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ON THE LARGE DEVIATION PRINCIPLE FOR STATIONARY
WEAKLY DEPENDENT RANDOM FIELDS

By WrobpziMiERZ Bryc
University of Cincinnati

The large deviation principle for the empirical field of a stationary
Z%indexed random field is proved under strong mixing dependence as-
sumptions. The strong mixing coefficients considered allow us to separate
the ratio-mixing condition used in the literature into a part directly respon-
sible for the (nonuniform) large deviation principle and another one, which
is used when the state space is noncompact. Results are applied to obtain
variants of recent large deviation theorems for Markov chains and for
Gibbs fields. The proofs are based on a new criterion for the large deviation
principle which is stated in Appendix C.

0. Introduction. In this paper we prove the empirical-process-level large
deviation principle for a “weakly dependent” random field on Z¢. Qur weak
dependence assumptions are similar to, although different from, the strong
mixing assumptions usually employed in the literature on limit theorems. The
dependence conditions of our paper were suggested by Orey and Pelikan
(1988), who consider d = 1 only; despite similarity, our assumptions seem not
to be directly comparable with theirs (see Remark 5.1 below). Chiyonobu and
Kusuoka (1988) consider large deviations under another mixing condition.

Section 1 sets up the notation; the strong mixing coefficients of dependence
to be used throughout the paper are defined.

In Section 2 our main results are stated. Theorem 2.1 gives the large
deviation principle for a compact-valued random field under strong mixing
assumption (2.1). In Theorem 2.2, besides (2.1), an additional strong mixing
assumption is used to obtain the large deviation principle for a Polish space-
valued random field. In Theorem 2.3 this additional weak dependence assump-
tion is further strengthened and we identify the rate function as the limit of
finite dimensional entropies. The quotient of the two strong mixing measures
of dependence used in our assumptions is equivalent to the ratio-mixing
measure of dependence frequently used in large deviations (see Proposition
5.1). Thus our results can be interpreted as separating the ‘‘ratio-mixing”
condition into a part directly responsible for the large deviation principle, and
another one, which permits us to handle noncompact state spaces and to
identify the rate function as entropy.

Large deviation principles are proved in Section 3. The proof is based on
Theorem 7.1 in Appendix C and might be of independent interest. The rate
function is identified in Section 4. In Appendix B dependence coefficients for
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LARGE DEVIATIONS UNDER STRONG MIXING 1005

stationary Gibbs fields with summable interaction potentials are estimated. In
Appendix C a criterion for the large deviation principle is stated. The main
feature of this criterion is that after establishing exponential tightness, the
proof of the large deviation principle is reduced to verifying that limit (7.1)
below exists for a large enough class of functions. Similar approaches were
employed by Baldi (1988), Comets (1989), Dawson and Gartner (1987), Ellis
(1985), Gartner (1977), de Acosta (1988), Ney and Nummelin (1987a, b),
Plachky (1971) and Sievers (1969); however these authors used the Gateaux
differentiability of the limiting expression. In some instances, verifying differ-
entiability is harder than establishing the existence of limit (7.1) for a larger
class of functions than those authors needed.

1. Notation. Let [ be a Polish (separable metric complete) space with the
Borel o-field & = 4. By Z(F) we denote the set of all probability measures
on (E, &); #(b) is considered as a separable complete metric space; C,(-)
denotes the Banach space of all bounded continuous functions on a space (-)
with the usual supremum norm. For p € #(E) and F € C,(b), we write
p(F) = [(F(x) dp(x). The symbol ®(p) is reserved for general continuous
(nonlinear) functions of p € &(b); this last notation is used in Section 3 only.

The general framework to be considered is as follows. Throughout the paper
we fix d > 1 and d commuting homeomorphisms S;,...,S;: E— E. For
z=(2(),...,2(d) € 74,let 8% = S7Wo - - o« SZD By P () c P(F) we shall
denote the S* stationary probability measures, that is, p € Zs(b) iff p- S; = p
for each 1 < i < d. We fix a probability measure P € Z(F). By E{-} we denote
the integral with respect to dP; E“{-} denotes the conditional P-expectation
with respect to the o-field & C & and we write P 4 to denote the restriction
of P to &.

Besides P, we shall fix a Polish space F and a continuous function 7: E — F.
By C,(7) we denote the subset of C,(E) consisting of those functions F which
can be written as

(1.1) F(x) = H(m-S™(x), m - 8%¥(x), ..., 7 - S%¥(x))

for some & > 1, z(1),...,2z(k) € Z¢ and some H € C,(F*).

Throughout the paper we assume that 7 is such that C,(m) separates
points of (). Since [ is a Polish space, this means we assume that C,(w)
separates points of E. The formula

(1.2) X,(x) = 8*(x)

defines on the probability space (E, ) an [E-valued stationary random field
indexed by z € Z¢. We shall consider empirical distributions w, € (F) associ-
ated with {X,} as follows. Let ¢, be the unit n-cube in Z%, n € N, that is,
€, ={z € 7% 1 < 2(i) < n, V i}. Define random measures u,: £ - Z(E) by

(1.3) p,=n"%3 b, n=1,
z€ G,

where 8, € & denotes the point mass at x. Measures {u,} will be referred to
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as the “empirical fields.” This terminology is motivated by the standard
example E = F2% here m: E — [ is the projection on the Oth coordinate; S; are
shifts along coordinates in Z¢, i = 1,2,...,d. In this setup X, = (Y, Jsc 24,
where {Y,),c,« is an F-valued stationary random field; clearly, u, =n~¢
L.c¢d,, .54 15 @ measure on the “realizations” (trajectories) of {Y,}. This
paper could have been written in the notation of this example. However, in
such an approach the assumptions of our theorems would be obscured by the
particular topological properties of the product probability space. Besides, the
less probability-space-dependent form of the large deviation theory is more
natural in applications to dynamical systems, where, for example, (1.2) is
written for nonproduct spaces E.

We shall be interested in large deviation theorems for &(E)-valued random
variables {u,} (see Appendix C for a general statement of the large deviation
principle). Our assumptions use the strong mixing dependence coefficients
defined as follows. Let %, & be o-fields in &. Following Bradley (1983) [see
also Blum, Hanson and Koopmans (1963)], consider the following ‘“measures
of dependence” between pairs of o-fields:

¥.(F,#) = sup{P(AN B)/(P(A)P(B)):
Ae F,Be#, P(A)P(B) > 0},
(1.4) ¥_(F,#) = inf{P(A N B)/(P(A)P(B)):
Ae F,Be ¥, P(A)P(B) > 0},
W(F, ) = (F, )b (F,F).

Clearly, 0 < ¢y _<1 <y <o
Let {X,}, < 7« be defined by (1.2). Consider o-fields

| A(n) = o{m(X,): min 2(i) < n},
15
( F(n) = a{w(xz); min 2(i) 2 n} neN.

Notice that the definitions of .#(n) and %(n) are not symmetric, except when
d = 1. The dependence coefficients related to the so-called y-mixing condition
in the strong mixing theory are defined as follows:

¢.(n) = ¢‘+(/(0)’ 9’("‘)):
¥_(n) =¢_(#(0), F(n)),
y(n) =¢,(n)/¥y_(n), n=zl

In the Markov case condition (1) < = is equivalent to the condition used, for
example, in Stroock (1984), assumption (6.1), or in Ellis (1988), Hypothesis
1.1(b) (compare Lemma 5.2 below). Condition (1) < = can also be verified for
the Gibbs field on Z' with binary interactions ®,(k,x,y) such that
= _,kll®dy(k, x, )l < =; this can be seen from Bowen (1975) (see the proof of

his Proposition 1.14). However, if d > 1, then condition § <  seems to be
too restrictive [cf. Bradley (1989)]. To obtain the mixing condition, which is
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suitable for arbitrary d > 1 and at the same time easy to verify, we consider a
smaller o-field rather than & (n). Namely, let

(16) £(n) = olm(X,):z € )
and put
yr(n) =¥, (A(-L),Z(n)),
(1.7) Yy (n) =¢y_(#(-L),#(n)),
Yr(n) =¥ (n)/¥r(n), L,nx1.

Notice that 1 < ¢ (n) < ¢(L). Also ¢;(n) = ¢, (n), which, in particular,
implies that limit (2.3) below exists.

Besides the Markov and the m-dependent case, coefficients ;(n) can be
effectively estimated for Gibbs fields with summable interactions (see Theorem
6.1 in Appendix B below). A version of coefficient ;(n) was used in the
definition of “ratio-mixing”’ condition (RM) in Orey and Pelikan (1988) (see
Remark 5.1 below).

Our main results, Theorems 2.1 and 2.2 below, use a dependence coefficient
weaker than ¢;. Namely, put

() = inf{L-d kx{ P(A N S7%B)/(P(A)P(B)):

(1.8)
Ae.#(-L), Be Z(n), P(A)P(B) > o}.

Clearly, y;(n)/L? < r7(n) <1 for each n,L > 1 [to see the last inequal-
ity put B=E in (1.8)]. It is also easily seen that 7;(n + 1) < 77 (n) and
77+1n) = 77 (n), which implies that limit (2.1) below exists.

Definition (1.8) was motivated by Ellis (1988) and is devised to get the
condition which can be verified for some periodic Markov chains [see (2.7)
below]. Our proofs work as well with arbitrary weights in the sum on the
right-hand side of (1.8) as long as a finite convex combination is formed. It
would be interesting to know, however, if the sum over €7, can be replaced in
(1.8) by the infinite sum as in Jain (1990) [e.g., (2.7) below implies both Jain
(1990) H;(1) and H,(2)].

2. Large deviation theorems. The following result was motivated by
Orey and Pelikan (1988), Theorem 1.1. Our mixing condition allows a multidi-
mensional index set Z¢, d > 1, and is based on the weaker measure of
dependence (see Remark 5.1 below). However, the large deviation principle
obtained is nonuniform with respect to conditioning on .#(0), even if d = 1.

THEOREM 2.1. Let E be a compact metric space. Suppose {X,}, ¢ is
defined by (1.2) and such that C,(m) separates points of P(E). Suppose
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furthermore that ( for this ) we have
(2.1) lim liminf (7 (n))""" = 1.

Then family (1.3) of empirical fields {u,} satisfies the large deviation principle
with the rate function I(-) determined by

(22)  X(p) = sup{p(F) - L(F): Fe C,(m)}, peP(D),

where IL(F) = lim, _, n~%log Elexp(n®w,(F))}; the last limit exists and is
finite.

In our next result the compactness assumption is replaced by the require-
ment that ¢7(1) < « for some N > 1; to this end we need a stronger separa-
tion notion.

DEeFINITION. We say that a continuous mapping =: E — F strongly sepa-
rates points of E, if for each & > 0 there are z = z(¢) € Z¢ and 6 > 0 such that
if dp(x,y) > ¢, then d (7 -S*x, 7 °8%y) > 6. .

Clearly, if 7: E — [ strongly separates points of a Polish space E, then C ,,(77)
separates points of Z(b). Strong separation is a joint property of =, S and is
satisfied, for example, if F = FZ° with shifts along coordinates; here  is a
projection on the Oth coordinate and the metric is defined by

de(x,y) = Y, 27¥d(7-S*x, 7 Sky),
kez?®

where 27kl = 2-1kMI= - ~IkI gnd d (-, - ) is a bounded metric on F.

THEOREM 2.2. Let E be a Polish space. Suppose {X )}, < 7¢ is defined by (1.2)
and that T strongly separates points of E. Suppose furthermore that (1) <
for some N > 1 and that (2.1) holds. Then family (1.3) of empirical fields {u,}
satisfies the large deviation principle with the rate function I(-) determined by
(2.2).

The next result complements Olla (1987) and Orey and Pelikan (1988); we
consider d > 1 and we also do not use the continuity of conditional distribu-
tions. The latter generalizes Ellis (1988), Remark 2.1, to non-Markovian
situations and multidimensional index set. The result is stated and proved for
product space E = Fz° only; this product representation is used in Lemma 4.1
below only.

THEOREM 2.3. Suppose E = [de, where F is a Polish space and d > 1. Let
1 be the projection on the Oth coordinate. Assume P € P4(b) is such that (2.1)
holds and

(2.3) hm hmsup(tpL(n))l/" =

n—ow
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Then (1.3) defines measures {u,} satisfying the large deviation principle with
the rate function I: Z(E) - [0, ] given by

(2.4) I(p) = =, if p & F5(b),
(2.5) I(p) = ,
if there is n > 1 such that P 4, is not absolutely continuous with respect to
P
|Z(ny

(2.6) I(p) = lim n ™ [ f,(x)log £,(x) dP(x),

if p€ Ps(D),P 4, is absolutely continuous with respect to P sny for all
nx>landf, = dplj(n)/dPlf(n).

In particular, the proof shows that the limit on the right-hand side of (2.6)
exists, possibly being «. Theorems 2.1 and 2.2 are proved in Section 3.
Theorem 2.3 is proved in Section 4. Below we state corollaries which illustrate
the applicability of our theorems to some recent large deviation results. The
following corollary of Theorem 2.1 gives the “nonuniform” large deviation
principle for Markov chains. The same result also follows from de Acosta
(1990), Section 5 (after dropping the Feller property in the assumption of his
theorem 5.3) [see also Jain (1990)]; for a noncompact state space additional
assumptions seem to be needed.

CoroLLARY 2.1.  Suppose P,(x, dy) is the family of n-step transition proba-
bility measures of a time-homogeneous and stationary Markov chain {Y,}, .,
with a compact state space [ and with invariant initial distribution p € P(F).
If for some N > 1, C < o,

N
(2.7) P(A) <C Y Py(x,A)

k=1
for each A € B(F), x € F, then the family of empirical fields {u,} defined on
FN by

(28) “‘n = n—l kX_:IB{Ysz)zeN

satisfies the large deviation principle.

Proor. Extend {Y,},., to {Y,},c,. By (5.3) in Appendix A we have 1 >
7.(n) = 7y(n) = (CN)~'foreach L > N,n > 1. Hencelim, . (rf(n))"/" = 1
for each L > N and (2.1) holds. The corollary follows from Theorem 2.1 by the
contraction principle. O

The following corollary of Theorem 2.2 is known in the uniform (.e.,
stronger) version [see Deuschel and Stroock (1989), 4.4.12; see also Ellis and
Wayne (1989) and de Acosta (1990), Section 5]. While there is no major
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difficulty in extending our proof to arbitrary initial probability distributions, in
order to make the conclusion hold uniformly over the initial points, revisions
in condition (7.1) below would be needed.

COROLLARY 2.2. Suppose P,(x, dy) is the family of n-step transition proba-
bility measures of a time-homogeneous and stationary Markov chain {Y,}, .,
with a Polish state space F. If there are C < © and N, M > 1 such that for each
Ace #,xelFyekl

N
(29) PM(x, A) < C Z Pk(y7 A)a
k=1

then empirical measures {u,} defined on (F™, &) by (2.8) satisfy the large
deviation principle.

Proor. Extend {Y,},., to {Y,}), <z By (5.4) and (5.5) (see Appendix A) we
have ¢;(n) <a <o and 735(n) 25> 0, V n > 1, for some constants a, b.
Hence ¢;;(1) <o and lim,_,(r;(n))"/* =1 for each L > N. The result
follows from Theorem 2.2 by the contraction principle. O )

The following corollary gives a non-Markovian application of Theorem 2.2,
and also illustrates the importance of allowing a multidimensional index set.
The result is known [see Comets (1986) for a different proof]; Féllmer and
Orey (1988) and Olla (1988) have similar results under an additional compact-
ness assumption. Our proof is based on Theorem 6.1 in Appendix B; the latter
might be of independent interest [compare Bowen (1975), Proposition 1.14].

COROLLARY 2.3. Suppose {Y,}, < ¢ is a stationary Gibbs field with a count-
able state space F and stationary summable interaction potential [as deﬁned by
(6.2) in Appendix Bl. Then empirical fields {u,}, defined on E = FZ by (1.3)
with {X,} = (Y, Js < 74, satisfy the large deviation principle.

ProoF. The result follows directly from Theorem 2.2 which can be applied
by Theorem 6.1 in Appendix B. O

3. Proof of the large deviation principle. Let F,, F,,..., F, € C ()
and define ®: Z(F) —» R by

(3-1) o(p) = p(F) A - AP(F).

Denote by Concave the set of all functions ® defined by (3.1), £ = 1,2

The plan of the proof is as follows: In Claim I we show that the distribu-
tions of the sequence {u,} admit an asymptotic value over Concave [for the
definition see (3.2) or (7.1) below]; in Claim II we show that the rate function is
convex; in Claim III we verify exponential tightness (for the definition see
Appendix C). The result will then follow as an application of Theorem 7.1
below.
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Cramm 1. If E is a Polish space and (2.1) holds, then the asymptotic value

(3.2) L(®) = hmn 4 log E{exp(mm Y F(X, ))}
! ozed,
exists and is a finite number for each choice of Fy,..., F, € Cy(m), k > 1.

Note that L(®) = lim, . n"¢log E{exp n®®(u,)} indeed depends on ®
only, and (3.2) is consistent with (7.1). Define

(83.3) M(n)= essinfE“‘/(O){exp(mjn Y E(Xz))}, neN.
! zed,

By C,_(w) we denote the subset of C,(7) consisting of those functions F
which can be written using (1.1) with z(1),...,z(k) € {z: max, _; _, 2, < 0}.

The proof of Claim I consists of a series of lemmas. The first three
lemmas prove that lim, ,n~%log M(n) exists, if F, € C,_(m), k > 1. The
last two lemmas show that the limit gives indeed what is needed, namely L(®).

The lemmas will also be used in Section 4, where bounded measurable
functions are considered; therefore, we give a more general statement than
what is needed here. Let M,(E) denote the family of bounded measurable
functions on (E, &). In analogy with our notation for the continuous functions,
we denote by M, () the set of all bounded functions that are measurable with
respect to the o-field .#(N) N ¥(—N) for some large enough N; M,_(7) is
defined as the set of all ¢(C,_())-measurable elements of M,(7).

Lemma 3.1. IfF,,...,F,,G,,...,G, € M,_(m), then for each m € N? and
all finite sets %, V'€ 7% such that % C {z: min, _, _,{2(i) — m(i)} < 0}, ¥ {z:
min, _; _4{z(i) — m(@)} > 1} we have

essme”‘/(O){exp( min ), F.(X,)+ min Y G«(X, ))}
1<i<k ze Y 1<i<k zec ¥

> ess1nfE'l(°’{exp(m1n Y F(X, ))}

i<k ,cq

XessinfE"(O){exp(min Y Gi(Xz))}.

ik ce¥m

Proor. For m € 7% put #, = S™™(.#(0)). Clearly,

=E»¢(o){exp( min ) F}(Xz))Elm{exp( min ), Gi(Xz))}};
L zeq toze?
this follows from the assumption that F,, ..., F, € M, _(7), so that
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min; ¥, ., F/(X,) is .#,,-measurable. Therefore,

E”‘O){exp( min Z%F(Xz) + mln Z G, (Xz))}
i ze ey

> E/(O){exp(min Yy F}(Xz))essinfE/m{eXp(mjn Y Gi(xz))}}

! ze9 t oze?

=essinfE“"(°){exp(mjn Y Gi(Xz))}E"/(O){exp(miin Y Fi(Xz))}

! zeV-m ze ¥
and taking the essential infimum ends the proof. O
Lemva 3.2. IfF,,...,F, € M,_(m) and M(n) is defined by (3.3), then
M(kn) > (M(n))*" foreachk,n > 1.

Proor. Write €, = U<, . iay<s_iini + €,) as the union of k¢ dis-
joint translations of cubes €. The result follows from Lemma 3.1 applied £
times to the finite sets %, = U ;1)< mq), ..., 15l(a,)sm(d){n(l 1) + ¢,} and
7., = m + ¢, [with the appropriate choices of m; 1 = (1,..., 1)]. Indeed,

mn ) F(X,)> mn } F(X,)+ min )} Fi(X,),
l<j<k z2€ UpU ¥, l<j<k z€ U, l<j<k ze ¥,

and Lemma 3.1 applies. O

LemMa 3.3. IfF,,...,F, € M,_(m) and M(n) is defined by (3.3), then
n=%log M(n) —» supm %log M(m) asn — =.

In particular, lim,, ., n~% log M(n) exists.

Proor. For d =1 this is a well-known consequence of Lemma 3.2 [see,
e.g., Dunford and Schwartz (1958), 8.1.1]. Case d > 1 is handled similarly. O

Lemma 34. IfF,,...,F, € M,_(w), then

{exp( min Y F(X, ))}

1<i<k zeg

4|log

—logM(n)) -0 asn > o«

ProOF. Since trivially M(n) < E{exp(min; T, c . F;(X,))}, we need only to
show that
1 /nd
llmlnf(M(n)/E{exp(mm Y F(X, ))} > 1.

z€ 4,

Take n, N € N. Since F,,..., F, € M,_(m), increasing N if necessary, we
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may assume that each F(X,) is F(-N)-measurable, 1 <i < k. Write N =
(N,..., N) € N? Clearly, for each n > 2N we have

min Y, Fy(X,) > —(n? - (n — 2N)?) max||F}|l.
12 ze€, i

+ max min b F(X,).

redy i ze€2N-r+76,_,y

Therefore, taking stationarity into account, we get

M(n) = e“V™ essinf

E.I(O){ max exp( min Y Fi(Xz)) } }

rety ! ze2N-r+7€,_,y

= eCn(M) ggg inf{E//<-N>{ max exp(min ) Fi(xz))}

redy ! zeN-r+7€,_,y

ZeCN‘”)N‘dessinf{E“""N){ >z exp(min X AFi(Xz))} ’

refy ! zeN-r+7%,_,5

where Cy(n) = —(n? — (n — 2N)?)max,| F/l.. Since, by our choice of N,
min; ¥, Ny e, Fi(X,) is £(n)-measurable, by (5.2) we obtain

-2N" ¢
(34)  M(n)= eCW)m(n)E{exp(m.in > E(xz))}.
'ozed, oy
Trivially, we have again
min ), F(X,) > —(n%~-(n-2N) )maxIIFIIoo + mm Y F(X,),
' zEd, oy ze€,
which together with (3.4) implies

(3.5) M(n) = e2vmry (n)E{exp(mm Y E(X, ))}
z€4,

Since Cy(n)/n? > 0 as n > « and liminf, _ (TN(n))l/"d =1 — gy, there-
fore
1/n¢

>1-—¢&y
zet,

llmlnf(M(n)/E{exp(mm Y F(Xz))}

and the proof is completed, as ¢, can be taken arbitrarily close to 0 [see (2.1)].
O

ProoF oF CLamM 1. Let Fy,..., F, € C,(m) be fixed. By stationarity,

E{exp(mln Y F(X, ))} {exp(mln Y G(X, ))}

zET, zET,
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where G;(x) = F(S™Nx) for some N =(N,..., N) € N%. Taking N large
enough, we may ensure that G,,...,G, € C,_(7); therefore, by Lemmas 3.4
and 3.3 the sequence n~¢log E{exp(min; T, » F,X,))}, n > 1, converges as
n — . Moreover, since |n~¢log E{exp(min; ¥, , F,X,)}| < max; [|F|l. for
each n, therefore the limit is a finite number. O
CramM II.  If E is a Polish space and (2.1) holds, then 1,(-) defined by
I,(p) = sup{®(p) — L(P): & € Concave}

is a convex function. [ Recall that ®(p) = min; [F(x) dp(x); see (3.1).]
We shall need two auxiliary observations.

LEmMMA 3.5. Fix q;,q, € P(E). For each ® € Concave there are ®,,®, €
Concave such that

(3.6) @(3(p1+ P2)) = 3Py(Py) + 3Po(P) forall py,py € P(E),
(8.7) @(3(ay + a2)) = P1(q;) = Pa(qy)- ‘
Proor. Let Fi,..., F, represent ® [see (3.1)]. Define
Gy(x) = Fi(x) + 3(ax(F) — ay(F)),
Hi(x) = Fy(x) + 3(a(F;) — ax(F;)), 1<i<k.

Obviously, G,,Gs,,...,Gy, Hy, Hy, ..., H, € Cy(7). Let ®; be determined by
(8.1) with functions {G;} and let ®, be determined by (3.1) with functions {H;}.
Then it is easy to check that both (3.6) and (3.7) hold. Indeed, we have
P F) + py(F) = p{(G,) + py(H,) for all p,,p, € &#, 1 <i < k. Therefore,

D(py + P2) = (P1 + P2)(Fy) A - A (Py + P2)(F)
> Ppi(Gy) A - APIG) + Pa(Hy) A oo APo(Hy)
= ®(py) + Py(p2),

which proves (8.6). Equality (3.7) is trivial, as qG;) = q,(H,) =
%(ql + qz)(F’,) foreachl <i<k. O

LEmMMA 3.6. Suppose ®,®,, D, € Concave are the concave functions from
the conclusion of Lemma 3.5 and assume that (2.1) holds. Then

L(®) = 3(L(P,) + L(Dy)).

Proor. Write ® = @, for the next line only. By the proof of Claim I we
have

L(®,) = lim (2n) % logess inf E“©®

exp(CD,( Yy sz_N))}, r=20,1,2,

ZE€E 6,
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for some N = (N, ..., N) € N?. By (3.6), multiplied by 2¢n¢, we have

(D( > 3x,_N) Z(191(2 )y Bx,_N) +(D2(Z > 6x,_N),
zE6,, a zc€a+7d, b zeb+74,

where a €{(0,%,,...,k;_1): B, =0 or k,=n, 1<i<d-1}, be
{(n,ky,...,kg_1): k;=00r k;,=n,1<i<d - 1)}, that is, we split the sum
over ©,, into the sum over 2¢ disjoint translations of &, half of them being
assigned to ®, and another half to ®, (clearly, the particular form of the
partition given above is of no importance). Therefore,

o] £, .|

min( T G(X, )]

a zca+46,

ess inf E4©

> essinf E4©{exp

#min(T T Hi(xz_N)))},

b zeb+4,

where G; and H;, 1 <i <k, represent ®, and ®, respectively [see (3.1)].
Using Lemma 3.1 2¢ times, we get by stationarity that

o %, 5. |
exp(Cbl( zggnﬁx,_n))}

exp(Cbz(ZGZgnsz_N))}.

Dividing by 2¢n¢ and passing to the limit as n — ®, we end the proof. O

log ess inf E-4©

> 297 !logess inf E4©

+ 29-1]ogess inf E#®

Proor orF CramM II. To prove the convexity of a lower semicontinuous
function I (), it is enough to show that

(3.8) Ig(z(a; +ap)) < 3(Ip(ay) +Ip(qp)) forallq,,q, € F(E)

[see, e.g., Stroock (1984), page 39]. Fix q,,q, € Z(E) and ® € Concave. From
Lemmas 3.5 and 3.6 we have

D(3(q; + dz)) — L(P) < 3(Py(qy) + Pa(qy)) — 3(L(Py) + L(Dy))

< 3(To(dy) + Ip(ay)).

Since ® € Concave was arbitrary, taking the supremum over all ® ends the
proof of (3.8). O
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Cramvm III. If E is a Polish space, w strongly separates points of E and
(1) < o for some N > 1, then (1.3) defines an exponentially tight family
{1,}, 51 of P(B)-valued random variables.

We shall first establish a simpler implication.

Lemma 3.7. If E is a Polish space and y3,(1) < » for some N > 1, then
P(F)-valued random variables {v,}, ., defined by

— pn—d
v, =n"% ¥ 8.x,)
ze ),

are exponentially tight.

Proor. Let 2(F) denote the set of all nonnegative countably additive
measures m on (F, &) such that m(F) < 1; 2(F) is equipped with the weak
topology. Clearly, v, € Z(F) with P-probability 1 for each n > 1; furthermore,
P[) < 2(F) is a closed subset. Therefore, it is enough to prove that {v,} is
exponentially tight as a 2(F)-valued sequence of random variables,

Since 2(F) is a Polish space and 2(F) is a positively balanced and bounded
subset of the vector space V of all signed measures on (F, #) with the topology
of weak convergence, therefore by de Acosta (1985), Theorem 3.1 [see also
Bretagnolle (1979), Proposition 3.4], there exists a semi-norm ¢q: 2(F) —» R
such that ¢~ Y[0, 1] is compact in 2(F), convex and

Efexp q(8,x,)} < .
We shall show that

(3.9) sup(E{exp(N_dndq(vn))})l/nd < o,

This implies exponential tightness [see, e.g., Stroock (1984), Corollary 3.27]. It
is enough to consider n > N only. Denote Y, = w(X,). Let 2 =[n/N]. We
have

ot e <l 5 o)

zECy,,

= E{exp(N—d Y ¥ q(5Y,+Na-n))}'

zECy JET,
Hélder’s inequality, stationarity and (5.1) consecutively applied give

E{exp(N~?nq(v,))} < E{exp( Y q(SYNj))}
jed,
d k4
< (4%(1))*(E{exp(a(5y,))})

Since k/n < 1, this establishes (3.9) and ends the proof. O
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ProoF OF CramM III. Denote 27l = 2-k®I= - ~k@I k e 79 By Lemma
3.7 and stationarity, for each z € Z¢ and each L > 0 there is a compact set
K, c #(F) such that

P(m8*(u,) € K,) <27 deLn,

where 7 °8%*(-): ZP(B) > F(F) is defined by 7 °S%(pXA) = p{S (7w~ (A)}.
Define K ¢ Z(B) by K = N ,cz4lp € P(B): w-S*p) € K,}. Then K is closed
(as an intersection of closed sets) and P(u, € K) < L ,P(m-S*(u,) ¢ K,) <
T ,271E7de"Ln = o=Lr Tgo check that K is compact, one needs only to verify
that K is a tight set of measures. This follows from the fact that 7 - S%(K) are
tight sets of measures and 7 strongly separates points of E: Strong separation
implies that if C, C F, z € Z¢, are compact sets, then C = N, 7S ?c 7~ %C,)
is a compact subset of E. Indeed, if {x,} € C, then one can select a subsequence
n’ such that 7 -S*(x,,) converges in [ for each z € Z¢. This subsequence {x,}
has to converge in E, too. For if not, then by strong separation d(x,,x,,) > ¢
for some & > 0 and all n,m in our subsequence. Hence
dg(m8%*(x,), m>S*(x,,)) > 8§ > 0 for some z, which is impossible. O

ProoF OF THEOREMS 2.1 AND 2.2. We apply Theorem 7.1 to the closed and
convex subset X = Z(E) of the locally convex Hausdorff topological vector
space V of all signed measures on [, with the topology of weak convergence. We
take #={1,2%8¢%,...} and A = Cy(w) is considered as a subset of VV*, with
the usual identification of the bounded continuous functions F € C,(w) as the
bounded linear functionals, which act on V> u by [Fdu. Clearly, &=
Concave. By assumption C,(7) separates points of E. By Claims I and III, the
large deviation principle under the assumptions of either Theorem 2.1 or 2.2
follows from Theorem 7.1 below; clearly, Claim III is not needed in the proof of
Theorem 2.1. Formula (2.2) is a variant of (7.3) and holds true by Claim II. O

4. Rate function identification. Throughout this section all the as-
sumptions of Theorem 2.3 are supposed to hold even if not written explicitly.
Since by Theorem 2.2 the large deviation principle holds, it remains only to
show that formulas (2.4)-(2.6) hold. The idea of the proof is to check that
particular functions (logarithms of the conditional densities) are among the
functions at which the maximum of the expression on the right-hand side of
(2.2) is attained. However, one needs to write (2.2) with noncontinuous
functions allowed; this is accomplished in lemmas below.

The first lemma takes care of (2.4).

LemMA 4.1. I(p) = » for p &€ F(D.

The proof is similar to Orey and Pelikan (1988), page 1487, and is omitted.
For bounded measurable F define

L,(F) = n=¢log E{exp(nu,(F))}.
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Clearly, L(F) = lim,, ., L,(F), provided that the asymptotic value L(F') exists;
the proof of Claim I shows in particular that L(F) exists if F € M, _(m).

Lemma 4.2. IfF € M,_(w), then for alln € N and all L > 1 large enough,
IL,(F) — n~%log E“©{exp(nu,(F)))l
(4.1) <4(1-(1-2L/n)?)IFI.
+n"%log(¢f(n)) — n~%log(rz (n)),
P-almost surely.

Proor. By (3.5), we need only to establish the following upper bound:
log(ess sup E“©{exp(nu,(F))}) < log( E{exp(n’u,(F))})
(4.2) +2(n? - (n - 2L)?)IIF .

+ log(yf(n)) as.

To prove (4.2), let L = (L, ..., L), where L > Ois such that ¥,y .,  F(X,)
is F(1)-measurable. Observe that as in the proof of Lemma 3.4 we have

Y F(X,) < (n®-(n-20)")IFl.+ ¥  F(X,) foreachn>L.
ze €, z€2L+%6, 51

Therefore, by stationarity we get

E“Ofexp(ni,(F))) < e ess sup E“—L){exp( 3 F(x,))},

zeL+7¢,_,;

where Cp(n) = (n? — (n — 2L))|Fl». Since £,y ¢, , F(X,) is £(n)-mea-
surable, by (5.1), we obtain

(4.3) E“Olexp(n’n,(F))} < eCL(")d;;j(n)E{exp( Y F(Xz))}
zE{n—ZL
Trivially, we have again

Y FX,) <(n?-(n-20L))IFl.+ ¥ FX,).

ze'gn—ZL ze'gn
This together with (4.3) implies
E“Oexp(nu,(F))} < ezCL‘"’l/fZ(n)E{exp( ) F(Xz))},
zZETL,

which proves (4.2). Inequalities (3.5) and (4.2) end the proof of (4.1). O
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LEMMA 4.3.  Put M(n) = ess sup E“©Ofexp(nu,(F)). IfF € M,_(1), then
(44) ,}i_r)rin'd log M(n) = 3121f;n'd log M(n);
in particular, the limit exists.

The proof of Lemma 4.4 is essentially a re-run of a portion of the proof of
Claim I (see the proof of Lemma 3.3). Observe that M(kn) <M (n)k that is,
log M(n) is a “subadditive” (and finite) function of n and use this to get (4.4)
(compare Lemma 3.2).

The following lemma gives a variant of (2.2) with the supremum over the
bounded continuous functions replaced by the supremum over the bounded
measurable functions.

Lemma 4.4. If p € Z(b), then
(4.5) I(p) = sup(p(F): F € M(w), L(F) <0},
(4.6) I(p) = sup(p(F) — L(F): F € M,_()).

Proor. If p € Z4(D), then
(4.7) I(p) = sup{p(F): F € C, (=), L(F) <0).

Indeed, it is easily seen that stationarity implies L(F) = L(F -S¥*) for all
k € 7¢9; also, if p € F4(F), then p(F) = p(F -S¥) for all k € Z9. Hence from
(2.2) we get I(p) = sup{p(F) — L(F): F € C,_(w)}. To end the proof, notice
that since F' — L(F) € C,_(m), we have

I(p) = sup{p(F): F € C,_(7), L(F) = 0}
< sup{p(F): F € C,_(7), L(F) < 0}.

On the other hand, if L(F) < 0, then obviously p(F) — L(F) > p(F), which
proves that

sup{p(F): F € C,_(), L(F) < 0}
< sup{p(F) — L(F): F € C,_(w), L(F) < 0)
< sup{p(F) — L(F): F € C,_(m)} < I(p).

Finally, notice that since both p and L as mappings C, — R are continuous,
replacing in (4.7) L(F') < 0 by L(F') < 0 makes no difference.

The argument also shows that taking the supremum in (4.5) over F € M, ()
is the same as taking the supremum over F € Mb_(‘ﬂ), provided p € Z(b).
Using (4.7) and (2.2), each of the inequalities < in (4.5) and (4.6) is obvious.
To verify >, take F € M,_(w) with limsup, _, (E{exp(n /.Ln(F))})l/" <1
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Then there is § > 0 and n such that

(4.8) (E{exp(ndp,n(F))})l/nd <e % foreach n > n,.
Increasing n, if necessary, we can also assume that
4(1 - (1 = 2L/n)*)IF o + = log(vf (n))
- n"%log(r;(n)) <& forsome L and each n > n,.
Using (4.8) and the Luzin theorem, for each ¢ > 0 one can find G. € C,_(m)

such that

IGb = IFll.,  B(F) <p(G,) +¢ and (E{exp(ntu,(G.)})" Mo
Hence from (4.2) we get

ng log(ess sup E“"(O){exp(n%/.bno(Ge))}) < —8.
By (4.4) the same inequality holds in the limit, that is,

lim n.~¢ log(ess sup E“®{exp(n’u ,(G,))}) < —8.
By Lemma 4.2 the limit is L(G,) and hence we have L(G,) < —& < 0. There-
fore, (4.7) gives p(F') < p(G.) + ¢ < I(p) + ¢. Since £ > 0 was arbitrary, this
proves the > ” inequality in (4.5). The right-hand side of (4.5) dominates the
right-hand side of (4.6); thus (4.6) is established, too. O

ProoF oF THEOREM 2.3. Lemma 4.1 proves (2.4). Let p € Z¢(b). If there is
n > 1 such that p ., is not absolutely continuous with respect to P ,), then
there is A € #(n) such that P(A) =0 and p(A) > 0. Hence there is a
bounded measurable function F € M,(7) such that p(F) is arbitrarily large,
while L(F') < 0; take, for example, F(x) = —1 + CI(x) with a large enough
constant C. By (4.5) this ends the proof of (2.5).

Suppose now p, 4, is absolutely continuous with respect to P, 4, for all
n > 1. Then (2.6) follows from the following two observations.

CramM A. For each F € M, _() we have

p(F) - L(F) < linligfp(n'd log f,(x)).

Cramm B.

limsupp(n~?log f,(x)) < I(p).

n—o
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Indeed, Claim A and (4.6) give I(p) < liminf, . p(n~?log f,(x)), which
together with Claim B, guarantees that the limit exists and equality (2.6)
holds. O

It remains only to prove the claims.

Proor oF Cramm A. Fix FeM, (7). Let L>1 be such that F is
F(—L)-measurable. Then

E{exp(z F(xz))}
{ﬂ
[ e 108 e STHE) + K F(x,)| frn o8 7HR) dP(R)
fLen°877#0 Z,
+ffL+n°S_L=0exp(Z{i F(xz)) dP(x)
> / . exp(—log frineS™H(x)+ ) F(xz)) dp(x), n=x>1.
fLen°87=#0 €,

Since {x: f;.,n°S “X) = 0} is of p-measure 0, the last integral can be taken
over E. By the convexity of exp(-) and the stationarity of p, we get therefore

E{xp(g F(xz))} > exp(~P(1og fi 1) + n'B(F)).

This implies

d
p(F) - ( ) n~?log E{exp(;. F(Xz))} < (n+L) "p(log fy.,)-

n+L
Passing to the limit as n — « over a suitable subsequence ends the proof. O

ProorF oF Cramv B. Fix N> 1. Let G(x) =log fy(x). For C > 0 put
Go(x) = (0 vV G(x)) A C. Clearly, p(G™) < » and hence —» < p(G) < » ex-
ists. (Indeed, f log f — 0 as f\ 0.) Hence

P(G) <p(G") = lim p(Gc).
In particular, for each ¢ > 0 there is C = C(N, ¢) such that for all L > 1,
(4.9) (N+L) *p(G;) = (N +L) *p(G) —¢.
We also have
(4.10) L((N+L)™“G¢) < (N+L) “logy}(N) + (N+L) “log2.
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Indeed, given N, L > 1, by Holder’s inequality and stationarity we have

E

s ¥ (N+L)‘dGC(x,))}

ZEC,(N+L)

= E{exp( Y X (N+ L)—dGc(Xy(N+L)+z))}

YEC,-12€Cy,
< E{exp( Zg Gc(xy(N+L)))} .
YE©,1

Therefore, (5.1) applied recursively gives

Blew| T (N+L)‘”’Gc(x,))}

z€ 'gn(N+L)

(4.11)

nd nd
< (£ (N))" (Efexp(Gc(X0))})" -
To end the proof of (4.10), it remains only to observe that

E{exp(Go(Xo))) < Elexp(log” fy(Xo)} = [ f(x)dP + P(fy<1)

=p(fy=1) +P(fy<1) <2

Therefore, (4.10) follows from (4.11) by taking the logarithm, dividing by n?
and passing to the limit as n — <.
From (4.9) and (4.10) we have

(N + L) “p(log fy) <p((N + L) ™%Gc) - L((N + L) "G¢)
+e+ (N+L) %logyi(N) + (N +L) %log2
<I(p) +e+ (N+L) “logyi(N) + (N +L) *log2.
Hence, passing to the limit as N — « over a suitable subsequence, we get

limsupn ~4p(log f,) < I(p) + ¢ + limsupn~?log ¥} (n).
Since ¢ > 0 and L > 1 are arbitrary and (2.3) holds, this ends the proof of
Claim B. O

APPENDIX A

5. Inequalities for the strong mixing coefficients. In this appendix
we state some ““weak independence” inequalities needed in the paper. Proposi-
tion 5.1 below relates the more frequently used ‘‘ratio mixing” measure of
dependence (5.6) to the coefficient . The inequalities obtained separate the
ratio-mixing condition into the part directly responsible for large deviations
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(y_> 0) and the part used for handling noncompact state spaces (¢, < «)
(compare Theorems 2.1 and 2.2); ¢, is also useful for rate function identifica-
tion (cf. Theorem 2.3).

The following lemma states basic inequalities; proofs are omitted, since
more subtle cases are well known.

Lemma 5.1. If £ > 0 is &(n)-measurable and n > 0 is .#(—L)-measura-
ble [see (1.5) and (1.6)], then

(5.1) vL(n)E{¢} < E4CD(¢} <yl (n)E(¢) as.

for each L,n > 1;

(5.2) 77 (n) E{¢)} _<_E/('L){ Y §°S'k}/Ld a.s.
ke¢,

for each L,n > 1.

If {Y,},., is an F-valued stationary Markov chain, we extend it first to
{Y,}, < 7 (take the weak limit of {Y_,,Y_,.1,..., Yy, Y},...} as n = ). Define
E = FZ with 7 being a projection on the Oth coordinate and P being the
(stationary by assumption) distribution of {Y,}, ., on E.

The following result is an exercise in the use of the Markov property and
the formula

inf( > P(A, N B)/P(B): B€ &, P(B) >0} = essinf ), P(A,|#)
[see Blum, Hanson and Koopmans (1963), Lemma 8].
LemMa 5.2.  Suppose P, (x, dy) is the family of n-step transition probability

measures of a stationary Markov chain {Y,}, . ; with a state space F and the
invariant distribution p € PF). If (2.7) holds for some N > 1, C < », then

(5.3) w(n) = (NC)™, n=12,....

If there are C < ©» and N, M > 1 such that (2.9) holds for all A € B, x,y € F,
then

(5.4) mw(n) = (CN)™', n=12,...,
(5.5) Ui (n) < CN, n=1,2,....

For a pair of o-fields &, & the ratio-mixing coefficient A is defined by

56 NF 2 esssup P(B| %)
(6.6) (FF) = SUp |\ o P(BIF) |

With specific choices of o-fields &, &, the assumption A(F, &) < » was used
in several large deviation results [see, e.g., Stroock (1984), assumption (6.1),
Ellis (1988), Hypothesis 1.1(b), and Olla (1987), page 398, assumption (I); see
also Pelikan and Orey (1988)]. The following result shows that for those
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purposes A is equivalent to . Proposition 5.1 is also used in the proof of
Theorem 6.1 below.

ProrosITION 5.1.  For all o-fields &, £ C %,
MF,£) <(F,2) < (MF,#))>

Proor. Throughout this proof &, c & are fixed, A € &, B € & and
P(A)P(B) > 0. From (5.1) it follows immediately that esssup P(B|%) <
¢, P(B) and essinf P(B| %) > ¢_P(B), which proves the left-hand side in-
equality. The right-hand side inequality follows from the fact that

(5.7 Y <A
(5.8) 1/4_< A
Indeed, to prove (5.7), observe that
P(AnB) 1 JaP(BIF)dP esssup P(B|%)

P(A)P(B) - P(B) P(A) = essinf P(B|.%) ~
Taking the supremum over all A € %, B € 4 proves (5.7). Similarly,
P(A)P(B) _ p(B) P(A) - esssup P(B|¥%) '
P(ANB) [aP(BIF)dP = essinf P(B|%)

Taking the supremum over all A € &, B € # proves (5.8). Inequalities (5.7)
and (5.8) end the proof. O

ReEMARK 5.1. If d = 1, then, after taking into account Proposition 5.1 and
the trivial inequality ¢;(n) > 1, the (RM) condition of Orey and Pelikan (1988)
reads

(RM) liIILiol;lf(l/Im(n)(n m(n)))

where m(n)/n — 0 and m(n) < n. If m(n) = m does not depend on m, then
(RM) implies lim; _, liminf, ,, (¢;(n))/™ = 1; on the other hand, (RM) with
any m(n) - « is implied by lim; _liminf, , (¢;(n))/" = 1. Note, how-
ever, that (2.1) uses 77, which is a weaker measure of dependence than ¢, .

1/n

APPENDIX B

6. Uniform strong mixing for Gibbs fields. In this appendix the weak
dependence properties of Gibbs fields on Z¢ are analyzed. Let E = NZF =N
and let = = o be the pro_]ectlon on the Oth coordinate; shifts S; are along
coordinates in Z% 1 <i <d. For a finite set F C 7% denote by mp the
projection mg: NZ* - NF. (In particular, 7o = Tgy) Let X p denote (x,: z € F)
and for x,y € NZ* define xF Ny €N z by(xIF\.y)—(a ), where a, = x,
if z€ F and a, =y, otherwise. Recall that P is a Gibbs measure (1e an
N-valued random field X = (Y,},.,« is a Gibbs field) with the interaction
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potentials {Vp: N¥ — R}, where F c Z¢ are finite sets, if for each finite set
G c 7% and each set A c N9,

P({Yz}zeG € A|U{Yz}z$G)

=z') exp( Y Vo Tr(Yie > X)),
yEA F:FNG+J

(6.1)

where

Z = Z exp Z VF ° ’7TF(y|G N X)
yeN¢ F:FNG+J

is the (random) normalizing constant. We shall assume that V is stationary,
that is, Vp, ° Tp. 1 = Vg o 7 oS™X. In the case of a finite state space F rather
than F = N, Preston (1976), Proposition 5.4, gives suitable sufficient conditions
for the existence of a stationary Gibbs measure P determined by the station-
ary potentials {Vg}. Put || V|l = sup, [Vr(y)l.

THEOREM 6.1. If P is a stationary Gibbs measure with the stationary
interaction potentials {Vy} such that

(6.2) Y Vgl < e,
F>0

then

gim limsup(://L(n))l/"d =1

n—o

[¢.(n) is defined by (1.7); (6.2) is understood as (6.7) below.]

NOTATION FOR THE PROOF. For n, N > 1put #(n, N) = €, .5 — N, where
N=(N,...,N), 2(n,N) = Z(n,N) \ ¢,. Let A, =0{Y,: z & R(n, N)},
that is, .y, is the o-field generated by the random variables in sites of
distance > N from ¢,. By (6.1) we have

(6.3) P({Y,}ocem) € AlA,n) = S(A,X)/Z(X),
where
S(A’X) = Z exp( Z VF ° ’n.F(yl.Q(n,N) N X))’
yEAXNZ®N) F:Fn€(n)+2
Z(X) = S(N9™ X)
= ) exp( Yy Vg o WF(yig(n,N) N X))
yENER,N) F:FN€(n)+D

Define yy(n) = ¢(Ay ,, Z(n)) [see (1.4)]. We shall show that

(6.4) Al’im limsup(yN(n))l/"d <1.
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Since .#(—N) C #y ,, we have 1 < ¢y(n) < yy(n). Therefore, to end the

proof of Theorem 6.1, it is enough to establish (6.4).
The following lemma reduces (6.4) to a property of potentials V.

LEmMMA 6.1.

XP(E F: F (0 €(n) £, F~ R(n, Ny#2VF ° WF(X))

1/4
(vw(n))”" < sup :
x,y N’ exP(Z . F n ény #2, F~ (0, Ny 2VF ° Tr(Y))

Proor. Fix n, N > 1. It is easily seen that

12 esssup P({Y,},c ¢n) = X1, )
(65)  (rv(m)) " < SUP e P (T = XA n)

Indeed, if

L P({Y)zctm = XI-#,n)
xp essinf P({Y,}sc¢(n) = X-"N.0)

then for each A € N¥™ we have
P({Yz}zeﬁ(n) = A"/N n)
Z P({Y}ze{(n) x|‘/N n) <M Z eSSIan({Y}zeﬁ(n) = xI"/N n)

x€A x€A
S MeSSinf P({Yz}ze‘g(n) (S AL/N,R)‘
Hence by Proposition 5.1,

/2 ess sup P({Y }zeg(n) € AI’/N n)
(vn(n))
A eSSIHfP({Y}zeg(n)eAl/N n)

<M,

which proves (6.5).

Let
K- sup eXP(EF:Fn{(n)*Q,F\g(n,N)aerVF ° WF(X)) .
x,yeNZ* exp(Z F: FN€(n)+3, F\ R(n, N)#QJVF ° ‘"'F(Y))
Formula (6.3) gives
oy 555 P (B ) = XA )
(6.6) x eSSlan({Yz}zean) = xl’/N,n)

- {S({x},y) Z(z) }
ave | Z()  S({x},2)
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where

S({xhy)= L e(xuy),

ueN2x N

Z(y) = L e(Viewmy Vigun ¥)>

veNR®, N)
e(x’ u’ Y) = exp( Z VF ° TrF(xlg(n) N (u|9(n,N) N y)));
F:Fné€(n)+o
in particular,

e(vig(n),vig(nm, y) = exp( Y Vg o "F(Vlgz(,.,m N y))
F:FN€(n)+J

Since

exp( Yy Vpo '"'F(xlz(,., N (uig(n,m N y))
F:FNn€(n)+ 3, FcH(n,N)

does not depend on y and
e(x,u,y)

= exp( Z Vo 77-F(xlz(n) N (u|9(n,N) N y)))
F:FNn€(n)+3, FN%(n,N)+J

XeXp( Z Vg o WF(xlz(n) N (ulg(n,N) N y)))’
F:FNn€(n)+3, FcA(n,N)
therefore, by the definition of K, for every x,u,y, z we have

e(x,u,y) < Ke(x,u,z).

Hence S({x},y) < KS({x}, z) and Z(z) < KZ(y) for all x,y, z; thus by (6.6) we
get

esssup P({Y,},co(n) = Xl )
" essinf P((Y,},c g = XA ) < K°

This, together with (6.5), ends the proof of the lemma. O

Proor oF THEOREM 6.1. By Lemma 6.1 and the stationarity of {Vy}, we
have

(r(m))" < exp(4n? T Y IVl

ze€(n) F: Foz, F\%(n,N)+J

< exp > IVl
F:F30, FN\%#(0,N)+J
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Assumption (6.2) means that
(6.7) lim Yy VeIl = 0.
N= g ps0, FNR(0, N)+ o

Therefore,

lim sup lim sup('yN(n))l/”d <1.

N-owx n—o

This proves (6.4). O

APPENDIX C

7. Large deviation principle criterion. In this appendix the criterion
for the large deviation principle is stated and related definitions are given. Let
{P},c_ be a family of probability measures, that is, P, € #(X), v € 7. Here
X is a metric space and .7 is a fixed unbounded (not necessarily countable)
subset of real numbers v > 1. To simplify the notation, below we shall write
{r > 1} instead of 7.

DerFiNITION. We shall say that a family {P,} of probability measures satis-
fies the large deviation principle with a rate function I: X — [0, »], if the
following conditions are satisfied:

—inf{I(x): x € A} < liminf1/vlog P,( A)

for each open set A C X;
limsupl/vlog P,(A) < —inf{I(x): x € A}

v

for each closed set A C X.

Following Varadhan (1984), we shall also require I(-) to be lower semicon-
tinuous and to have compact level sets I"1([0,a]), a > 0.

DeFiNITION. We shall say that a family {P,} of probability measures is
exponentially tight if for each M > 0 there exists a compact set K c X such
that sup,. ,1/vlog P,(K®) < —M.

DerFINITION. We say that family {P,}, . ; of probability measures on a metric
space X admits an asymptotic value over a class % of measurable functions if

(7.1) L(F) = 1lm1l/v logf exp(vF(x)) dP,(x)
y—00 X
exists and is a finite number for each function F € %.

The following criterion for the large deviation principle was used in Sec-
tion 3.
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THEOREM 7.1. Let V be a locally convex Hausdorff topological linear space
with the conjugate space V*. Suppose X C V is a metric space in the relative
topology. Suppose A C V* separates points of X and define = {g: gx) =
min {A;(X) + ¢;}, c; ER, A; € A, 1 <i < n, n €N}). Suppose furthermore that
{P,} is an exponentially tight family of probability measures and admits an
asymptotic value over £.

Then {P,)} satisfies the large deviation principle with the rate function I(x)
defined by

(7.2) I(x) = sup{g(x) — L(g): g € #).

Moreover, if X CV is closed and convex, I(-) defined by (7.2) is convex and
sup,| [y exp(vA(x)) dP,(x)]"/* < » for each A € V*, then

(7.3) I(x) = sup{A(x) — L(A): A € V*}.

Formula (7.3) under the convexity assumption is well known [see, e.g.,
Deuschel and Stroock (1989), Theorem 2.2.21]. The large deviation principle
follows from the lattice form of the Stone—-Weierstrass theorem; the latter
implies that {P,} admits an asymptotic value over C,(X), which in turn is
equivalent to the large deviation principle. For a detailed exposition, see Bryc
(1990), C.2.1.
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