1 1 rlog(t + ¢)
(5.5) [0[0————2#0_8”) dsdt—ETlog(;)+'[; ———dt

Hence
1
(5.6) %(T) - 7.(T) = o— [ log(t + &) dt + [T (Xt -5 + ) dsat.
21 o 0o ‘o

The right-hand side of (5.6) converges uniformly to the obvious limit as
¢ — 0. Hence it suffices to prove:

ProposITION 5.7. %.(T) possesses a limit in L*(dP,) as ¢ — 0.
While we prove Proposition 5.7, we will also show:

ProposiTION 5.8. E (7.(T)?) < CT'*°, 6 €(0,1), independent of x if T >
co/log(1/¢).
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This is the key estimate for the proof of Lemma 1.8.

In order to show that E (%.(T) — 7.{T)?) — 0 as ¢,¢' — 0, it suffices to
prove that E (7,(T)y,(T)) converges as ¢, ¢’ — 0. The proof of Proposition 5.7
will be a sequence of expressions of the form of a main term plus an error,
until the main term is free of ¢’s and is the term to which the %,’s converge.
This limiting term will be shown to satisfy the estimates of Proposition 5.8,
while the errors will all be bounded by Ce?, a € (0, 1), which is much smaller
than T'*° because T > C,/log(1/¢). We will proceed with the proof of the
two propositions and then show how Proposition 5.8 implies Lemma 1.8.

Throughout this computation y, y', z and 2’ will be spacial variables, x will
never be a variable of integration, while s,¢,7,a,b,c, etc., will be ““time”
variables. We will often suppress explicit mention of the measures in the
integrals when we feel there is no confusion, ie., [y:f(y, 2) =

fm/M f(y,z) dydz

Proor or ProposiTION 5.7. If we let s’ and ¢ denote the variables of
integration in the y,(T') expression, the proof breaks up into three cases.

Case 1. s <t<s' <t Then
Ex({pe(Xs’ Xt)}s{ps'(Xs'7 Xt’)}s') =0.

CasE 2. 0<s<s' <t<t <T.Let H denote the above subset of R* and
seta=s8"—s,b=t—s',c=t—t Then

fHEx({pe( Xt’ Xs)}s{pe( Xt" Xs’)}s’) = fHEx(ps(Xt’ Xs){pe’( Xt” Xs')}s’)

= fHEx(pe( Xt’ Xs)pe'( Xt'? Xs)) - fHEx(pe( Xt’ Xs)ps’+t’—s'( Xs'? Xs))

—A-B,
by (5.2),

A= fMJHpE(y',y)pg'(Z’, 2)ps(%,¥)Pu(y,2) Py(2,¥) P(y', 2) dy dy' dzdz’
= [ dvdz[ p.(x,3)Pu(3,2) [ P(3,5)Ps(5"s 2) Perely' 2) dy’
M H M

= [ dydz| p.(x,9)Pu(3,2) [ P(5,7)Pe(y'2) Py, 2) dy' + Ey,
M3 H M

where
T-d ,
E1 = szprs(xyy)pa(y, Z)fMpe(y,y )pb(z,y )j;) pc+£,(z’y )

—p(2,y") dedy’
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and where K = {(s,a, b)ls,a,b>0and d =s + a + b < T}. Now, ife'<r,

,/;pc+e'(zyyl) _Pc(Z,y') dc

= foe(pc(z,y’) + Pesr(2,5) de < Cely, (2,5,

by (2.18) and, if r < &', we can use (2.18) directly to estimate our integral. So
we get

(5.9) lfopmr(z,y') —p(2,y") dc| < Ce"ly,(2,y"),

which implies
E <:°[ dydzf P2, 9)0(,2) [ P(5,5)Po(2,5) 30(2,5") dy'.
M K M
If we integrate db, then da and finally ds, and apply (2.18) each time we see

By s e(e) [ Hx3)p.5,5) [ 105, 2)lu(2,5) (2,5 dz

<e(e) [ Ux9) [ p(y,y)dy' <o)
and

A—E1=f

Maprs(x,y)pa(y, 2)p(3,5)py(2,7) (Pel(2,5) = pe(2,9))

+ [ S P93, 2) P35, 3) (Pol(2,5) = Po(2,3)) P 2,7)

+[ [ p(£,3)pu,2)Py(5, 2) P2, 7)
M2 H

=E, + E; + J,,
by integrating the y’ variable,

(5.10)  Ip(2,y) ~plzy)l < CdZ“(y,y')[et(j;y ) ey )],

where

1 -d(z,y)*
el2,y) = omt P 2t

is derived in the Appendix. By the argument before (A.2),

(1) [ “Ip.(2,5) = p(2,9)dr < Cd(y', ) [laa(2,5") + Loz, 3)].
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Then, as in the E, estimate, we arrive at the inequalities
By < Cf 1(x2)U5,2)U(z5)P5,5) d(5,5)*[Loal(2,¥) + L3o(2,9)]
and
By < Cf 1(x2)U5,2)p5,5) d(5,5)*[lsaly,2) + o5, 2)]U(, 2).
We integrate the z variable and we get

Bl < C[ 1(x,2)p(2,5) d(3,5)™

< qupf P9,y d(y,5)* dy < ce*.

E, is estimated in exactly the same way. Hence A converges to J; as ¢ and
&' — 0, where

(5.12) Ji=[ [ p(%,9)pu(5,2)Py(3,2) (3, 2).
_ M2 H
Next,

B= [ [ P35)Psrese(2:2)D(2,9)p(5,2) P2, 5)
M3 H

ps(x’y)pa(y’ z)pb+e(y7 z)pb+c+e'(z’ Z)

fMZ H
S,

2

Hps(x’y)pa(y7 z)pb+e(y7 z)pb+c(z’ Z) + E4

 and

b+c+e' b+c+e 1

Poscre(2,2) = Pyiclz,2)l =" py(2,2) do| < C —=do
b+c b+c o
Cb" (31)1/2

G+ rcre) SC(b+c)*""/2’

because of (4.13) and
/T 1 C
o (b+ 0)3/2 =V

Hence we can use (A.3) to estimate
p e(y, 1 Ve o
[ bt db < (fm db) (fpfﬂ(y,z) db)

=< Cl2/¢x(y’ Z),

1/a’
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for 2/a > 1, to get
|E4| < C€,1/2/ l(x’y)l(y’ Z)ZZ/a(y’z) < C€!1/2.
MZ
By this argument we can replace B by B’,

B'= [ [ pi(%,5)Pu(9:2) Posel 95 2) Posere(2,2)
M2'H

= [ ] P(%,9)Pul5,2)Ps(5,2) Poso(2,2) + Eg
M2%'H
=dJ, + Ej,

where
T-d
E'5='/’2 ps(x’y)pa(y’z)f [pb+£(y,2)pb+c+£(z,z)
M2L 0

—Py(¥,2) Py.(2,2)] db,
where L = {(s,a,c)l[d=s+a+c<T,s,a,c > 0}. Let

E =

[ 12140 2)Prrerc(2:2) = o3, ) Ppcl2:2)] db|.
If ¢ <r, then

E' = j(; [pb(y7 z)pb+c(z7z) +pb+r(y’z)pb+c+r(z,z)] db

and

. . 12) 1/2
fo pb(y,z)pbﬂ(z,z)dbsc(fo (pb(y,z))zdb) (fo ﬁdb) :

But f()s(b + C)_2 db < 81/20_3/2, SO wWe see
j;pb(y,z)pb+c(z,z) db < Ce'/*c=3/% (y, 2),

by (A.3) and therefore
(5.13) E' < CeV*%c™ %4 (y,2) ife<r.

If r < ¢, then this argument shows E' has a similar upper bound. Thus

E; < Ce'/* fMZprs(x,y)pa(y, 2)ly(y, 2)e™¥4

We now integrate the variables in L, starting with ¢, and as usual apply the
estimates (2.18) and we get

Ey < /'C[ 1(x,7)U(y,2)li(y, 2) < Ce'/%,
M
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so B converges to

(5.14) Io = [ [ Pu(5,9)Puly, 2)Po(3, 2)Po.e(2, 2).

CasE 3. 0<s<s <t <t<T.Let G be the above subset of R* and set
a=8 —-s,b=t'—s'andc=t¢t-1t" :

/GEx({pe( Xt’ Xs)}s{pe’( Xt” Xs')}s’)
= /GEx(ps(Xt7 Xs)(ps’( Xt” Xs’) - pt’—s'+£’( Xs’ Xs’))) [by (52)]
= [ [ P(5,9)pA2,2) p(%,5) Pu(3,2) Po(2, 2) P, 2')
M*G

— [ [P, 3)Pul¥,2) P2, 2) Pyrne(952)
MG

=P -q.
First,

P= [ [ p(x,9)puy,2)pc(2,2)Ps(2,2) Peri(9,2) + Es,
M°*'G
where

Bel < [ [ pe(2,9)Pul,2) P2, 2) Po(2, ) (Pesel(3,2) = Pese(3, 2)])

<Cf Hx)U(y,2)pul2,2)U(2,2) d(2,2) (L5, 2) +L.(5,2)),

by the argument we used to estimate E, and E,. Also, I(z,2)d(z,2)%/? is
uniformly bounded and we see that

|Egl < K(fMal(x,y)l(y, 2)p.(z,2') d(z, z’)a/zla(y, 2')

# [ HE 0,2 P2 2) d(2,2) 105, 2)]
Ma

=F, + F,,

where
S S K[ 100) [ 10,2)1a(,2) sp [ (e, 2) d(z,2)"* | dedy
M M z "M

< K(&)**,
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as we estimated Ej. To bound F; we have

Rl K[ W)100,2) [ pulan2) dla,2) 1,05, 2) a2

1/2

< Kszl(x,y)l(y, z)(fMpe,(z, 2) d(z, z')“)l/z(fMpsl(z, )1z, ?,)2)

We see that

(3,2
f pg,(z,z’)la(z,z’)2 dz' < Kf pg,(z,z’)fT—-——p (ya ) dsdz'.
M M 0 s
But
Tps+e'(y’z) T 1/q ds 1/q'
Cfo e sC(fO Py, 2) ds) (/saq,) < Cly ey, 2)

if aq' <1,1/q + 1/q' = 1, by Hélder’s inequality and (A.3). Hence

1/2
Rl < K[ 151002000 [ polz,2) dC, )| K@),

by the argument bounding F,. Hence
P-Q-E;

- '[Mz";?p8(x’y)pa(y’ z)pb+5'(z’ z)(pc+e(y’ z) - pc+b+e(y’ Z))
B szprs(x’y)pa(y’ z)pb+s’(z’ z)j;T_dpc+€(y’ z) - pc+b+e(y’ z) dc
= szprs(x,y)pa(y’ 2)pyie(2, 2)(p(y,2) — Poac(y, z)) + E,,

where N = {(s, a,b)ls,a,b > 0and d =a + b + s < T} and where

E,=- szprs(x,y)pa(y,Z)pm'(z,Z)foT_d(pm(y,2) - p(7,2))

_(pb+c+£(y7 Z) - pb+c(y, 2)) de.

If we apply (5.9) to the dc integral twice with a difference of ¢ and twice
with a difference of b we get

Bl < C[ [ Pu(9)Pul,2)Pore(2,2) (eB)Lel, 2)

“ < Csa/Z szl(xyy)l(y’ z)(j;pr+e’(z’ z)ba/z db)IZW(y’ z)

< Ce®/2,
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Therefore

P-Q-Ey=E;= [ [ p.(5,5)Pu5,2)Ps(2,2)(P(2,2) = Pracl5,2))

(5.15) [ S5 )Pu5,2)(Pysil2.2) = Pi(2,2)
X(p(3,2) = Pyie(¥,2))
= Jy + .

Once again if we integrate all the G variables except b and apply (5.9) and
(2.18), we see that

B < [ 1591059 [pao212) = po(z, 2" ).

But
Ce’ c(e)'*
Ipb+£'(z7z) _pb(z’z)l < b(b+8’) = b5/4 ’

as in the estimate of E,. Hence |Eg| < C(¢')'/* if a > 1. This completes the
proof of Proposition 5.7. O

PrROOF OF PrOPOSITION 5.8. In order to prove Proposition 5.8 we must
estimate the integrals J,, J, and J3, given by (5.12), (5.14) and (5.15).
By several applications of (2.18) we see

Wil = CT% [ ["p,(x,9)le,(y,2) ds < CTH+3%,
M=o
if @ < 3. In order to estimate J,, we notice
fT—deb(z, z)dc < Cllog b| < C/b“
0
and
, 2
[P gy < cret (5,0,
0
by the argument before (A.3) (with 1 — y = 2a). Hence
ol < CT* [ ["p(%,5)l6u(, 2) ds < CT1+2,
M20

if @ < 3. If we integrate the ¢ variable and the a variable and apply (5.9), we
see that

T T
Mol < CT[(ds [ p.(%,9)10,(3,2) [ Py(2:2)b dblso(y,2)

< CT"‘/MJ;Tps(x,y)lm(y, z)(];Tb““l db) ds

< CTa+ 1,
if @ < 3, which completes the proof of Proposition 5.8. O
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We will close this section by showing how Proposition 5.8 implies Lemma
1.8.

Proor or LEMMA 1.8.

2 A T 1 1 ,r
> (aze(A(J,P)) - 211-2”10g(2521’)) - E/o log sds

Jj=1

- T [ (pal X X)), ds

Ji=1 A, p)

(( [ Bpax, X,)l?ss))—g%-z—glog(z;p))

AG,p)

(5.16)

1 7
———2—7—;f0 log sds.

We now apply (5.2), (5.3), (5.4) and (5.5) and we see that
T /2P 1
A(// E.(p2(X,, X)I¥,) = 5= f [ e dedt
J,p)

+ ff h(X,,t — s+ 2¢)
A, p)

1 1 1 »
= Tlog( ) o 2pf log(t + 2¢2P) dt

21 2P 2e2P
ff h(X,,t— s+ 2¢).
AG, p)
Now,
T 2
ff R(X,,t —s + 2€) 50(2—p)
AG,p)

in the worst case. Hence

2P

)Y

[ n(X,t—s+20)|<
Jj=1

AG, p)

Ea

which certainly approaches 0 in L%dP,). Therefore the left-hand side of (5.16)
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approaches 0 in L%(dP,) as ¢ — 0 if and only if

5> JI {p%(Xs,Xt)}sdsdHifT(log(H(ze)zP)—log(t))dt
J=1 4G, p) 2m o

converges to 0. But 27 = log(1/¢) and therefore it remains to show that

2P
Y [ (palX,, X))}, dsdt >0 in L¥(dP,).
J=1 A(j, p)

We now use the disjointness of the triangles and the conditioning to see that

2 2r 2
=X | JI {palX,, X))}, dsdt
J=11 A, p)

9p
Y [ {palX,, X)), dsdt

J=1 43, p)

2 2

It is then clear that (5.16) follows from Proposition 5.8, because

2 oeorttvt 1
< — 7>
27 (27)

ff {p2e(Xs’Xt)}s dsdt

A, p)

where 27 = log(1/¢). O

2

6. The proof of Lemma 1.9. We use notation L(g) = log(1/¢), Ly(e) =
loglog(1/¢).

To prove our lemma it suffices to show that for any ¢ > 1/L(¢) and some
5>0,

(6.1) Ex([L(s)zA(SE(O,t) N S,(,2t)) — m2a,,([0,¢] X [t,2t])]2)
t2+5

6.2 < h(e) = .
(6.2) < h(e) LG

Let H =1[0,¢] X [#,2¢]. If we expand the square in (6.1), we obtain three
kinds of terms, :

(6.3a) mE,(a3.(H)),
(6.3b) 72L2%(e) E,(a,,( H) A(S,(0,£) N S.(¢,2t))),
(6.3c) Li(e) E,([ A(S.(0,2) N S,(¢,2t))]%).

Case 1. We first analyze (6.3a). Let

H=HXHN{0<r<r' <t<s<s' <2t}
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and let
Hy,=HXHN{0<r<r' <t<s'<s<2t}.
E(aX(H)) = E.(p.(X,, X,)p.(X,, X,))
HxH
=2|f +/}mwxxw&mxxa&»,
H, H,
'[H Ex(pe(Xr’ Xs)Ex(pe( Xr" Xs')))
6.4
( ) = / / pr(x’y)pe(y’yl)pr’—r(y’ z)pe(z’zl)
H,"M*
><ps—r’(z’ y,)ps‘—s(y,’ z,)
and
'[H Ex(pe(Xr’ Xs)pe( Xr” Xs'))
(6.5)

- ‘[H /M4p5(y’y')p5(z’ zl)pr(x’ y)pr'—r(y, Z)

Xps'~r'(z’ z,)ps—s'(y" zl) .
(6.4) and (6.5) converge to

(6.6) I = fH szpr(x,y)prf_r(y,z)ps_r'(z,y)ps'_s(y,z),

- (8.7) L= [ [ pl&9)p(3,2)Psr(2,2)P. o, 2),
2

respectively. More precisely we will show that each of the terms (6.3a), (6.3b)
and (6.3¢) differ by h(e) from 274(I, + I,).

First we note that I, and I, are finite. We see this as follows. Bound
Ps—A2,2) in I, by C(s' — r)~! and bound p,_,(y,2) in I, by C(s — r")~L.
We then integrate the z variable and use the semigroup property to get a term
(¥, y) which we bound by C(A)~1. We then integrate the y variable and find

I < C[H(s - r =r+s —s)7
1

(6.8)
L<C[ (s=r)7(r—r+s—s)""
H, .

The right-hand sides of (6.8) are the same integral, which is easily seen to be
bounded above by C(t log ¢)2.

Before we proceed to the proof of convergence to I; and I,, we again note
that €%, @ > 0, is much smaller than h(e) and hence, terms whose absolute
value is less than Ce* are negligible.
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We will show that (6.4) differs from I, by h(e) and (6.5) differs from I, by
h(e).

We will sketch the details of the (6.5) case. First do the dy’ integral:

fH Ex(pe(Xr’ Xs)pg( Xr” Xs’))
= [ [ P22 P, 3)Prr—r(3,2)Py—r(2,2) Pa_srse(9,2)
Hy M

= ‘[H /Mspe(z’z,)pr(x’y)pr'-r(y’Z)ps’—r'(z’ z')ps—s'(y’zl) + El-
2

Let Hi={0<r<r' <t<s' <2 2t—-s'<s<2t—-s"+¢e or 0<s <g}
Then

E < [ p(%,9)p,-,(3,2)P(2,2)Ps_(2,2)D:(2',3)
M3/H,

1
< C ’ r'—-r ) £ 1) ! s ,’
L. fHas, —0(2.9)Pr-(3,2)P(2,2)Dy(2',Y)
1
=C .
fMangs, P (%, YD rare (9, 9)
1 1

SC/ ' [
H,s —r'r r+s

< C Vol( Ha)l/p'(/Hs( 1 1 )p)l/p

s'—=r'rr—-r+s

< Cel/”

for p slightly greater than 1, 1/p + 1/p' = 1.
leta=r"—-r,b=s"—r',¢c=s —s'. Then

(6.9) [ [ p(%,9)pu(3,2)P(2,2)Ps(2,2)P2',y) = I, + Ey + Ey
M37H,
and

Ey= [ [ p.(%,9)pu(3,2)p.(2,2)(Po(2,2) = Py(2,2))P(2,5),
M3“H,

2
E, =f / p.(%,9)p.(y,2)p.(2,2) pp(2,2) (P(2',y) — D(2,%)).
M3/H, ‘
We see |E;| < Ce” in the same way we estimated Eg of Section 5; while
E2 = f 2/ pr(x’y)pa(yaz)(pb+s(z’z) —pb(z,z))pc(z,y),
M?/H,

which can be bounded above by Ce?, @ < 3, by the trick used to estimate E,
in Section 5.
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In the (6.4) case we first integrate the z’ variable and get a term of the form
Ps—s+:(2,5"). We replace this by p,._.(z,y’) and introduce an error analogous
to E, above, which is bounded in the same way. The rest of the proof is totally
parallel to the (6.5) case.

Case 2. We will now analyze (6.3c).
L(e)*E,([A(S.(0,2) N S.(t,21))]?)
= L(e)* [[EAT.(y) v T.(2) st < T/(y) vV T.(2) < 2¢) dydz
M2

[where T.(y) denotes the first hitting time of B(y, ¢) after time ¢]

= 2L()( [ BL) S T() st < T2(2) < T(5) < 20)

+ EAT) S T2 St S TUy) S To() < 20)
=2L(e)4(J, + Jy).

We will show that L(e)*J; differs from 7*I;, i = 1,2, by at most A(e). Let
G(g) = L(e)~2°. We will do the ¢, case; the J; case is a parallel argument.
Let

D= (y,z, Xld(x,2) Ad(x,5) Ad(y,2) Ad(X,,y) Ad(X,,2) = G(¢)).
We want to show that

L(e)* [[ B(T(y) < T(2) <t < T/(2) < T/(y) < 2t; D°) < h(s).
M2

We will look at the conditions in D one at a time. Let us concentrate on the
condition d(X,,y) > G(e). If this fails we study B = {(y, 0)/d(X(w),y) <
G(e)}. If we ignore all the hitting times except T.(2),

[ EAT() < T(2) <t < Te(2) < T(y) < 2t B)

< C[ Ex(Te(z) < t;f 15(y) dy| dz
M {ld(y, X,)<G(&)}

< CG?*(&) E,(A(S,(1)))
< CG%(e)t.

The other parts of D are the same or even easier to deal with.

We will now outline the steps that lead us from oJ, to I,. Each step is an
obvious application of the Markov law or the hitting time formulas we have
developed. However each step introduces an error which we will show is less
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than or equal to A(e):

L(&)*d, = L(s)4/M2Ex(Te(y) <T(2) <t<T/(z) <T/(y) <2t;D)+F,
= L(e)4fM2Ex(Te(y) <T(2) <t <T/(2) <2t
Ex,, T.(y) <2t - T/(2)); D) + F,
- L(e)'n [ B(T.) < T.(2) <1< T/(2) < 26
fo (9, X)) dS; D) + F,
(6.10) = L(s)3wa2Ex(T£(y) <T(z2) <t<T/(2) <2t

[* (5, 2) ds; D) +F,
0
= L(s)?’qrszEx(Te(y) <T(z) <t,

Ext(Te"(z) <t [t_T‘”(Z)ps(y, z) ds); D) + F,
0

= L(8)3ﬂ-fM2Ex(TE(y) <T(z) <t;
/(‘)t(/;)t—s})s(z,y) ds) dPy(T/(2) < s');D) +F,

= L(8)2"72fM2Ex(Te(y) <T(z) <t;
(6.11)

[ pay ds)ps( X, 2) s’ D) +
0\’0

Now
t rt—s’ 2t r2t
f/ ps(z’y)ps’(Xt’z) desI=f f ps—s’(z’y)ps’—t(Xt’z) deS'
070 t Js' .

ps'—t( Xt’ z)ps—s'(y’ Z) dS dS,

tss'Sssgt
‘Q(X,,2,y).
It is an easy application of (2.19) that on D,

(6.12) Q(X,,z,y) < CL%(¢).
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Hence,

(611) =7°L(e)*[ E,(T.(y) < T.(2) <;Q(X,,2,9); D) + Fs

- 7T2L(g)2fM2Ex(T£(y) < T(2) <t;Ex, (Q(X,_1)25); D)) + Fs

wL(e)’ [ E(T0) < T() <1

| pr-r.o\ Xr, o0 )@us2,5) dui D) + Fy
- wL(0)’[ B (1) < T.(2) <
[ pr-rio2,0)@us2.9) dui D) + By

= sz(E)szaEx(Ts(y) =< TS(Z) < t;pt—TE(z)(zy u)Q(u, z,y);D) + FG

m2L(&)? fMaEx(Ts(y) <t; By, (T.(2) <t - T.(y);
pt—TE(y)—Te(z)(z’ u))Q(U, 2,5); D) + F;

t—T.(y)
LG [ B0 58 [T 0 X 02)

><pt—r’—Ts(y)(‘zi u) dr’ Q(u, Z, y)’ D) + FS

T.(y) ,
pr’(y’ z)pt-—r’—Te(y)(z, u) dr

L) [ E(T0) < [

xQ(u,z,y);D) + F,

t !
T [ B0 <55 [ periof iz ) dr

XQ(u,z,y);D) +F9

7r3L(s)[D(/:f:p,,_,(y, 2)p;_(z,u)dr' dP(T.(y) < r))
XQ(u,z,y) + Fy

7 [ pA%,9) Py (3,2)Pror(2,u) Py (#,2) Py s(2,¥) + Fyg
D’H,

It

m [ | p(x,3)P_(3,2)Pe_ iz, w) Py, 2) D, _o(2,y) + Fyy
M3’H,

=m¢[ [ p(%,9)Pr (¥, 2)Py_(2,2)Pe_s(2,5) + Fyy
m2/H,

= 77'412 + Fll'
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We now must estimate the errors. F; came from adding the conditions we
called D and we have already seen that |F,| < h(e). Let G, =F, - F,_,,
i=23,...,11:

Gl = Li(e) [ E(T.(y) < Tu(2) <t < T(y) < T/(2) < T.(y) < 25 D).

Then several applications of (2.28), the Markov law and then (2.18) imply
o
L(e)

because we can pick S close to 1 and « close to ;. Next,

Gyl <

| Ptlg(x,9)lsu(y, 2) dzdy < h(e),
MZ

1G5l < CLY(e) L(¢)® [[ E(T.(y) < T.(2) <t < T)(2) < 2¢t; D)
M2
= CLy(e) L(e)* [[ E(Ty) < T.(2) <t, Bx(T.!(2) <t); D)
M2
< CLY()L(e) [ B T.9) < T.(2) < t, [ p(X,2) dsi D)
M2

+ CLY(e) [[ ET(y) < T.(2) < ¢),
M2
by (2.28). Therefore

|Gyl < CLi(e) L(e) [[ E(T.(y) < T(2) <1)
M2

because d(X,, z) > G(e), which implies
|G4l < CL4(e)t2L(e) " < h(e),

by (4.2) and (4.3). The G,, G¢ and G, errors all come from replacing an X ,, -
or Xr ., with y or z, respectively. This introduces an error of £%, 0 < & < 1,
which is much smaller than A(e). [Recall (6.12) and (5.11).]

Once again, (2.28), (4.2) and (4.3) imply

CL3()L%(¢)
L(e)

as in the G estimate.

G, < L(s)szsEx(T;(z) <T.(y) <t,Ex, (T.(2) <t - T.(y);

1G4l < [MZEx(TE(y) <T.(z) <t) <CL3(&)t2L(s) " < h(e),

pt—Tc(y)—Tc(z)(z’ u ))Q( u,z, y) 5 D)
Applying (6.12) and integrating the u variable implies

Gol < CLA(e) Li(e) [ E.(T.(2) < T(y) <t; Py, (T.(2) <1); D).
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The rest of the argument is the same as in the estimate of G4, because the
condition D implies d(X7 ), 2) = G(e).
We now apply (3.2), (2.28) and (A.4) and the fact that dp /3t = Ap/2 to get

Gsl < L3(e) [ ET.(y) <15(2,u)@Q(x, 2,); D)
< CLY(e) [ Fu(T(y) < £58°05o(, 2)la(2,u); D) [by (2.18)]

< CtoLi(e) [ E(T.(y) <)

< Ct**'L3(e)L(e) "' < h(e).

We can choose a as close to 1 as we like, and when we integrate the u variable
which gives us the fifth power of L,(¢), we use the fact that d(u, z) > G(e).
This follows from condition D, as a careful check of our formulas shows that
X, = u and d(X,, z) > G(e¢) is already in condition D.

In order to estimate G,, we apply (2.16) of Proposition 2.15 and integration
by parts and get

a/v
Gl < | [ [ lotor, 22, 0) a1, (2,3)Q(,2,9)
D r

L())

a/v
<Ctﬁ( fffl2a(x’y)l23(z, u)lz(y,z)l(y,z)
D

o)

t
L(e)

We now integrate the z variable subject to the restriction d(z,y) > G(e)
and note that 3{(log r)?}’ = log r/r. We then see that

a/v
sCt"( ) [ 125912 9) U2, 9).
D

a/v
|Gl < C(L( ) ) tPL2(¢)

and the desired estimate follows by picking a, B8 and v sufficiently close to 1.
The G,; error comes from removing condition D. If we apply the Schwarz
inequality to the dr’ integral and (2.18) to the other integrals, we see that

‘I,qull =< Cch‘[H pr(x’ y)pr’—r('y’ z)pt—r’(z’ u)ps’—t(u’ z)ps—s’(y’ z)
2

< CP [ Lap(%,9) h1agal(, 2)1a0al9, 2)-
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We now directly estimate these and see that our choice of G(¢) is sufficient

to ensure that |G ;| < h(e).
The study of the J; case proceeds in exactly the same manner.

Case 3. We will now study (6.3b):
7L (e)* B, (g, (H) A(S,(0, ) 1 S,(t,26)))

— L) [ B [ pa X X) drdsiT.(y) <t < T2(9) < 2]
M H
This divides naturally into four pieces:

(6.132) 7°L(e)’[ [ E(polX,, X);T(y) srstss<T/(y) <2t),
(6.13b) w“’L(s)sz[HEx(ng(Xr, X,);r<T(y) <t<T/(y) <s<2t),

(6.13¢) 7°L(e)*[ [ E(pa(X,, X,);T(y) <7<t <Ti(y) <s<2),
(6.13d) sz(e)szfHEx(pzs(Xr, X,);r<T(y) <t<s<T/(y) <2t).

We will show that (6.13a) and (6.13b) are each within h(e) of m*I,, while
(6.13c) and (6.13d) are each within h(e) of 7*I,. In each of the integrals of
(6.13) we can assume that d(x, y),d(y, X,), d(y, X,) > G(e).

For example, let B = {(y, w, )ld(y, X,(0)) > G(&)}:

L()* [dy | (Eu(po X, X,);Tu(y) <7 <t <s < T/(y) < 2t, BY))
<L(e)*[ dy[ (E.(polX,, X,); B*))
- L(e)? [ (Bupa( X0 X)) [15:(3)
< L(e)*G(e) [ Eo(pa(X,, X,))

= L(e)*G(e) [ drds [p.(%,4) P,y socu, u) du

1

s —r

< L(s)2G(8)fH drds

< CL(&)*G(e)tlogt.

The other conditions in the other integrals have essentially the same proof.
We will denote the presence of such conditions by D.



FLUCTUATIONS OF THE WIENER SAUSAGE 125

We will sketch the proof that (6.13d) differs from %I, by h(e) as we did
above, via a string of equalities with errors:

m°L(e)* [ [ Eu(poX,, X,);r < Ti(y) st <5 < T/(y) < 20)
H'M

]

17'3L(e)f

'n'?’L(e)f

wsL(e)/H

3

m°L(e)* [ | Bu(pal X, X,);r <T(y) st<s<T/(y) <2t D) +K,
H'M

m°L(e)* [ | Bu(po( X, X)ir < T(y) <1

Ex(T.(y) <2t-s);D) + K,
wL(e) [ [ B[ pu X X)ir < o) <1

[ P(X9)doi D) + K,
0

3L(s)/H[M[2‘ ‘doB,(r<T(y) <¢;
E(p2(X,, X,)Po(7, X,); DI§ 1)) + Ky
[02‘ "doE,(r < T,(y) <t;
Po_1.( Xz, #)P2 (4, X,) P, (y,u); D) + K,
/M fzt 3daE r <T(y) <t
Po-1,0)(9: ) poc(u, X,) P, (y,u); D) + K,

Jo

)

T

ﬂ-3L(s)/HfM2j;2t_spa(y, u)doE,(r < T.(y) < t;

ps—T(y)(y’ u)p2e(u’ Xr); D) + K4
2t—s
S Po(2,u) do By (pa(u, X, ) Ex (T.(y) < £~ r;
ps—r—Ts(y)(y’ U), D)) + K5

E’\

wL(e) [ [ [Py (v,u) dop(x,2)polu, ) E(T(y) <t =13

ps—r—TE(y)(y’ u)) + K5

4 2t—s d x. 2z 2 t—r ‘ , u
[ P w) dop(x, 2P, 2) [ P2 ) a0 )

(52 (2 3)Pe 3, W) Py, 1) Pal, 2) + Ko
1

4/ f 3pr(x’z)pr’—r(zay)ps—r’(y’u)ps'—s(yau)pze(u7z) + K7
H,"M

77411 + KS‘
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K, which is the error from adding condition D, has already been shown to
be less than or equal to A(e). Let L, = K,-K, ;:

Ly=mL(e)’[ [ B(poX,. X,);r < T(y) <t < T/(y) <5
H'M

Ex(T.(y) < 2t — 5; D)).

If we use D and estimate Ex(T(y) < 2t — 5) by (2.18) and (2.28) we see
that

Lol < wL(e) Lo(e) [ [ Bo(pa( X, X)ir < T(y) <t < /() < 5; D).

The integral is now the same as the one in (6.13b), but T.'(y) < s in (6.13b)
and, hence, there will be no error which corresponds to L,. The rest of the
(6.13b) analysis is roughly parallel to the present one and we consider it in
detail shortly, so the argument will not be circular. Hence

Ly(e) t2(log )% + h(s) < h(e).

ILy| < L(e)

To estimate L; we invoke (2.28) and get

Lol < CLE(?) [ [ Eo(po(X,, X,);7 < T.(y) < ;D)
= CLY(e) [ [ B Bu(p2 X, X)1))im < Tu() < 1y - X,| > G(s)
=< CL%(E)foMEx(ps—Te(y)+2e(Xr’ XTE(y)); |y - Xrl = G(E)’ r< Te(y) < t)

< CiLy(e) [ E(T.(y) < t)dy
< CtL3(¢)E,(A(e,¢))

< h(e).

The L, error comes from replacing T,(y) by y, which introduces an error
less than or equal to Ce“ as usual:

Lol < CL() [ [ ["po-s(3, ) E(T(y) < 7

Po( X, w) Ex (T/(9) <t = 15D,y _g0(3,1); D)).
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If we first integrate the s’ variable and then the s variable and estimate
these integrals by (2.18), we see that

Lol < CL(e) ['[ 104, 3)*Eo(T(5) < 75 pou( X, ) By (T/(3) <2 = 75 D))
< CL(e)Ly(e) [ [ E(T(y) <75 pa( X, ) Bx(T/(y) <t = 73 D))

t t—r
<1y [ [ B0 < ripa(Xeu) [ po(X,y) dos D
0/M2 0
+ an even smaller error

< CLY(e) [ [ E(T(y) <73 pa(X,,u); D)
< CLy(e) [ [ BAT.(y) <7)dr

< CLy(e) [ ‘E,(A(r))dr

CL2(¢)t?
L(e)
< h(e).
If we use (3.2) we see that
L% € t—s

Lol 5 22 [ ][50, (5, 2)pun(a, )2
B a2 e, )15, )
= L(E) D r ’ 2¢ ’ 2 ’ ’ .

If we integrate the y variable and use D, then

Li(e 2Li(e
[Lgl < (foMZp,(x,z)pze(u,z)) L((s)) < CtL(.:)) < h(e).

The error Lg is controlled in exactly the same way as the estimates of Case
1 of this section. The error L, comes from the removal of condition D which

consists of three pieces,
B, = {d(x,5) 2 G(e)}, By ={d(x,u) 2 G(e)}, By={d(zy)=G(e)}.
We have

prr(x’ z)pr’—r(z’ y)ps—r'(y1 u)ps’—s(y’ u) = l(x’ Z)l(y, z)lz(y’ u)
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Hence

[, 1z 2P, )13, )2y, )
- szl(x,z)p2€(u, z)(fIBf(y)l(y,z)l2(y, u) dy

< Ch(e)fMgl(x, z2)py.(u,z)dudz

< Ch(e).
Finally let us sketch the chain of steps in (6.13b), as we used (6.13b) to

estimate the error L,. D will now denote the conditions d(y, X)), d(y, X,),
d(x,y) > G(e):
72 L(e)*[ [ E,(r<T(y) <t <T.(y) <s < 2t;p5(X,, X,))
M’H
= 772L(a)2f fEx(r <T(y) <t<T/(y) <s <2t
M’H
p2e(Xr’ Xs)7D) + Rl
= sz(e)zf f E(r<T(y) <t<T/(y) <s=<2t
M'H
Ex(Pze(Xr, X,); DI%TS’(y))) +R,
= 77'2L(£)2f ] E(r<TJ(y) <t<T/(y) <s<2;
M'H
Ps—T;(y)+2e(Xr» XT;(y)); D) + R,
= L(e)*[ [E(r<T.(y) <t <T!(y) <s <2
M’H
ps—TE’(y)+2€(Xr’y); D) + R2
= 2L (¢)2 E(r<T <t
wL(e)*[ [ E(r<T.(9)
Ex(ps—Te’(y)+2e(Xr7y);t =< Te,(y) <s; Dl%}t)) + R2

s—t
L[ Bfr < T0) s 6 [ T prsenl Xy)

deXt(Te’(y) <s'); D) + R,

s—t
= WSL(E)/MIHEx(r < Ts(y) =< t7j(; ps—s’—t+2e(Xr1y)

xXpy(X;,y) ds'; D) + R
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1T3L(e)foHEx(r <T(y) <t ETs(y)(ft Ps—sr2.(X,, %)
xps’—t(Xt—TE(y)’ y) ds') > D) + R,
= 773L(8)fM2fHEx(r < Ts(y) =< t;pt—TE(y)(XTE(y)’ u)

X_/;ps’—t(u’y)ps—s'+2e(Xr7y) dsl;D) + R3

7r3L(e)fM2fHEx(r <T(y) < t;pt_TS(y)(y, u)
X [P,y ran X, ) ds' D) +R,
= 3 ¢ 4
L) [ [ E([Pe P n(Xpr9) ds

XEX,(Te(y) <t- r;Pt_r_TE(y)(y, u)), D) + R5

w3L(E)[

s
HfM3'/; pS'—t(u’y)ps—s'+2e(Z,y) dS'pr(x, Z)

XEZ(TE(y) <t- r;pt—r—TS(y)(y’ u), D) + R5

w4foD,/;sps'—t(u’y)ps—s’+2e(z, y) ds'p,(x, z)

t—r
><f0 Pir— (¥, u)p,(2,y) dr' + R
= 774];)[[{ pr(x’ z)pr'—r(y’ z)pt—r’(y’ u)ps'—t(u 1y)ps—s'+2e(y’ Z) + RG
2
= 774[ 3.[ pr(x’ z)pr'—r(y’ z)pt—r’(y’ u)ps'—t(y’ u)ps—s'+2e(y’ Z) + R7
M°’H,

= 774[ f pr(x’ z)pr’—r(y’ z)ps’—r'(y’ y)ps—s'+2e(y’ Z) + R7
M2 H,

= m*l, + Ry.

Let S; =R; — R,_,. The error R, is the standard introduction of D. In S,
and in S, we replace X, with y and get the usual estimates. The errors S,
and, S, are estimated by the now standard application of (3.2). In S, we must
consider the possibility that X _ hits B(y,¢) at a time prior to r. See the
discussion of L;. Sy is estimated by the arguments of Case 1. The only new
wrinkle is the removal of condition D in S,.
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Using the Schwarz inequality as in G;; we have
J, Pr(%, 2P (9, 2) P (9 ) P, 9) Pacria(9,2)
2

= lo(x, z)ll(y’ z)ll(y1 u)

Let D, ={d(y,2) = G(¢)}, D, ={d(y,u) > G(¢)} and Dj; = {d(x,y) >
G(¢)}. Then

[ 15 )0y, )y, v) = szl(x,Z)ll(y,Z)( [Iog(w)l(y, w) du

< Ch(a)szl(x, 2)l(y,2) dydz

< Ch(e)

and D and Dj are handled similarly, making sure to do the du integration
first.

The proofs of (6.13a) and (6.13c) are similar. We use (6.13c) in the second
step of (6.13a) as we used (6.13b) in the study of (6.13d).

7. The proof of Theorem 1.3 for arbitrary M. Let M be an arbitrary
noncompact manifold with minimal heat kernel p(x, y, ¢) which satisfies (1.1)
and let P, be the induced Wiener measure on (C(R,, M), ). Let

(7.1) A(1) = L(e)(L(2) A(8) — mt) — 7 (i ~ log2)

be a random variable on the Brownian paths of M, where L(e) = log(1/¢) and
where A_(¢) is the area of the Wiener sausage. Let

¢ T
v(T) = [ ['p(X,, X,) dsdt — 5-L(e).

THEOREM 7.2. Let M be a Riemannian manifold, where the heat kernel
satzsﬁes (1.1). Then (a) there exists a random variable y(t) such that y(t) —
y(¢) in probability dP, as ¢ —> 0 and (b) A,(t) » —w2y(t) in probability dP,
as ¢ = 0.

We will prove this by first exhausting M by compact manifolds with
boundary and embedding these in compact manifolds without boundary. We
apply our previous theorems to these manifolds. We then study the relation-
ship between the various heat kernels.

Let O, cQ,,, be an exhaustion of M, where Q is a compact manifold
with boundary Isometrically embed Q, in M, a compact manifold without
boundary. Let p,(x,y,?) be the heat kernel on Mn and let p, ,(x,y,%) be the
Dirichlet heat kernel on Q. As usual p, , has an extension to M and to M,,
k > n, by setting it equal to zero outside of (1,,.
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We will need various analytic estimates for these kernels which we collect in
the following proposition.

ProposiTION 7.3.

(7.4) Po,n(%,5,t) <p(x,5,t), on M XM X (0,),

(7.5)  pon(x,9,8) <pp(x,5,t), n<k onM,xM,x(0,2),

(76) pO,n(x’y’t) Spo,k(xu'y’t)’ n < k on ﬁk X ﬁk X (0100)1

(7.7) p(x,5,8) = po,n(%,5,2) =0

uniformly on sets of the form K X K X [0, t], where K is compact, as n — .
For each k < min(n,l) and m € Z"*, there is a positive constant

C(n,l, k,m) = C such that

(78) IpO,n(x’y’t) _pO,l(x’y’t)I < Ct™

on Q, x Q, x[0,T].
Foreachk <n <land m € Z™, there is a positive constant C(n,l,k,m) =
C such that

(79) IpO,n(x’y’t) _pl(x’y’t)l < Ctm
on Q, xQ, x[0,T]

Proor. (7.4), (7.5) and (7.6) are essentially trivial. (7.8) and (7.9) follow
immediately from the argument in [1, page 164]. (7.7) requires a bit of proof
which we will give at the end of the Appendix. O

Let x€Q, and let P,, P and PY>" be the Wiener measures which
" correspond to the heat kernels P, Dp and Do, n» Tespectively. P, and P%™ can
be viewed as being defined on the a-algebra & of C(R,, M), while Pk and
P%", n <k, can be viewed as being defined on $*, the corresponding a-alge-
bra of C(R+, M,).

ProposiTION 7.10. (a) P>"(B) < P>Y(B) < P,(B) for each x € Q,, B €
&, n<l.
(b) P>™(B) < P¥(B) foreachx € Q,,n <k, B € F*.

Proor. (a) and (b) are simple consequences of Proposition 7.3. O

Pick T > 0 and let
1, = {0 € §l(al[0,T] cQ,)}.

It is easy to see that P(BNU,)=P>*(BNU,), k>n, BeF, t<T.
The set 1, can also be cons1dered as an element of %k k > n. We have exactly
parallel statements for the above if we look at the filtration §*. Hence we have
shown the following proposition.



132 I. CHAVEL, E. FELDMAN AND J. ROSEN

ProposiTioN 7.11. (a) Let f be §1 measurable and assume E,(If|I; ) < =
forx € Q,. Then

BAfl) =ES (), n<l.
~(b) Let fbe F; measurable and assume EX(If|I; ) < « for x € Q,,. Then

EX(fIy) =E>'(fly,), n<l<k.

Let

T
k _(Tr -
(T) = [ [ i X, X, e) dsdt = 5—L(e),

T

0,k _ (T o
¥4 (T) = [ [ po, (X, X, e) dsdt = 5-L(2),

y¥(T) = lin(l)‘yek(t) in L%(dP}).

This last limit exists as a result of Theorem 1 which we have proved for
compact manifolds. Furthermore, we have shown A .(¢) - —72y*(¢) in
L%(dP}) as ¢ — 0, where A_(?) is given by (7.1). Hence

(7.12) lin(l) A (D)1, = —-7w*'(t)I; in L*(dP}),n <.

The left-hand side of (7.12) depends only on Q, and is independent of I,
while the random variables satisfy the condition of Proposition 7.11. Thus the
right-hand side has a well defined common value y(T') if we ignore a subset of
1, of P! measure 0. If n < k < [, we see that

(7.13) 111%;1&(7")111" = —w2y(T)1I,  in L*(dP2).
But Q, is compact, so by a direct application of (7.8) and (7.9), we see that
lyOUT) — y¥(T)l < C(n,1, k)T%, n<l<Ek,
and
yOUT) — y>*(T) < C(n,L,k)T?%, n<min(l,k),
uniformly on U,. This implies that
lin(l)'yeovl(T)Iun =y(T)I, in L*(dP2'),n < min(k,1).
But (7.7) implies y2‘(¢) — v,(¢) as | > « uniformly on U, X [0, T']. Hence
(744) lin(l)'ye(T)Iun =y(T)I,, in L*(dPX*),n <k.

However (7.13), (7.14) and Proposition 7.11 easily imply Proposition 7.15.
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ProposiTioN 7.15. (a) v,(T)I, is a Cauchy sequence in L*(dP,) and
lim YE(T)Iu,, =y(T)Iy, inL*dP,),

®) ) o
lim A AT)Iy, = —7y(T)Iy, inL*dP,).

-0

Proposition 7.15 implies Theorem 7.2 by noticing that for every £ > 0, there
exists N, such that n > N, implies P,(11,) > 1 —&.

APPENDIX

Differential-geometric and analytic background, formulae and esti-
mates. We are given our Riemannian complete M. For x € M, let r, be the
function given by distance from x, viz.,

r(y) =d(x,5).

It is standard that

Vrl <1

in the weak sense on all of M, with equality in the strong sense inside the cut

locus of x.
Set

exp(—d*(x,y)/2s)
27s ’

es(x1y) =

Assume that M is compact. Then the function p(x,y)/e (x, y) is bounded
C® on all of M X M X (0, +x) (cf. [1, Chapter VI]), from which one has, for s
bounded above,

py(%,y) < Cey(x,y).

If M is noncompact and covers a compact Riemannian manifold, then the
same estimate is valid [9]. Now assume that M is Riemannian complete with
strictly positive injectivity radius, inj M > 0 and that Gauss curvature K of M
is bounded below by the constant —K,, K,> 0, on all of M. Then the
positivity of inj M implies [7, Proposition 14]

A(x;r) = Cr?,
for all x € M and r € [0, (inj M) /2]. The lower bound on the Gauss curvature
implies [13, Corollary 3.1]
(£.9) < C, . d?(x,y)
< e -,
PABI) S A (e V5 ) A (5 T\ e

2as
with a > 1 for all s > 0. Since s is bounded above, we have

(A1) Po(£,5) < Coews(£,9),

for all s under consideration.
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In particular, for any y € (0,1), ¢ > y > 0 and x # y, we have
fgps(x,y) ds < Cfgs‘lexp(—dz(x,y)/4s)ds
< C’exp(—Cdz(x,y))fTs_1 exp(—d?(x,y)/8s)ds
< Cexp(—Cd?(x,y))(oc— 1)’

X ([ (5 expl=d2(x, ) /8)) " s

< Cexp(—Cd?*(x,y))(o — 1)’

1-y

© 1=y
([ amt=ttsmt - )

= Cexp(—Cd?(x,y))(oc—7)'d "> (x,y)

) 1-v
X(f s VAV exp(—1/8s(1 = v)) ds)
0

< C’y(o- - T)‘yl2‘y(x7y)7

which is the estimate (2.18).
We also have by the same argument, with y replacing 1 — v,

o Y
(A2) ( [P (x.) ds) < C Lo (5,7,

The estimate (2.19) is easier than the ones just considered.
If M is compact one has, for any given « > 1 and s bounded above,

1+d(x,y) C,e,(x,y)
IVopl(x,y) < C—————e(x,y) < —F=—
s Vs

and

1+d%(x,y) C.e.s(x,y)

IV2V2ps|(x’y) = C_—S_——es(x’y) =< s

If M is Riemannian complete with positive injectivity radius and Gauss
curvature bounded from below, then the argument of [6, Theorem 6] implies

(A.3) Vo2, (2, 5) < Coees(%,5)/Vs ;

Similarly, if, in addition, the Gauss curvature is bounded from above and
the gradient of the Gauss curvature is uniformly bounded, then the arguments

of [5, pages 29-32] and [6] on Moser iteration imply
(A4) |V2V2ps|(x’y) < Caeas(x’y)/s'
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Since for any & > u > 0 there exists a C;, , > 0 for which
t % exp(—r?/2t) < C, ,t7#r2®=h,

for all r,¢ > 0, we immediately have the estimates

(A5) ps(x7y) =< C;Ls_“l2—2y(x’y)7
(A.6) Vop,l(x,5) < Cys7#l5_5,(,y),
(A7) IVoVep,l(%,y) < C 87, _g,(x,y).

To prove Lemma 4.9 [i.e., the estimate (4.10)] we let y,, be a minimizing
geodesic from y to y', parameterized so that y,,(0) =y, v,,(1) = y". Then

P.(5',2) = Pu(3,2)] < d(5,5)0( sup [%p,](3,,(r), 2))

O<r<l1
<Cd(y,y)s "3 5,(y,2),

which implies (4.10).
We derive (5.10) using a similar argument. If d%(y, y') > ¢, then

a*(y,y")
pz,y) < — 7z —P(2)
and (5.10) is valid by (A.1). If d%(y, y") < ¢, then by the above
a(y,y")
lbA(z,5") = p(2,y)l < —t—l/—z—Cposuple,st(vyyl(r),Z)
<r<

a*(y,y")
= ta/2 Cﬁozljgleﬁt(Yyy'(r)’z)~
Assume d(z,y) > 2d(y, y"). Then
d(z,7,,(r)) 2 d(z,5) —d(y,y') = d(2,5)/2.
So
eﬁt(?'yy’("),z) =< e4ﬁt(z7y) =< 94;3:(2,3’) + e4ﬁt(zyy,)'
On the other hand, when d(z,y) < 2d(y,y"), we have d(z,y,,(r)) <
3d(y, y') and both
dz(zn;yyf(r)) ’ dz(:,y) . 9d2(:;,y') o

So
exp(—9/4B) < exp(—d*(z,v,,(r))/4Bt),  exp(—d>(z,y)/4Bt) <1

and (5.10) follows.
In the Euclidean plane R2 we let dZ denote the area element at Z in R? and
B(e) denote the disk of radius ¢ centered at the origin, with boundary S(e).
We are now given R, 0 < R < inj M. Given y € M, then for z € B(y; R) we
let Z denote the preimage of z within the tangent cut locus, with respect to
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the exponential map of the tangent space of M at y onto M. [So as z ranges
over B(y; R), Z ranges over B(R) in the tangent space to M at y]. Then
standard arguments with Riemann normal coordinates (cf., e.g., [1, page
317ff.]) imply that for all y € M and z, z,, 2, € B(y; R), we have

(A.8) d(21,25) = 12, = Z,)(1 + 0(1Z, - Z,/%)),
(A9) dz = (1+ 0(2%)) dz.
An immediate consequence of (A.9) is, for M compact,

(A.10) A(y;e) = O(&?),

which, together with (2.18), implies (2.20). It is standard that when M is
noncompact, one obtains (A.10) uniformly by bounding the Gauss curvature
from below by a constant.

A more delicate statement is the estimate (2.21). First, (A.9) actually implies
(A.11) A(y;e) = me? + O(&*).

When M is noncompact, then to obtain uniformity of (A.11), one requires
that M have bounded geometry (cf., e.g., [1, pages 69, 74]). So

t
](;dsz(y;e)
= fotdsz
+o(eh) [ py(x,) ds

-l

Let v,, be the minimizing geodesic from y to 2, parameterized so that
‘sz(o) =Y, sz(l) = z. Then

7‘7"62

ps(x7 z) - A(y's)

ps(x,y) | dz

(po(x,2) = py(x,y)) dz
(y;¢€)

0,0 P(:2) ~Py(3,9)) dz + O(*171,(x, ).

py(x,2) = p(x,5) = (Vop,)(x,7)7,.(0)

+ 0( sup IVszpsl(x,sz("))) d*(y, z)

O<r<l1

= (ap)(2,0)Z + O sup V%,p,1(%,7,.(r)) d*(v, 2)

0<r<l1

= (V2ps)(x,y)Z + O(t_#lcl—z;;,(x’y)),
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by (A.7) and
t t
d V. x,y)Zdz = [ ds Vop,)(x,¥)Z)(1 + O(1Z%)) dZ
fds] QI RIERD [ds [ ((Vep)(x,)2)(1 + 0(2F))

- fo ds /B ((Vap)(2,9)2)0(2I") dz

= 0(£5t1_#l3—2y.(x’y)),

by (A.6). One passes from the second to the third line by noting that for any
£eR2 >0,

fB()g-ZdZ=O.

Therefore, if we pick u € (0,1), y = 1 — u, then

[las [ (5,2) - o p,(x,9) | d
s x,z) — NER 2
S L A(y;e) P 5Y

= [las], o (Pe(:2) = Pi(2,9) dz + (4071, (5,9))

= O(£5t7l1+2y(x,y) + 54t7l2+2y(x’y)) + 0(84t7l2y(x,y))

= 0(53+atyll+a+2‘y(x’ y))’

which is (2.21). This concludes the proof of Lemma 2.17. We now turn to the
proof of Lemma 2.8.
For any r,¢t > 0 we have

s exp(— r2/2s) 1 exp(— .u)
/o 2s '2fr2/2t

1 exp( —
log + = (log2t — k) + f’ mt& du.
7
Since for any u > 0, a € (0, 1] we have 1 — exp(—pu) < u* we also have
rexp(—r?/2s) 1 1
————ds = log— + —(log2t — 2ap-ay)
[o % ds g~ 2(og t — k) + O(r2¢*)

For any r,¢ > 0, [ > —1 we have
2 1+1

tl -r — _ 2a4l+1—a
fos exp( s )ds T 1 O(r t‘ ).

In the Euclidean plane R2, we have the classical formula

1 ’
(A.12) — | loglW —Z|dZ = ¢%log e,
™ Y B(e)

for all W € S(e).
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Now assume that M is compact. Then the Minakshisundaram expansion
(cf. [1, Chapter VI)) for p (2, 25), 24, 2, € B(y; r), is given by

(A13)  py(2y,2) =e,(2y, 22)(u0(21, 25) + suy(z;,25) + 0(32)),

where

(A.14) uo(21,29) =1+ 0(d*(zy,2,)),
K
(A.15) wo(zy,24) = gy) + o( sup d(y, z, ))

Jj=12
So, for w € S(y; ¢) we have by (A.12), (A.14) and (A.9),

fdsz ps(w z)dz

y£

- B(y;e)dz'/:eS(w,z)(l ’ 0(82) i S(Kgy) + 0(5)) * 0(82)) ds

! 1
-— B(y;e){(l + 0(52))(—logd(w,z) + E(loth - k)

+0(d?*(w, z)t‘“))

N K(y)
3

+ O(s))(t + 0(d*(w,2)t'7))

+0(¢% + dz"‘(w,z)tz'“)} dz.

Then (2.11) follows from (A.8), (A.9) and (A.12). Certainly (2.11) implies
(2.9) and (2.10). Also, when M is compact one immediately has from (A.14),

1
p,(2,2) = s + 0(1)

on all of M, which is Lemma 4.12.

We now consider (2.9), (2.10) and (4.13) for M Riemannian complete,
noncompact and bounded geometry. For any given constant c, let M, denote
the simply connected, complete Riemannian two-manifold of constant Gauss
curvature c. Let {, denote the function of distance and time which determines
the heat kernel of M,.

Ifk<0isa lower bound for the Gauss curvature of M, then p(x,y) >
. (d(x y), 8) (cf. [1, Section VIIL.3]. When « < 0, the arguments of [8] imply
(A.13)-(A.15) for ¢ (d(z,25),s) in place of ps(zl, z,), with corresponding
expansion (2.9)-(2.11). To verify (4.13) for ¢, (d(z, 2), s) in place of p.(z, 2),
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when k < 0, one uses the explicit formula (cf. [1, page 246])
V2 exp( 5/8) fwB exp(—B /2s)
3/ 2 ycosh B —

So the lower bound on the Gauss curvature implies that for the heat kernel
p,(x,y), the expansion on the respective right-hand sides of (2.9) and (2.10) are
lower bounds for the common left-hand side. A similar comment applies to
(4.13).

To obtain the expansions of the respective right-hand sides of (2.9) and
(2.10) as upper bounds for the common left-hand side, we require the full
hypothesis of bounded geometry.

But first assume M is arbitrary noncompact, x € M, R > 0, B(x; R)c M
and let g,., p denote the Dirichlet heat kernel of B(x; R). Then Duhamel’s
principle implies

{K(d(z’z)’s) = dg.

*® Qt R
PAx,y) — Qo n(xy) = = [ds[  py(x,w) == (w,y) dw,
0 S(x;r) Yy
where v,, denotes the exterior unit normal at w € S(x; R), dw denotes the
one-dimensional Riemannian measure along S(x; R) and y € B(x; R). Since
=9, _q. . /9, (w,y) and p(x,w) are always positive, we have

pAx,y) — q,.. r(x,y)

o) aq e
(s ps<x,w>)(—f ds[ — ——EE(w,y) dw)
(w,s)eS(x; R)X[0,¢] 0 S(x; R) 14

w

IA

=( sup ps(x,w))(l— i qt_s;x,R(z,y)dZ)

(w,s)eS(x; R)X[0,¢] B(x; R)

IA

Sup ps(x, w)’
(w,s)eS(x; R)X[0,1t]

ie.,

px,y) <q,, p(x,y) + sup ps(x,w).
(w,s)eS(x; R)X[O0,¢]

We return to our noncompact Riemannian complete M possessing bounded

geometry. We assume the Gauss curvature K satisfies
k<K <A,
with k < 0, A > O on all of M. When A = 0, fix R < inj M and when A > 0, fix
R < mln(lnj M, 7/ VA). Let q;, r denote the Dirichlet kernel on the disk in M,
of radius R. Then (cf. [1, Section VIIL3)) if o is the center of the disk, then
q;, r(0, z) depends only on the distance z from o so we write
9/ r(0,2) = @} (d(0,2)).

Then (cf. [1, Section VIII.3]),

(A16) qt;x,R(xfy) < Qt/\,R(d(xry)) =< {A(d(x,y),t).
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Therefore (A.1) and (A.16) imply that for d(x,y) < R, we have
pt(xay) < g).(d(xhy)’ t) + Cat_l exp(—R2/2at).

One can easily obtain for the heat kernel p,(x, y), the respective expansions on
the right-hand sides of (2.9) and (2.10) as upper bounds for the common
left-hand side. Similar comments apply for (4.13).

Therefore one has (2.9), (2.10) and (4.13).

We close this section with the proof of (7.7) of Proposition 7.3. We use the
notation of Section 7. Pick L > K and let I, = 3Q;. Then a standard applica-
tion of Duhamel’s principle [1, page 166] implies

po,(x,¥,t) — p(x,y,t) —ffp(x w, t—r) (y,w r)ydrdo.

Hence pg ;(x,y,t) — p(x,y,t) = —h(x,y,t) is continuous on Qp X Qp X
[0,T] and therefore converges uniformly to zero on Qz X Qi X [0,T] as
L — o by Dinis’ theorem.
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