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Brooks and Makover introduced an approach to studying the global geo-
metric quantities (in particular, the first eigenvalue of the Laplacian, injec-
tivity radius and diameter) of a “typical” compact Riemann surface of large
genus based on compactifying finite-area Riemann surfaces associated with
random cubic graphs; by a theorem of Belyi, these are “dense” in the space
of compact Riemann surfaces. The question as to how these surfaces are dis-
tributed in the Teichmüller spaces depends on the study of oriented cycles in
random cubic graphs with random orientation; Brooks and Makover conjec-
tured that asymptotically normalized cycle lengths follow Poisson–Dirichlet
distribution. We present a proof of this conjecture using representation theory
of the symmetric group.

1. Introduction. The study of the first eigenvalue of the Laplace operator on
compact Riemann surfaces of increasing genus has received considerable attention
over the last thirty years; see [18] and references therein. On the one hand, we have
a celebrated theorem of Selberg [48] (see [36] and [32] for refined estimates to-
ward Selberg’s conjecture) and its generalization by Sarnak and Xue [47] (see [29]
and [26] for related results), asserting that the first eigenvalue of the congruence
surfaces of arbitrary genus is bounded away from zero; on the other hand there are
examples due to Selberg [48], Randol [44] and Buser [16], showing that, in gen-
eral, the first eigenvalue can be made arbitrarily small. The surfaces in the latter
examples are “long and thin,” so in some sense live on the boundary of Teichmüller
spaces, and it is a fascinating question to determine what happens for a “typical”
Riemann surface of large genus.

The idea of using cubic graphs to study the first eigenvalue of Riemann sur-
faces originated in the work of Buser [15, 17]. As we discuss in Section 3, the
behavior of the first eigenvalue of the discrete Laplacian on a random cubic graph
is understood rather well. In [14], Brooks and Makover introduced an approach
to studying the first eigenvalue of the Laplacian of a “typical” compact Riemann
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surface of large genus based on compactifying finite-area Riemann surfaces asso-
ciated with random cubic graphs with random orientation; we review the Brooks–
Makover construction in Section 2. To each cubic graph � with an orientation O,
they associate two Riemann surfaces: SO(�,O), a finite-area noncompact surface,
and SC(�,O), a compact surface. The surface SO(�,O) is an orbifold cover of
H/PSL(2,Z) described by (�,O) and therefore shares some of the global geo-
metric properties with the graph �. The compact surface SC(�,O) is a conformal
compactification of SO(�,O); Brooks and Makover proved that almost always the
global geometry of SC(�,O) is controlled by the geometry of SO(�,O). More-
over, according to Belyi’s theorem [4], the surfaces SC(�,O) are precisely the
Riemann surfaces which can be defined over some number field and so form a
“dense” set in the space of all Riemann surfaces.

The question as to how these surfaces are distributed in the Teichmüller spaces
depends on the study of oriented cycles in random cubic graphs with random ori-
entation; Brooks and Makover conjectured that asymptotically normalized cycle
lengths follow Poisson–Dirichlet distribution. We recall the definition of Poisson–
Dirichlet distribution [3]. Let B1,B2, . . . be independent random variables uni-
formly distributed on [0,1]. Define G = (G1,G2, . . .) as follows:

G1 = B1; G2 = (1 − B1)B2; Gi = (1 − B1)(1 − B2) · · · (1 − Bi−1)Bi.

The random sequence G can be viewed as a description of a random breaking of a
stick of unit length into an infinite sequence of subintervals. A stick of length B1
is broken off at the left, which leaves a piece of length 1 − B1. From this, a piece
of length (1 − B1)(1 − B2) is broken off, and so on. G is a distribution on the set

� =
[
x ∈ R∞ :x1, x2, · · · ≥ 0,

∞∑
i=1

xi = 1

]
.

The ranked version of G, (G(1),G(2), . . .), where G(1) ≥ G(2) ≥ . . . , has Poisson–
Dirichlet distribution. If, instead of uniform distribution, Bi has beta-(1, θ) density
θ(1 − x)θ−1 on [0,1] with θ > 0, the resulting distribution is called Poisson–
Dirichlet distribution with parameter θ . Poisson–Dirichlet distribution arises in
a great variety of problems; see [3, 42] and references therein. In a recent
breakthrough work [21], Diaconis, Mayer-Wolf, Zeitouni and Zerner proved a
conjecture of Vershik [52] asserting that Poisson–Dirichlet distribution is the
unique invariant distribution for uniform split-merge transformations.

As we discuss in Section 3, the distribution of cycle lengths for random regular
graphs in any of the standard models is a rather difficult problem; adding random
orientation, at first, seems only to complicate matters (see the example in Sec-
tion 2). However, as we explain at the end of Section 3, this extra randomness turns
out to help us: by giving a permutational model for a random regular graph with
random orientation, we can convert the problem into one involving the symmet-
ric group. More precisely, the distribution of oriented cycles in a random k-regular
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graph on n vertices with random orientation is the same as the distribution of cycles
in the permutation βα, where β is chosen uniformly on the conjugacy class con-
sisting of the product of k-cycles, and α is chosen with uniform probability on the
conjugacy class consisting of the product of 2-cycles in the symmetric group SN

with N = nk. In Section 4, using the Diaconis–Shahshahani upper bound lemma
[22], the estimate on the number of rim hook tableaux by Fomin and Lulov [23]
and representation theory of the symmetric group (in particular, the hook length
formula and the Murnaghan–Nakayama rule), we show that as n → ∞ the distri-
bution of βα converges to uniform distribution. We then invoke what is perhaps
the oldest occurrence of Poisson–Dirichlet distribution—the distribution of nor-
malized cycle lengths for a random permutation in Sn as n tends to infinity [49,
57, 58]—to prove the conjecture of Brooks and Makover.

It turns out that the number of oriented cycles in random cubic graphs with ran-
dom orientation was also studied by Pippenger and Schleich [43] in connection
with topological characteristics of random surfaces generated by cubic interac-
tions. The surfaces considered by Pippenger and Schleich are obtained by taking
3n arcs of an even number of oriented triangles and randomly identifying them
in pairs respecting the orientation; these surfaces arise in various contexts in two-
dimensional quantum gravity and as world sheets in string theory. Random cubic
graphs with random orientation provide an alternative way of constructing the sur-
faces in [43]. Denoting by l(n) the number of oriented cycles in a random cubic
graph on n vertices with a random orientation, Pippenger and Schleich proved
that E(l(n)) = logn + O(1) and Var(l(n)) = O(logn). Further, based on empiri-
cal study of 10,000 random surfaces, each constructed from 80,000 triangles, they
conjectured that

E(l(n)) = log(3n) + γ + o(1)(1.1)

and

Var(l(n)) = log(3n) + γ − π2/6 + o(1),(1.2)

where γ = 0.5772 . . . is Euler’s constant. It was pointed out by Nicholas Pippenger
that (1.1) and (1.2) follow from the main theorem of this paper and a priori bounds
on the first few moments of l(n) obtained by the methods of [43]. Another conse-
quence of the main theorem (Corollary 5.2) is that the expected area of the largest
embedded ball in a random Belyi surface converges to 0.62

2π
of the total surface

area. We conclude Section 5 by briefly discussing the conjectured Tracy–Widom
distribution for the second largest eigenvalue of random regular graphs; we hope
that our results will be useful in approaching this fascinating open problem.

2. Belyi surfaces. In [4], Belyi proved a remarkable result asserting that a
Riemann surface S can be defined over the field of algebraic numbers Q if and only
if there exists a covering f :S → C unramified outside {0,1,∞}. We call such sur-
faces Belyi surfaces. In this section we review the Brooks–Makover construction
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of Belyi surfaces from cubic graphs. We remark that Mulase and Penakava [38]
have given a very interesting alternative construction of Belyi surfaces; in their
construction, the edges of the graphs are allowed to have variable lengths.

Let � be a cubic graph. An orientation O on the graph � is an assignment for
each vertex v of � of a cyclic ordering of the half-edges incident to that vertex.
Given a cubic graph on n vertices, it will have 2n different orientations. A left-
hand-turn path (LHT path) on � is a closed path on � such that, at each vertex,
the path turns left in the orientation O.

Given a pair (�,O), we construct a finite-area Riemann surface SO(�,O) as
follows. We take the ideal hyperbolic triangle T with vertices 0,1 and ∞ shown
in Figure 1. The solid lines in Figure 1 are geodesics joining the points i, i + 1 and
i+1

2 with the point 1+i
√

3
2 , while the dotted lines are horocycles joining pairs of

points from the set {i, i + 1, i+1
2 }. We may think of these points as “midpoints” of

the corresponding sides of the ideal triangles, even though the sides are of infinite
length. We may also think of the three solid lines as edges of a graph emanating
from a vertex. We may then give them the cyclic ordering (i, i + 1, i+1

2 ). Given
a cubic graph � with an orientation O, we construct SO(�,O) by associating to
each vertex an ideal triangle, and gluing neighboring triangles. We glue two copies
of T along the corresponding sides, subject to the following two conditions:

(a) the “midpoints” of the two sides are glued together,
and

(b) the gluing preserves the orientation of the two copies of T .

FIG. 1. The marked ideal triangle T .
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The conditions (a) and (b) determine the gluing uniquely. It is easily seen that
the surface SO(�,O) is a complete Riemann surface with a finite area equal to πn,
where n is the number of vertices of �.

It is easy to see that the horocycle pieces on each T glue together to give closed
horocycles about a cusp of SO(�,O). The length of each closed horocycle is pre-
cisely the length of corresponding LHT path. The surface SC(�,O) is the confor-
mal compactification of SO(�,O). The oriented graph (�,O) describes SO(�,O)

as a covering space of H2/PSL2(Z), with each vertex being an orbifold point of
order 3.

We are now ready to state the following result, whose proof was sketched by
Brooks and Makover in [14]:

LEMMA 2.1. S is a Belyi surface if and only if S = SC(�,O) for some cubic
graph �.

PROOF. We first show that if G is a torsion-free finite index subgroup of
PSL2(Z), then H2/G = SC(�,O) for some cubic graph �. Indeed, we can take as
a fundamental domain for PSL2(Z) a set F = {0 < �(z) < 1, |z| > 1, |z − 1| > 1}.
Three copies of F fit together to give a marked ideal triangle as presented in
Figure 1; they are transformed by means of an elliptic element w of order 3 in
PSL2(Z).

Now since G is torsion free, F , w(F) and w2(F ) are not equivalent under G,
and so they can all be included in the fundamental domain of G. In particular,
there is a fundamental domain of G such that consisting of the copies of ideal tri-
angle T . The graph dual to this triangulation, together with the boundary pairings
and orientation of H2/G, is exactly the pair (�,O).

Now since S is a Belyi surface if and only if one can find finitely many points
{p1, . . . , pl} on S such that S − {p1, . . . , pl} is isomorphic to H2/G, where G is a
torsion-free finite index subgroup of PSL2(Z) [31], the lemma is proved. �

We define probability on the space of oriented graphs with n-vertices (�n,O) as
follows. We pick a random cubic graph with n vertices using the Bollobas model,
described in the next section, then we pick an orientation O with equal probability
from all 2n possible orientations on the given graph. If Q is a property of graphs,
we denote by Probn[Q] the probability that an oriented graph (�n,O) picked from
our probability space has property Q. Brooks and Makover proved [14] the follow-
ing result on Belyi surfaces constructed from random cubic graphs with random
orientation:

THEOREM 2.1. There exist positive constants C1, C2, C3 and C4 such that,
as n → ∞:

(a) The first eigenvalue λ1(S
C(�,O)) satisfies

Probn

[
λ1

(
SC(�,O)

) ≥ C1
] → 1.
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(b) The Cheeger constant h(SC(�,O)) satisfies

Probn

[
h
(
SC(�,O)

) ≥ C2
] → 1.

(c) The shortest geodesic syst(SC(�,O)) satisfies

Probn

[
syst

(
SC(�,O)

) ≥ C3
] → 1.

(d) The diameter diam(SC(�,O)) satisfies

Probn

[
diam

(
SC(�,O)

) ≤ C4 log
(
genus

(
SC(�,O)

))] → 1.

The theorem is proved, roughly, as follows. First, one establishes that, with
probability tending to 1 as n → ∞, a property in question holds for random cubic
graphs [see Section 3 for results pertaining to parts (a) and (b)]. Then, using the
fact that (�,O) describes SO(�,O) as an orbifold covering, one transfers this
information to open surfaces SO(�,O), using the results of Brooks in [8, 9]. One
then transfers the desired property to the surfaces SC(�,O) by using the Ahlfors–
Schwarz–Wolpert lemma as developed by Brooks in [10, 11] and extended by
Brooks and Makover in [12–14].

The topology of the surface can be read off from (�,O), using LHT paths.
In particular, the genus is given by Euler’s formula; as is customary when using
Euler’s formula, we refer to an LHT path as a face of the oriented graph.

Let n be the number of vertices of � and let l(�,O) be the number of disjoint
left-hand-turn paths. For a cubic graph, the number of edges is E(�) = 3n

2 and the
number of faces is F = l(�,O). Therefore, by Euler’s formula, we have:

genus
(
SC(�n,O)

) = genus
(
SO(�n,O)

) = 1 + n − 2l

4
.(2.1)

According to Euler’s formula, in order to find the genus of a surface constructed
from a cubic graph with n-vertices, we need to estimate the number of faces (i.e.,
left-hand-turn paths). As explained in [14], the length of the largest LHT path L

also determines the area of the largest embedded ball.
As we discuss in Section 3, computing the distribution of closed paths in random

regular graphs is a very difficult problem. An additional complication is that left-
hand-turn paths are not necessarily simple closed paths on the graph, but can self-
intersect in a very complex pattern. We would like to iliustrate these complications
with the simple example of the 1-skeleton of the cube, with the usual orientation
(Figure 2A). We have F = 6, and all the faces are simple paths of the graph,
therefore the genus is 0. In Figure 2B we changed the orientation of the upper
right vertex. With the new orientation, the three simple faces that were previously
adjacent to the upper right vertex are now joined to one composite face, while the
other three faces are unchanged, hence F = 4, and the surface has genus 1.
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FIG. 2. Changing orientation on the cube.

3. Random regular graphs. In this section we briefly review the pertinent
facts on random k-regular graphs; see Wormald’s paper [59] for an excellent sur-
vey. Given a k-regular graph G and a subset X of V , the expansion of X, c(X),

is defined to be the ratio |∂(X)|/|X|, where ∂(X) = {y ∈ G : distance(y,X) = 1}.
The expansion coefficient of a graph G is an analogue of Cheeger’s constant for
Riemann surfaces and is defined as follows:

c(G) = inf
{
c(X)||X| < 1

2 |G|}.(3.1)

A family of k-regular graphs Xn,k forms a family of C-expanders [34, 46] if there
is a fixed positive constant C such that

lim inf
n→∞ c(Xn,k) ≥ C.(3.2)

The adjacency matrix of G, A(G), is the |G| by |G| matrix, with rows and
columns indexed by vertices of G, such that the x, y entry is 1 if and only if x and
y are adjacent, and is 0 otherwise. For a k-regular graph, the adjacency matrix
is related to the combinatorial Laplacian 
 by A = kI − 
. Using the discrete
Cheeger–Buser inequality, condition (5.1) can be rewritten in terms of the second
largest eigenvalue of the adjacency matrix A(G) as follows:

lim sup
n→∞

λ2(An,k) < k.(3.3)

In 1973, Pinsker [41] observed that a random regular graph is a good expander.
This corresponds to the following fact about random matrices: a random symmetric
matrix of size N with k ones in each row and column and all other entries zero has
its biggest eigenvalue equal to k, but its next eigenvalue will be bounded away
from k by a fixed amount independent of N . The result of Pinsker on expansion
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coefficients of random regular graphs was considerably strengthened by Bollobás
[7], who also introduced a widely used configuration model for random regular
graphs [6]. In this model, random k-regular graphs on N vertices are represented
as the images of so-called configurations. Let W = ⋃n

j=1 Wj be a fixed set of
2m = nd vertices, where |Wj | = d . A configuration F is a partition of W into m

pairs of vertices called edges of F . Clearly there are

N = N(m) =
(

2m

2

)(
2m − 2

2

)
· · ·

(
2
2

)/
m! = (2m)m

2m
(3.4)

configurations. [We write (a)b = a(a − 1) · · · (a − b + 1).]
Let � be a set of configurations; we turn it into a probability space by giving all

configurations the same probability. We now define a map � → Gn,k as follows.
Given a configuration F , let φ(F ) be the graph with vertex set V = 1, . . . , n in
which ij is an edge iff F has a pair with one end in Wi and the other in Wj .
Every G ∈ Gn,d is the image of G = φ(F ) for (d!)n configurations. The number
of configurations containing a given fixed set of l edges is

Nl(m) =
(

2m − 2l

2

)(
2m − 2l − 2

2

)
· · ·

(
2
2

)/
(m − l)!

(3.5)

= N(m)

(2m − 1)(2m − 3) · · · (2m − 2l + 1)
.

Using the configuration model, and in particular (3.5), Bollobás proved the fol-
lowing result:

THEOREM 3.1 ([5]). Let Xi denote the number of closed walks of length i in
G ∈ Gn,k . Then, for i = o(logk−1 n) as n → ∞, random variables Xi converge to

independent Poisson random variables with mean (k−1)i

2i
.

Counting cycles of length greater than logn is substantially more difficult. In
a recent breakthrough work [25], following his earlier work in [24], Friedman
estimates the number of cycles of length O(log2 n) and uses this estimate (among
other things) to prove that k-regular graphs on n vertices Gn,k are asymptotically
Ramanujan: for k fixed and ε > 0, the probability that λ1(Xn,k) ≤ 2

√
k − 1 + ε

tends to 1 as n → ∞.
The bound of 2

√
k − 1 is optimal in view of the result of Alon–Boppana [1, 35].

We also mention an early result of McKay [37], who showed that spectral density
of random k-regular graphs converges to Kesten’s measure, that is, a measure sup-
ported on [−2

√
k − 1,2

√
k − 1 ] and given by

νk = k

2π

√
4(k − 1) − t2

k2 − t2 .(3.6)

We now introduce the permutational model for random regular graphs with
random orientation. Consider a neighborhood of a vertex of a cubic graph. It
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contains three half-edges incident to it. Denote the set of all half-edges by H ;
|H | = 2|E| = 3|V |. Now the cyclic ordering of half-edges at each vertex is spec-
ified by a 3-cycle, and a collection of all cyclic orders on the half-edges yields a
permutation of H consisting of the product of 3-cycles. The structure of the under-
lying graph is given by the way half-edges couple to each other to form an edge;
this is described by a permutation all of whose cycles are of order 2.

In the Figure 3 we have

β = (1,3,5)(2,12,8)(4,7,9)(6,10,11),

α = (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)

and

ϕ = βα = (1,12,6)(2,3,7)(4,5,10)(8,9,11).

Let G ∈ Gn,k be a k-regular graph on n vertices; let O be its orientation, that is,
a cyclic ordering of incident half-edges for each vertex. Associated with a (G,O),
we have a pair of permutations (β,α) in SN, where N = kn, with cycles of β

encoding the information about the vertices with their cyclic orientation and α

encoding the information about the edges. The cycles of ϕ = βα encode the infor-
mation about the faces.

Now the problem of the distribution of the lengths of LHT paths can be given
the following, equivalent, formulation. Denote by Cr the conjugacy class of AN

consisting of the product of N/r disjoint r-cycles. Choose β with uniform prob-
ability on Ck and choose α with uniform probability on C2. Then the distribution

FIG. 3. Permutational representation.
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of LHT paths in a random k-regular graph on n vertices with random orientation
is the same as the distribution of cycles in the permutation βα.

4. Proof of Brooks–Makover conjecture. This section is devoted to the
proof of the following result:

THEOREM 4.1. Let N = kn and let Pr denote the probability measure on AN

supported on Cr ; let U denote the uniform distribution on AN . Then, for k ≥ 3,

‖Pk ∗ P2 − U‖ −→
n→∞ 0.(4.1)

Here

‖f − g‖ = max
A⊆G

|f (A) − g(A)|(4.2)

is a total variation distance.

COROLLARY 4.1. The distribution of LHT paths for random regular graphs
with random orientation converges to Poisson–Dirichlet distribution; in particular,
the Brooks–Makover conjecture is true.

PROOF. Let π denote the cycle type of a permutation; denote by CS(π) the
number of permutations with a given cycle type π in the symmetric group SN

and by CA(π) the number of permutations with cycle type π in the alternating
group AN . As is well known,

CS(π) = CS(a1, . . . , aN)
(4.3)

= N !∏
i i

ai (π)ai(π)!
for π = 1a1 . . .NaN . The cycle index polynomial of SN is given by

pN(x1, . . . , xN) = ∑
1a1+···+NaN=N

CS(a1, . . . , aN)xa1 · · ·xaN .

It is easy to see that the cycle index polynomial of AN , qN(x1, . . . , xN), is given
by

qN(x1, . . . , xN) = pN(x1, . . . , xN) + pN

(
x1,−x2, . . . , (−1)N−1xN

)
.

It follows that

CA(π) =
{

2CS(π), if a2 + · · · + aN is even,
0, otherwise.

(4.4)

Now the condition that a2 + · · · + aN is even, is exactly the condition for a
permutation to be in AN and, subject to this condition, we see that the distribution
of cycles is given by exactly the same formula as in the case of the symmetric
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group. Consequently, the proofs of the asymptotic Poisson–Dirichlet distribution
for normalized cycle lengths in the symmetric group apply also in the case of
alternating group. The proof of the corollary is completed by applying Theorem 4.1
and the triangle inequality. �

We now turn to the proof of Theorem 4.1. The basic tool is the following result,
known as the Diaconis–Shahshahani upper bound lemma; see [19, 20] for a survey
of applications and ramifications:

PROPOSITION 4.1 ([22]). Let G be a finite group and denote by Ĝ the set
of irreducible unitary representations of G. Let P be a probability measure on G

and denote by P̂ (ρ) its Fourier transform at the representation ρ ∈ Ĝ. Let U be
uniform probability measure on G. Then

‖P − U‖2 ≤ 1
4

∑
ρ∈Ĝ

ρ �=id

dim(ρ)tr(P̂ (ρ)P̂ (ρ) ).(4.5)

Here ‖P − U‖ is the total variation distance defined in (4.2) and ‘id’ denotes
the trivial representation.

We apply Proposition 4.1 to the situation where G = AN and P = Pk ∗P2. Since
Pk is a class function, P̂k(ρ) is a scalar matrix given by χρ(Ck)Idim(ρ), where
χρ(Ck) is a character of the alternating group associated with representation ρ

evaluated on the conjugacy class Ck and Idim(ρ) is the identity matrix of dimension
dim(ρ). Now the Fourier transform maps the convolution of functions Pk ∗P2 into
their product P̂k ∗ P2 = P̂kP̂2 and, consequently, (4.5) implies

‖Pk ∗ P2 − U‖2 ≤ 1

4

∑
ρ∈ÂN

ρ �=id

(
χρ(Ck)χ

ρ(C2)

dim(ρ)

)2

.(4.6)

The representation theory of the alternating group AN is closely allied with the
representation theory of the symmetric group SN [30]. Representations of the sym-
metric group SN are labeled by partitions λ � N . A partition λ of a nonnegative
integer N is a sequence (λ1, . . . , λr) ∈ Nr satisfying λ1 ≥ · · · ≥ λr and

∑
λi = N .

We call |λ| = ∑
λi the size of λ. The number of parts of λ is the length of λ, de-

noted l(λ). We write mi = mi(λ) for the number of parts of λ that are equal to i,
so we have λ = 〈1m12m2 . . .〉.

The Young diagram of a partition λ is defined as the set of points (i, j) ∈ Z2 such
that 1 ≤ i ≤ λj ; it is often convenient to replace the set of points above by squares.
The conjugate partition λ′ of λ is defined by the condition that the Young diagram
of λ′ is the transpose of the Young diagram of λ; equivalently mi(λ

′) = λi − λi+1.
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FIG. 4.

A standard Young tableau (SYT) of shape λ is a filling of the boxes of λ with
positive integers 1, . . . ,N such that the rows and the columns are strictly increas-
ing.

In Figure 4 we exhibit a partition λ = (5,5,3,2) = 〈10213152〉 and an SYT T

of shape λ.
We denote by f λ the dimension of representation of SN indexed by λ; it is equal

to the number of standard Young tableaux of shape λ [30]. We denote by χλ(µ)

the value of the character indexed by λ on the conjugacy class Cµ. For example,
for the conjugacy class Ck , the corresponding partition is µ = kn.

The partition λ is called self-associated if its Young diagram is symmetric with
respect to the main diagonal, equivalently if λ = λ′. Now for an irreducible rep-
resentation of SN indexed by λ which is not self-associated, the restriction of λ

to AN is irreducible ([30], page 67). If λ is self-associated then restriction to AN

splits into two irreducible representations, λ+ and λ−. The character values of the
irreducible representations λ+ and λ− can be expressed in terms of character val-
ues of χλ(µ); for the conjugacy class µ not equal to the set of main diagonal hooks

of λ (see the definition of hook below), it is given by χλ(µ)
2 . All irreducible rep-

resentations of AN are obtained from the irreducible representations of SN in this
way. Consequently, we obtain the following lemma:

LEMMA 4.1. Notation being as above, we have

∑
ρ∈ÂN

ρ �=id

(
χρ(Ck)χ

ρ(C2)

dim(ρ)

)2

≤ 2
∑

λ∈ŜN

λ�=〈N〉,〈1N 〉

(
χλ(Ck)χ

λ(C2)

f λ

)2

.(4.7)

PROOF. Indeed, if λ is not a self-associated partition, we have dimAN
(λ) = f λ

and χλ
AN

(µ) = χλ(µ). If λ is a self-associated partition, then, since conjugacy

class Ck is not an array of main diagonal hooks of λ, we have dimAN
(λ±) = f λ

2

and χλ±
AN

(Ck) = χλ(Ck)
2 . This completes the proof of Lemma 4.1. �
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We thus have to analyze the sum

∑
λ�N

λ�=〈N〉,〈1N 〉

(
χλ(Ck)χ

λ(C2)

f λ

)2

.(4.8)

We briefly recall the basic facts pertaining to f λ and χλ(µ), referring to [30] for
more details. Given a diagram λ and a square u = (i, j) ∈ λ, a hook with vertex u

is a set of squares in λ directly to the right or directly below u. We define hook
length (also referred to as hook number) h(u) of λ at u by

h(u) = λi + λ′
j − i − j − 1.

Equivalently, h(u) is the number of squares directly to the right or directly below u,
counting u itself once. For instance, in Figure 5 we display hook lengths for the
partition λ = (5,5,3,2).

THEOREM 4.2 (Hook length formula). Notation being as above, we have

f λ = N !∏
u∈λ h(u)

.(4.9)

Projecting a hook with vertex u onto the boundary (rim) of λ yields a rim hook.
By definition, a rim hook is a connected skew shape with no 2 × 2 square. The
height of a rim hook, ht(R), is defined to be one less than its number of rows.

A rim hook tableau T of shape λ and type µ, where µ = (µ1, . . . ,µn), is an
assignment of positive integers to the squares of λ such that every row and column
is weakly increasing; the integer i appears µi times, and the set of squares occupied
by i forms a rim hook. The height of a rim hook tableau is defined to be the sum
of the heights of rim hooks appearing in T .

In Figure 6, we exhibit a rim hook tableaux of shape λ = (5,5,3,2) and type
µ = (4,4,4,3).

In the particular case when all the parts of µ have size k, the tableaux described
above is referred to as a k-rim hook tableaux; we denote the number of k-rim hook
tableaux by f λ

k . In particular, f λ
1 = f λ is the number of a standard Young tableaux.

FIG. 5.
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FIG. 6.

THEOREM 4.3 (Murnaghan–Nakayma rule). Notation being as above, we
have

χλ(µ) = ∑
T

(−1)ht(T ),(4.10)

where the sum is over all rim hook tableaux of shape λ and type µ.

For µ = kn, all signs (4.10) are the same [30], page 82; consequently,

|χλ(Ck)| = f λ
k .(4.11)

In the proof of Theorem 4.1 we will make crucial use of the following estimate
for f λ

k :

THEOREM 4.4 ([23]). Suppose N = kn. Then

f λ
k ≤ n!kn

(kn)!1/k
(f λ)1/k = O

(
N1/2−1/(2k))(f λ)1/k,(4.12)

where the implied constant depends only on k and not on λ.

Another crucial ingredient in the proof of Theorem 4.1 is furnished by the fol-
lowing proposition:

PROPOSITION 4.2. For any t > 0, we have∑
λ�N

λ1,λ
′
1≤N−m

(f λ)−t = O(N−mt),(4.13)

where the implied constant depends only on m.

We remark that the sums of the form
∑

λ�N(f λ)β for β > 0 have been stud-
ied by Regev [45] and Vershik [56]. In particular, Regev relates the asymptotic
computations of such sums to the matrix integral of the form∫ ∞

−∞
· · ·

∫ ∞
−∞

∏
i<j

|xi − xj |βe−(β/2)(x2
1+···+x2

N) dx1 · · ·dxN,



POISSON–DIRICHLET DISTRIBUTION FOR RANDOM BELYI SURFACES 1841

this being one of the first hints of the deep connection between random matrices
and random permutations; see [40] and references therein for a recent survey.

PROOF OF PROPOSITION 4.2. First, we observe that since f λ = f λ′
, it suf-

fices to prove Proposition 4.2 for the sum∑
λ�N

λ′
1<λ1≤N−m

(f λ)−t .

Now we split this sum into three parts:

�1 = ∑
λ�N

λ′
1≤λ1

3N/4<λ1≤N−m

(f λ)−t ,(4.14)

�2 = ∑
λ�N

λ′
1≤λ1

N/8<λ1≤3N/4

(f λ)−t(4.15)

and

�3 = ∑
λ�N

λ′
1≤λ1

λ1≤N/8

(f λ)−t .(4.16)

To analyze �1, we first note that

f λ ≥
(

λ1
N − λ1

)
if λ1 >

N

2
.(4.17)

Indeed, since the product of hook numbers for a partition of size l is at most l!, the
product of hook numbers in the rows below the top one is at most (N − λ1)!. The
set of hook numbers in the top row consists of distinct numbers not exceeding N .
Since the length of the second row is at most r = N − λ1, the hook numbers in
the rightmost λ1 − r cells of the first row are 1, . . . ,2λ1 − N . The product of the
remaining r hook numbers in the first row is no greater than N(N − 1) . . . (N −
r + 1) = N !

λ1! . Applying the hook length formula (4.9) then completes the proof of
the estimate (4.17).

Continuing to denote r = N − λ1, we can now estimate �1 using (4.17):

�1 ≤ ∑
m≤r≤N/4

p(r)(N−r
r

)t ,(4.18)

where p(r) is the number of partitions of r . Since the number of partitions p(r)

satisfies the following inequality [2] valid for all r ≥ 1:

p(r) ≤ exp
(
π

√
2r/3

)
,(4.19)
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we have

�1 ≤ ∑
m≤r≤N/4

c
√

r

1(N−r
r

)t(4.20)

for absolute constant c1 = eπ
√

2/3. Let ar = 1
(N−r

r )
. We have

ar+1 = (N − r)(r + 1)

(N − 2r)(N − 2r − 1)
ar .

For large N , as r increases from m to N
4 the function (N−r)(r+1)

(N−2r)(N−2r−1)
monotoni-

cally decreases from roughly 1
N

to 3
4 . Consequently,

�1 ≤
(

1

(N − m) . . . (N − 2m)

)t ∑
m≤r≤N/4

c
√

r

1

cr
2

,

where c2 = (4
3)t > 1. Now

∑
m≤r≤N/4

c
√

r

1

cr
2

<
∑

m≤r≤∞
c
√

r

1

cr
2

,

which converges by the Cauchy criterion and, consequently, we obtain the desired
estimate �1 = O(N−mt).

To analyze �2, we first note that

f λ ≥ (17N/16 − λ1)!
(N − λ1)!(N/16 + 16)! if λ1 ≥ N

8
.(4.21)

The proof of this estimate is similar to the proof of the estimate (4.17). The
product of hook numbers outside the first row is at most (N − λ1)!. Suppose there
is a total of v rows. Then

λ2 + · · · + λv <
7N

8
.

Consequently, (
λ2 − N

16

)
+ · · · +

(
λ15 − N

16

)
< 0,

and therefore the rows below the 16th one are of size at most N
16 . That means that

the product of hook numbers in the N
16 leftmost boxes of the first row is no greater

than ( N
16 + 16)!. The remaining hook lengths in the first row constitute λ1 − N

16
distinct numbers less than or equal to N ; their product therefore does not exceed

N !
(N+N/16−λ1)! . Application of the hook length formula (4.9) then completes the
proof of the estimate (4.21).
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Now as λ1 increases from N
4 to 3N

4 , the expression on the right-hand side of
(4.21) decreases; therefore, in the whole range of the sum �2 we have

f λ ≥ (17N/16 − 3N/4)!
(N − 3N/4)!(N/16 + 16)! >

(5N/16)!
(N/4)!(N/16)! ,

and the latter expression is greater than 5N/16 for sufficiently large N . Conse-
quently,

�2 ≤ p(N)5−tN/16 ≤ c
√

N
1 c−N

3 = O(c−N
4 )

for c3 = 5t/16 and some c4 > 1.
Turning now to the sum �3, we note that

f λ ≥
(

4

e

)N

if λ′
1 ≤ λ1 <

N

8
.(4.22)

Indeed, for any box u in λ we have h(u) ≤ λ1 + λ′
1 < N

4 . Consequently, using
the hook length formula (4.9) we obtain

f λ >
N !

(N/4)N
>

(N/e)N

(N/4)N
>

(
4

e

)N

,

proving the estimate (4.22). Consequently,

�3 ≤ c
√

N
1 c−N

5 = O(c−N
6 )

for c5 = (4
e
)t and some c6 > 1.

This completes the proof of Proposition 4.2. �

Now Theorem 4.1 is proved by combining inequality (4.6) with Lemma 4.1,
Theorem 4.4 and Proposition 4.2 with m = 4, together with the values of the re-
maining characters and dimensions, which are computed using Theorem 4.2 and
Theorem 4.3 and summarized in Table 1. We denote by � the set of partitions in
the first column of Table 1.

TABLE 1
Character and dimension values

λ f λ |χλ(C2)| |χλ(C3)| |χλ(C4)| |χλ(Ck)| k ≥ 5

(N − 1,1) N − 1 1 1 1 1

(N − 2,2)
N(N−3)

2
N
2 0 1 1

(N − 2,1,1)
(N−1)(N−2)

2
N
2 + 1 1 1 1

(N − 3,2,1)
N(N−2)(N−4)

3 0 N
3 + 1 0 1

(N − 3,1,1,1)
(N−1)(N−2)(N−3)

3
N
2 + 1 N

3 − 1 1 1

(N − 3,3)
(N)(N−1)(N−5)

6
N
2 + 2 N

3 + 1 0
{

0, if k = 5;
1, if k > 5
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‖Pk ∗ P2 − U‖2 ≤ 1

4

∑
ρ∈ÂN

ρ �=id

(
χρ(Ck)χ

ρ(C2)

dim(ρ)

)2

by inequality (4.6)

≤ 1

2

∑
λ∈ŜN

λ�=〈N〉,〈1N 〉

(
χλ(Ck)χ

λ(C2)

f λ

)2

by Lemma 4.1

= 1

2

∑
λ�N

λ1,λ
′
1≤N−4

(
χλ(Ck)χ

λ(C2)

f λ

)2

+ ∑
λ�N
λ∈�

(
χλ(Ck)χ

λ(C2)

f λ

)2

= O(N3/2−1/k)
∑
λ�N

λ1,λ
′
1≤N−4

(f λ)−(1−2/k) + O(N−2)

by Theorem 4.4 and Table 1

= O(N−5/2+7/k) + O(N−2) by Proposition 4.2;
the first term in the last expression is at most O(N−1/6), since k ≥ 3. This com-
pletes the proof of Theorem 4.1.

5. Concluding remarks.

5.1. Extensive information is available on the distribution of cycles in random
permutations and on Poisson–Dirichlet distribution [3, 42] and we will pursue the
exhaustive exploitation of the consequences of Theorem 4.1 in a subsequent pub-
lication. Here we note just two immediate corollaries which substantially refine
results in [14, 28, 43].

COROLLARY 5.1. Let l(n) denote the number of LHT paths in a random cubic
graph on n vertices with random orientation. Then, as n → ∞,

E(l(n)) = log(3n) + γ + o(1),(5.1)

Var(l(n)) = log(3n) + γ − π2/6 + o(1),(5.2)

where γ = 0.5772 . . . is Euler’s constant. Further, l(n)−logn√
logn

converges to standard

normal distribution N (0,1). From (2.1) we obtain that the genus is distributed as
1 + n

4 − N (logn,
√

logn ).

COROLLARY 5.2. Let L(n) be the length of the largest LHT path. Then

lim
n→∞ E

(
L(n)

n

)
=

∫ ∞
0

exp
(
−x −

∫ ∞
x

(e−y/y) dy

)
dx ∼ 0.6243.(5.3)
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Consequently, the expected area of the largest embedded ball in SC(�,O) con-
verges to 0.62

2π
of the total surface area.

The expression on the right-hand side of (5.3) is due to Shepp and Lloyd [49],
who also computed the limiting distribution of L.

5.2. Recent numerical experiments of Novikoff [39] present convincing ev-
idence in favor of the following conjecture (see [27] for a discussion of related
conjectures and numerical results):

CONJECTURE 5.1 ([39]). The distribution of the second largest eigenvalue of
the adjacency matrix of a random regular graph, suitably rescaled, follows Tracy–
Widom GOE distribution.

Tracy and Widom [53, 54] computed the limiting distribution function for the
largest eigenvalue in the classical Gaussian ensembles; these distribution functions
are expressed in terms of a certain Painlevé II function and are now believed to
describe new universal limit laws for a wide variety of processes arising in mathe-
matical physics and interacting particle systems [55].

A dramatic consequence of Conjecture 5.1 would be that the probability of a
random regular graph being Ramanujan approaches 0.52 as the size of the graph
tends to infinity, corresponding to the skewness in the Tracy–Widom GOE distrib-
ution.

To approach Conjecture 5.1 following the method Sinai and Soshnikov [50]
and Soshnikov [51] in his breakthrough proof of the universality at the edge of
the spectrum in Wigner matrices, one needs precise information for the number of
closed walks of size up to n2/3, where n is the size of the graph. We hope that the
results of this paper will be useful in pursuing such an approach.

Acknowledgments. I started working on this problem while visiting Bob
Brooks at the Technion in August 2001; I would like to thank the Department of
Mathematics at Technion for its hospitality. The interplay between spectral geom-
etry of surfaces and graphs, particularly the issue of the first eigenvalue, has been
a recurrent theme in Bob’s work; his papers, written with deep sympathy for the
reader, and his continuing support and encouragement have been very important
to me. The results presented in this paper were obtained in the spring of 2002 and
I communicated them to Bob a few months before his untimely death in Septem-
ber 2002. I lectured on them in June 2002 at the spectral geometry conference
in Lexington, Kentucky and at the Brooks Memorial Conference in Technion in
December 2003; I would like to thank the organizers of these conferences. After
my talk at the Brooks Memorial Conference, Alex Lubotzky told me that Mar-
tin Liebeck and Aner Shalev independently obtained a result similar to Proposi-
tion 4.2; I would like to thank Aner Shalev for sending me their preprint [33]. I am



1846 A. GAMBURD

grateful to Persi Diaconis, Eran Makover, Nicholas Pippenger, Anatoly Vershik,
Ofer Zeitouni, Bálint Virág and Martin Zerner for interest in this work and for
stimulating discussions.

REFERENCES

[1] ALON, N. (1986). Eigenvalues and expanders. Combinatorica 6 83–96. MR0875835
[2] APOSTOL, T. M. (1976). Introduction to Analytic Number Theory. Springer, New York.

MR0434929
[3] ARRATIA, R., BARBOUR, A. D. and TAVARÉ, S. (2003). Logarithmic Combinatorial Struc-

trues: A Probabilistic Approach. EMS, Zürich. MR2032426
[4] BELYI, G. V. (1979). Galois extensions of a maximal cyclotomic field. Izv. Akad. Nauk SSSR

Ser. Mat. 43 267–276. MR0534593
[5] BOLLOBÁS, B. (1980). A probabilistic proof of the asymptotic formula for the number of

labelled regular graphs. European J. Combin. 1 311–316. MR0595929
[6] BOLLOBÁS, B. (1985). Random Graphs. Academic Press Inc., London. MR0809996
[7] BOLLOBÁS, B. (1988). The isoperimetric number of random regular graphs. European J. Com-

bin. 9 241–244. MR0947025
[8] BROOKS, R. (1986). The spectral geometry of a tower of coverings. J. Differential Geom. 23

97–107. MR0840402
[9] BROOKS, R. (1988). Some remarks on volume and diameter of Riemannian manifolds. J. Dif-

ferential Geom. 27 81–86. MR0918458
[10] BROOKS, R. (1999). Platonic surfaces. Comment. Math. Helv. 74 156–170. MR1677565
[11] BROOKS, R. (2000). Some geometric aspects of the work of Lars Ahlfors. IMCP 14 31–39.

MR1786559
[12] BROOKS, R. and MAKOVER, E. (2001). Riemann surfaces with large first eigenvalue. J. Anal.

Math. 83 243–258. MR1828493
[13] BROOKS, R. and MAKOVER, E. (2001). Belyi surfaces. IMCP 15 37–46. MR1890529
[14] BROOKS, R. and MAKOVER, E. (2004). Random construction of Riemann surfaces. J. Differ-

ential Geom. 68 121–157. MR2152911
[15] BUSER, P. (1978). Cubic graphs and the first eigenvalue of a Riemann surface. Math. Z. 162

87–99. MR0505920
[16] BUSER, P. (1980). On Cheeger’s inequality λ1 ≥ h2/4. Proc. Symp. Pure. Math. 36 29–77.

MR0573428
[17] BUSER, P. (1984). On the bipartition of graphs. Discrete Appl. Math. 9 105–109. MR0754431
[18] BUSER, P. (1992). Geometry and Spectra of Compact Riemann Surfaces. Birkhäuser, Boston.

MR1183224
[19] DIACONIS, P. (1988). Group Representations in Probability and Statistics. IMS, Hayward, CA.

MR0964069
[20] DIACONIS, P. (2000). Random walks on groups: Characters and geometry. In Groups St. An-

drews 2001 in Oxford 1 120–142. Cambridge Univ. Press. MR2051523
[21] DIACONIS, P., MAYER-WOLF, E., ZEITOUNI, O. and ZERNER, M. (2004). The Poisson–

Dirichlet law is the unique invariant distribution for uniform split-merge transformations.
Ann. Probab. 32 915–938. MR2044670

[22] DIACONIS, P. and SHAHSHAHANI, M. (1981). Generating a random permutation with random
transpositions. Z. Wahrsch Verw. Gebiete 57 159–179. MR0626813

[23] FOMIN, S. V. and LULOV, N. (1997). On the number of rim hook tableux. J. Math. Sci. 87
4118–4123. MR1374321

[24] FRIEDMAN, J. (1991). On the second eigenvalue and random walk in random d-regular graphs.
Combinatorica 11 331–362. MR1137767

http://www.ams.org/mathscinet-getitem?mr=0875835
http://www.ams.org/mathscinet-getitem?mr=0434929
http://www.ams.org/mathscinet-getitem?mr=2032426
http://www.ams.org/mathscinet-getitem?mr=0534593
http://www.ams.org/mathscinet-getitem?mr=0595929
http://www.ams.org/mathscinet-getitem?mr=0809996
http://www.ams.org/mathscinet-getitem?mr=0947025
http://www.ams.org/mathscinet-getitem?mr=0840402
http://www.ams.org/mathscinet-getitem?mr=0918458
http://www.ams.org/mathscinet-getitem?mr=1677565
http://www.ams.org/mathscinet-getitem?mr=1786559
http://www.ams.org/mathscinet-getitem?mr=1828493
http://www.ams.org/mathscinet-getitem?mr=1890529
http://www.ams.org/mathscinet-getitem?mr=2152911
http://www.ams.org/mathscinet-getitem?mr=0505920
http://www.ams.org/mathscinet-getitem?mr=0573428
http://www.ams.org/mathscinet-getitem?mr=0754431
http://www.ams.org/mathscinet-getitem?mr=1183224
http://www.ams.org/mathscinet-getitem?mr=0964069
http://www.ams.org/mathscinet-getitem?mr=2051523
http://www.ams.org/mathscinet-getitem?mr=2044670
http://www.ams.org/mathscinet-getitem?mr=0626813
http://www.ams.org/mathscinet-getitem?mr=1374321
http://www.ams.org/mathscinet-getitem?mr=1137767


POISSON–DIRICHLET DISTRIBUTION FOR RANDOM BELYI SURFACES 1847

[25] FRIEDMAN, J. (2006). A proof of Alon’s second eigenvalue conjecture. Memoirs of the A.M.S.
To appear.

[26] GAMBURD, A. (2002). Spectral gap for infinite index “congruence” subgroups of SL2(Z).
Israel J. Math. 127 157–200. MR1900698

[27] GAMBURD, A. (2004). Expander graphs, random matrices, and quantum chaos. In Random
Walks and Geometry (V. A. Kaimanovich, ed.) 109–141. de Gruyter, Berlin. MR2087781

[28] GAMBURD, A. and MAKOVER, E. (2002). On the genus of a random Riemann surface. Con-
temp. Math. 311 133–140. MR1940168

[29] HUXLEY, M. (1986). Eigenvalues of congruence subgroups. Contemp. Math. 53 341–349.
[30] JAMES, G. and KERBER, A. (1981). The Representation Theory of the Symmetric Group.

Addison–Wesley, Reading, MA. MR0644144
[31] JONES, G. and SINGERMAN, S. (1996). Belyi functions, hypermaps and Galois groups. Bull.

London Math. Soc. 28 561–590. MR1405488
[32] KIM, H. and SARNAK, P. (2003). Refined estimates towards the Ramanujan and Selberg con-

jectures. J. Amer. Statist. Assoc. 16 139–183. MR1937203
[33] LIEBECK, M. E. and SHALEV, A. (2004). Fuchsian groups, coverings of Riemann sur-

faces, subgroups growth, random quotients and random walks. J. Algebra 276 552–601.
MR2058457

[34] LUBOTZKY, A. (1994). Discrete Groups, Expanding Graphs and Invariant Measures.
Birkhäuser, Basel. MR1308046

[35] LUBOTZKY, A., PHILLIPS, R. and SARNAK, P. (1988). Ramanujan graphs. Combinatorica 8
261–277. MR0963118

[36] LUO, W., RUDNICK, Z. and SARNAK, P. (1995). On Selberg’s eigenvalue conjecture. Geom.
Funct. Anal. 5 387–401. MR1334872

[37] MCKAY, B. (1981). The expected eigenvalue distribution of a large regular graph. Linear Al-
gebra Appl. 40 203–216. MR0629617

[38] MULASE, M. and PENKAVA, M. (1998). Ribbon graphs, quadratic differentials on Riemann
surfaces, and algebraic curves defined over Q̄. Asian J. Math. 2 875–919. MR1734132

[39] NOVIKOFF, T. Asymptotic behavior of the random 3-regular bipartite graph. Preprint.
[40] OKOUNKOV, A. (2002). Symmetric functions and random partitions. In Symmetric Functions

2001: Surveys of Developments and Perspectives (S. Fomin, ed.). Kluwer, Dordrecht.
MR2059364

[41] PINSKER, M. (1973). On the complexity of concentrator. 7th Annual Teletrafic Conference,
318/1-318/4, Stockholm.

[42] PITMAN, J. Combinatorial stochastic processes. Technical Report 621, Dept. Statistics, U.C.
Berkeley. Available at http://stat-www.berkeley.edu/users/pitman/bibliog.html.

[43] PIPPENGER, N. and SCHLEICH, K. (2006). Topological characteristics of random triangulated
surfaces. Random Structures Algorithms 28 247–288. MR2213112

[44] RANDOL, B. (1974). Small eigenvalues of the Laplace operator on compact Riemann surfaces.
Bull. Amer. Math. Soc. 80 996–1008. MR0400316

[45] REGEV, A. (1981). Asymptotic values for degrees associated with strips of Young diagrams.
Adv. in Math. 41 115–136. MR0625890

[46] SARNAK, P. (2004). What is . . . an expander? Notices Amer. Math. Soc. 51 762–763.
MR2072849

[47] SARNAK, P. and XUE, X. (1991). Bounds for multiplicities of automorphic representations.
Duke Math. J. 64 207–227. MR1131400

[48] SELBERG, A. (1965). On the estimation of Fourier coefficients of modular forms. Proc. Symp.
Pure Math. 8 1–15. MR0182610

[49] SHEPP, L. A. and LLOYD, S. P. (1966). Ordered cycle lengths in a random permutation. Trans.
Amer. Math. Soc. 121 340–357. MR0195117

http://www.ams.org/mathscinet-getitem?mr=1900698
http://www.ams.org/mathscinet-getitem?mr=2087781
http://www.ams.org/mathscinet-getitem?mr=1940168
http://www.ams.org/mathscinet-getitem?mr=0644144
http://www.ams.org/mathscinet-getitem?mr=1405488
http://www.ams.org/mathscinet-getitem?mr=1937203
http://www.ams.org/mathscinet-getitem?mr=2058457
http://www.ams.org/mathscinet-getitem?mr=1308046
http://www.ams.org/mathscinet-getitem?mr=0963118
http://www.ams.org/mathscinet-getitem?mr=1334872
http://www.ams.org/mathscinet-getitem?mr=0629617
http://www.ams.org/mathscinet-getitem?mr=1734132
http://www.ams.org/mathscinet-getitem?mr=2059364
http://stat-www.berkeley.edu/users/pitman/bibliog.html
http://www.ams.org/mathscinet-getitem?mr=2213112
http://www.ams.org/mathscinet-getitem?mr=0400316
http://www.ams.org/mathscinet-getitem?mr=0625890
http://www.ams.org/mathscinet-getitem?mr=2072849
http://www.ams.org/mathscinet-getitem?mr=1131400
http://www.ams.org/mathscinet-getitem?mr=0182610
http://www.ams.org/mathscinet-getitem?mr=0195117


1848 A. GAMBURD

[50] SINAI, YA. and SOSHNIKOV, A. (1998). A refinement of Wigner’s semicircle law in a neigh-
borhood of the spectrum edge for random symmetric matrices. Funct. Anal. Appl. 32
114–131. MR1647832

[51] SOSHNIKOV, A. (1999). Universality at the edge of the spectrum in Wigner random matrices.
Comm. Math. Phys. 207 697–733. MR1727234

[52] TSILEVICH, N. V. (2000). Stationary random partitions of a natural series. Theory Probab.
Appl. 44 60–74. MR1751188

[53] TRACY, C. A. and WIDOM, H. (1994). Level-spacing distribution and the Airy kernel. Comm.
Math. Phys. 159 151–174. MR1257246

[54] TRACY, C. A. and WIDOM, H. (1996). On orthogonal and symplectic matrix ensembles.
Comm. Math. Phys. 177 727–754. MR1385083

[55] TRACY, C. A. and WIDOM, H. (2002). Distribution functions for largest eigenvalues and their
applications. In Proceedings of the International Congress of Mathematicians, Beijing I
(L. I. Tatsien, ed.) 587–596. Higher Education Press, Beijing. MR1989209

[56] VERSHIK, A. M. (1989). A partition function connected with Young diagrams. J. Soviet Math.
47 2379–2386. MR0947326

[57] VERSHIK, A. M. and SHMIDT, A. A. (1977). Limit measures that arise in the asymptotic
theory of symmetric groups. I. Teor. Verojatnost. i Primenen. 22 72–88. MR0448476

[58] VERSHIK, A. M. and SHMIDT, A. A. (1978). Limit measures that arise in the asymptotic
theory of symmetric groups. II. Teor. Verojatnost. i Primenen. 23 42–54. MR0483019

[59] WORMALD, N. C. (1999). Models of random regular graphs. In Survey in Combinatorics 1999
239–298. Cambridge Univ. Press. MR1725006

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CALIFORNIA

1156 HIGH STREET

SANTA CRUZ, CALIFORNIA 95064
USA
E-MAIL: agamburd@ucsc.edu

http://www.ams.org/mathscinet-getitem?mr=1647832
http://www.ams.org/mathscinet-getitem?mr=1727234
http://www.ams.org/mathscinet-getitem?mr=1751188
http://www.ams.org/mathscinet-getitem?mr=1257246
http://www.ams.org/mathscinet-getitem?mr=1385083
http://www.ams.org/mathscinet-getitem?mr=1989209
http://www.ams.org/mathscinet-getitem?mr=0947326
http://www.ams.org/mathscinet-getitem?mr=0448476
http://www.ams.org/mathscinet-getitem?mr=0483019
http://www.ams.org/mathscinet-getitem?mr=1725006
mailto:agamburd@ucsc.edu

	Introduction
	Belyi surfaces
	Random regular graphs
	Proof of Brooks-Makover conjecture
	Concluding remarks
	Acknowledgments
	References
	Author's Addresses

