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ON RUSSO0’S APPROXIMATE ZERO-ONE LAW!

By MICHEL TALAGRAND

Ohio State University and University of Paris VI

Consider the product measure pp, on {0,1}", when 0 (resp. 1) is given
weight 1 — p (resp. p). Consider a monotone subset A of {0, 1}"*. We give a
precise quantitative form to the following statement: if A does not depend
much on any given coordinate, du,(A)/dp islarge. Thus, in that case, thereis
a threshold effect and 11, (A) jumps from near 0 to near 1in a small interval.

1. Introduction. A subset of {0,1}" is called monotone if
VxeA, Vye{0,1}*, Vi <n, y@) >x(i) = yecA.

For 0 < p < 1, consider on {0, 1}" the measure y,, which is the product measure
when 0 is given weight 1 —p and 1is given weight p. Thus p({x}) = (1-p)" ~ kpk,
where k = card{i < n;x; = 1}. When A is monotone, 1,(A) is an increasing
function of p [see (3.9) below]. The question of understanding how 1,(A) varies
with p is of importance in percolation theory and in the theory of random graphs.
For many sets of importance, there is a threshold effect, in the sense that 1,(A)
jumps from near 0 to near 1 in a small interval. It is therefore of interest to
investigate general conditions under which this occurs. Several such conditions
have been discovered, for example, by Margulis [3] (see also [5]). Intuitively,
one would like to say that there is a threshold effect unless A is essentially
determined by very few coordinates. A remarkable step has been made in this
direction by Russo [4], who proved that there is a threshold effect as soon as
A depends little on any given coordinate. (Since what we will mean by this is
significantly simpler and weaker than Russo’s definition, we will not recall his
definitions.) For x € {0,1}" and i < n, we denote by U;(x) the point obtained
from x by replacing x; by 1 — x; and leaving the other coordinates unchanged.
We set

Ai={xe{0,1}; xcA U ¢ A}

Our main result is an inequality that relates x,(A) and the measures of the
sets A;.

THEOREM 1.1. There exists a universal constant K, such that, for any p and
any monotone subset of {0,1}", we have

_ _ 2 /J/p(Al)
(LD up(A(1 - p(4) <K P“"gp(l_p)%log[l/((l_ DA
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ON RUSSO’S APPROXIMATE ZERO-ONE LAW 1577

COROLLARY 1.2. Let € = sup; <, p(A;). Then
dpp(4) log (1/¢)
dp " Kp(1-p)log [2/(p(1 - p))]

1p(A)(1 = pp(A)).

COROLLARY 1.3. Let €' = supg <, <15Up; <, 1p(A;). Then, if p1 < pa, we have
/I‘Pl(A)(l - iu'}?z(A)) < (EI)(pz—pl)/K’,

where K' is universal.

COROLLARY 1.4. We have

1 1
> _
fgr:up(A,) 2 B _p)Ulog o

where K’ is universal and where U = ,( AX(1 — 1,(A))/nlog(2/p(1 — p)).

In the case p = % = up(A), Corollary 1.4 is proved in [2] using harmonic
analysis. Our approach will be an adaptation of these ideas to the present
setting where one cannot use harmonic analysis. As it turns out, there is little
specificity about sets in Theorem 1.1, so we will prove a more general result
involving functions on {0, 1}*. For such a function f, we set A;f(x) = (1—p)(f(x)—
f(U;(x) if x; = 1 and A;f(x) = p(f(x) — f(U;(x))) if x; = 0.

THEOREM 1.5. For some numerical constant K and each function f on {0, 1}",

such that [ fdp, = 0, we have

: 2 1A 13
(2 112 = K198 505 2 Tog el o/ | e F)

In this statement, for ¢ = 1 or ¢ = 2, the norm ||f||, is computed in Ly(y).
To deduce Theorem 1.1 from Theorem 1.5, we simply observe that if one takes
f = 14— pp(A), then || £]|3 = 11,(AX1 - 1, (A)) and [|A; fII§ = p~ ' p(A)(p(1 —p)? +
(1 —-p)p?).

Consider the function ¢(x) = x2/log(e +x) for x > 1. For a function f, we define

£l =inf{c > o;/w(’g)dup < 1}.

Then we have the following result.

THEOREM 1.6. There is a universal constant K such that, for each function
f on {0,1}*, with [ fdu, =0, we have

1718 < Klog 77— ST IAfIE.

i<n
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It will be shown that Theorem 1.6 improves upon Theorem 1.5. The reason
for which we give two separate statements is that Theorem 1.5 is both easier
to prove and to understand and is sufficient to yield Theorem 1.1.

To conclude this section, we show that Theorem 1.1 is sharp for each p, by
adapting the example of [2]. Consider first the case where p < % Considerk > 1
and assume for simplicity that r = p~* is an integer. Take n = kr and think of
n as r blocks of length k. Consider the set A of sequences such that at least one
block of coordinates consists of 1’s only. Then p,(A) = (1 — p*Y is close to e~ 1,
so that the left-hand side of (1.1) is of order 1. Moreover, a simple computation
shows that for each i we have p,(A;) = p*(1 —p*) ~ ! is close to p* /e and npu,(A;)
is of order k. Also, log(1/(1 — p)up(A;)) is approximately %log(1/p), so that the
right-hand side of (1.1) is of order 1.

In the case p > %, one can now take r = (1 — p)~* and take for A the set of
sequences such that no block consists of 0’s only.

2. Preliminaries. For simplicity we shall write p rather than p,. We con-
sider the function r; on {0, 1}" given by

rix) = 1__—_p ifx; =1,
p

rix) = — P _ ifx; = 0.
Vi-p

Thus [r;dp =0 and frl2 dp = 1. Consider a subset S of {1,...,n}. We write

rs@) = [[ n®
ieS
(And rg = 1). The functions rg, for S C {1,...,n}, form an orthogonal basis

of L?(11). This is a substitute for the Walsh system used in [2]. For a function
g =Zagrs on {0,1}*, withay = [gdu =0, we define M(g) by

2
Mer= S =
(&) S|

Sc{1,..,n}

The key to our results are suitable bounds for the quantity M(g). To see how
these relate to Theorem 1.5, consider a function f on {0,1}", with [fdu = 0.
Then f = Ygbgsrs, with by = 0. The operator A; has been designed so that
Ai(rs)=0ifi ¢ S, and Ay(rs) =rgifi € S. Thus

Aif = Z bsrs,
. ies
so that
b2
MR =Y oS

iesS
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and thus
2.1) IFI5 = b5 =D MQAS?.
S

i<n

A crucial property of the functions rg is as follows, where |S| denotes the cardi-
nality of S.

LEMMA 2.1. Consider ¢ > 2 and set § = 1//p(1 — p). Then, for any k and
for numbers (as)|s| =1, we have

Z asrs

|S|=k

(2.2)

1/2
<(q- 1)k/29k< > a§> :

S| =k

q

COMMENT. In the case p = %, this is well known (see step 1 below) with
even 6 = 1, and we will reduce to that case using symmetrization.

ProoF. Step 1. Consider {—1, 1}*, provided with the Haar (= uniform) mea-
sure A. For S C {1,...,n}, set

WS(E) = H &y

ieS

so that wg is an orthonormal basis of L2()\). The key fact, proved in [1], is that,
for § = 1/4/q — 1, the operator

(2.3) T,g: Z bsws — Z bsélslws
is of norm 1 from Ly(\) to Ly()). In particular, we get

D b

S| =k

1/2

(2.4) <(g-DM?

> bsws

S| =k

Ly

Step 2. Provide the product G = {0,1}" x {0, 1}* with the measure p' = p® 1
and provide the product H = G x {-1,1}" withv =/ ® A. Given S C {1,...,n},
we consider for x,y € {0,1}"* and € € {—1,1}" the functions gs and gs,. on G
given by

gstx,y) = [ (rt) —ri(»),
ies
gs,:(6,) = [ (ri@) — ri(y))ei = gsx, y)ws(e)
ieS

and the function Ag on H given by hg(x,y,€) = gg, (x,3).
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It should be clear that, given numbers (ag), for all € we have

“ Zasgs

Thus, by Fubini’s theorem, we have
(25) “ Zasgs Low) = “ Zashs

Now, using (2.4) for bg = aggs(x,y), we have, for all x, y,

2.6) /

We note that

= asgs .
La(u’) “Z 85, La(u)

Liw)

q

q/2
dXe) < (g - 1)’“1/2( > a§g§<x,y>) :

S| =k

> asgs,yws(e)

IS| =&

|rix) — ri(y)] <6,

so that g%(x,y) < 6%. Using this bound in (2.6), integrating in x,y and taking
the gth root yields

2.7

1/2
<otq - 1>k/2( 5 ) |

IS|=k

Z ashs

IS| =k

La(v)

Step 3. Since [ ri(y)du(y) = 0, using Fubini’s theorem and integrating in y
inside rather than outside the norm yields

<

Z as8s

[S]=k

Z asrs

S| =%

)

La(p')

Li(p)
from which the result follows by combining with (2.5) and (2.7). O

We will use this result through duality.

PrOPOSITION 2.2.  Consider a function g on {0,1}" and set ag = [rsg dp.
Then

(2.8) > a§ < (g - Do |gllf,
S| =k

where q' is the conjugate exponent of q.
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Proor. We have, by Hélder’s inequality and (2.2),

Z ag = /( Z asrs>gdu

|S|=k S| =k
<\ > asrs| lgly
IS[=k q
1/2
< (g — /%" Za§> l&llg’,
|S|=k

from which (2.7) follows. O
Theorem 1.5 follows by combining (2.1) and the following.
PROPOSITION 2.3.  For some universal constant K, if [ gdu =0, we have

’ le13
(2.9) M(g? <Klog |
PP log e/ el £]1)

Proor. We use again the notation as = [rsgdu. We use Proposition 2.2
with ¢ = 3,9’ = 3, so that

k

> a < (26%)"1gll3 e
S| =k

Consider now an integer m > 0. Then

2 2\k
as (26%) 2
Z IS < Z % lgll3/2-
IS|<m k<m

If we set x;, = (202)% /k, since 62 = 1/[p(1 —p)] > 4, we observe that x; , 1 /x; >
2. Thus 3 < m xr < 2x,. We have M(g)? < || g|12, and, for m > 1, we have

2 ag ag

1<IS|<m S| >m
2\m
2.10 (20%)" 1o 1 2
(2.10) <2 —lglft —g D o

S| >m

1 m
< ——(4(26*)" &1} + 1 €1)-

We now pick for m the largest integer such that (26*)"| gl3 , < | ll3- Thus
m > 0 and 261 g, > | g3, so that

21
1> og(llgll2/ll&lls/2) .
log 262



1582 M. TALAGRAND

Then, since m + 1 > 1, (2.10) yields

Klog 262
log (el gll2/I1ll3/2)

M(g) < Igll3-

Since 262 =2/[p(1 —p)], to conclude the proof, it suffices to show the
following.

LEMMA 2.4.

Iel: (el )3.
gl = \llglls/2
Indeed, this is equivalent to

lgll3/e < llglhllgl

2
(/|g|3/2du> S/lgldu/g2du,

which holds by the Cauchy—Schwarz inequality. O

or, equivalently,

We now turn to the study of the Orlicz norm || ||,. The following motivates
Theorem 1.6.

LEMMA 2.5. For any function f, we have

, K| fI3
17lle < Sogtell Fllo/ 17T

PRrROOF. We can assume f > 0. By homogeneity it suffices to prove that

2 1. e|fll2
1 _du> 2> = )
Consider a number a > 0.
Case 1.
2 1.
——du > =.
/{fZa}log(e+f) k=3
Then ‘
2.11) I£]12 > logle + @) s Loglera)
' pzlogleral | . Togrp) H =0T
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Case 2.

i 1
———du < 3.
/{fZa) log(e + 1) k=3
Then

L\Dlv—l

f? dy
— _du>
/{f<a} log(e +1)

so that, since f2/log(e + f) < af when f < a, we have ||f||; > 1/2a, and thus,
setting b = log(el| fll2/ fll1),

(2.12) b < log (2ea| fl2) <loga +log (2e|/fll2)-
We now choose a = (e|| f||2/|| ]l1)*/2, so that b = 2]loga and, in case 2, by (2.12),

log (2¢]| f|l2) > loga,

elflz\"* o 1 (4, ellfla)
I1llz = 2e( ||f||1> = 2e <log 111 ) ’
1

since x > logx for x > 0. In case 1, by (2.11), we have I FlI2 > 3b
The proof is complete. O

so that

The following improves upon Proposition 2.3.

PROPOSITION 2.6. For some universal constant K, we have

2
2 2 [ —
(2.13) M(g)" < Kllgll, log 27—

PROOF. By homogeneity, we can assume || gl|, = % so that

g2
. _ <
(2.14) /log(e e du<l1

We can assume g > 0. We set g9 = gl(z <2}, and, for m > 1, we set
gm =g1{22m,—lsg<2zm}-

To simplify the computations, we will denote by K a universal constant, not
necessarily the same at each oceurrence. From (2.14) it follows that

2
2.15) s el g
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For a function h = L hsrs(hg = 0), we define

2
O SRS

21 §k<2l+1 ISI
S| =k
We observe that
(2.16) M(h? <27 kg =27"|h|3

and

M(g? =Y MigP.

1>0
Clearly, M; is a seminorm. Thus
(2.17) M) < ) Mign).
m>0

As in the proof of Proposition 2.3, it follows from Proposition 2.2 that

(2.18) Mign? < (2607l gnllle-

Since g,, > 22" ~1 when g,, # 0, we have, using (2.15),

[eitan< @) [ehau

SKzrn_zm-z SK2_2m-3‘

Thus || gml|2,, <K27%" ", s that, by (2.17),

Ml(gm)2 S K(202)2l+12_2m-3_

Denote by m(l) the smallest integer m such that 2/*11log(262) < 2™ ~*. Thus
Mi(gn)? < K2-2" " for m > m(l), so that My(g,,) < K272""". From (2.16) and
(2.18) we have

M(< Y Mg+ Y, K277

m <m(l) m2m(l)
_2m(l)—5
(2.19) < Z(Z)Ml(gm)+K2
m<m

32‘1/2 Z ”gm”2+K2_2nuz)-5'

m < m(l)
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To simplify the notation, we observe that m(l) = [ +s, where s is the smallest

such that 25-5 > log(26?) [so that 2° < Klog(26?)]. Also, we observe that by
convexity of the function x2, we have

( Z Otixi)2 < Z i},

whenever Yq; = 1,0; > 0. Thus

and thus
2
(Zx,) §K22i/2xl2.
i>0 i>0

Using this, as well as the inequality (A + B)> < 2A? + 2B, we deduce from
(2.19) that

Ml(g)2 S Kz—l( Z ||gm||%2(l+s_m)/2> +K2_2l+8_4_

m<l+s

Thus, since 2° > 1,

ZMl(g)2 < K2S/2 Z |Igm”%2—(l+m)/2 +K

1>0 m<l+s
1>0
< K+Kzs/222‘m/2ngm||%( > 2‘”2>
m I>m-—s

<K+K2) 27"|gul}.
m

This completes the proof by (2.14). O

REMARK. Inthecasep =3 1 the inequality (2.13) can be obtained by duality
from an inequality of L. Gross that itself follows from (2.3). In this approach
it is essential that one have the correct value for 6 in (2.3). Unfortunately, this
value is no longer valid in the natural adaptation of (2.3) to the case p #1 2 For
this reason, this creates complications in using this approach when p # 3, and
we have chosen a simpler route. .
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3. End of proofs.

PROOF OF COROLLARY 1.2. This is an immediate consequence of Theo-
rem 1.1 and of the formula

du,(A) 1
(3.1) —E = =) (A
dp p i<n
This formula is often called Russo’s formula, though it was proved earlier by
Margulis [3]. O

PROOF OF COROLLARY 1.3. We observe that Corollary 1.2 means that if we
set g(x) = log(x/(1 — x)), we have

d log(1/¢) 1, 1
——(&(up(4)) > = 2 o log —,
dp ( ? ) Kp(1 - p)log [1/(p<1 —~ p))] Kt e

where K’ is universal, since p(1 —p) < . Thus, setting x; = 11, (A), %5 = p1,(A),
we have

b2 —p1

lo l
K’ gs‘

8glxg) — gloey) >

Thus

X1 1—x2

T < exp(glry) — glxg))

21(1 —xg) <

(pz—pl)logé). o

< exp(— 74

PROOF OF COROLLARY 1.4. We simply observe that if we set ¢ = sup; .,
pp(A;), by Theorem 1.1 and since the function x/log(1/x) increases for x < 1, we
have

2 > (1-p)

n .

P1L=P)/ 1og[1/((1 - p)e)]

pp(A)(1 — pp(A)) < K<log

Also, we observe that, if x < 1,

X

y 1
> = > —
X y_KIng’

log (1/y) ~
and this implies the result. O -

Acknowledgment. I am indebted to N. Alon for pointing out the paper by
Kahn, Kalai and Linial [2]. "
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