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CONTRACTION AND DECOUPLING INEQUALITIES
FOR MULTILINEAR FORMS AND U-STATISTICS

V. H. DE LA PENAL, S. J. MONTGOMERY-SMITH? AND JERZY SZULGA

Columbia University, University of Missouri and Auburn University

We prove decoupling inequalities for random polynomials in indepen-
dent random variables with coefficients in vector space. We use various
means of comparison, including rearrangement invariant norms (e.g., Or-
licz and Lorentz norms), tail distributions, tightness, hypercontractivity and
so forth.

1. Introduction.

1.1. Background and scope of the paper. Decoupling principles stem from
the theory of martingale transforms (cf. [2]). For homogeneous random forms of
rank £ > 2, decoupling principles were introduced in [11], [18] and [19] (in some
special cases, they were known to Pisier cf. [20]), and subsequently became
essential tools in multiple integration (cf. [9], [12] and [23]-[25]). One of the
most appealing interpretations of such a principle is the reducibility of a study
of multiple random series (respectively, of multiple stochastic integrals) to a
consecutive treatment of single random series (respectively, of single stochastic
integrals that allows one to treat a multiple integral as an Ité-type iterate
integral). The concept of a random chaos goes back to Wiener [27] (see also
[28]), who elaborated what we call here a real-valued coupled Gaussian chaos.
Decoupling inequalities may be viewed as embedding-projection procedures,
since a decoupled random chaos is nothing but a lacunary random chaos. In
comparison to the classical L2-theory of multiple summation or integration,
decoupling principles make up for the lack of L2-isometries.

Since the first publication of the aforementioned decoupling principle, the
theory has branched into several directions. For example, comparison of tangent
processes (cf. [5], [6] and [8]) is akin to the classical decoupling principle. Further
contributions can be found, for example, in [3], [4], [8], [11], [21] and [29]. In
some of the aforementioned papers (e.g., [3], [12], [18], [19]) the symmetry of
random variables is essential for the fulfillment of the decoupling principle,
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while other papers (e.g., [8], [9], [29]) point out the role of positivity. Norms
of LP-spaces, or more general, of Orlicz spaces (basically, subject to growth
restriction) have become typical means of comparison of two classes of vector
random variables.

In this paper, we prove decoupling inequalities for random variables that are
not necessarily symmetric. Theorems 2.1 and 2.3 in Section 2 and Theorem 3.8
in Section 3 are our main results. The decoupling principle by means of prob-
ability tails, Theorem 3.8, immediately ensures the parity of tightness of two
types of chaos (that Gaussian decoupled and coupled chaos are simultaneously
tight was proved in [11]).

A number of decoupling results are obtained for arbitrary rearrangement
invariant norms and Orlicz functionals. In particular, we provide one extended
example regarding certain Lorentz norms (important in the approximation the-
ory). Another application is the decoupling principle for U-statistics (a result
as in Theorem 2.3 was proven in [4]).

The utilized techniques are based on ideas borrowed from [11], while some
are taken from [13]. Proofs are straightforward and point out the algebraic na-
ture of decoupling that is fruitfully merged with a widely understood context of
convexity. A rule of thumb is that, in the field of random diagonal-free polyno-
mials, a “definable” is “decouplable.” The obtained robust constants are tightly
estimated and are sharper than previously known constants.

In the last section, we show tail probability decoupling results for polyno-
mials of symmetric random variables. This section makes use of techniques
from [1].x

1.2. Notation. Random variables in this paper are defined on a separa-
ble probability space (€2, A, P) that is rich enough to carry independent se-
quences. A sequence of real random variables is denoted by & = (&1,&,...)
and a matrix of real random variables is denoted by X = [¢,,...,&,], where
€;=(1,€2, - ). We will make use of one particular sequence, the Rademacher
sequence € = (g;), where ¢; are independent random variables taking values +1
with probability 1/2.

Let E = (E, || - ||) denote a real Banach space. We will be considering E-valued
random variables, that is, strongly measurable mappings from € into E.

Let & be a positive integer and let f = (f}, .. ;,) be an array of vectors from
E taking only finitely many nonzero values. Throughout the paper, all such
arrays are assumed to vanish on diagonals (we will say diagonal-free); that is,
fis,...,i, = 0 if at least two indices i;,i; are equal.

The main object of our interest will be the £-homogeneous random polynomial

QUEXEQU 61, &0E Y Fiurivbuiy - Gaiye

2 73

" We desire to compare this random polynomial with the “undecoupled” ver-
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sion, that is,

(1.1) QM EQUE.. 0L S funbn b

gy bt

The first term in the above definition will be introduced as a notational conve-
nience. We will feel quite free to stretch the use of this notation. So for example,
we might write

Q(f;ﬁr:nk_r)=Q(f;E""1£1771"‘$77)= Z ﬁl,...,ikfil"‘gi,ﬂi,,,l ”'nik'

i1y, ip

We hope to convince the reader of the value of this notation, as it enables us to
write many of the proofs in a more compact form, and may ultimately lead to
clearer thinking on the subject. For the unconvinced reader, we hope that we
have explained the notation sufficiently that he/she will be able to rewrite all
the subsequent proofs and statements in a more familiar form.

Many of the inequalities that we introduce require the array f to satisfy
certain symmetry conditions; for this reason we introduce the symmetrized
version of f:

= ar 1
fissosin = 27 D Fioiroriogs
o

where the sum is taken over all permutations of the set [1,k] = {1,...,k},
and let @( f;) = Q(?, -). Note that for the undecoupled random polynomial,
symmetry makes no change: Q(f; ¢*) = Q(f; €").

In the sequel, we will occasionally refer to tetrahedral arrays, that is, f such
that f;, . i, =0, if indices fail to satisfy i; < --- <ip.

We will make frequent use of the following identity, which is known as the
Mazur—Orlicz polarization formula [17]:

~ 1
12 Qfi&, =5 D CDFPIQ(fGg+ o+ 8igy)),

T 8=(6y,..., 5) € {0,1}*

where |6| = 33;6;. Switching to a Rademacher sequence e, we can write

k k
(1.3) Q(f,é’l,---,ﬁk)=%551"'%(?(}", (Zﬂ&) >,

i=1

where the expectation is only over the Rademacher sequence .

Rearrangement invariant spaces. By (L, || - |lL) we denote a rearrangement
invariant Banach space of integrable random variables (so that the norm of a
random variable depends only on its probability distribution), L c L(P), de-
fined on a separable probability space (2, A, P) that is rich enough to carry inde-
pendent sequences. For more information on rearrangement invariant spaces,
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we refer the reader to [15], for example. The basic examples of rearrangement
invariant spaces are L = L,,for 1 < p < oo (nothing more is needed in many
parts of this paper), Orlicz spaces and Lorentz spaces. We will sometimes use
the abbreviation r.i. for rearrangement invariant.

The important property of rearrangement invariant spaces that we shall use
is the following:

1.4) Conditional expectations are contractions acting on L.

The reader unfamiliar with r.i. spaces should not that this is true of L,.

We denote by L(E) the Banach space of E-valued random variables (i.e.,
strongly measurable mapping from Q into E) whose norms belong to L, and
let [|6]lce) = Ill|6e/lu. Thus if L = L?, then [|6|lug) = [|6]lz,e) = (E[|6])Y7. In
the sequel we sometimes omit the subscript indicating the space if it causes no
ambiguity.

2. Decoupling for rearrangement invariant norms.

Interchangeability. In the sequel, we will use several times the following
elementary feature of interchangeable random sequences &;,. .., &, (i.e., such
that each permutation has the same distribution). Suppose that each ¢, is itself
a sequence of independent random variables. Denote by G, the o-field spanned
by ¥7_1€;. Let f be diagonal-free. Then if jy,...,jr <7,

(2.1) E[QUf &) |] =rQf (61 + -+ £).
We should point out that the last term represents the random polynomial

Q(f, (€ +---+E)F) = Z Fyoip (Crig + -+ &i) -+ (riy + - + &)

il""’i’k

Equation (2.1) follows because

E(Ffiyoisbivi Einin | Gr) =Fiay i E(EGyiy |Gr) - - E(E53, | Gr)

because f is diagonal-free and hence ¢, ;, . .. ,j,;, are independent if f;  ;, #0,
and also because forj <r,

E(&i | Gr) =r M+ + &)
We also point out the following easy consequence of the triangle inequality for LL:

(2.2) 1R, Xl < QU X laey.”

Now we are ready to present our first decoupling inequality. This result al-
lows us to decouple random polynomials in the rearrangement invariant norm.

THEOREM 2.1. Let f = (f},,...;,) be a diagonal-free array of vectors from E.
Let &,€,,. .., &, be sequences of integrable independent real random variables.
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Let L be a r.i. space of random variables, containing &, - - - & (hence, norms of all
finitely supported polynomials spanned by &, .. .,&).

(A) Assume that &£,£1,€s,... are independent and identically distributed.
Then

”Q(f: Ek)“L(]E) < A”Q(f: gla CE) {k)“lL(]E)a

where A =A;, ~ (2k)* or,if E€ =0, A}, = k.
(B) Assume that £,£&,,...,&,, are interchangeable. Then

IQ(, &1, &0l < BIQUS,EMlle),
where B = By, ~ k¥ JE\.
Proor. During this proof, we will suppress the subscript L(E) on the norms.
.(S‘:Zp 1. Centering procedure. Denote £ = ¢ — E[¢], m = (my,msy,...), where
m; =E[§]. For 1 <r <k, if f=(f;,, i), then we have

(2~3) ”Q(f: El’ s 1gr)“ S 2r”Q(f1 £11 s :&r)”

Indeed, by interchangeability

”Q(f’ Ela s 1Zr)”
= “Q(fagl _ma"‘agr _m)”

ml-6 1-6,
Z Z fi,.. "r'shl" ”r My 0 My,

(6140005 6) € {0, 1} iy, ir
Z firyin€iy = &M 41,4y, Moriy

4 r
= 2:; <‘]) Ulyeensbr
Z < )”Q f:&la :gjam(r_j))”'

The latter expression is equal to

. |
; <J.)HQ(f,:sl,...,s,,E[s,+1 %], LG | %))

Z()”E Q(f,£1, agj:€j+11""£r)lxj]”’

where X is the matrix [£,, ..., {;]. Using the contractivity property (1.4), we
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estimate the preceding term from above by
- r
Z (,]) IIQ(f’ 51) . agr)” = 2rI|Q(f7 517 s ’£r)||
Jj=0

Step 2: Proving (A). Arguing similarly to Step 1, we note that

k
- k —=r
Q7€M = [|Q(F, E+m)*) | <> () IQ(F,E ,m* ") := Qo
r=0
Now, using (1.4) and noting that E(€; +--- + &, | ;) = ,, which is distributed
as €, it follows that

Qo < Z (7)Ia(r @m0
Then, by virtue of (2.1), the latter expression is equal to

> (e

Using (1.4) and applying the centering procedure (2.3), the above term has
the upper bounds

=: Q1.

Q(f.&, - & m* ) |G

k

Z( )||er £E. . Eymt )|

k

2( )<2r> 1Q(foEr- -, &y m*=7)|| = @s.

Then, by interchangeability, independence of columns and (1.4) again, we
keep estimating:

k

Z( )<2r>'||E QU €1y, €nErins-- - €D XS]

k

Z( )(2") IIQ(f7€1’ ’gra€r+17";7€k)”

= AkIIQ(f,€17 . ’gk)”

Clearly, A, < (2k + 1)* [notice that A;, > c(2k)*]. IFE¢ = 0, the use of the cen-
tering procedure and the triangle 1nequa11ty is superfluous; hence the constant

decreases to k*.
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(B) By the Mazur-Orlicz polarization formula (1.2), and (2.1), we obtain the
bounds

IQf,&q,- .-, €Il =

(f,D 1F =PG5, 8, + - ~+5k£k>">

< Z HHQ(f, (61&1 + -+ + &)

= < )“k' f: (61 +-o-t Er)k)
0

g k
< “ZO (r) EQ
= B[|Q(f.€1) |-
That B;, ~ k*/E! is easy to verify. The proof is complete. O

(f.€%)

2.1. Extended multilinear forms and U-statistics. In this section we show
how to extend Theorem 2.1 to the so called U-statistics. Let £ be a positive
integer. Let F' = (fj,,... ;) be an array of strongly Borel measurable functions
F; : R* — E such that:

115 :"k
(FO)Fy,,.. ; =0if some ij and i; are identical forj # .
(F1) Fy,,....;, = 0 for all but finitely many (iy,...,iz).

Then we are going to consider U-statistics, that is, expressions of the form

F(gla 1£k)— Z Ftl, g 'gltla 1§kik):

Uyeey p

where £, ..., &, are real-valued random variables. (Here, R could be replaced
with any other measure space, but there is no loss of generality to take it as
R). We are going to employ the same notational devices as for the random
polynomials, so that the undecoupled U-statistic is written

F(£ )df Z ST 13 6111"',51’;;)'

As before, in order to prove the results, we require certain symmetry properties
to hold for F. So we define the symmetrized version of F' as

5 ar 1 .
Fleyyoon) = 53 D Figyic (g0, ),
g

where the sum runs over all permutations of [1, %], and we set

ﬁ(gla 1£k)_ Z ST /2 £1i1:'~'7§kik)'

UyeeesBp
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Decoupling results were proved by de la Peiia [4] for Orlicz modulars (and so
by Note 8 in Section 4, one can obtain results for all rearrangement invari-
ant spaces). We will prove similar decoupling results, weakening some of the
hypotheses.

More interestingly, we are going to prove the decoupling results for U-statis-
tics as a corollary of Theorem 2.1, which decouples random polynomials. The
technique is to approximate the U-statistic as a sum of random polynomials.
That is, let D be an integer, and for 1 <d < D, let f¢ = = (f] d ;,) be a diagonal-
free array of vectors in ]E taking only ﬁmtely many nonzero values and let
¢¢:1 < d < D,. (€8 %:1 < d < D) be sequences of independent random
variables. Then we set

(2.4) R(f,gla 1£k) - ZQ fd 51: agg)

Then the remarkable thing is that the proof of Theorem 2.1 works for R(f; &;,
.., &) exactly asit does for Q(f; &, . . ., €;); thatis, we have the following result.

THEOREM 2.2. Theorem 2.1 is valid for the multilinear form (2.4).

A version of the following result for Orlicz modulars E¢(-), where ¢ was a
moderately increasing function, was proved in [19]. In that paper, terms of the
underlying sums were sign-randomized, that is, each F(i, - ) was multiplied by
Walsh functions ;, - - - &;,. More precisely, the decoupling was proved for

(2.5) (Foe)(fl, ,&k)— Zell 51,, i1,.. ,lk(élllv :fkik),

where ¢ is independent of X. That the presence of Walsh functions is not nec-
essary in the context of Orlicz modulars was shown in [4]. We observe that the
following result, generalizing theorems in the mentioned papers, is implicit in
the main decoupling principle. Moreover, constants remain the same. For the
sake of completeness, we give the full proof.

In the proof we will use the fact that any inequality involving norms of
functions of discrete r.v.s, that converge to some limits, is preserved for these
limits. Fix i, say i = (1,...,Kk). Consider X = F(&1,...,&). We may assume
that the probability space (2, ¥, P) and ¥ is spanned by &3, €9, . . .. Also, we may
assume that it is separable; that is, ¥, = o{{J, F.}, where F, are finite o-fields.
Put ¢! =n=E[£|F,]. Thus E[X|F,] - EIX|F] =X a.s. and in L.

THEOREM 2.3. Let F: N* x R* — E satisfy (F0) and (F1), and also the addi-
tional condition: .
(F2) F(i;&,,...,&,) €L for every i € N,

Let £,,&,,. .. be sequences of independent random variables.
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(A) Let ||| be ar.i.norm. Let &1,&,, . .. be independent and identically distri-
buted. Then

IFE™) < AIF,

where A is the constant from Theorem 2.1(A).
(B') Let &,...,& be interchangeable (in particular, i.i.d) and let || - || be a r.i.
norm. Then

IF)| < B|FE™)|,
where B is the constant from Theorem 2.1(B).

Proor. By Note 8 in Section 4, we may assume that the rearrangement
space L is separable. In that case, we may assume without loss of generality
that &;,&,, ... are real discrete random variables.

Thus we may assume that the random variables are defined on a product
probability space

(HQU’ (FON)®F (paN) ®k>’

ij

where the Q;; are equal, Q; = IT;Q2;; and the superscript ® indicates the product
o-field and the product probability, respectively. So, let

&= Ximla,,

where A;1, Ajs,... C Q; are bases of rectangular sets that form a disjoint finite
partition of Q, and let (Ay;,), s = 1,...,k, be independent copies of (4;,). Put

Im =14, ; hence

gsi =inmIsim, s = 17"',k‘
m

Then

Z Fir(&1iys- > €Riy)

B1yeey i

= § E Fil,...,ik(xilmp--',xikmk)Ililml "'Ikikmk‘

my,e..,My gy, 0

Now, we can apply Theorem 2.2, and the proof is complete. O

2.2. An example in a certain Lorentz space. Motivated by the results in [5],
where the problem as to when expectation results imply tail probability results
is treated, we obtain the following asymptotic tail probability comparison.
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PROPOSITION 2.4.  Let £ or 1) be the norm of F(¢*) or F(X), and let W: [0,00) —
[0, 00) be an increasing function such that there exist constants p > 1and ¢ > 0
satisfying W(st) < csPW(t) for all 0 < s < 1 and all t > 0. Then there is a
constant C, depending only on p and ¢, such that

lim sup W(#)P(¢ > ¢) < lim sup W(#)P(n > Ct).

t— oo t — oo

This result is a consequence of Theorem 2.3, and follows by arguments
from the theory of Lorentz—Zygmund spaces. If ¢ is a random variable, let
F(t) = P(|¢| > t) and define the decreasing rearrangement of ¢ to be the func-
tion £*(¢) £ sup{s: F(s) > t} (i.e., the right-continuous inverse of F). Obviously,
|¢| and &* are equidistributed. When ¢ is integrable, an average operator is
often considered:

1 t
e () = © / () du,
t Jo

which corresponds to a rearrangement invariant norm for every ¢ > 0. There-
fore, our decoupling inequalities for U-statistics hold for #(X) = (|| X||)**. That

is, denoting by £ or n the norm of ﬁ’({k) or f’(X), we have
£ @) < Cn™@)

for some constant C > 0.

Now consider the Lorentz—Zygmund space defined by the quasinorm |||f|||
= sup, w(x) £*(x), where w: [0,1] — [0, 00) is an increasing function. Note that
[II7]ll < 1if and only if sup, W)P(|f| > ¢) < 1, where w(t) = 1/(W-1(1/2)). If
W satisfies the relation given in Proposition 2.4, then for some constant c, the
function w satisfies the relation w(x) < ca~Pw(xa) fora < 1. Then it is possible
to show that |||£]|| < |||/**|I| < C|||f|||. Indeed, the first inequality is obvious,
and for the second,

1 1
W) F(x) = wix) / f*@a)da < c / o~ Puza)f*(wa)da < P l|fll
0 0 -

Thus, to show Proposition 2.4, let F(¢) = P(¢ > ¢) and G(¢) = P(n > ¢). Then

sup W) F(t) < sup W(¢) G(Ct).
t t
If we now set w(x) = 0, for x > x,, the same argument applies, and letting
xo — 00, We obtain

limsup W) F(¢) < lim sup W(¢) G(Ct).

t— 00 t— o0
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3. A discourse on probability tails.
3.1. LP-estimates imply tail estimates.
3.1.1. Auxiliary results. The following result can be found in [1].

LeEmMA 3.1. Let (X, Xy,..., X,) be a sequence of positive i.i.d. random vari-
ables. Then for all positive integers n,all a > 0and all 0 < § < n,

P(XZa)zg = P( sup Xiza)>

n 1<i<n ~1+6
P(XZOf)S-(2 = P( sup Xiza)so.
n 1<i<n

ProoF. To show the first inequality, observe first that for 6 > 0,

6\" 1
) < —.
(1 n) ~(1+6)
Hence, by the independence assumption,

P(supXj Za) =1- P(supXj <a>
J J

1-J[PX; <o
Jj=1

v

AN 1 [
1_(1_;) Zl_(1+0)=(1+0)'

The second inequality is easy: from the imposed condition, one gets

P( sup Xj2a> SZP(XiZa)SG.

1<j<n =1
The proof is complete. O
The following result can be found in [14], Chapter 4.

LEMMA 3.2. Consider a positive random variable Z such that ||Z||, < C||Z||,
forq >p > 0. Then

P(Z > ) < (2CPY/P-D = ||Z|, <2YP¢ and |Z|, < 2YPCt.

Putting together Lemmas 3.1 and 3.2 we get the follewing.
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LEMMA 3.3. Let (X, Xy,..., X,) be a sequence of positive i.i.d. random vari-
ables. Assume that there exists a constant c such that for0<p<q < oo,

sup [IXifl|| <c| sup |X;|| .
1<i<n q 1<i<n b
Then, letting 0= (2cp)q/(P —q),
P(X >1¢) < g = sup X;|| < ol/py.
n 1<i<n lp

For later reference, we also include the next lemma.

LEMMA 34. Let (X, Xy,...,X,) be a sequence of positive i.i.d. random vari-
ables. Then
1
sup X;|| <t = P(X>2Vrp< =,
1<i<n lp n

ProoF. Use Chebyshev’s inequality and Lemma 3.1 with§=1. O

3.1.2. Main result. Now we are ready to prove an extension of a result
from [1] that deals with strict tail probability comparisons for pairs of random
variables.

THEOREM 3.5. Let (X, Xj,...,X,) and (Y,Y},...,Y,) be sequences of pos-
itive i.i.d. random variables. For some 0 < p < q and all positive integers n,
assume that

(3.1) sup X;|| <eq|| sup X;
1<i<n q 1<i<n p
and
sup Y;|| <ecof sup Xj| .

Then there exists cs, depending only on p, q, ¢; and cg, such that for all ¢t > 0,

P(Y Z C3 t) S C3P(X Z t).

ProOOF. Given an arbitrary o = oy > 0 with
(3.2) P(Y > o) >0,

choose p to be the smallest positive integer satisfying

1
3.3) 1 cpwsan<l
2p 7
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From Lemma 3.1 it follows that

P( sup Y; Zal) > 1
1<jsp

Hence, by Chebyshev’s inequality,
1

sup Y,
25

1<jsp

which, by assumption, yields

p
)

sup X;
x

1<j<p

and, consequently, for any as > 0,

P P
@

> -1
=9 PP’
A 3o,y

X,
o2 sup X;

1<j<u

In particular, if of = of /(6¢}), we get from the latter inequality that

P
> 2.

P

sup X;
1<j<p

@y
Now, Lemma 2.3 implies that

a _ P q/(p—q)l
P(X > —_(61/1’02)) =P(X > ap) > (2¢F) o

Finally, (3.3) gives,

(3.4) P (X > ) > (2P)YPOP(Y > ay).

aq
(61/7cy)
Note that (3.4) holds for all a; for which (3.2) holds. For any other a; > 0, (3.4)
holds trivially. O

3.1.3. Contraction for multipliers. Condition (3.1) yields an example of a
class of random variables with the so-called Marcinkiewicz—Paley—Zygmund
property (MPZ for short). The concept was studied in [10] and can be traced
back to [22] and [16]. A family Z C L% of random variables is said to be in the
class MPZ(q) (short for have MPZ) if one of the following equivalent conditions
is satisfied:

i |2l

(3.5) 3 p < q (equivalently V'q <p), mg, p = Sup
zez | Zlp

< o0,

(3.6) 36>0, Zuelt;P(Z > 6|Zllq) > 6.
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That is, (3.1) involves Z = {sup; ; <, | X;|: n € N}. Also, in [10] it was shown
that the space of diagonal-free random polynomials of finite degree, spanned
by symmetric random variables with so-called semiregular distributions, has
MPZ. A random variable ¢ is said to have a semiregular distribution if its tail
G(t) = P(|£| > t) satisfies the relation,

V(a) = lim sup G(at)/G(#) < 1
t— o0

for some (or all) @ > 1 (by convention, 0/0 = 0). For example, any bounded
random variable has semiregular distribution. In particular, (the norm of) any
normed space-valued Rademacher polynomial of degree d has MPZ with the
constant mg, = [2(g — 1)/(p — 1)]¢ ([10], Corollary 2.7].

Now the essence of Theorem 3.5 is that the continuity of a certain operator
that is fulfilled once by means of LP-norms, will be also fulfilled by means of
probability tails. We will illustrate this concept by the following result.

THEOREM 3.6. Letf; . i, bea finitely supported, diagonal-free array, taking
values in a Banach space E. Let £ = (£1,&,,...) be a sequence of symmetric
independent random variables.

(i) Contraction inequality. There is a constant ¢ > 0 such that
PII(F, 0% > ct) < cP(IQF,ON > 1), >0,

where s€ = (s;¢;) and |||« = sup; |s;| < 1.
(il) Maximal inequality. There is a constant C > 0 such that

P( sup IITml,...,ka(f,ﬁk)II>Ct>SCP(HQ(f,Sk)H>t), £>0,

myye..,mp

where

Tml,...,ka(f; X) = Z ﬁl,...,iké.lil e gkik‘

i1 <my,eip <Smy

PROOF. Let us first prove (i). By virtue of the symmetry assumption and
Fubini’s theorem, it suffices to give the proof for the case when X is a ma-
trix of Rademacher random variables. Let @,...,Q, be independent copies
of Q(f,&). Then the vector (@4, ...,Q,) is a Rademacher homogeneous polyno-
mial of degree k taking values in [3°(E). Similarly, let Ry, ...,R, be indepen-
dent copies of Q(f,s£). From the contraction principle for L?-norms, which may
be found in [10], Remark 2.9 (essentially, it is due to [11]), it follows that for
allp > 1, ’

B, Blligecw ||, < €l[1@1, -, @lliem],
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From the observation that [|(Q1, ..., @n)lli=o® = SUP; <; <, |Q:llL- and using the
fact that Rademacher polynomials are MPZ, and also citing Theorem 3.6 above,
the result follows. O

The proof of part (ii) is the same, using the corresponding result for L?-norms
of polynomials for the Rademacher random variables, which follows eas11y from
[18] and Lévy’s inequality.

REMARK 1. In fact, Theorem 3.6 is also valid for the sign randomized U-
statistics as in (2.5). The proof is identical.

THEOREM 3.7 (Comparison inequality). Let (f;,, .. ;) be a diagonal-free,
finitely supported array. Let £ = (£;) and 17 = (1;) be sequences of symmetric
independent random variables such that, for some constant A > 0,

P(I¢&i| > t) <AP(l;| >t), t>0,ieN.
Then, for some constant K = K(c,d,A),
P(IQ(f, €M > ¢) <KP(K|IQ(f,nM) > 1), t>0.

Proor. We have
Qf.6M 2Q(f, (ele))")

and

Q" 2Q(F, (eln))*),

where ¢ is a Rademacher sequence independent of £ and 7.

If A = 1, then we may replace each |¢;| and |7;| by their decreasing rearrange-
ments |¢|* and |7;]*, respectively. The assumption yields |¢;|* < |n;|* a.s. Hence,
by Theorem 3.6(i), the inequality follows.

Let A > 1. Then there exist a sequence a = («;) of i.i.d. random variables,
independent of &, such that P(a; = 1) = 1/K and P(a; = 0) = 1 — 1/K, so that
P(a;|€;| > t) = P(|€;| > t)/K. Therefore, by the first part of the proof,

cP(”Q(f, (ea|g|)’“) H > t) < P(K”Q(f, (el'nl)k) ” > t), t>0.

Conditioning on &, it remains to prove that for every polynomial @ and every
diagonal-free array f;, ... i,

3.7) P(IQUf, e8| > mt) < mP([Q(f, )| > ¢)

for some constant m = m;,. Let B = ea.. Then it is clear that 3 is semiregular, as
defined earlier, and hence homogeneous random polynomials of degree k& over
3 have MPZ. Furthermore, the comparison inequality is true for L? forp > 1
(see, e.g., [10], Theorem 2.13). Hence argumg as in the proof of Theorem 3.6,
we obtain (3.7). O
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3.2. Decoupling for tails. In order to prove any tail inequality of the type
P > t) < KP(n > t), where ¢ and 7 are real random variables, it is enough to
prove it for an arbitrarily chosen conditional probability

P[¢>¢t|S] <KP[n>t|S].

This observation was used in proving the inequality (6.9.5) in [13]. Denote by
§ the o-field spanned by all random variables of the form ¥;_;A(£;) (in other
words, by the random point measure

i
> 8%,
Jj=1

on (RY)%; cf. [13], page 182). Then (£;,...,&;) is concentrated on a finite per-
mutation invariant subset of (RN)%*. Now (2.1) can be rewritten as [recall the
notation preceding (2.1)]

(3.8) E[Q(f,gjla'”agjk) l 9] =k_kQ(fa(El+"'+£k)k),

THEOREM 3.8. Letf,€,&,,...,&, beasin Theorem 2.1 (but we do not assume
integrability).

(A") Let £,&4,&,, . .. be independent and symmetric. Then there exists a con-
stant A", depending only on k, such that, for all t > 0,

P(IQ(f, €Ml > A"t) <A"P(|Q(f, &y, ..., ER)Il > t).

(B") Let &,&4, . . .,&, be interchangeable. Then there exists some constant B,
depending only on k, such that for all t > 0,

P(IQ(f, &y, ..., €Il = B"t) < B'P(IQ(f, QI > 2).

Proor. (A”)By symmetry, using Theorem 3.6.(ii), with n = &, +- - - + £ and
A =k, we obtain that

PIQ(F, €M1 > tK) < KP[RH|Q(f, (61 +- - + &) || 2 tK].

By (3.8) and inequality (6.9.5) in [13], the latter quantity can be estimated from
below by

xKP (K EH|Qf &y, R 2 1),
which completes the proof of (A”).
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(B”) By the Mazur-Orlicz polarization formula (1.2) and by (2.1), we obtain
the estimates
> t)

PUIQfs €1, I 2 2)
) P( EEI(D S SURLICERRRET Y
)

ZP<2k %Q(f, (61€1 +"'+5k€k)k)” > t)
~ !

g(’:)%% > t).

By (3.8), with j; = --- = j;, and the inequality (6.9.5) in [13], we estimate the
preceding expression from above by

1 (R (@i _ (2k)*
9 (i)P(—{!—IIQ(f,s’i)II > t) <c 12"P(—kT—IIQ(f, &)l > t),

which completes the proof. O

IN

2Q(f 6+ +E))

REMARK 2. While the symmetry assumption is irrelevant in condition (B")
[or in (B), before], the symmetrization procedure used in the proof of (A) fails.
The reason is that we use the conditioning on G, which destroys the indepen-
dence which is essential in applications of (2.3).

4. Notes.

1. The inverse estimate in (2.3) is not true, in general, even if £ = 1. For exam-
ple, let &, . .., & be Bernoulli random variables withp =P(§3=1)=1 /2 and
£G) = 1. Then E|f€|? = n/4 and E|f¢| = (n + n?)/4.

2. The symmetry of functions f is essential in Theorem 2.1(B) and its analogs,
as was pointed out in [19]. Bourgain’s counterexample, given there, in-
volves E = I2 ® I2 endowed with the projective norm |la| = inf{¥; ;|la}
x|la?|: @ = % jaf ® a}}, Rademacher chaos and tetrahedral functions f.
However, the inequalities (B) of both Theorems 2.1 and 2.3 hold for tetra-
hedral Rademacher chaos induced by ¢ and X (with independent columns),
whenever E is (a) a Banach lattices with no subspace isomorphic to ¢ or (b)
a UMD space.

3. The full analog of Theorem 2.1 is valid in locally convex spaces.

4. The decoupling results from Section 2 can be carried over to linear spaces
over the field of complex numbers. To obtain similar results for Section 3
is more difficult. One approach is to show that if € denotes a sequence of
_independent Rademacher random variables and if o denotes a sequence of
independent Steinhaus random variables (thatis, o; is uniformly distributed
over the complex unit circle), then |Q(f; *|| =~ ||Q(f; o *)||. We omit the de-
tails of the development. .



1762 V. H. DE LA PENA, S. J. MONTGOMERY-SMITH AND J. SZULGA

5.

In the case when the tail decoupling holds, that is, in Theorem 3.8, 2.3(A")
and 2.3(B""), we obtain the comparison of tightness. That is, for a family
of functions {f: f € F}, we have that if one type of chaos {Q4(f): f € F} is
tight, sois the other, {Q4(f): f € F}, subject to restrictions listed in the above
theorems. That remark also applies to functions f taking values in a locally
convex space.

. In the context discussed above, we immediately obtain the c_omparison of

generalized Orlicz modulars, that is, functionals of the form ®(-) = E ¢(| - |)),
where ¢ is a nondecreasing function on the positive half-line, ¢(0) = 0.

. Multiple stochastic integrals of deterministic multivariate functions (cf. e.g.,

[9]) can be seen as limits of multilinear random forms. Therefore, if £, £, &,
are stochastic processes with independent increments, and the symbols (f¢,
®---®£&,) and (F£€®*) are understood as such integrals, then all decoupling
inequalities carry over word-for-word.

. Our decoupling inequalities involve a certain means of domination. Essen-

tially, we show that the domination by means of LP-norms yields the same
for probability tails. The passing from one to another type of domination
may be of an intrinsic interest. Recall the definition of f** mentioned in
Section 2.2. Let us note the following result, which can be applied in a wider
context than ours. Suppose that ¢ and 7 are two given nonnegative random
variables, and define quantities cy, ..., cs:

Let c¢; be the smallest constant such that for every Orlicz function,

I€llg < ellnllg.
Let co be the smallest constant such that for all £ > 0, if ¢x(x) = (x — 1), /¢

then [|€[|¢¢ < callnllgs.

Let c3 be the smallest constant such that £** < cgn**.

Let ¢4 be the smallest constant such that for every r.i. norm, ||¢|| < c4/|7]|.
Let c5 be the smallest constant such that for every separable r.i. norm,

€l < eslinll-

Then ¢; = ¢ < ¢3 = ¢4 = ¢5 < 2¢;. Indeed, inequalities ¢, < ¢; < ¢4 and
c3 < c5 < ¢4 are obvious. That ¢; < ¢, follows immediately from the formula

$(x) = / o) (1)),
0
That ¢4 < c3 was proved in [15], Proposition 2.a.8. That cs < 2¢5 follows from

the formula ||¢[|4, < £**(2) < 2||€||4,. To show the left-hand side, suppose that
&*(t) < 1. Then

t
/ £(s)ds < £,
0

Thus we have that ¢*(¢) < 1 arid hence

1 t t
En®)= 7 / (£6) - 1), ds = / (6 -1),ds <7 /0 £*(s)ds < 1.
0 0
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To show the right-hand side, suppose that ||¢||4, < 1. Thus

to
/ (') —1)ds <t,
0

where tg = P(¢ > 1). If £y > ¢, then it follows that

t
/ (¢*(s)—1)ds <t,
0
whence it follows that
t
/F@@g%
0

Ifty < ¢t, then

t o o t
/ £*(s)ds = / (€*(s) - 1)ds + / ds+ | £*(s)ds < 2t,
0 0 0

to

because £*(s) < lifs > #.

9. A decoupling principle for multivalued functions (proved in [4]) also follows
from our basic decoupling inequalities. Suppose that F(-, £) is a countably
multivalued function, that is, a countable family of functions J; is associ-
ated with each i. In equivalent terms, one may think of a decision function
7: D x N* — TT; . n+F; (D is countable). Then the statements of Theorem 2.3
hold uniformly with respect to 7, that is, the norm |F(-)| is replaced by
sup, supy ||7(d, - )(-)||. The theorem follows for a finite collection of decision
functions {7y, ..., 7.}, since this means the replacement of the underlying Ba-
nach space E by another Banach space [S°(E). In the full statement we need
the Banach lattice L(I*°) to satisfy the property sup, ||x,| = || sup, x,||, for
an increasing sequence of nonnegative vectors. In view of the preceding note,
we may choose a family of Orlicz spaces, and the required property holds.

Other sequential functionals on R?, for example, I?, Orlicz /¥ and so forth,
yield numerous variations of Theorem 2.3.

REMARK 3. This paper represents the combination of the papers [7]
and [26].
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