CORRECTION

A FUNCTIONAL CENTRAL LIMIT THEOREM FOR RANDOM MAPPINGS

By JENNIE C. HANSEN

The Annals of Probability (1989) 17 317-332

The claim "(8) is bounded between

$$Q_n(1) = \sum_{j=0}^{d_n} c_{j,n}$$
 and $Q_n(1)\sqrt{n/(n-n^{T'})} (1+1/n)$,

and the limit of (8) as $n\to\infty$ equals $\lim_{n\to\infty}Q_n(1)$ " on page 326 does not follow from the argument given, since the coefficients in the polynomial $Q_n(z)=\sum_{j=0}^{d_n}c_{j,n}z^j$ are not necessarily of the same sign. However, a simpler proof of the convergence of the finite-dimensional distributions in Case 1 (see page 323) can be given, which avoids the problem mentioned above. This proof is given below.

For $0 \le t < t' < 1$, we show that $(\overline{Y}_n(t), \overline{Y}_n(t') - \overline{Y}_n(t))$ converges weakly to (Z(t), Z(t'-t)), where Z(t) and Z(t'-t) are independent normal random variables with mean 0 and variance t and t'-t, respectively, by showing that for any $a, b \in \mathbb{R}$, $a\overline{Y}_n(t) + b(\overline{Y}_n(t') - \overline{Y}_n(t))$ converges weakly to aZ(t) + bZ(t'-t) (see [1], Theorem 29.4). We do this by using the method of moments, i.e., we show that for any integer r > 0,

$$\lim_{n\to\infty} E_n \left(a\overline{Y}_n(t) + b \left(\overline{Y}_n(t') - \overline{Y}_n(t) \right) \right)^r = E \left(aZ(t) + b \left(Z(t') - Z(t) \right) \right)^r.$$

Let r be fixed but arbitrary, and let

$$\mu_n(z) = \sum_{k=1}^{n^t} \left(\frac{A_k}{k!}\right) \left(\frac{z}{e}\right)^k$$

and

$$\tilde{\mu}_n(z) = \sum_{k=-t}^{n^{t'}} \left(\frac{A_k}{k!}\right) \left(\frac{z}{e}\right)^k.$$

It follows from (6), page 322, that

$$\begin{split} &E_{n}\left(a\overline{Y}_{n}(t)+b\left(\overline{Y}_{n}(t')-\overline{Y}_{n}(t)\right)\right)^{r}\\ &=\left[\left(z_{n}\right)^{n}\right]\frac{n!}{n^{n}}S\left(\frac{z_{n}}{e}\right)E_{z_{n}}\left(a\overline{Y}_{n}(t)+b\left(\overline{Y}_{n}(t')-\overline{Y}_{n}(t)\right)\right)^{r}\\ &=\left[\left(z_{n}\right)^{n}\right]\frac{n!}{n^{n}}S\left(\frac{z_{n}}{e}\right)\sum_{k=0}^{r}\binom{r}{k}a^{k}b^{r-k}E_{z_{n}}\left(\overline{Y}_{n}(t)\right)^{k}E_{z_{n}}\left(\overline{Y}_{n}(t')-\overline{Y}_{n}(t)\right)^{r-k}. \end{split}$$

Received April 1990.

1393

1394 J HANSEN

The above equality holds since

$$\overline{Y}_n(t) = \sum_{j>0}^{n^t} \frac{m_j - \mu_n(z_n)}{\sqrt{\frac{1}{2} \ln n}}$$

and

$$\overline{Y}_n(t') - \overline{Y}_n(t) = \sum_{j>n'}^{n'} \frac{m_j - \tilde{\mu}_n(z_n)}{\sqrt{\frac{1}{2} \ln n}}$$

on Ω_{z_n} , and so $\overline{Y}_n(t)$ and $\overline{Y}_n(t') - \overline{Y}_n(t)$ are independent with respect to the

product measure P_{z_n} on Ω_{z_n} .

By definition of P_{z_n} , the sums $\sum_{j>0}^{n^t} m_j$ and $\sum_{j>n^t}^{n^t} m_j$ are independent Poisson variables with parameters $\mu_n(z_n)$ and $\tilde{\mu}_n(z_n)$, respectively. For any Poisson variable V_{λ} , with parameter λ , and integer $m \geq 0$, we have $E(V_{\lambda} \lambda$)^m = $f_m(\lambda)$, where f_m is a certain polynomial of degree at most m. Thus,

$$E_n(a\overline{Y}_n(t) + b(\overline{Y}_n(t') - \overline{Y}_n(t)))^r = \frac{[(z_n)^n]n! e^n}{(\frac{1}{2}\ln n)^{r/2}n^n} S(\frac{z_n}{e}) L_n(z_n),$$

where

$$L_n(z) = \sum_{k=0}^r {r \choose k} a^k b^{r-k} f_k(\mu_n(z)) f_{r-k}(\tilde{\mu}_n(z)).$$

Note that the degree of L_n is less than $\sum_{k=0}^r (kn^t + (r-k)n^t)$. So, for large enough n, there exists 0 < T < 1 such that the degree of L_n is less than n^T . If we write $L_n(z) = \sum_{j=0}^{d_n} b_{j,n} z^j$, where d_n denotes the degree of L_n , then

$$\begin{split} E_n \Big(a \overline{Y}_n(t) + b \Big(\overline{Y}_n(t') - \overline{Y}_n(t) \Big) \Big)^r \\ &= \frac{1}{\left(\frac{1}{2} \ln n \right)^{r/2}} \sum_{j=0}^{d_n} b_{j,n} \frac{(n-j)^{n-j} e^j n!}{(n-j)! \, n^n} \\ &= \frac{L_n(1)}{\left(\frac{1}{2} \ln n \right)^{r/2}} + \frac{1}{\left(\frac{1}{2} \ln n \right)^{r/2}} \sum_{j=0}^{d_n} b_{j,n} \left(\frac{(n-j)^{n-j} e^j n!}{(n-j)! \, n^n} - 1 \right). \end{split}$$

The second term on the right-hand side of (1') goes to 0 as $n \to \infty$. To see this, we first note that for $0 \le j \le d_n < n^T$,

$$\frac{(n-j)^{n-j}e^{j}n!}{(n-j)! n^{n}} - 1 \le \sqrt{\frac{n}{n-n^{T}}} \left(1 + \frac{1}{n}\right) - 1$$

$$\le \left(\frac{n}{n-n^{T}}\right) \left(1 + \frac{1}{n}\right) - 1 \le \frac{3}{n^{1-T} - 1},$$

by Stirling's formula. We claim that $\sum_{j=0}^{d_n} |b_{j,n}| = O((\ln n)^r)$, so

$$\left| \frac{1}{\left(\frac{1}{2}\ln n\right)^{r/2}} \sum_{j=0}^{d_n} b_{j,n} \left(\frac{(n-j)^{n-j} e^j n!}{(n-j)! \ n^n} - 1 \right) \right| \le \frac{3}{(n^{1-T} - 1)\left(\frac{1}{2}\ln n\right)^{r/2}} \sum_{j=0}^{d_n} |b_{j,n}|$$

$$= O\left(\frac{(\ln n)^{r/2}}{n^{1-T}} \right).$$

Thus, the second term on the right-hand side of (1') goes to 0 as $n \to \infty$, assuming the above claim is true.

To show that $\sum_{j=0}^{d_n} |b_{j,n}| = O((\ln n)^r)$, recall that the $b_{j,n}$'s are coefficients in the polynomial L_n . We define another polynomial $\hat{L}_n(z) = \sum_{j=0}^{d_n} \hat{b}_{j,n} z^j$ such

- (i) the coefficients of \hat{L}_n are positive,
- (ii) $\hat{d}_n \ge d_n$ and (iii) $|b_{j,n}| \le \hat{b}_{j,n}$ for each $0 \le j \le d_n$.

Then

$$\sum_{j=0}^{d_n} |b_{j,n}| \le \sum_{j=0}^{\hat{d}_n} \hat{b}_{j,n} = \hat{L}_n(1)$$

and it follows that $\sum_{j=0}^{d_n} |b_{j,n}| = O((\ln n)^r)$ if $\hat{L}_n(1) = O((\ln n)^r)$. Specifically, we define

$$\hat{L}_n(z) = \sum_{j=0}^r \binom{r}{j} |a|^j |b|^{r-j} \hat{f}_j(\mu_n(z)) \hat{f}_{r-j}(\tilde{\mu}_n(z)),$$

where, for any $i \ge 0$, $\hat{f_i}$ is the polynomial obtained from f_i by replacing each coefficient in f_i by its absolute value. Since the coefficients of μ_n , $\tilde{\mu}_n$ and each f_i are positive, so are the coefficients of \hat{L}_n . Also, since the degree of \hat{f}_i is the same as that of f_i , the degree of \hat{L}_n must be at least as large as that of L_n , that is, $d_n \leq \hat{d}_n$. Finally, for $0 \leq j \leq d_n$, note that $b_{j,n}$ can be written as a multinomial in a, b and the coefficients of f_i , μ_n and $\tilde{\mu}_n$. Since $\hat{b}_{j,n}$ is given by the same multinomial, with the variables replaced by their absolute values, we have $|b_{j,n}| \leq \hat{b}_{j,n}$ by the triangle inequality. This establishes properties (i)–(iii).

Recall that each \hat{f}_i has degree at most i, $\mu_n(1) \sim (t/2) \ln n$ and $\tilde{\mu}_n(1) \sim$ $[(t'-t)/2]\ln n$ (see page 322). So

$$\begin{split} \hat{L}_{n}(1) &= \sum_{j=0}^{r} {r \choose j} |a|^{j} |b|^{r-j} \hat{f}_{j}(\mu_{n}(1)) \hat{f}_{r-j}(\tilde{\mu}_{n}(1)) \\ &= \sum_{j=0}^{r} {r \choose j} |a|^{j} |b|^{r-j} O((\ln n)^{j}) O((\ln n)^{r-j}) \\ &= O((\ln n)^{r}) \end{split}$$

and the claim is proved.

Since the second term on the right-hand side of (1') goes to 0 as $n \to \infty$, we have

$$\lim_{n\to\infty} E_n \left(a\overline{Y}_n(t) + b \left(\overline{Y}_n(t') - \overline{Y}_n(t) \right) \right)^r = \lim_{n\to\infty} \frac{L_n(1)}{\left(\frac{1}{2} \ln n \right)^{r/2}}.$$

By definition of the polynomials f_i ,

$$\begin{split} \frac{L_n(1)}{\left(\frac{1}{2}\ln n\right)^{r/2}} &= \frac{1}{\left(\frac{1}{2}\ln n\right)^{r/2}} \sum_{k=0}^r \binom{r}{k} a^k b^{r-k} f_k(\mu_n(1)) f_{r-k}(\tilde{\mu}_n(1)) \\ &= \frac{1}{\left(\frac{1}{2}\ln n\right)^{r/2}} \sum_{k=0}^r \binom{r}{k} a^k b^{r-k} E(V_n - \mu_n(1))^k E(\tilde{V}_n - \tilde{\mu}_n(1))^{r-k} \\ &= E\left(a \frac{V_n - \mu_n(1)}{\sqrt{\frac{1}{2}\ln n}} + b \frac{\tilde{V}_n - \tilde{\mu}_n(1)}{\sqrt{\frac{1}{2}\ln n}}\right)^r, \end{split}$$

where V_n and \tilde{V}_n are independent Poisson random variables with parameters $\mu_n(1)$ and $\tilde{\mu}_n(1)$, respectively. As $n\to\infty$, the normalized variables $(V_n-\mu_n(1))/\sqrt{\mu_n(1)}$ and $(\tilde{V}_n-\tilde{\mu}_n(1))/\sqrt{\tilde{\mu}_n(1)}$ each converge weakly to the normal distribution with mean 0 and variance 1. It follows that the random vector

$$\left(\sqrt{\frac{\mu_{n}(1)}{\frac{1}{2}\ln n}} \frac{V_{n} - \mu_{n}(1)}{\sqrt{\mu_{n}(1)}}, \sqrt{\frac{\tilde{\mu}_{n}(1)}{\frac{1}{2}\ln n}} \frac{\tilde{V_{n}} - \tilde{\mu}_{n}(1)}{\sqrt{\tilde{\mu}_{n}(1)}}\right)$$

converges weakly to the random vector (Z(t), Z(t'-t)) as $n \to \infty$, since $\mu_n(1) \sim (t/2) \ln n$ and $\tilde{\mu}_n \sim [(t'-t)/2] \ln n$. Thus

$$\begin{split} &\lim_{n\to\infty} E_n \Big(a \overline{Y}_n(t) + b \Big(\overline{Y}_n(t') - \overline{Y}_n(t) \Big) \Big)^r \\ &= \lim_{n\to\infty} \frac{L_n(1)}{\left(\frac{1}{2}\ln n\right)^{r/2}} \\ &= \lim_{n\to\infty} E \left(a \left(\frac{V_n - \mu_n(1)}{\sqrt{\frac{1}{2}\ln n}} \right) + b \left(\frac{\tilde{V}_n - \tilde{\mu}_n(1)}{\sqrt{\frac{1}{2}\ln n}} \right) \right)^r \\ &= E(aZ(t) + bZ(t' - t))^r \end{split}$$

as desired.

REFERENCE

[1] BILLINGSLEY, P. (1979). Probability and Measure. Wiley, New York.

DEPARTMENT OF MATHEMATICS NORTHEASTERN UNIVERSITY BOSTON, MASSACHUSETTS 02115