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EXCHANGEABLY WEIGHTED BOOTSTRAPS OF THE
GENERAL EMPIRICAL PROCESS!

By JENS PRAESTGAARD AND JON A. WELLNER

University of Iowa and University of Washington

We consider an exchangeably weighted bootstrap of the general func-
tion-indexed empirical process. We find sufficient conditions on the boot-
strap weights for the central limit theorem to hold for the bootstrapped
empirical process, almost surely and in probability. The results resemble
those of Giné and Zinn for Efron’s bootstrap. As a corollary we obtain a
result on the almost sure convergence in distribution of the Efron-
bootstrapped empirical process with arbitrary sample size. A large number
of bootstrap resampling schemes emerge as special cases of our results.

1. Introduction. The topic of this article is bootstrapping the general
empirical process with exchangeable weights. The bootstrap technique was
introduced by Efron (1979, 1982) as a method for estimating the sampling
distribution of a statistic. It may be explained briefly as follows: Let X,,..., X,
be iid observations with distribution P; let 6 = 6(P) be a parameter of
interest, and let 6, = 6,(X,,...,X,) be an estimator of 6. The bootstrap
principle is to estlmate the unknown distribution of 6, by 0 where 6,
distributed as 6(X,,...,X,) and X,,..., X, are iid from the emplrlcal
probability measure

1 n
= B0

Although in general not expressible in a closed form, the bootstrap distribution
can easily be evaluated by Monte Carlo by drawing samples with replacement
X,,..., X, from (X,,..., X,) and computing 6,(X,,..., X,).

Often the quantity Vn (6, — 8) to be bootstrapped can be expressed as a
function of the empirical process which is defined as

= Vn (P, — P).

In the modern theory of empirical processes it is customary to identify P, P,
and X, with the mappings given by f — [fdP = Pf, f— [fdP, =

nlEr_ 1f(X) P, fand f— [fdX, =n"2L2_(f(X;) — Pf) = X,(f), re-
spectlvely Here f € &,and FCLy(P)is a collectlon of functions mapping
the sample space X to R. In this way, X, becomes a random element of /*(%),
the space of bounded real functions on #. The most straightforward example
is to take X = [0, 1] and let # be the collection of indicator functions of sets of
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2054 J. PRESTGAARD AND J. A. WELLNER

the form [0,c], 0 <c < 1. In this case P, becomes the ordinary empirical
distribution function. However, many other classes % of interest in statistics
exist. We shall not go into detail with these here, but refer to Pollard (1990)
and the expository paper of Wellner (1992) in which applications to statistics
are listed. These include, among others, tree-structured classification and
regression, and projection pursuit regression.

For the simple case stated above, Donsker’s theorem [see Billingsley (1968)
or Shorack and Wellner (1986)] states that the empirical process converges in
distribution to a Brownian bridge on [0, 1]. The same holds for the function-
indexed empirical process as follows: A P-Brownian bridge process Gp is a
0-mean Gaussian process indexed by & with covariance function

COV(GP(f)’GP(g))=Pfg_Pngv f’gey'
Let pp be the pseudometric on L,(P) given by

p3(f,8) = Var(f(X) — g(X)) =P((f-&)*) - P(f - &)".
If there exists a version Gp of a P-Brownian bridge, indexed by %, which has
bounded and pp-uniformly continuous sample paths, we say that & is P-pre-
Gaussian. We say that % is P-Donsker or, shorter, that & € CLT(P), if & is
P-pre-Gaussian and

Vn (P, — P) = Gp.
This convergence is convergence in distribution in [*(¥) in the sense of
Hoffmann-Jé¢rgensen (1984); see Andersen (1985), Dudley (1985) or Van der
Vaart and Wellner (1989) for an explanation.
Letting X,,,..., X,,, denote a bootstrap sample from P, the bootstrap
empirical measure and process are respectively

A 1 e
Ipn - Z 8)2”
n /5

and

§<n = \/;L_(ﬂﬁ’n - P,‘;’).
(Superscript o indicates that the sequence of data Xy, X3,... is considered
fixed.) Giné and Zinn (1990) proved the following remarkable result: Let
F = (sup; . &If]* denote the envelope function of the collection : that is, the
smallest measurable function that majorizes %#. Then, under some measura-
bility restrictions on &,

X, = Gp and PF?<w:

is equivalent to

A

X, = Gp for almost all data sequences X{, X3,... .

This result completely settles the question about the validity of Efron’s
bootstrap in a wide range of situations. The same authors also proved “in
probability”’ convergence in distribution results for the bootstrap.
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The idea of the exchangeably-weighted bootstrap stems from the fact that
the bootstrapped empirical measure can alternatively be expressed as

1 n
=—Y M
nj-1

where M, ~ Mult (n,(n"1,...,n™1). As observed by Efron [(1982), Section
9.4, pages 71-72], this suggests that there are, in fact, not just one but several
ways to bootstrap: let W = (W, ,, j = 1. =1,2,...) denote a triangu-
lar array of nonnegative random varlables w1th X7_W,,; = n; then

(1.1) VZ‘, 0

III
:slb—l

defines a weighted bootstrap empirical measure. We refer to these as boot-
straps with exchangeable weights to distinguish them from Efron’s (multi-
nomial) bootstrap. Bootstraps with exchangeable weights have not been
considered as closely as the Efron bootstrap, and they are not yet widely used
in statistical practice. The references we are aware of include Rubin (1981),
Efron (1982), Lo (1987), Weng (1989), Zheng and Tu (1988), Newton (1991)
and Mason and Newton (1990). The best known example (and the first to our
knowledge) was the Bayesian bootstrap, Rubin (1981).

In this article we establish sufficient conditions on the weights W for the
exchangeably weighted bootstrap to “work” asymptotically, in the sense that
& e CLT(P) and PF 2 < w (and sufficient measurability) implies that, with [,
given in (1.1), X, = Vn (B, — P®) = Gp, a.s. The methods used are, for the
finite- d1mens1onal convergence part, Hajek’s (1961) central limit theorem for
linear rank statistics, which was first used for a weighted bootstrap by Mason
and Newton (1990). For the asymptotic equicontinuity part we use techniques
from probability in Banach spaces: in particular randomization with “L,
bounded multipliers, Poissonization which we use analogously to Giné and
Zinn (1990) for Efron’s bootstrap, and the key inequality of Ledoux, Talagrand
and Zinn, Ledoux and Talagrand (1988), which we combine with a reverse
martingale convergence theorem and the Hewitt—Savage 0-1 law to get a result
on almost sure convergence of a permutation-type empirical process. Apart
from this, we use an inequality originally due to Hoeffding (1963), the essence
of which is that a finite sample ““ without replacement” is, in a sense, bounded
by a sample ‘“‘with replacement” of the same size and from the same popula-
tion.

Throughout, we let X,, X,,... be an iid sequence from the probability
space (X, Z, P), and we take the sequence to be defined on the canonical
probablhty space

(Q,0,Pr,) = (X, 2, P)Y

The notation X will indicate that the data are considered fixed; a typical
example would be E|X}_,e;0x./l, where the expectation is over &,,...,¢,,
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while in E*||Z}_,z;6x [l the expectation is over ,...,¢, and X,..., X,
jointly.
For & > 0 fixed, we define the seminorm || - |, 5y on [*(F) by

IH |5 pp,5) = sup{H( f) — H(g)l: pp( [, &) < 8}.

We furthermore assume that the collection # possesses enough measurability
for randomization with iid multipliers to be possible; such a set of conditions is
e NLDM(P), and %2, ' € NLSM(P) in the terminology of Giné and
Zinn (1984, 1986, 1990). Here &2 and #'* denote the classes of squared
functions and squared differences of functions from &, respectively. When all
of these conditions hold, we write % € M(P). It is known that ¥ M(P) if &
is countable, or if the empirical processes X, are stochastically separable, or if
& is image admissible Suslin [see Giné and Zinn (1990), pages 853 and 854].

2. Main results. This section states the main results of our paper. The
corresponding proofs can be found in Section 5.

Let W=(W,;, j=1,...,n, n=1,2,...) be a triangular array of random
variables defined on ([0, 1], &, Lebesgue). This array determines a weighted
bootstrap empirical measure by

(2.2) B, =

S|

n
YW, i0xy
j=1
with corresponding bootstrap empirical process
~ ,\ a 1
(23) Xn(w) = Xtr': = \/;L_(Pn - P;Lo) = = Z (an - 1)6X‘<‘"
. ;

For a random variable Y we define [|Y|ly,; = [§(Pr(|Y] > £))'/2 dt. Note that
for r> 2, W/2IYllz <Y llz,1 < (r/(r — 2))/IY|l.. Under the following quite
general conditions on W we shall establish a central limit theorem for the
weighted bootstrap:

Al. The vectors W, are exchangeable, n = 1,2,... .
A2. WnJ = 0’ for all n,j and 2;=1an =n, for all n.
A3. sup, W, llz1 = M(W) < .

A4. lim, _ limsup, . sup,. , t?P(W,; > ¢) = 0.
A5. (1/n)L7_(W,; — 1)> - ¢* > 0, in probability.,

Our main result is the following:

"THEOREM 2.1. Let ¥ M(P) be a class of L,(P) functions, and let W be a
triangular array of bootstrap weights satisfying assumptions Al1-A5. Then

(2.4) Fe CLT(P) and PF?<w
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imply that
. 1 2
(2.5) Xn = TE—J§1(W’1‘I - 1)6}(;) = CGP lnl (9.) a.s.,

where ¢ in (2.5) is given by assumptibn A5,

When the envelope F is not square integrable, we obtain instead a central
limit theorem ‘‘in probability’’ for the weighted bootstrap.

THEOREM 2.2. Let &€ M(P) be a class of L,(P) functions, and let W be a
triangular array of bootstrap weights satisfying assumptions A1-A5, Then

(2.6) Fe CLT(P)
implies that

N 1
(2.7) Xe=—== Y (W,;— 1)bx. = cGp inl”(F) in probability,
. ,

where c is given by assumption Ab.

A precise restatement of (2.7) is that dp 1+(X2,Gp) = 0, in outer probabil-
ity. Here, dz;« denotes the dual bounded Lipschitz metric [see, e.g., Dudley
(1990), Theorem B or Van der Vaart and Wellner (1989), Corollary 1.5] which
metrizes convergence in distribution in [*(.%).

The calculations leading to Theorem 2.1 also show the following new result
about the Efron bootstrap with arbitrary bootstrap sample size. Form an iid
sample X ,,..., X, from P?, and let P, , =m™'L™ 10, denote the boot-
strap empirical measure for the bootstrap sample of size m.

COROLLARY 2.1. F € CLT(P) and PF? < « imply that

A 1
M(Pm’n - P,‘:’) = _\/7,;1(6&" - P,‘:’) =Gp nl*(F)a.s.asn Am - .

This result for regular sequences m, and the corresponding “in probabil-
ity”’ result in general were known to Giné and Zinn [Arcones and Giné (1992)].

COROLLARY 2.2. %€ CLT(P) implies that
Vm (B, , — P2) = Gp inl™(F) inprobabiiity asn Am — o,

“3. Examples. This section contains some examples of weighted boot-
straps which satisfy the conditions A1-A5. Our intention in including these
examples is to show the scope of the class of weights that are covered by the
results of the preceding section. In each case, we have postponed the verifica-
tion of conditions A1-A5 to Section 5.
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ExampLE 3.1 (iid-weighted bootstraps). Let Y,,Y,,... be iid, positive ran-
dom variables where ||Y;llz,; < ®, and define bootstrap weights by W, , = Y,/Y,,.
By taking, for instance, Y; iid exponential(1), the weights become
Dirichlet (1,...,1), and we have the Bayesian bootstrap of Rubin (1981) and
Lo (1987). When the Y;’s are iid Gamma(4, 1) [so that the W, /n are equiva-
lent to four-spacings from a sample of 4n — 1 Uniform(0, 1) random variables],
this “‘iid-weighted”’ bootstrap is second order equivalent to Efron’s multino-
mial bootstrap for bootstrapping the sample mean, as noted by Weng (1989).
Intuitively, these bootstraps are ‘“smoother” in some sense than the multino-
mial bootstrap since they put some (random) weight at all of the X{’s in the
sample, whereas the multinomial bootstrap puts positive weight at about
1-(1-n"1YH">1-e"!=0.6322 proportion of the X*’s, on the average.
For further comparisons, see Table 1.

For the class of weights of this example, Praestgaard (1990) has shown that
(2.5) implies (2.4), in parallel to the results for Efron’s bootstrap in Giné and
Zinn (1990) and the almost sure multiplier central limit theorem in Ledoux
and Talagrand (1988, 1991). In Section 5 we prove that this bootstrap satisfies
A1-A5 with ¢? = Var Y, /(EY,)%

When checking conditions A1-A5, the following lemma is useful if the
bootstrap weights possess moments of a higher order than assumed in Theo-
rem 2.1.

LeEmMA 3.1. Let W be a triangular array of bootstrap weights satisfying
assumptions Al and A2. If further the following conditions are satisfied:

Bl. limsup, _,., EW} < o,
B2. EW2 - 1 + ¢?,
B3. Cov(W2,W2) <0,

then W satisfies A3, A4 and A5.

ReEMARK 3.1. Exchangeable random variables W,, i = 1,...,n, with fixed
sum n have negative correlations —1/(n — 1); see, for example, Aldous
(1983), page 8. It seems intuitive that their squares W;®> should also be
negatively, or at least nonpositively, correlated, and hence one would suspect
that assumption B3 follows from Al and A2. The following example (due to
Chris Klaassen) shows that this is not the case. Consider the triangular array
of constants w = (w,, n = 1,2,...) where w,; =0, j <[n/2], w,; =2, j >
[n/2]. Let R, be a random permutation uniformly distributed on II,, and let
0 < p < 1. Define an array of n-dimensional random vectors by

W (1,...,1), with probability 1 — p,
=\ (Wor ay+++>WoR (ny), With probability p.
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Then it is easily shown that Cov(W,2, W3) < 0 if and only if
— P — 2
- — 2 i_ (72
p(1 p)(l wn) < — (wn (wn) ),

where w;=n"'L"_w; ;- For the particular choice of w above, this fails when,
for example, p = 1/2 and n > 9. In this example, A5 also fails because

1 n
~ Y (W, - 1)2 =, Bernoulli(p).
j=1

Proor or LEMMA 3.1. For any nonnegative r.v. Y,
1Y lg,1 = fo VPr(Y > ) dt
<1+ fw EY*/t* dt
1

=1+ VEY*,
and hence Bl shows that.A3 is satisfied. Condition A4 is straightforwardly
satisfied by B1 and Chebyshev’s inequality. To see finally that A5 holds, note
that

1 1 n n
~ Z (W, — 1)2 —c%= ;( Z w2 — 1) —c? (since Z W, = n)
Jj=1 Jj=1 Jj=1
1 n
=~ Y (W2 - EW2) + EW2 — (1 +¢?),
j=1

and hence it suffices to show that
]_ n
(3.8) -’;jgl (W2 — EW}%) - 0 in probability.

Since W2 and W are nonpositively correlated for i # j, it follows by
Chebyshev’s inequality that

g

2

n
> e) < a_zn'ZVar( Y (anJ - EanJ)
j=1

1 n
n T (W5 - BW5)

<t ¥ E(W2 - EW2)
j=1

_ _ 1y 2
=¢%p 1E(ij - Eij) - 0. O
+ We now present some exarfl'ples of bootstrap weights satisfying B1-B3.

ExampLE 3.2 (Efron’s bootstrap). Indeed, the weights for the Efron boot-
strap satisfy B1-B3 with c? = 1. As alréady mentioned, the weights for this
bootstrap are W, ~ Mult (n,(n"1,...,n"1).
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ExamPLE 3.3 (A double bootstrap). The weights for the double bootstrap
emerge by “sampling from the sample:”” draw a bootstrap sample (X, ..., Xn)
with replacement from the observed data (Xj, ..., X,), and draw subsequently
with replacement a new sample of size 7 from (X, ..., X,). It follows that the
resulting weights have a distribution

nl M

M nn
(W,p,...,W,,) ~ Mult, n( == )

conditional on M, where M, ~ Mult,(n,(n"%,...,n"1).

\ In Section 5 we prove that the double bootstrap weights satisfy B1-B3 with
¢t = 2.

With the double bootstrap, the bootstrap sample is more likely to concen-
trate on a few data points than with the ordinary (Efron) bootstrap. The next
example concerns a bootstrap which is more ‘““spread out’’ than the ordinary
bootstrap, distributing the mass more evenly over the sample. In other words,
the variance of the bootstrap weights is smaller than Var M,,; = (n — 1)/n.

ExamPLE 3.4 (The multivariate hypergeometric bootstrap). This bootstrap
emerges from the following urn scheme: Put K copies of each observed data

point X;,..., X, in an urn, so that the urn contains K ‘- n elements. Draw
from this urn a sample of size n without replacement. The resulting weights
W, ..., W,, follow a multivariate hypergeometric distribution [see, e.g.,

Johnson and Kotz (1977), page 91] with density

[£) (<)
()

For this bootstrap, one finds that B1-B3 are satisfied with ¢ = (K — 1)/K.

n
Pr(W,, =wy,...,W,, =w,) = , Ywi=n0=<w <K.
j-1

The multivariate hypergeometric distribution is an example of a so-called
“urn model.” This class of models yields a number of alternative bootstraps.
Here, we shall only consider one more example.

ExamprLE 3.5 (A Polya-Eggenberger bootstrap). Consider the following
way of resampling the data X;,..., X,,: Put K copies of each data point in an
urn; a sample of size n is then drawn with replacement such that after each
draw, a number s of points equal to the one sampled are placed in the urn.
Hence, intuitively, when a point is sampled, it is likely to be sampled again,
just as with the double bootstrap.

Letting a = K/s it turns out [see, e.g., Johnson and Kotz (1977), page 196]
that the resulting weights have a density which is a mixture of the form

(W,1,...,W,,) ~Mult (n,(D,,,...,D,,)),

conditional on (D,,,...,D,,), where (D,;,...,D,;,) =D, ~
Dirichlet (a, . .., a). ‘



WEIGHTED BOOTSTRAPS 2061

The Polya-Eggenberger bootstrap satisfies B1-B3 and hence A1-A5 with
c2=(a+ 1/a.

The construction in Remark 3.1 is an example of an interesting class of
bootstrap weights which are generated from a deterministic array by permut-
ing the elements randomly.

ExaMpPLE 3.6 (A bootstrap generated from deterministic weights). Let w =
(w,;, j=1,...,n, n=12,...) be a deterministic array of nonnegative
numbers such that ©7_,w,; = n for all n. Let R, be a random permutation
uniformly distributed on II,,. Then W, ; = w, , ;, defines an array of bootstrap
weights.

For these weights, the conditions Al and A2 are obviously satisfied. Since
Pr(W,, > ¢) = {#j: w,; > t}/n = ¢,(¢), the remaining conditions translate to
checking for the following:

A3. supf Vén(t) dt < .

A4. lim llm supt2p,(t) =

to® 5,0

1
A5, — ) (w,; —1)?—>c?>0.
n .
Jj=1
An important special case is the grouped, or delete-h, jackknife [Efron
(1982), Section 2.2; Wu (1987) and Shi (1991)]. The grouped jackknife with
group block size 2 may be viewed as a bootstrap generated by permuting the
deterministic weights

w, = n—h""’n—h’o""’o .

In this case,

n —
d’n(t) = _n_—l(t<n/(n—h))'

For condition A5 we note that n™'Y”_ (w,; — 1)* = h/(n — h), and hence for
A5 to be satisfied we must let the block size & = k, depend on n in such a way
that A,/n = a € (0, 1). Under this condition it also holds that

n 1/2 1 1/2
Jy Va0 dt_(n—hn) _’(1-—a) <

hm lim supt2¢n(t) lim (1= a)t’Ly 4_ayy = 0.
n—w t—o

Hence the grouped jackknife with block size h, satisfies A1-A5 with c? =
lim, , h,/(n—h,) =a/(1 —a) €(0,o). Note that the ordinary jackknife

and
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TaBLE 1
Properties of bootstrap weights

Example c? Pr(W,, = 0) Var W,
. Var Y, 4 o Var 2.
EY? Y,
1\" n-1
2 1 (1— —) - e~ 1 =0.368
n n
M, \" _ -1)@2n -1
3 2 E(l - —) Leetiogsy T DC@rD)
n n
K
s k-1 ((n—l)K) () - oLy (oDE-Y
K n n K nK — 1
5 arl EQ-D,)" - 1/2 (a+ D2t
- +
a w1/ * na +1
id #i<nw,; =0
6 lim =~ Y (w,, - 12 #Hizniw, =0} wi-1
n j=1 n
6JK a h h
l-a n e n—nh

with A =1 has @ = 0 so ¢ =0, and hence the ordinary jackknife fails to
satisfy our conditions, in agreement with the remarks of Efron [(1982), page
391.

Table 1 summarizes some properties of Examples 3.1-3.6.

4. Tools and technical results. In this section we state briefly the key
results we use in our proofs.

The most important tool for showing a.s. asymptotic equicontinuity
of the weighted bootstrap empirical process is the following inequality due to
Hoeffding (1963).

TuEOREM 4.1 (Hoeffding’s inequality). Let (cy,...,cy) be elements of a
vector space V, and let (Uy,...,U,) and (V,,...,V,) denote, respectively, a
sample without and with replacement of size n < N from (cy,...,cp). Let
¢: V = R be a convex function. Then

n

ol )l )

Jj=1

We remark that the original result of Hoeffding (1963) required V = R and
¢ convex and continuous. It turns out, however, that the structure of V is
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immaterial; we only need to ensure that addition and multiplication with
scalars are well defined. In our particular application we shall take V = [*(%).

Proor oF THEOREM 4.1. The proof follows from Corollary 12.A.2.B of
Marshall and Olkin (1979). These authors state their result for the particular
case V = R; by inspecting their proof one sees, however, that this additional
structure on V is never used. O

The following result uses Hoeffding’s inequality to bound the expectation of
the randomly permuted sum by the expectation of a quantity related to the
Efron-bootstrapped empirical process.

COROLLARY 4.1. LetX,,,..., X, denote an iid sample from P, and let R
be a random permutation of {1,...,n}. Then for any n, < n,
o o
Z (SXR() w) <E Z (axni - Ip't:) '
= i=1

Proor oF COROLLARY 4.1. This follows immediately from Theorem 4.1 with
n=ny N=n, V=I%(%), the population (c,...,cy) equal to (5x, —
pe y Ox0 — Py ), the sample size n,, and the convex functlon ¢ =] |, upon

nyee .

noting ‘that Ed)(Z 2,U)) = E¢(Z}2 ey O

The following result shows how to bound the expectation of the norm of the
bootstrap empirical process by the expectation of a ‘‘randomly permuted”
sum. It is a variant of the Pisier—Fernique inequality found in Giné and Zinn
© [(1984), Lemma 2.9], or Giné and Zinn [(1986), Lemma 1.2.4]. We need to state
it in a form which holds for possibly nonmeasurable seminorms. In Dudley

(1984) it is shown that a measurable cover || - ||* of a norm || - || can be defined
so that it still has the properties of the norm.
LemMA 4.1. Let ¢ =(§4,...,¢,) be a nonnegative, exchangeable random

vector with ||£,lls,1 < ®, and let R denote a random permutation uniformly
distributed on I1,, the set of permutations of 1,...,n. Let Z,,...,Z, be
random elements of () so that (¢, R)) and (Z,,...,Z,) are independent
(in fact defined on a product probability space). Let || - || denote a pseudonorm
on I”(F). Then for any ny < n,

1 n nO 1 s
*— Y ¢.Z.1 <« —E[maxé¢ | —E* Y IZ |
n El 7 Vn (jsn J)n j§1 !

(4.9) , L
+ |I§1II2,1 max E* Tr L Zgg|
Jj=no+1
where in the second line the expectation is with respect to both Z,,...,Z,

and R.
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In most of our applications of Lemma 4.1 the Z;’s are deterministic.

Proor oF LEMMA 4.1. Define a random permutation S of {1,...,n} by
demanding that
§S(1) = 2 §S(n)7
and if

$siy = Esg+n then §(Jj) <S8(J +1).

This definition of the vector of antiranks of ¢;,..., &, is one of many which is
not ambiguous in the presence of ties. Furthermore, let R be a random
permutation uniformly distributed on II, and independent of (¢, S). By
exchangeability of ¢ we have that h

‘/_ z §j ZR(J)

)

1 n
*|— Z
‘/;j;‘fj J

which, on defining ¢ ;, = £g;, further equals

(4.10) E*

1 n
T 21 §ilroso|-
P

One can easily verify that R - S is distributed as R and is independent of S.
Hence, by the triangle inequality,

< E* “ ‘/— Z £vlr(j)

= Lt
Vn Fbofro

4.11
(4.11) + E*

1 n
ﬁ Z §(j)zR(j)

J=no+1

=1I(ngy,n) + I(ny,n).
We bound I(n,, n) by

1
(4.12) I(ny,n) sE*(‘/;(maxf)ZIIZRU)II)
(4.13) = nonV2E(max¢; )n B 5 12,1,
j<n j=1

where the last equality follows by integrating out R, which is independent of
the Z ’s.
J



WEIGHTED BOOTSTRAPS 2065

The second term in (4.11) we write as a telescoping sum [defining én+ny = 0L

II(ny,n) = E*

]_ n n
‘/— Z ( Z f(k) - f(k+1))ZR(j)

J=no+1 \k=j

1 n
=E* n Z (§(k) ‘f(k+1)) Z ZR(;)
=ny+1 J=no+1
(4.14) — T B[ VE (- fuen) - ¥z
. < .
n k=ng+1 ® (D Jj=ny+1 RO

n

1
T Y E(Vk(¢w ~ tusn))E (”‘/— 1ZR(j)
J=no+

=ny+1

|

1 k
f Z ZR(j) .
n

IA

1
N Z E(Vk (4 — €n+r)) max E*

k=ng+1 no<k<n

Since finally we have the bound

1 n n
T kzZ IE\/I;(&k) —€rep) < 7—— ; EVE (épy — €nrn)

— 1 f(I)E # N t dt
~ Vo &

(4.15) 1 by —
< A \/E(#J £ >t)dt
=ffomnPI‘(§1>t)dt
< ||§1||2,1,

the lemma follows. O

We use Le Cam’s Poissonization lemma in the following version, which is
easily proved given the background in Giné and Zinn [(1990), Lemma 2.1]. A
symmetrized Poisson variable with parameter A is the difference of two iid
Poisson (A) variables.

Lemma 4.2. Let X,,,..., X,,, be iid Py =n"tx"_ 10x, where we do not
assume n = m. Let Nl(m/2n) , N (m/2n) be iid symmetrized
Poisson(m/2n). Then, for any semmorm I,

m

L (82, — P7)

Jj=1

E
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The following lemma is necessary for using the Ledoux, Talagrand and Zinn
inequality [see Giné and Zinn (1990), Lemma 2.3] when the empirical point
masses have been permuted by a random permutation. It can be viewed as a
variant of Hunt’s lemma; see for example, Dellacherie and Meyer [(1980),
Chapters V-VIII, page 43].

LemMmA 4.3. Let Z, be a sequence of nonnegative random variables defined
on X, Z, P)N such that Z,, is o(X,, ..., X,) measurable for each n. Assume
that

limsupZ,=Z<C<» a.s.

n—o
and
EsupZ, < =,

nx>1

Let 7, be the o-field generated by all Z N—measurab_le functions f: XY > R
that are symmetric in the first n coordinates, and set Z,, = E(Z,|.#,). Then

limsup max Z,,<C a.s.
nAn,—w n1<l<n

Proor or LEMMmaA 4.3. We write
Z,,=E(Z, - 21.%) + E(21.%).

The sequence E(Z|.#) is a reverse martingale with respect to the decreasing
o-fields ./, and by the convergence theorem for reverse martingales, (e.g.,
Dudley [(1989), Theorem 10.6.4, page 241])

E(Z|.%) - E(Zl.”) as.

where 7 is the symmetric o-field on X». By the Hewitt—Savage 0-1 law (c.f.
Hewitt and Savage (1955) or Dudley [(1989), page 213]), ./ contains only sets
of probability 0 or 1. Hence E(Z|#)=EZ < C as., and the claim of the
lemma will follow if we can show that

limsup max E(Z, - Z|#) <0 as.

nAn,—w R1<l<n

Define M; = max,, ., Z,,; then

limsup max E(Z, - Z|.#,) < limsup max E(M, - Z|.”;)
nAR,—>® ny<li<n nAn,—® ni<l=zn
(4.16) < limsupE(M,, — Z|.#)

n—ow

forany m =1,2,...,

where the last inequality follows because {M,} is a decreasing sequence. By the
reverse martingale theorem and the Hewitt—Savage 0-1 law again, it follows
that (4.16) equals E(M,, — Z|”) = E(M,, — Z) a.s. Finally, M,, > Z, a.s. and
E(M,, — Z) — 0 as m — » by the dominated convergence theorem. O



WEIGHTED BOOTSTRAPS 2067
The following two results give moment bounds for symmetrized Poisson
random variables. Statements of these results appear in Arcones and Giné

(1992); their proofs were communicated to us by these authors.

LEMMA 4.4. Let N()) be distributed as symmetrized Poisson(A). Then

IN(A) VAl 1 = f:\/Pr(IN(A)I/w/x > ) dt <4
for all A > 0.

ProoF OF LEMMA 4.4. Recall that N(A) is distributed as the difference of
two ‘iid Poisson (A) variables N and N’. By direct calculation we have the
identity

(4.17) EN(A)* = 1222 + 21 forall A > 0.
Furthermore, for any ¢ > 0,
Pr(IN(A) > t) <1 - Pr(N(A) = 0)

<1-Pr(N(A) =0,N'(1) =0)
=1-e2 <22

and hence by (4.17) and Markov’s inequality we obtain the bounds

N(A
Pr(l_‘/(—xl| > t) < {31/2\)‘21’2)/“4.
‘Use the bounds (4.18) and Markov’s inequality to show that, for any ¢ > 0,

1/2
f\/PrIN()t)|/\/_>t)dt<c\/1/\2 +(12'\+2) -1

(4.18)

f—dt

A c
(4.19) 121 + 272
_ o TATN + Z(—x_) .
Choosing
121 + 2 \V*
- (X(l—AZT)

shows that (4.19) is bounded by 2((12A + 2X1 A 2A)/M)Y* < 4. O

LeEMMA 4.5. Let N()), ..., N()) be iid symmetrized Poisson(A). Then
9 \1/4
(maxIN(/\)l/\/_) <2\/_(—n— + ——) .

An

Proor or LEMMA 4.5. Let N, = N (A). Determine the integer ¢ > 0 such
that Pr(INI >e)<nl< Pr(le > c) Then, first of all, by (4.17) it holds if
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¢ > 0 that n~! < Pr(IN;| > ¢) < EN}/c* = (12A* + 2))/c*, and hence

(4.20) ¢ < n'/4(12A2 + 21)"*,

which holds even when ¢ = 0.
We now have the bound

E(A—l/z maxlN]I) < C/\_l/z + E(A—l/z maxlNJl].(llvjl>c))
j<n

Jj=<n
<cA™V2 + nATV2E(IN 1y 5 )

1/4
<A™V 4 V2 (ENHLyys ) PN > €)™

<A V2 4 nATV2(120% + 21) P n 84,

where we have used Holder’s inequality, (4.18), and the definition of c. Finally
insert (4.20) for ¢ to get the bound

12 2\
R/ 121202 + 20) Y4 + o0 1/2(120% + 20) Y = 2%(— + ,\_) :
n n

O

For proving finite-dimensional convergence in distribution we use the fol-
lowing lemma. It is essentially a variation on a central limit theorem for linear
rank statistics due to Hajek (1961). A similar argument is used by Mason and
Newton (1990); we state it in detail.

LEMMA 4.6. Let {m} be a sequence of natural numbers, let {a,,;} be a
triangular array of constants, and let B, ;, j=1,...,m, m &€ {m} be a
triangular array of row-exchangeable random variables such that

1 m 1
(4.21) ;ng(amj - &m)2 - 02> 0; ;?lgan)f(a’"j - Em)z -0,
1 ™ — \2 ) .
(4.22) — (B,.; - B,,) = a®>0 in probability,
Jj=1
(4.23) }ilnm limsupll|B,,, — B,z 5, >xllz = 0.
m—x
Then
1 “ n 2 2
- a,Bn,i —8,B,)=N(0,a%c").
‘/ﬁ jgl( JjEmj ) ( )

[Condition (4.23) means, of course, that the sequence {B,,; — B,,} is uni-
formly square-integrable.]
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Proor or LEMMA 4.6. In the following proof it shall be tacitly understood
that m runs only in the sequence {m}.

Define
— \2
u? . = (ami—ﬁm)z ; Vi = (ij_Bm)
"orrlen-a,)" ™ gn (B, -B,)
From (4.21) we notice that
(4.24) Ilriaxufm -0,

and by (4.22), (4.23) and Lemma 4.7 (the second implication) applied to the
exchangeable array {|B,, ;—B |}, it follows that

(4.25) max V2, — 0 in probability.
Defining

(ami - am)z(ij - Em)z
sz=1(ami - am)22j=l(ij - Bm)
we shall next show that for all = > 0,

82 . =mU2V2. =m

mij mi"mj

1 m m
(4.26) lim — 3 Y 82,152 5,=0 in probability.
mow My i i
For any & > 0 we can, by (4.24), find N, such that max;_,, u2,; <& when
m > N, and setting
m — 2 a?
A, = Y (B,; - B.) >?},

1
m /7y

it follows that for m > N,
{62,; > NnA, c{mVZ >r%"nA,
c {(ij - §m)2 > 1-2.9_1012/2}.
Hence, for any a > 0, when m > N_, on the set A,,,

1 m m m m
2 172
m Z 5mij1(53,,ij>72) < Z Z umiijl((ij—Em)2>Tzs-laz/z)
i=1j=1 i=1j=1

m V m
2 . 2 _
> ijl((B'"j_Em)2>T28_1012/2) (smce Y u2, = 1)
J=1 ' i=1

= 12
(1/m)25"=1(ij - Bm) 1((B,,,J—§m)2>725—1a2/2)

2
(1/m)z}n=l(ij - Bm)

m

—. \2
Z (ij - Bm) 1((ij—§m)2>128—1a2/2)-
Jj=1

2
2

o

<
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By (4.22) we can pick M, such that Pr(A,)) > 1 — ¢ when m > M,, and it
follows that when m > M, vV N,,

]_ m m
PI' Tn—Lg ; mij (8§LJ>T)>a’

1™ 2
m ( m) LB, B> r2e a2y > @

3

||M

(4.27) < (

2 — .2
<e¢e+ %E(Bml - Bm) 1((Bml_§m)2>7'25~1a2/2)’
where the last line follows by Markov’s inequality and exchangeability. By
(4.23) it follows that (4.27) can be made arbitrarily small by picking ¢ small
which proves (4.26).
We now strengthen (4.25) and (4.26) to almost sure results. From the
sequence {m} of natural numbers we can by a diagonal argument extract a
further subsequence {m ,} such that, as & — o,

1 ™ M
(4.28) —’—n—k 121 jzlamkul(ﬁ?nkuﬂ w—0 as.

Since the sum in the left-hand side of (4.26) is decreasing in 7, it follows from
(4.28) that along the sequence {m ,}, for all + > 0,
my my

—I;’L_ Z Zamku mkij>‘r)_)0 a.s.
ki=1j=1

We can also assume that (4.25) holds almost surely along the subsequence
{m,}. Conditioning on the values B, ; =b,,, ;, we may now apply Theorem 4.1
of Hajek (1961) to show that the linear rank statistic
my,
Py = L Cmyibmyrp (i)
Jj=1

is asymptotically normally distributed with mean and variance

Epmk = mka bmk’

1 7

- 2 Mk _ 2
Varpmk = Z ( myj - bmk) E: (amkj - amk) ‘

k j=1
Since along the chosen subsequence m, IZ”‘kl(bm o b k)2 — a2, we notice by
(4.21) that Var m; /%, — a’s®. Hence, condltlonally on the array {B,, ;},
1 .
ym,
Finally, since any subsequence of {m} has a further subsequence with the
property (4.29), (4.29) holds in probability, and also unconditionally. Since by

lﬂ(4-29) (Pmk —’mka'mkzmk) = N(0, a%s?) as.
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exchangeability (B,,z_«1y---» Bnr,my) = (Buis-- -5 Bny) in distribution, the
conclusion of the lemma follows. O

The last lemma contains two auxiliary results for arrays of exchangeable
random variables.

LEMMA 4.7. Let W be a triangular array of nonnegative, row-exchangeable
random variables. Then
(4.30) W satisfies conditions A3 and A4
implies that

the sequence {W,,} is uniformly square-integrable; that is,
(4.31) lim lim sup EW21y, ., = 0.

Do 5 e

Furthermore, A3 and A4 also imply that

1
-‘/—;—E( I=ien W"i) -0

Proor or LEMMA 4.7. We prove that (4.31) implies (4.32) first. Let ¢ > 0
and choose n sufficiently large that lim sup, ., ¢2 Pr(W,; > ¢) <
limsup, . EW21ly ., <& for t > e/n. Then

(4.32)

E(maxW,;) = [*" Pr(maxW,, > ¢)dt + f:_Pr(maani > t) d

i<n 0 i<n i<n
<efn +nf 2Pr(W, > ) 2de
ey

1

Evn

= 2eVn .

st/; + ne?

To prove that (4.30) implies (4.31), choose A large enough that ¢2 Pr(W,, > ¢)
< &2 for all n when ¢ > A. Then

EW3ly oy = [0 "9t Pr(W,, >tV ) dt

= X Pr(W,, > 1) + 2f:tPr(Wn1 > A) dt

< 2 + 250pty/Pr(W,, 2 7) | yPr(W,, = ) dt
t=A A

< e? + 2¢||W,ll2,1,

and by virtue of A3 this completes the proof. O
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5. Proofs for Sections 2 and 3.

Proor oF THEOREM 2.1. To prove Theorem 2.1, it suffices by Pollard
[(1990), Theorem 10.3] to show that the following two conditions are satisfied.

Cl (XZ(fl),,X‘;k(fl)) =C- (Gp(fl),---’GP(fl))’ fOI‘ all fly.,_, ‘fl € 9_7
a.s.
C2 lim,_, o limsup, E||§<‘,‘{||y'(pp,a) =0 as.

Proor or C1 (FiniAte-dimensional convergence). By the Cramér-Wold de-
vice and linearity of X¢ it suffices to show that

(5.33) X2(¢) = ¢ Gp(4),

for all ¢ of the form

l
(5.34) ¢= Y c,fp, C,--,GER, fi1,..., ;€ F, as.
p=1
To be precise, we must find a set (0, of full measure such that for any w € Q,
the convergence in (5.33) holds for every function ¢ of the form (5.34). Under
the hypothesis (2.4) the class of products of functions in & is a
Glivenko—Cantelli class for P, that is,

(sup B.(f2) = P(fo)I) 0, as.
f,ge.?

(see, e.g., Giné and Zinn [(1990), equation (2.17)]). Hence

S

1 2 2 2
7 L (#(X7) = P2(#))" = P(o)" - (Pr9)

(5.35) j

> P¢? — (P$)* = Var Gp(¢),
for all ¢ of the form (5.34), a.s. Since further

n~! max(¢(X;) - P;'f(d’))z <4n”! max¢(X§’)2’
j=n

j=<n

it also holds that

1 2
(5.36) —~ ?g(fp(x;’) - P;;’(¢)) -0
for all ¢ of the form (5.34), for almost all w.

. It follows from (5.35), (5.36), assumptions A4 and A5 and Lemma 4.7 that
the conditions of Lemma 4.6 are satisfied with the sequence {m} equal to {n};
@pj = $(X) @y = P2($); B,y =W, 3 B, = 1; a® = ¢? and, by (5.35),

o? = Pg? —‘( Po)>.
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Hence by Lemma 4.6,
1 n
7o L (E)(W,y = 1) = N[0, (P4 — (P4))

for all ¢ of the form (5.34) a.s., which we identify as the distribution of
¢ - Gp(@). This completes the proof of C1. O

ProoF oF C2 (Asymptotic equicontinuity). Let ||- |l = || - ll(,, 5 for some
8 >0, and let W’ be an independent copy of W. Then X7_(W,, — W) =0
and by Jensen’s inequality,

B — f, W, —1)6
‘/;j=1( nj )X,‘”

1 =2 ,
<E 7 X (W, = W,;)dx,

n

= E| = L (W = W.;)(0xy — P2)

(5.37)

W,;(8xe — PY)||-

Apply Lemma 4.1 to (5.37) for fixed n with ¢{; =W, ;, and Z;, = =0dxy — P
(which may be regarded here as deterministic since w is ﬁxed) to get the
following bound, which holds for any n and n, < n:

B = ¥ (W, - 1)5
= j=1( i~ 1)dxe
(5.38) < 2n0n'1/2E(maanj)n“1 Y 1850 — P2l
Jj=<n j=1 7

‘F2"“@ﬂhJ lnax E

‘/_J nZo+1(8XR"(“ P'?) :

Since [|W,llz,1 < M(W) <, and n™'E}_[I6x0 — Pyll < 4P’F, we can bound
(5.38) by

8no,n” /2E(maxW )P,‘;’F
j<n
(5.39)
+ 2M(W) max E

no<k<n

1 k
V& X (dxg— )|

Jj=ng+1

Let X_,,...,X,, beiid from P®. Then Corollary 4.1 (Hoeffding’s finite-sam-
pling inequality) and Lemma 4.2 (Poissonization) applied to the second term
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on the right-hand side of (5.39) yield the bound

1 k
(3Xﬁ,,(j> - P,‘;’) ‘ ‘/— Z (52?", - P,‘;’)
=Ny

Jj=not+l

(5.40)

b

Z (o

where N (B —ny/2n), j=1,...,n are iid, symmetrized Poisson((k£ —
ny)/2n). By Jensen’s inequality and closure of the Poisson family under
convolution, we can increase the Poisson parameter in (5.40) to k/2n (a
matter of keeping notation simple), and the right-hand side of (5.40) is further
bounded by

5.41 E ij k)a
(5-41) Ve [Ty j(2n Xy

Let &,...,¢, be iid Rademacher random variables, independent of the sym-
metrized Poisson variables. Then it holds by symmetry that

* B os| -2l £ )

Fix n and % and apply again Lemma 4.1, this time with §; = IZ\7j(k/2n)| and
Z,; = &;0x., noting that |le;6 X;,II < F(X?) and using exchangeability of the ¢,
to show that for any n, <n,

£; wa

“/— ZIN( )Is Bxe ( )ls B
(5.42) < % nn VzE(ﬂnfr}f Nj(zkn)‘)llj’,‘;’F

J

1
—\/7 Z 513X§n(,,

l=n;+1

max E
2,1 m1<j<n

. ( k
(=]
By Lemma 4.5 we have the bound
L[k 12 4\
5| =25+ )

and by Lemma 4.4, Vn/E|IN(k/2n)lls,1 < 4/ V2 for all n, k. By the triangle
inéquality,

|

< 2/2nyY* whenn,k > n,,

E(k'l/2 max

Jj=<n

J

1
7 Y &dxp

l=n;+1

<2 max E

n;<j<n

max E
ni<j<n

|‘/— Z 818X§ O
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and hence a simpler bound in (5.42) is, for any n, < k <n,n,;<n,

(5.43) 4/2n;V4n P°F + — max E
\/_ ni<j<n

When we combine (5.37)-(5.43), we get the following bound for the expecta-
tion of the norm of the weighted bootstrap empirical process, which holds for
any n and ny,n; <n:

E|— W, — 1)xe
‘/;j;l( nj )X,

1
\/j_ Z 315XR O

=1

5.44 < 8noyn~'?E| max W, |PeF
(5.44) n

Jjsn

+ 8M(W)|4V2 ng/4n ,PeF + max E .
\/_ ni<j<n

Now we apply Lemma 4.3 to the last term in the right-hand side of (5.44).
Define

1 J
\/j Z ElaXﬁ 1)

=1

Z.=|E

J

1£ *
= £,0x0
Vi o

(since the norm may be nonmeasurable), and notice that

-

~——
*

(_ L E \/.-1_ 2815X$(,)

=1

1
\/.-l_ Z &,0xy O

l_

1 J
\/:]_ Eslaxw(,)

(5.45) n! pell, =
1 J *
=F E Wl§1316xlw ) ‘/;z
= E(ZjIL/;).

By the inequality of Ledoux, Talagrand and Zinn [Giné and Zinn (1990),
Lemma 2.3],

limsupZ, < 4limsupE*

n-—ow n-—w

=4E|Gpll < » as.,

1 n
—_— )
iy j§1 £j0x;
where the equality follows because & & CLT(P) implies that

n 4
-1/2
n ZSjaxj
j=1

is uniformly integrable when p < 2; this follows from Giné and Zinn [(1986),
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Theorem 1.2.8] and Andersen [(1985), Proposition 3.7, page 449]. Further-
more, the proof of the Ledoux, Talagrand, and Zinn almost sure bound (see
Ledoux and Talagrand [(1988), pages 40 and 41]) with their M replaced by

and computing a bound in the truncation step, yields

V2
Pr*(supz, > 2(2K + 55)) <2y

nx>1

PF? 4K + 1)
83 82

for every £ > 0. Here the second term comes from the truncation step in their
proof. This implies that E(sup,, . Z,) < .
Hence by Lemma 4.3 and (5.45),

< limsup max E(Z |/)

niAn—w M1Sj<n

< 4E|Gpll a.s.

limsup max E
(5.46) n An—wni<ijsn

\/_; Z 515Xf§n b

=1

Returning to (5.44), we notice that by Lemma 4.7,

1/2E(maxW ) -0 asn — x,

Jj=<n

and P?F — PF a.s. follows by the SLLN. Define momentarily
a,=n 1/zE(maxW )

j=<n

then a, — 0, and if we then choose the sequences n, = ny(n) = [a,] 2% A
[n/2] and n, =n,(n) =[nyn)'/%], we have that ny(n) - «, n(n)— «,
ny(n)"*n(n) - 0, and

no(n)n‘l/zE(maanj) -0 asn — .
j<n
By considering (5.44), we now see that

limsupE|—

n— o

Z (W, = 1)5X;"

64
— M (W) lim su max F
\/— ( ): n~)oop nl(n)<an

IA

Lo
\/; ZE 6XRn(l)

=1

256
—‘E—M(W)EIIGPII a.s.

Recall that [[- || =l ll#ps for 8 >0 to obtain by pp-continuity of Gp

IA
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sample paths that lim; _, o EllGpll5(,p,s) = 0, and hence, finally,

1 n
— W, . — 1)6xe
‘/};J§1( nj )Xj

=0 a.s.
F'(pp,d)

lim limsup E

20 50

This proves C2 and hence also Theorem 2.1. O
Proor or CoroLLARY 2.1. We shall only prove almost sure asymptotic

equicontinutiy since the finite-dimensional convergence part follows by stan-
dard methods. But the proof of Theorem 2.1 actually shows that
=0 a.s.

Z N, ( )5Xm
‘/_ y’(pp,ts)
[this follows by considering (5.42), (5.43), (5.44) and (5.46)]. By Lemma 4.2,

lim limsup max E
5—>0n0/\n_)°°n0<msn

E|— ¥ (5 Pe)| < 4 ™ s
T B, (02, = P < r ( 3 )
and it follows that
1 m
lim limsupE||—— ). (65  — P? =0 as.
820 man—e ‘/ﬁj=1( £~ F%) F(op,®)

by using Lemmas 4.1, 4.4, 4.5 and 4.3, just as in the proof of Theorem 2.1. O

ProOF OF THEOREM 2.2. When & < CLT(P), & is in particular P-pre-
Gaussian and hence totally bounded in the pp-seminorm (see, e.g., Pollard
((1984), Problem VIL3]). Given 6 > 0, let {f},..., fy;) be a 6-net in F, and,
for Z € I°(5), let Z° be defined by Z5( f)= Z(f) 1f and only if pp(f, f;) <&
and, pp(f, f;) = 8, j #i. (This terminology is in accordance with Giné and
Zinn [(1986), page 59].) In this way we can bound the dual bounded Lipschitz
distance by

dp+(X,(@),cGp) < sup |EH(X,(0)) - EH(X,()°)
HeBL,

+ sup |[EH(X,(0)’) — EH(cG})|
HeBL,

+ sup |EH(cG}) — EH(cGp)|
HeBL,

=I(n,d8,w) + II(n,d,w) + III(5).
Hence, in order to show (5.33), it suffices to show:

~D1. Any sequence {r} has a subsequence {n,} along which

(Ko () X8 F)) = e(Go( £1)s -, Go(£)), forall fy,..., [, € Fas.
D2. lim,_,, limsup, . Pr*(EIX,ll#pa > 1) = 0, for all n > 0.
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When condition D1 is satisfied, it follows that
II(n,8,w) — 0 in outer probability, for all 56 > 0,
and D2 implies that
llm lim sup Pr*(I(n,8) >n) =0 forall § > 0.

n—>ow

Finally, ITI(§) — 0, § — 0 follows by pp-continuity of Gp paths.

The proof of D1 only differs slightly from that of C1: By the Cramér-Wold
device and linearity of Xn, it suffices to show that every sequence has a
subsequence {n,} such that

(5.47) X (6) = cGp(d),

for all ¢ of the form (5.34), almost surely. [Cf. this with (5.33) and (5.34).] To
be precise, we must find a set ), of full measure such that for any w € Q, the
convergence in (5.33) holds for every function ¢ of the form (5.34). When
F e CLT(P), the class of products of functions from &% is a weak
Glivenko—Cantelli class for P, that is,

(5.48) sup |P,(fg) — P(fg)l —» 0 in outer probability.
f.eec ¥

Hence any sequence {n} has a subsequence {n,} along which

n

1 2
(5.49) Mk -1 Y (6(X2) - Pa(e)) = P($)* — (Pig)

— P¢? — (P)* = Var Gp(¢),
for all ¢ of the form (5.34), a.s. Since further

2
it max (6(X7) = Pi(9)" < 4ni maxa (X7
it also holds that

1 2
(5.50) — max (¢(Xy) — Po(4)) -0

nk J=<n,

for all ¢ of the form (5.34), a.s. As for C1, it follows from (5.49), (5.50),
assumptions A4 and A5 that the conditions of Lemma 4.6 are satisfied with

the sequence {m} equal to {n,}; a,; =¢(X?); @, =PN¢); B,;=W,;
B, =1; a? = c?, and, by (5.49),

o2 = P¢? — (Pp)>.
Hence

Fk ,‘é By 1) = N(0,cX(P — (Po)"),

which we identify as the distribution of ¢ - Gp(6). Since any sequence has a
subsequence with this property, (5.47) and in turn D1 follows.
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For D2, it suffices by Markov’s inequality to show that

(5.51) ;m}) lim sup E*[X 2 Fop 5y = 0.
Let |- l=1l"llgpps for a >0, and let (Xj,..., X)) be an iid copy of
(Xy,..., X,). Then

n

* T Y (W, — 1)bx

< E*|—

(5.52)

‘/_ Z |WnJ( X})

where W, ; are, as usual, symmetrized weights. Apply Lemma 4.1 with ¢ =
(IW,4l,...,IW,,Dand (Z,,...,Z,) = (65, — 6x;,...,8x — 8x) to bound (5.52)
by

1 n
non 1/ZE(ma\XIW I) —E* Y 165y — 84l
j<n o 5 J

(5.53)
+||an||2,1 max E*

nog<k<n

1 k
Wj=%+ ) (5XRn<j> B aXienm) :
Now E*|65 — 6X,|| 2E*||6X - Pl < 4E*||6X — Pll#< », when %€
CLT(P) (the Tast 1nequallty follows from, e.g., the argument in Pisier [(1975),
page II1.10]), and we can bound (5.53) by

4non™/E  max|W, || E*l6x, - Plls
J=<n

+ 8M(W) max E*

no<k<n

1 &
Y €0y,
kj=1’ J

y—’(pp, 8)
By Theorem 1.2.8 of Giné and Zinn (1986), it follows that when %€ CLT(P),

1 n
—-— 0
Jn j§1 €j0x

=0,
y’(pp, 5)

lim lim sup E*

-0 ;50

and (5.51) and D2 follow. O

The rest of this section contains calculations related to the examples of
bootstrap weights given in Section 3.

ExampPLE 3.1 (The iid-weighted bootstraps). It follows by the law of large
numbers that A5 is satisfied with ¢? = Var Y, /(EY,)% For A3 and A4 we need
the following bounds for the tail probabilities of the weights. Without loss of
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generality we can assume that EY; = 1 in the rest of the argument. Let
0 <& < 1. Then

(5.54) Pr(Y,/Y,>t) <Pr(Y,>¢(1—¢)) +Pr(Y,/¥,>¢7, <1-¢).

Furthermore, for any p > 0,

Pr(Y,/Y,> 1Y, <1-¢) <y/Pr(Y,/Y¥,>t)Pr(Y, < (1-¢))

(5.55) <t72/2B(Y,/%,)"* VPr(T, < (1 - ¢))

<t7P/2np/2[Pr(Y, < (1 —¢)),

where we have used the bound Y,;/Y, < n. To bound the left-hand side of
(5.55) we finally apply the following large deviations result; see, for example,
Shorack and Wellner [(1986), equation (A.4.17)]. Define the Laplace transform
of 1 -Y, by

¢(s) = Ees(l_Yl);
since 1 —Y; <1 as., this is finite for all s € R. Moreover, ¢'(0) = 0 since
E(1 -Y,) = 0, and hence

d —se
E[e ¢(s)]s=0 = —¢g< 0,

for any £ > 0. This shows that p(¢) = inf, . ; e **¢(s) < 1. Then
_ Ee™1-Y)
Pr(l -Y, > s) < inf

r>0 e

(5.56) _ mfe_%( r )n

r>0

re

— inf (e79(5))" = p(e)".
Combining (5.54), (5.55) and (5.56), we get the following bound for the tail
probabilities of the weights:
(557)  Pr(Y,/Y,>1t) < Pr(Y, > t(1 — &) + t7/2n2/% ()"
By choosing p > 4 this shows that
Y,
4
a:nd A3 is satisfied. To see that A4 holds, by virtue of (5.57) we need only check

that [|Y,llz,; < o implies lim, _,,, ¢* Pr(Y; > ¢) = 0. This holds since L, ; C L,
and L, implies weak L, by Markov’s inequality. (Recall that (1/ DY |l <

1Yl2,1.)

1
< Tl + [ r/tdin? ()",

2,1
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We now turn to the remaining examples 3.2-3.5.
Let M ~ Mult,(n,(py, ..., p,)). The following moments can, except for the
mixed terms, be found in Johnson and Kotz [(1969), page 51]. We use the

notation n® =n(n -1 - (n — k + 1).
EM, = np,,
EM12 =np; + n(Z)p%,
EM\M, = n(n = 1)pyp,,
Cov(M,, M;) = —np,p,,
EM} =np, + Tn®@p? + 6n®p3 + nWp1,
EMIM; = n®p,p, + n®(pips + p1p3) + n“pips,
Cov(M?, M3) = (n(4) - (n(2))2)p%p§ + (n® — nn®)
X(p%pZ +P1p2) + (n® = n?)p,p,,
EM, M3 = n®p,p, + n®p,p,
Cov(M,, M7) = (n® — nn®)p,p3 + (n® = n*)p;p,.

Notice that all the covariances above are negative. Also, if in particular
- =p,=n"1 it follows that EM2 =1+ (n — 1)/n — 2, and that

EM 4 < 15 (a crude bound).

ExampLE 3.2 (Efron’s bootstrap). The weights
M, ~Mult,(n,(n"%,...,n7"))
satisfy B1-B3: EM2 =1+ (n — 1)/n - 2; EM% < 15, and
Cov(M?2, M2,) <0
can be checked in the list above.

ExampPLE 3.3 (The double bootstrap). By the definition of the double
bootstrap weights,

EWn21 = EE(anlan)

n®
= E(Mn + —2M3)
. n
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In the same way,
EW,, = EE(W,1IM, )
=E|M,, + 7ﬁM2 +6i3)M3 + i4)M4
nl nz nl n3 nl n4 nl|»

and in order to show that sup, EW? < =, it suffices to know that EM; <
Const < . As remarked above, 15 is such a (crude) constant.
Consider finally

Cov( w2, anz) =FE Cov( w2, Wn22|Mn) + Cov(E( W2IM, ) , E(anzlll_dn )) .
We calculate
E COV( Wn21 ’ n22 |Mn )

@ _ (p@)? ® _ pn®@
- 2 a2 2 2
=E e M M2, — 3 (MAM,, + M, M?2,)
n® — n?
-———M, M,,

n2

<0,
since all the coefficients are negative. Furthermore,
COV( E(anlan)’ E(Wn22|Mn))

n® n®
- 2 2
= COV(Mnl + FMnI: M,, + Fan)

n®\2
= Cov(M,;, M,,) + (?) Cov(M?, M%)

@ n®
+ 7 COV(M,%I, an) + ? COV(Mnl, Mzz)
<0,
since the covariances are all negative. From this we can conclude that W,3 and

W72 are nonpositively correlated. Hence the double bootstrap weights satisfy
D1-D3 with ¢% = 2.

ExamPLE 3.4 (The multivariate hypergeometric bootstrap). The factorial
moments of these bootstrap weights are given by [see, e.g., Johnson and Kotz
(1977), equation 2.55, page 92].

nMKD .o KR
(nK)(r)

where r = L_;r;. We can express the absolute moments of interest in terms

(558) :u’(rl ry) = E(erfl) e Wn(;n) =

.....
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of factorial moments as follows [see, e.g., Stuart and Ord (1983), page 821:
(5.59) EW2 =p@o,..,0 1 Hao,. .0
(5.60) EW} = wuo,. 0t Bkao,.. 00t Tue,o,...,00 T Hao0,...,0
and
(5.61) EW2AW?2 = w@ s0,...,00 T 2H@,1,0,...,00 T K, 1,0,...,00
from which it follows that
(n-1)(K-1) 1 K-1
14+ — — o,
nK — 1 K ®n7

We also have the crude bound u. o ..o <K"", and hence by (5.60),
sup, EW% < K® + 6K® + TK® + K < , for all K. Finally, (5.59) and
(5.61) show that

Cov(W2,W2%)

Eanl = 1 +

2
= We@,2,0,...,00 T 28 1,0,...,0 T Ra1,0,...,0lHe0,...,0 T Rao,..., )
= 2

= (#(2,2,0,...,0) - Me,o,..., 0)) + 2(e,1,0,...,00 ~ H@,0,...,0M0,..., )

+(/-'v(1,1,0,...,0) - /-‘%1,0 ..... 0))-

By (5.58), it will follow that Cov(W,3, W) < 0 if we can show that p.q <
Hpyhh(sy that is,

QORI o KCats) KD o KOD gOKED - KD
o s 0 ®
(nK) (nK) (nK)

for any sets of integers (ry,...,r,) and (sy,...,8,) with sum r and s,
respectively. But (5.62) is satisfied if in particular

(5.62)

nr+s) n® n)
<
(nK)(r+s) (nK)(r) (nK)(s) ’

which follows because for positive numbers x <a <b,(a —x)/(b —x) <a /b.
Hence, B1-B3 are satisfied with ¢® = (K — 1)/K.

ExaMpPLE 3.5 (The Polya-Eggenberger bootstrap). By the calculations above
of multinomial moments, it follows that for these weights

EW2 = EE(WAID,) = E(nD,, + n'®D},).
The Dirichlet distribution with .parameter (a, ..., @) has moments [see, e.g.,
Johnson and Kotz (1977), page 96]
alPl a - (a+p-1)

.6 E(D?:,...,DpPn) = ="
(5 3) ( nlly nn (na)[P] na ...(na +p_]_)
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where p = p; + -+ +p,. It follows that

n-1 a+1
-1+
a+1

n [47

Furthermore, .
EW:I = EE(Wn41|I_)n)
= E(nD,, + Tn®D2, + 6n®D3, + n“Dy,),
and sup, EW} < » will follow if we can show that
supn®EDP, <o forall p=1,2,....

n

Now by (5.63),
a - (atp-—1)

n®EDP = pn®
m na - (na+p-1)

E=0 na+k
P-ly+k

- , n —> x
k=0 @

Finally, we must show that Cov(W?2, W3) < 0. We write
COV( Wn21 ’ Wn22) =E COV( anl " Wn22|2n) + COV( E( Wn21 |2n ) ’ E( Wn22 IQn))

and notice that since (W,,,...,W,,) is multinomially distributed conditional
on D,, it can be seen in the list of multinomial moments above that

Cov(W3,W2ID,) <0 as.
Hence, we need only show that
Cov( E(WAID,), E(WZID,)) < .
We note that
Cov(E(W2ID,), E(W2ID,)) = Cov(nD,, + n®D2,,nD,, + n®DZ,),
and by (5.63) one finds that

EDP D alPlgle] alPl al?! EDPEDS
= S = .
nl~n2 (na)[P"‘q] (na)[P] (na)[Q] 1 2

Hence, the Polya-Eggenberger bootstrap satisfies B1-B3 with ¢ = (a + 1)/a.
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