HOW MANY ENTRIES OF A TYPICAL ORTHOGONAL MATRIX CAN BE APPROXIMATED BY INDEPENDENT NORMALS? ${ }^{1}$

By Tiefeng Jiang

University of Minnesota
We solve an open problem of Diaconis that asks what are the largest orders of p_{n} and q_{n} such that Z_{n}, the $p_{n} \times q_{n}$ upper left block of a random matrix Γ_{n} which is uniformly distributed on the orthogonal group $O(n)$, can be approximated by independent standard normals? This problem is solved by two different approximation methods.

First, we show that the variation distance between the joint distribution of entries of Z_{n} and that of $p_{n} q_{n}$ independent standard normals goes to zero provided $p_{n}=o(\sqrt{n})$ and $q_{n}=o(\sqrt{n})$. We also show that the above variation distance does not go to zero if $p_{n}=[x \sqrt{n}]$ and $q_{n}=[y \sqrt{n}]$ for any positive numbers x and y. This says that the largest orders of p_{n} and q_{n} are $o\left(n^{1 / 2}\right)$ in the sense of the above approximation.

Second, suppose $\boldsymbol{\Gamma}_{n}=\left(\gamma_{i j}\right)_{n \times n}$ is generated by performing the GramSchmidt algorithm on the columns of $\mathbf{Y}_{n}=\left(y_{i j}\right)_{n \times n}$, where $\left\{y_{i j} ; 1 \leq i, j \leq\right.$ $n\}$ are i.i.d. standard normals. We show that $\varepsilon_{n}(m):=\max _{1 \leq i \leq n, 1 \leq j \leq m} \mid \sqrt{n}$. $\gamma_{i j}-y_{i j} \mid$ goes to zero in probability as long as $m=m_{n}=o(n / \log n)$. We also prove that $\varepsilon_{n}\left(m_{n}\right) \rightarrow 2 \sqrt{\alpha}$ in probability when $m_{n}=[n \alpha / \log n]$ for any $\alpha>0$. This says that $m_{n}=o(n / \log n)$ is the largest order such that the entries of the first m_{n} columns of $\boldsymbol{\Gamma}_{n}$ can be approximated simultaneously by independent standard normals.

1. Introduction. Let $\boldsymbol{\Gamma}_{n}=\left(\gamma_{i j}\right)$ be a random orthogonal matrix which is uniformly distributed on the orthogonal group $O(n)$. Let Z_{n} be the $p_{n} \times q_{n}$ upper left block of Γ_{n}, where p_{n} and q_{n} are two positive integers. The open problem in Section 6.3 from [10] is as follows: what are the largest orders of p_{n} and q_{n} such that the variation distance between the joint distribution of the entries of Z_{n} and that of $p_{n} q_{n}$ independent standard normals goes to zero as $n \rightarrow \infty$. We answer this question here. Before stating the results formally, let us first review some history of this problem.

In studying "Equivalence of Ensembles" in statistical mechanics, Borel [5] showed that

$$
\begin{equation*}
P\left(\sqrt{n} \gamma_{11} \leq x\right) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t \tag{1.1}
\end{equation*}
$$

[^0]as $n \rightarrow \infty$ for any real number x. For more information about this formula, one is referred to [27], page 197 in [26], page 412 in [23], page 342 in [4], [11] and [24, 25].

Similar results for fixed m are derived through Brownian motion by Gallardo [16] and Yor [32]. Let $\boldsymbol{\gamma}_{1}$ be the first column of $\boldsymbol{\Gamma}_{n}$. Stam [30] proved that d_{m}, the variation distance between the distribution of the first m coordinates of γ_{1} and the distribution of m independent standard normals, goes to zero provided $m=o(\sqrt{n})$ as $n \rightarrow \infty$. He applied this result to a geometric probability problem.

In studying a finite representation theorem of the de Finetti type, Diaconis and Freedman [11] showed that the above d_{m} goes to zero as $n \rightarrow \infty$ provided $m=$ $o(n)$. On the other hand, in studying a de Finetti-type theorem on a finite sequence of orthogonal invariant random vectors, Diaconis, Eaton and Lauritzen [14] proved the following.

THEOREM A.1. For each $n \geq 1$, let Z_{n} be the $p_{n} \times q_{n}$ upper left block of a random matrix $\boldsymbol{\Gamma}_{n}$ which is uniformly distributed on the orthogonal group $O(n)$. Let also δ_{n} be the variation distance between the distribution of the $p_{n} q_{n}$ entries of Z_{n} and the joint distribution of $p_{n} q_{n}$ independent standard normals. Then $\delta_{n} \rightarrow 0$ if $p_{n}=o\left(n^{\alpha}\right)$ and $q_{n}=o\left(n^{\alpha}\right)$ for $\alpha=1 / 3$.

Since the publication of [14], there have been various speculations on the maximum value α to make the variation distance go to zero. Here are three major ones: (a) $p_{n}=O\left(n^{1 / 3}\right)$ and $q_{n}=O\left(n^{1 / 3}\right)$; (b) $p_{n}=o\left(n^{1 / 2}\right)$ and $q_{n}=o\left(n^{1 / 2}\right)$; (c) $p_{n}=o(n)$ and $q_{n}=o(n)$. Recently Collins [7] showed that the variation distance in Theorem A. 1 goes to zero when $p_{n}=O\left(n^{1 / 3}\right)$ and $q_{n}=O\left(n^{1 / 3}\right)$.

Attempts to improve on the orders of p_{n} and q_{n} are partly motivated by the following reasons. First, it is well known that the above Γ_{n} is close to Γ_{n}^{\prime}, an $n \times n$ matrix with independent normals as entries. Mathematically, it is interesting to know in what sense they are close. Diaconis and Shahshahani [12], Diaconis and Evans [13] and Rains [28] characterized relationships between the traces of $\boldsymbol{\Gamma}_{n}$ and those of $\boldsymbol{\Gamma}_{n}^{\prime}$ in terms of expectations; Johansson [20] obtained the speed of convergence of traces of Γ_{n} to a normal random variable; D'Aristotile, Diaconis and Newman [8] showed that the linear combination of entries of $\boldsymbol{\Gamma}_{n}$ also converges weakly to a normal distribution. Second, improving the orders of p_{n} and q_{n} has a lot of applications; see [14] and [19]. In the last paper Jiang also proved the following coupling result.

THEOREM A.2. For each $n \geq 2$, there exists matrices $\boldsymbol{\Gamma}_{n}=\left(\gamma_{i j}\right)_{1 \leq i, j \leq n}$ and $\Gamma_{n}^{\prime}=\left(\gamma_{i j}^{\prime}\right)_{1 \leq i, j \leq n}$ whose $2 n^{2}$ elements are random variables defined on the same probability space such that:
(i) the law of $\boldsymbol{\Gamma}_{n}$ is the normalized Haar measure on the orthogonal group O_{n};
(ii) $\left\{\gamma_{i j}^{\prime} ; 1 \leq i, j \leq n\right\}$ are independent standard normals;
(iii) set $\varepsilon_{n}(m)=\max _{1 \leq i \leq n, 1 \leq j \leq m}\left|\sqrt{n} \gamma_{i j}-\gamma_{i j}^{\prime}\right|$ for $m=1,2, \ldots, n$. Then

$$
\varepsilon_{n}\left(m_{n}\right) \rightarrow 0 \quad \text { in probability }
$$

as $n \rightarrow \infty$ provided $m_{n}=o\left(n /(\log n)^{2}\right)$.
It says that $n^{2} /(\log n)^{2}$ elements of $\boldsymbol{\Gamma}_{n}$ can be approximated by the corresponding elements of Γ_{n}^{\prime} in terms of convergence in probability, which is weaker than the convergence in variation norm.

This theorem highlights the interest in improving the orders of p_{n} and q_{n}. It seems to suggest that Theorem A. 1 holds for much larger p_{n} and q_{n}. This is why people conjectured that the maximum orders of p_{n} and q_{n} are $o(n)$. At the same time it would be interesting to know the largest order of m_{n} such that Theorem A. 2 holds.

In this paper we prove that the maximum value of α as in Theorem A. 1 is actually $1 / 2$, and the largest order of m_{n} such that $\varepsilon_{n}\left(m_{n}\right) \rightarrow 0$ in probability is $o(n / \log n)$, where $\varepsilon_{n}\left(m_{n}\right)$ is as in Theorem A.2. To state our results formally, let us recall the definition of variation distance first.

Let μ and ν be two probability measures on $\left(\mathbb{R}^{m}, \mathscr{B}\right)$, where \mathscr{B} is the Borel σ-algebra. The variation distance between μ and ν, denoted by $\|\mu-\nu\|$, is equal to

$$
\begin{equation*}
\|\mu-v\|=2 \cdot \sup _{A \in \mathcal{B}}|\mu(A)-v(A)|=\int_{\mathbb{R}^{m}}|f(x)-g(x)| d x_{1} d x_{2} \cdots d x_{m} \tag{1.2}
\end{equation*}
$$

provided μ and v have density functions $f(x)$ and $g(x)$ with respect to the Lebsegue measure, respectively. For each $n \geq 1$, suppose that Z_{n} is the $p_{n} \times q_{n}$ upper left block of a random matrix Γ_{n} which is uniformly distributed on the orthogonal group $O(n)$. Let G_{n} be the joint distribution of $p_{n} q_{n}$ independent standard normals. We use $\mathcal{L}\left(\sqrt{n} Z_{n}\right)$ to represent the joint probability distribution of the $p_{n} q_{n}$ random entries of $\sqrt{n} Z_{n}$. It is not difficult to see that $\left\|\mathcal{L}\left(\sqrt{n} Z_{n}\right)-G_{n}\right\|$ is nondecreasing in p_{n} and q_{n}, respectively.

THEOREM 1. If $p_{n}=o(\sqrt{n})$ and $q_{n}=o(\sqrt{n})$ as $n \rightarrow \infty$, then

$$
\lim _{n \rightarrow \infty}\left\|\mathscr{L}\left(\sqrt{n} Z_{n}\right)-G_{n}\right\|=0
$$

As usual, the notation $[a]$ stands for the integer part of a positive integer a.
THEOREM 2. Let $x>0$ and $y>0$ be two numbers and $p_{n}=\left[x n^{1 / 2}\right]$ and $q_{n}=\left[y n^{1 / 2}\right]$. Then

$$
\liminf _{n \rightarrow \infty}\left\|\mathscr{L}\left(\sqrt{n} Z_{n}\right)-G_{n}\right\| \geq \phi(x, y)>0
$$

where $\phi(x, y):=E\left|\exp \left(-\frac{x^{2} y^{2}}{8}+\frac{x y}{4} \xi\right)-1\right| \in(0,1)$ and ξ is a standard normal.

One can see that $\phi(0,0)=0$, which roughly reflects the flavor of Theorem 1. This is rigorously true if the conclusion in Theorem 2 is replaced by $\lim _{n \rightarrow \infty}\left\|\mathcal{L}\left(\sqrt{n} Z_{n}\right)-G_{n}\right\|=\phi(x, y)$. A further analysis shows that the inequality in the theorem is actually strict.

Why are the maximum orders of p_{n} and q_{n} equal to $o\left(n^{1 / 2}\right)$ as shown in Theorems 1 and 2?

There are two reasons. First, Diaconis and Freedman [11] showed that the variation distance between the distribution of the $o(n)$ entries of the first column of $\boldsymbol{\Gamma}_{n}$ and that of independent normals goes to zero. We know that Z_{n}, a p_{n} by q_{n} submatrix of $\boldsymbol{\Gamma}_{n}$, has $p_{n} q_{n}$ elements. One can guess that the number of approximated entries are fixed (loosely speaking). So the largest α in $p_{n}=o\left(n^{\alpha}\right)$ and $q_{n}=o\left(n^{\alpha}\right)$ must be $1 / 2$. Second, we can see this mathematically. Let $f_{n}(z)$ and $g_{n}(z)$ be the density functions of $\sqrt{n} Z_{n}$ and G_{n}, respectively. By (1.2),

$$
\begin{equation*}
\left\|\mathcal{L}\left(\sqrt{n} Z_{n}\right)-G_{n}\right\|=\int\left|\frac{f_{n}(z)}{g_{n}(z)}-1\right| g_{n}(z) d z=E\left|\frac{f_{n}\left(X_{n}\right)}{g_{n}\left(X_{n}\right)}-1\right|, \tag{1.3}
\end{equation*}
$$

where the integration region in the first integral is $\mathbb{R}^{p_{n} q_{n}}$, and the $p_{n} q_{n}$ entries of the matrix X_{n} are independent standard normals. The term $f\left(X_{n}\right) / g\left(X_{n}\right)$, as will be shown later, converges weakly to a lognormal distribution when both p_{n} and q_{n} are of order $n^{1 / 2} ; f\left(X_{n}\right) / g\left(X_{n}\right)$ converges to one when both p_{n} and q_{n} are of order $o\left(n^{1 / 2}\right)$.

Now we consider the approximation method as in Theorem A.2.
Let $\mathbf{Y}_{n}=\left(y_{i j}\right)_{1 \leq i, j \leq n}$, where $y_{i j}$'s are independent standard normals. Let also $\boldsymbol{\Gamma}_{n}=\left(\gamma_{i j}\right)_{1 \leq i, j \leq n}$ be the orthogonal matrix obtained from performing the GramSchmidt procedure on the columns of \mathbf{Y}_{n} (the procedure is briefly reviewed at the beginning of Section 3). Define

$$
\varepsilon_{n}(m)=\max _{1 \leq i \leq n, 1 \leq j \leq m}\left|\sqrt{n} \gamma_{i j}-y_{i j}\right| .
$$

We have the following theorem.
THEOREM 3. Let $\left\{m_{n}<n ; n \geq 1\right\}$ be a sequence of positive integers. Then:
(i) the matrix $\boldsymbol{\Gamma}_{n}$ is Haar invariant on the orthogonal group $O(n)$;
(ii) $\varepsilon_{n}\left(m_{n}\right) \rightarrow 0$ in probability, provided $m_{n}=o(n / \log n)$ as $n \rightarrow \infty$;
(iii) for any $\alpha>0$, we have that $\varepsilon_{n}([n \alpha / \log n]) \rightarrow 2 \sqrt{\alpha}$ in probability as $n \rightarrow \infty$.

This theorem tells us that the maximum order of m_{n} such that $\varepsilon_{n}\left(m_{n}\right) \rightarrow 0$ in probability is that $m_{n}=o(n / \log n)$, where the typical orthogonal matrix Γ_{n} is obtained through performing the Gram-Schmidt procedure for a matrix whose elements are independent standard normals.

We prove Theorems 1 and 2 in Section 2. Theorem 3 is proved in Section 3. Technical lemmas used in Sections 2 and 3 are given in Section 4. At last, a couple of known results needed for the proof of Theorem 3 are listed in the Appendix.
2. The proofs of Theorems 1 and 2. First we list some lemmas needed for the proofs of Theorems 1 and 2. The proofs of these lemmas are listed in Section 4.1.

Lemma 2.1. Let $\Gamma(x), x>0$ be the standard Gamma function. Then:
(i) $\quad 1-\frac{1}{6 n}<\frac{\Gamma(n+(1 / 2))}{\sqrt{n} \Gamma(n)}<1 \quad$ for all $n \geq 1$;
(ii) $\left|\frac{\Gamma((n+1) / 2)}{\sqrt{n / 2} \Gamma(n / 2)}-1\right|<\frac{3}{5 n} \quad$ for all $n \geq 1$.

Lemma 2.2. Let $f(u, v)$ be a real-valued function. Suppose the three secondorder derivatives of f exist, bounded below and above by $-M$ and M, respectively, over $[a, b] \times[c, d]$. Then

$$
\begin{aligned}
\frac{1}{n^{2}} \sum_{j=j_{1}}^{j_{2}} \sum_{i=i_{1}}^{i_{2}} f\left(\frac{i}{n}, \frac{j}{n}\right)= & \int_{j_{1} / n}^{\left(j_{2}+1\right) / n} \int_{i_{1} / n}^{\left(i_{2}+1\right) / n} f(x, y) d x d y \\
& -\frac{1}{2 n^{3}} \sum_{j=j_{1}}^{j_{2}} \sum_{i=i_{1}}^{i_{2}} f_{x}^{\prime}\left(\frac{i}{n}, \frac{j}{n}\right) \\
& -\frac{1}{2 n^{3}} \sum_{j=j_{1}}^{j_{2}} \sum_{i=i_{1}}^{i_{2}} f_{y}^{\prime}\left(\frac{i}{n}, \frac{j}{n}\right)+\varepsilon
\end{aligned}
$$

where $|\varepsilon| \leq\left(i_{2}-i_{1}\right)\left(j_{2}-j_{1}\right) M / n^{4}$ for any i_{1}, i_{2}, j_{1} and j_{2} such that $n a \leq i_{1}<$ $i_{2} \leq n b-1$ and $n c \leq j_{1}<j_{2} \leq n d-1$.

We will use the following setting a couple of times.
Let $X=\left(x_{i j}\right)$ be a p by q matrix, where $\left\{x_{i j}, 1 \leq i \leq p ; 1 \leq j \leq q\right\}$ are
i.i.d. standard normals. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{q}$ be the eigenvalues of $X^{\prime} X$.

A sequence $\left\{X_{n} ; n \geq 1\right\}$ will be studied, where X_{n} is of the above setting for each n. We still use notation X for X_{n} sometimes when there is no confusion.

The next lemma is a standard result when using the moment method to show weak convergence of certain functions of eigenvalues of matrices with independent and identically distributed random variables as entries. It is can be seen from, for example, (2.15) and (2.16) in [3].

LEMMA 2.3. Let $\left\{p_{n} ; n \geq 1\right\}$ and $\left\{q_{n} ; n \geq 1\right\}$ be two sequences of positive integers such that $p_{n} \rightarrow \infty$ and $p_{n} / q_{n} \rightarrow \eta \in(0, \infty)$. For each n, assume the setting in (2.1) with $p=p_{n}$ and $q=q_{n}$. The following two statements hold. For each integer $k \geq 1$,
(i) $E\left(\operatorname{tr}\left(X_{n}^{\prime} X_{n}\right)^{k}\right) \sim p_{n}^{k} q_{n} \sum_{r=0}^{k-1} \frac{1}{r+1}\left(\frac{q_{n}}{p_{n}}\right)^{r}\binom{k}{r}\binom{k-1}{r}$
as $n \rightarrow \infty$.

$$
\text { (ii) } \frac{\operatorname{tr}\left(\left(X_{n}^{\prime} X_{n}\right)^{k}\right)}{q_{n}^{k+1}} \rightarrow \sum_{r=0}^{k-1} \frac{\eta^{k-r}}{r+1}\binom{k}{r}\binom{k-1}{r}
$$

in probability as $n \rightarrow \infty$.
LEMMA 2.4. Let $\varepsilon \in(0,1)$. Let $\left\{p_{n} ; n \geq 1\right\}$ and $\left\{q_{n} ; n \geq 1\right\}$ be two sequences of positive integers such that $\varepsilon \leq p_{n} / q_{n} \leq \varepsilon^{-1}$ for all $n \geq 1$. For each n, assume the setting in (2.1) with $p=p_{n}$ and $q=q_{n}$. Assume $p_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Then:
(i) $\operatorname{Var}\left(\operatorname{tr}\left(\left(X_{n}^{\prime} X_{n}\right)^{2}\right)\right) \sim p_{n}^{2} q_{n}^{2}+8 p_{n} q_{n}\left(p_{n}+q_{n}\right)^{2}$ as $n \rightarrow \infty$;
(ii) $\operatorname{Cov}\left(\operatorname{tr}\left(X_{n}^{\prime} X_{n}\right), \operatorname{tr}\left(\left(X_{n}^{\prime} X_{n}\right)^{2}\right)\right) \sim 4 p_{n} q_{n}\left(p_{n}+q_{n}\right)$ as $n \rightarrow \infty$.

The following lemma is Proposition 2.1 from [14] or Proposition 7.3 from [15]. This is the starting point of the proofs of Theorems 1 and 2.

LEMMA 2.5. Let U be an n by n random matrix which is uniformly distributed on the orthogonal group O_{n} and let Z be the upper left $p \times q$ corner block of U. If $p+q \leq n$ and $q \leq p$, then the joint density function of entries of Z is

$$
\begin{equation*}
f(z)=(\sqrt{2 \pi})^{-p q} \frac{\omega(n-p, q)}{\omega(n, q)}\left\{\operatorname{det}\left(I_{q}-z^{\prime} z\right)^{(n-p-q-1) / 2}\right\} I_{0}\left(z^{\prime} z\right) \tag{2.2}
\end{equation*}
$$

where $I_{0}\left(z^{\prime} z\right)$ is the indicator function of the set that all q eigenvalues of $z^{\prime} z$ are in $(0,1)$, and $\omega(\cdot, \cdot)$ is the Wishart constant defined by

$$
\frac{1}{\omega(r, s)}=\pi^{s(s-1) / 4} 2^{r s / 2} \prod_{j=1}^{s} \Gamma\left(\frac{r-j+1}{2}\right)
$$

Here s is a positive integer and r is a real number, $r>s-1$. When $p \leq q$, the density of Z is obtained by interchanging p and q in the above Wishart constant.

To simplify notation, when there is no confusion, we write p for p_{n} and q for q_{n}.
Let $g(z)$ be the joint density function of entries of $X=\left(x_{i j}\right)_{p \times q}$, where $x_{i j}$'s are independent standard normals. So, $g(z)=(2 \pi)^{-p q / 2} \exp \left(-\operatorname{tr}\left(z^{\prime} z\right) / 2\right)$, where z is a p by q matrix. We need to understand the ratio $f(z) / g(z)$ in later proofs. Assuming the $p q$ entries of z are independent standard normals, then $f(z) / g(z)$ can be written as a product of a constant part and a random part. They are analyzed in the following two lemmas.

LEMMA 2.6. Given $x>0$ and $y>0$, let $p=p_{n}=\left[x n^{1 / 2}\right]$ and $q=q_{n}=$ [yn $\left.{ }^{1 / 2}\right]$. Set

$$
K_{n}=\left(\frac{2}{n}\right)^{p q / 2} \prod_{j=1}^{q} \frac{\Gamma((n-j+1) / 2)}{\Gamma((n-p-j+1) / 2)} .
$$

Then

$$
\begin{equation*}
K_{n}=\exp \left\{-\left(\frac{p^{2} q+p q^{2}}{4 n}+\frac{x y}{4}+\frac{2 x^{3} y+2 x y^{3}+3 x^{2} y^{2}}{24}\right)+o(1)\right\} \tag{2.3}
\end{equation*}
$$

as n is sufficiently large.
Proof. Suppose $p=2 k$. Using the fact that $\Gamma(x+1)=x \Gamma(x)$, we have that

$$
\begin{align*}
K_{n} & =\left(\frac{2}{n}\right)^{p q / 2} \prod_{j=1}^{q}\left\{\left(\frac{2}{n}\right)^{-p / 2} \prod_{i=1}^{k}\left(1-\frac{2 i+j-1}{n}\right)\right\} \tag{2.4}\\
& =\prod_{j=1}^{q} \prod_{i=1}^{k}\left(1-\frac{2 i+j-1}{n}\right):=e^{B_{n}},
\end{align*}
$$

where

$$
B_{n}:=\sum_{j=0}^{q-1} \sum_{i=1}^{k} \log \left(1-\frac{2 i+j}{n}\right)
$$

Let $f(s, t)=\log (1-2 s-t)$ with $2 s+t<1$. Then $f_{s}^{\prime}(s, t)=-2 /(1-2 s-t)=$ $-2+O\left(n^{-1 / 2}\right), f_{t}^{\prime}(s, t)=-1 /(1-2 s-t)=-1+O\left(n^{-1 / 2}\right)$ and

$$
\left|\frac{\partial^{2} f}{\partial s^{2}}\right|=\left|\frac{-4}{(1-2 s-t)^{2}}\right| \leq 5, \quad\left|\frac{\partial^{2} f}{\partial t^{2}}\right|=\left|\frac{-1}{(1-2 s-t)^{2}}\right| \leq 5
$$

and

$$
\left|\frac{\partial^{2} f}{\partial s \partial t}\right|=\left|\frac{-2}{(1-2 s-t)^{2}}\right| \leq 5
$$

for all $(s, t) \in[0, p / n] \times[0, q / n]$, as n is sufficiently large. By Lemma 2.2,

$$
B_{n}=n^{2} \int_{0}^{q / n} \int_{1 / n}^{(k+1) / n} \log (1-2 s-t) d s d t+\frac{3 k q}{2 n}+O\left(\frac{1}{\sqrt{n}}\right)
$$

$$
\begin{align*}
= & \frac{n^{2}}{2} \int_{0}^{v} \int_{0}^{u} \log (1+s+t) d s d t \tag{2.5}\\
& -\frac{n^{2}}{2} \int_{0}^{v} \int_{0}^{-2 / n} \log (1+s+t) d s d t+\frac{3 x y}{4}+O\left(\frac{1}{\sqrt{n}}\right)
\end{align*}
$$

as n is sufficiently large, where $u=-(p+2) / n, v=-q / n$. We now estimate the above integral. By Taylor's expansion, there exists $\delta>0$ such that

$$
\left|\log (1+s+t)-\left((s+t)-\frac{(s+t)^{2}}{2}\right)\right| \leq(s+t)^{3}
$$

for all s and t such that $s+t \in(0, \delta)$. Thus,

$$
\begin{align*}
& \mid \int_{0}^{v} \int_{0}^{u} \log (1+s+t) d s d t \\
& \left.-\left[\int_{0}^{v} \int_{0}^{u}(s+t) d s d t-\frac{1}{2} \int_{0}^{v} \int_{0}^{u}(s+t)^{2} d s d t\right] \right\rvert\, \tag{2.6}\\
& \quad \leq \int_{0}^{v} \int_{0}^{u}(s+t)^{3} d s d t
\end{align*}
$$

as both u and v are in $(0, \delta / 2)$. It is trivial to verify that

$$
\int_{0}^{v} \int_{0}^{u}(s+t)^{k} d s d t=\frac{1}{(k+1)(k+2)}\left((u+v)^{k+2}-u^{k+2}-v^{k+2}\right)
$$

for $k \geq 0$. Plugging this into (2.6), we obtain

$$
\begin{aligned}
\int_{0}^{v} \int_{0}^{u} \log (1+s+t) d s d t= & {\left[\frac{u^{2} v+u v^{2}}{2}-\frac{1}{12}\left(2 u v^{3}+2 u^{3} v+3 u^{2} v^{2}\right)\right] } \\
& +O\left((u+v)^{5}\right)
\end{aligned}
$$

as $n \rightarrow \infty$. [The actual formula for the integral is

$$
\begin{aligned}
& \int_{0}^{v} \int_{0}^{u} \log (1+s+t) d s d t \\
& \quad=\frac{1}{2}(1+u+v)^{2} \log (1+u+v) \\
& \left.\quad-\frac{1}{2}(1+u)^{2} \log (1+u)-\frac{1}{2}(1+v)^{2} \log (1+v)-\frac{3}{2} u v .\right]
\end{aligned}
$$

Now substituting $u=-(p+2) / n$ and $v=-q / n$ back into the two integrals in (2.5), we have that

$$
\begin{align*}
& \frac{n^{2}}{2} \int_{0}^{v} \int_{0}^{u} \log (1+s+t) d s d t \tag{2.7}\\
& \quad=-\left[\frac{p^{2} q+p q^{2}}{4 n}+x y+\frac{y^{2}}{2}+\frac{2 x y^{3}+2 x^{3} y+3 x^{2} y^{2}}{24}\right]+O\left(\frac{1}{\sqrt{n}}\right)
\end{align*}
$$

and

$$
\begin{equation*}
\frac{n^{2}}{2} \int_{0}^{v} \int_{0}^{-2 / n} \log (1+s+t) d s d t=-\frac{y^{2}}{2}+O\left(\frac{1}{\sqrt{n}}\right) \tag{2.8}
\end{equation*}
$$

as n is sufficiently large. Combining (2.4), (2.5), (2.7) and (2.8), we obtain

$$
\begin{equation*}
K_{n}=\exp \left\{-\left(\frac{p^{2} q+p q^{2}}{4 n}+\frac{x y}{4}+\frac{2 x^{3} y+2 x y^{3}+3 x^{2} y^{2}}{24}\right)+O\left(n^{-1 / 2}\right)\right\} \tag{2.9}
\end{equation*}
$$

as n is sufficiently large.

Now, suppose $p=2 k-1$. Let

$$
C_{n}=\prod_{j=1}^{q} \frac{\Gamma((n-j-p+1) / 2)}{\Gamma((n-j-p) / 2) \sqrt{(n-j-p) / 2}} .
$$

By Lemma 2.1, the j th term in the product, say, $C_{n, j}$, has the following property:

$$
1-\frac{1}{n-p-q} \leq C_{n, j} \leq 1+\frac{1}{n-p-q}
$$

for all $j=1,2, \ldots, q$ as long as $p+q \leq n-3$. Therefore,

$$
\left(1-\frac{1}{n-p-q}\right)^{q} \leq C_{n} \leq\left(1+\frac{1}{n-p-q}\right)^{q} .
$$

Since $\left(1+x_{n}\right)^{k_{n}}=1+O\left(k_{n} x_{n}\right)$ as $x_{n} \rightarrow 0, k_{n} \rightarrow \infty$ and $k_{n} x_{n} \rightarrow 0$. It follows that $C_{n}=1+O\left(n^{-1 / 2}\right)$, provided $p=O(\sqrt{n})$ and $q=O(\sqrt{n})$. So

$$
\begin{aligned}
K_{n} & =\frac{1}{C_{n}}\left(\frac{2}{n}\right)^{p q} \prod_{j=1}^{q} \frac{\Gamma((n-j+1) / 2)}{\Gamma((n-j-2 k+1) / 2) \sqrt{(n-j-2 k+1) / 2}} \\
& \sim\left\{\prod_{j=1}^{q} \prod_{i=1}^{k} \frac{n-2 i-j+1}{n}\right\} \cdot\left\{\prod_{j=1}^{q} \frac{n-j-2 k+1}{n}\right\}^{-1 / 2}:=K_{n}^{\prime} \cdot K_{n}^{\prime \prime},
\end{aligned}
$$

where the fact $\Gamma(x+1)=x \Gamma(x)$ is used in the second step. Now

$$
\begin{align*}
\log K_{n}^{\prime \prime} & =-\frac{1}{2} \sum_{j=1}^{q} \log \left(1-\frac{j+2 k-1}{n}\right) \\
& =\frac{1}{2 n} \sum_{j=1}^{q}(j+2 k-1)+O\left(\frac{1}{\sqrt{n}}\right) \tag{2.10}\\
& =\frac{y^{2}+2 x y}{4}+O\left(\frac{1}{\sqrt{n}}\right)
\end{align*}
$$

as $n \rightarrow \infty$. In notation, K_{n}^{\prime} is identical to K_{n} in (2.4). Keep in mind that the k in (2.4) is equal to $p / 2$; but the k in the definition of K_{n}^{\prime} is equal to $(p+1) / 2$. Apply (2.9) to K_{n}^{\prime} to obtain

$$
\begin{aligned}
-\log K_{n}^{\prime} & =\frac{(p+1)^{2} q+(p+1) q^{2}}{4 n}+\frac{x y}{4}+\frac{2 x^{3} y+2 x y^{3}+3 x^{2} y^{2}}{24}+O\left(n^{-1 / 2}\right) \\
& =\frac{p^{2} q+p q^{2}}{4 n}+\frac{3 x y+y^{2}}{4}+\frac{2 x^{3} y+2 x y^{3}+3 x^{2} y^{2}}{24}+O\left(n^{-1 / 2}\right)
\end{aligned}
$$

This together with (2.10) thus yields (2.3).

Lemma 2.7. Suppose $x>0$ and $y>0$. For each $n \geq 1$, assume the setting in (2.1) with $p=p_{n}=[x \sqrt{n}]$ and $q=q_{n}=[y \sqrt{n}]$. Define

$$
L_{n}=\left\{\prod_{i=1}^{q}\left(1-\frac{\lambda_{i}}{n}\right)\right\}^{(n-p-q-1) / 2} \exp \left(\frac{1}{2} \sum_{i=1}^{q} \lambda_{i}\right) I\left(0<\lambda_{1}, \lambda_{2}, \ldots, \lambda_{q}<n\right) .
$$

Then, $e^{-a_{n}} L_{n}$ converges weakly to the distribution of $e^{\sigma \xi}$, where ξ is a standard normal, and

$$
a_{n}=\frac{p^{2} q+p q^{2}}{4 n}+\frac{3 x y+x^{3} y+x y^{3}}{12} \text { and } \sigma=\frac{x y}{4} .
$$

Proof. Set

$$
f(x)= \begin{cases}\frac{x}{2}+\frac{n-p-q-1}{2} \log \left(1-\frac{x}{n}\right), & \text { if } 0 \leq x<n \tag{2.11}\\ -\infty, & \text { otherwise }\end{cases}
$$

Then, $L_{n}=\exp \left(\sum_{i=1}^{q} f\left(\lambda_{i}\right)\right)$. For any $x \in(0, n)$, by Taylor's expansion, there exists $\xi=\xi_{x} \in(0, x)$ such that

$$
\log \left(1-\frac{x}{n}\right)=1-\frac{x}{n}-\frac{x^{2}}{2 n^{2}}-\frac{x^{3}}{3 n^{3}}-\frac{x^{4}}{4} \cdot \frac{1}{(\xi-n)^{4}}
$$

Then

$$
\begin{align*}
f(x)= & \frac{p+q+1}{2 n} x-\frac{n-p-q-1}{4 n^{2}} x^{2} \tag{2.12}\\
& -\frac{n-p-q-1}{6 n^{3}} x^{3}+g_{n}(x) \frac{x^{4}}{n^{3}}, \quad x \in(0, n),
\end{align*}
$$

where $g_{n}(x)=-n^{3}(n-p-q-1) /\left(8(\xi-n)^{4}\right)$. It is trivial to see that $\sup _{0 \leq x \leq \alpha n}\left|g_{n}(x)\right| \leq(1-\alpha)^{-4}$ for any $\alpha \in(0,1)$. Recall that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{q}$ are eigenvalues of $X_{n}^{\prime} X_{n}$, where the entries of the $p \times q$ matrix X_{n} are independent standard normals. Note that $p \sim x \sqrt{n}$ and $q \sim y \sqrt{n}$. By the Theorem from [17] or Theorem 3.1 from [31], there exists a constant $c(x, y) \in(0, \infty)$ such that

$$
\begin{equation*}
\frac{\max _{1 \leq i \leq q} \lambda_{i}}{\sqrt{n}} \rightarrow c(x, y) \tag{2.13}
\end{equation*}
$$

in probability as $n \rightarrow \infty$. Define $\Omega_{n}:=\left\{\max _{1 \leq i \leq q} \lambda_{i} \leq(c(x, y)+1) \sqrt{n}\right\}$. Then

$$
\begin{equation*}
P\left(\Omega_{n}^{c}\right) \rightarrow 0 \tag{2.14}
\end{equation*}
$$

as $n \rightarrow \infty$. Now on Ω_{n}, by (2.12),

$$
\begin{align*}
\sum_{i=1}^{q} f\left(\lambda_{i}\right)= & \frac{p+q+1}{2 n} \operatorname{tr}\left(X^{\prime} X\right)-\frac{n-p-q-1}{4 n^{2}} \operatorname{tr}\left(\left(X^{\prime} X\right)^{2}\right) \tag{2.15}\\
& -\frac{n-p-q-1}{6 n^{3}} \operatorname{tr}\left(\left(X^{\prime} X\right)^{3}\right)+\tilde{g}_{n} \frac{\operatorname{tr}\left(\left(X^{\prime} X\right)^{4}\right)}{n^{3}}
\end{align*}
$$

where $\left|\tilde{g}_{n}\right| \in[0,2)$, as n is sufficiently large. Note that $\operatorname{tr}\left(\left(X^{\prime} X\right)^{i}\right)$ are well-defined random variables which do not depend on Ω_{n}. Easily, $E\left(\operatorname{tr}\left(X^{\prime} X\right)\right)=p q$. By Lemma 2.3,

$$
E \operatorname{tr}\left(\left(X^{\prime} X\right)^{3}\right) \sim p q\left(p^{2}+q^{2}+3 p q\right) \quad \text { and } \quad E \operatorname{tr}\left(\left(X^{\prime} X\right)^{4}\right) \leq C(x, y) q^{5}
$$

for some constant $C(x, y)$. It is easy to check that

$$
\begin{aligned}
\operatorname{tr}\left(\left(X^{\prime} X\right)^{2}\right)= & \sum_{j=1}^{q} \sum_{i=1}^{p} x_{i j}^{4}+\sum_{j=1}^{q} \sum_{i \neq l=1}^{p} x_{i j}^{2} x_{l j}^{2} \\
& +\sum_{i=1}^{p} \sum_{j \neq k=1}^{q} x_{i j}^{2} x_{i k}^{2}+\sum_{i \neq l, j \neq k} x_{i j} x_{i k} x_{l k} x_{l j} .
\end{aligned}
$$

Then $E \operatorname{tr}\left(\left(X^{\prime} X\right)^{2}\right)=p q(p+q+1)$ [this is sharper than the one corresponding to the case $k=2$ in (i) of Lemma 2.3]. Now set $h_{i}=\operatorname{tr}\left(X^{\prime} X\right)^{i}-E\left(\operatorname{tr}\left(X^{\prime} X\right)^{i}\right)$ for $i=1,2,3$. By simple algebra, we have from (2.15) that

$$
\begin{aligned}
\sum_{i=1}^{q} f\left(\lambda_{i}\right)= & \frac{p^{2} q+p q^{2}}{4 n}+\frac{3 x y+x^{3} y+x y^{3}}{12}+O\left(\frac{1}{\sqrt{n}}\right) \\
& +\frac{p+q+1}{2 n} h_{1}-\frac{n-p-q-1}{4 n^{2}} h_{2}-\frac{n-p-q-1}{6 n^{3}} h_{3}+\tilde{g}_{n} \frac{h_{4}}{n^{3}}
\end{aligned}
$$

on Ω_{n} as $n \rightarrow \infty$. Recall that $L_{n}=\exp \left(\sum_{i=1}^{q} f\left(\lambda_{i}\right)\right)$. By (ii) of Lemma 2.3, both h_{3} / n^{2} and h_{4} / n^{3} go to zero in probability. By (2.14), to prove the lemma, it suffices to show that

$$
\begin{align*}
& W_{n}:=\frac{p+q+1}{2 n} h_{1}-\frac{n-p-q-1}{4 n^{2}} h_{2} \tag{2.16}\\
& \quad \text { converges to } N\left(0, \sigma^{2}\right) \text { weakly, }
\end{align*}
$$

where σ is as in the statement of the lemma. Since $\operatorname{tr}\left(X^{\prime} X\right)=\sum_{i, j} x_{i j}^{2}$, which is a sum of independent and identically distributed random variables, $\operatorname{Var}\left(h_{1}\right)=$ $\operatorname{Var}\left(\operatorname{tr}\left(X^{\prime} X\right)\right)=2 p q$. Therefore, by Lemma 2.4, $\operatorname{Var}\left(h_{2}\right) / n^{2}$ converges to a positive constant. By Theorem 4.1 from [21], $\left(h_{1} / \sqrt{\operatorname{Var}\left(h_{1}\right)}, h_{2} / \sqrt{\operatorname{Var}\left(h_{2}\right)}\right)$ converges weakly to a normal distribution with mean zero. It follows that W_{n} converges weakly to a normal distribution with mean zero. We only need to calculate variance σ^{2}. Now,

$$
\begin{aligned}
\operatorname{Var}\left(W_{n}\right)= & \frac{(p+q+1)^{2}}{4 n^{2}} \operatorname{Var}\left(\operatorname{tr}\left(X^{\prime} X\right)\right)+\frac{(n-p-q-1)^{2}}{16 n^{4}} \operatorname{Var}\left(\operatorname{tr}\left(\left(X^{\prime} X\right)^{2}\right)\right) \\
& -\frac{(p+q+1)(n-p-q-1)}{4 n^{3}} \cdot \operatorname{Cov}\left(\operatorname{tr}\left(X^{\prime} X\right), \operatorname{tr}\left(\left(X^{\prime} X\right)^{2}\right)\right)
\end{aligned}
$$

Since $\operatorname{Var}\left(\operatorname{tr}\left(X^{\prime} X\right)\right)=2 p q$ as calculated earlier, by Lemma 2.4 again, the above yields

$$
\operatorname{Var}\left(W_{n}\right) \rightarrow \frac{x^{2} y^{2}}{16}
$$

as $n \rightarrow \infty$. Therefore, $\sigma^{2}=\lim _{n \rightarrow \infty} \operatorname{Var}\left(W_{n}\right)=x^{2} y^{2} / 16$. The proof is completed.

COROLLARY 2.1. For $x>0$ and $y>0$, let $p_{n}=\left[x n^{1 / 2}\right]$ and $q_{n}=\left[y n^{1 / 2}\right]$. Let $f_{n}(z)$ be the joint probability density function of Z_{n} as in Theorem 1 and $g_{n}(z)$ be the joint probability density function of $p_{n} q_{n}$ independent standard normals. Then as $n \rightarrow \infty$,

$$
\frac{f_{n}\left(X_{n}\right)}{g_{n}\left(X_{n}\right)} \text { converges weakly to } \exp \left(-\frac{x^{2} y^{2}}{8}+\frac{x y}{4} \xi\right)
$$

where ξ and all the entries of X_{n} are independent standard normals.
Proof. Without loss of generality, we assume $y \leq x$. Hence, $q_{n} \leq p_{n}$ for any $n \geq 1$. By Lemma 2.5, the density function of $\sqrt{n} Z_{n}$ is
$f_{n}(z):=(\sqrt{2 \pi})^{-p q} n^{-p q / 2} \frac{\omega(n-p, q)}{\omega(n, q)}\left\{\operatorname{det}\left(I_{q}-\frac{z^{\prime} z}{n}\right)^{(n-p-q-1) / 2}\right\} I_{0}\left(z^{\prime} z / n\right)$.
Obviously, $g_{n}(z):=(\sqrt{2 \pi})^{-p q} e^{-\operatorname{tr}\left(z^{\prime} z\right) / 2}$. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{q}$ be the eigenvalues of $X_{n}^{\prime} X_{n}$. Then

$$
\frac{f_{n}\left(X_{n}\right)}{g_{n}\left(X_{n}\right)}=K_{n} \cdot L_{n}
$$

where

$$
\begin{align*}
K_{n} & =\left(\frac{2}{n}\right)^{p q / 2} \prod_{j=1}^{q} \frac{\Gamma((n-j+1) / 2)}{\Gamma((n-p-j+1) / 2)} \tag{2.17}\\
L_{n} & =\left\{\prod_{i=1}^{q}\left(1-\frac{\lambda_{i}}{n}\right)\right\}^{(n-p-q-1) / 2} \exp \left(\frac{1}{2} \sum_{i=1}^{q} \lambda_{i}\right) \tag{2.18}
\end{align*}
$$

if all λ_{i} 's are in $(0, n)$, and L_{n} is zero otherwise. The desired conclusion immediately follows from Lemmas 2.6 and 2.7 on K_{n} and L_{n}, respectively.

Proof of Theorem 2. First, we show that the lower bound is strictly between zero and one. Recall $\phi(x, y)=E\left|\exp \left(-\left(x^{2} y^{2} / 8\right)+(x y \xi / 4)\right)-1\right|$. Then $\phi(x, y)>0$ because ξ is a nondegenerate random variable. Second, by Hölder's inequality,

$$
\phi(x, y) \leq\left\{E\left[\exp \left(-\frac{x^{2} y^{2}}{8}+\frac{x y}{4} \xi\right)-1\right]^{2}\right\}^{1 / 2}
$$

By expanding the square and using the fact that $E \exp (t \xi)=\exp \left(t^{2} / 2\right)$ for any $t \in \mathbb{R}$, we have that

$$
\phi(x, y)^{2} \leq e^{-x^{2} y^{2} / 8}-2 e^{-3 x^{2} y^{2} / 32}+1 .
$$

Let $\varphi(t)=e^{-t / 8}-2 e^{-3 t / 32}+1$ for $t \in \mathbb{R}$. Then $\varphi(0)=0, \varphi(+\infty)=1$ and $\varphi^{\prime}(t)=$ $(3 / 16) e^{-t / 8}\left(e^{t / 32}-(2 / 3)\right)>0$ for any $t>0$. Thus, $\phi(x, y)<1$ for any $x>0$ and $y>0$.

Now we prove the remaining part of Theorem 2.
Let us continue to use the notation in Corollary 2.1. First,

$$
\begin{equation*}
d\left(\mathcal{L}(\sqrt{n} Z), G_{n}\right)=\int_{R^{p q}}\left|\frac{f_{n}(z)}{g_{n}(z)}-1\right| g_{n}(z) d z=E\left|\frac{f_{n}\left(X_{n}\right)}{g_{n}\left(X_{n}\right)}-1\right|, \tag{2.19}
\end{equation*}
$$

where X_{n} has the density function $g_{n}(z)$, that is, the $p q$ entries of X_{n} are independent standard normals. Second, by Corollary 2.1,

$$
\frac{f_{n}\left(X_{n}\right)}{g_{n}\left(X_{n}\right)} \text { converges weakly to } \exp \left(-\frac{x^{2} y^{2}}{8}+\frac{x y}{4} \xi\right)
$$

where ξ is a standard normal. Then, applying Fatou's lemma to (2.19),

$$
\liminf _{n \rightarrow \infty} d\left(\mathcal{L}(\sqrt{n} Z), G_{n}\right) \geq E\left|\exp \left(-\frac{x^{2} y^{2}}{8}+\frac{x y}{4} \xi\right)-1\right|
$$

The proof is completed.
Proof of Theorem 1. Let $p_{n}^{\prime}=q_{n}^{\prime}=p_{n}+q_{n}+\left[n^{1 / 4}\right]$. For an n by n random orthogonal matrix U which has the normalized Haar measure, let $Z_{p, q}$ denote the upper left p by q block of $U, 1 \leq p, q \leq n$. Thus, $Z_{p_{n}, q_{n}}$ is a subblock of $Z_{p_{n}^{\prime}, q_{n}^{\prime}}$. As a consequence, the joint density function of entries of $Z_{p_{n}, q_{n}}$ is a marginal density function of that of $Z_{p_{n}^{\prime}, q_{n}^{\prime}}$. Therefore, by formula (1.2),

$$
\begin{equation*}
\left\|\mathscr{L}\left(\sqrt{n} Z_{p_{n}, q_{n}}\right)-G_{p_{n} q_{n}}\right\| \leq\left\|\mathscr{L}\left(\sqrt{n} Z_{p_{n}^{\prime}, q_{n}^{\prime}}\right)-G_{p_{n}^{\prime} q_{n}^{\prime}}\right\|, \tag{2.20}
\end{equation*}
$$

where $G_{p q}$ is the joint distribution of $p q$ standard normal distributions [one can verify this by choosing $B=A \times \mathbb{R}^{p_{n}^{\prime} q_{n}^{\prime}-p_{n} q_{n}}$ for any Borel set $A \in \mathbb{R}^{p_{n} q_{n}}$ and then plugging them into definition (1.2)].

So, to prove the theorem, without loss of generality, we assume $p_{n}=q_{n}$ for all $n \geq 1, p_{n} \rightarrow \infty$ and $p_{n}=o(\sqrt{n})$.

As in the proof of Theorem 2,

$$
\left\|\mathcal{L}\left(\sqrt{n} Z_{p_{n}, q_{n}}\right)-G_{p_{n} q_{n}}\right\|=E\left|K_{n} \cdot L_{n}-1\right|
$$

where K_{n} and L_{n} are as in (2.17) and (2.18). By following the proof of Lemma 2.6 step by step, we obtain that

$$
\begin{equation*}
K_{n}=\exp \left\{-\frac{p^{2} q+p q^{2}}{4 n}+o(1)\right\} \tag{2.21}
\end{equation*}
$$

as $n \rightarrow \infty$. We claim that

$$
\begin{equation*}
e^{-\left(p^{2} q+p q^{2}\right) / 4 n} L_{n} \rightarrow 1 \tag{2.22}
\end{equation*}
$$

in probability as $n \rightarrow \infty$. If this is true, then $K_{n} \cdot L_{n} \rightarrow 1$ in probability as $n \rightarrow \infty$. Note that $K_{n} \cdot L_{n} \geq 0$ and it is easy to see that $E\left(K_{n} \cdot L_{n}\right)=$ $\int_{\mathbb{R}^{p q}} f_{n}(x) d x=1$. These three facts imply that $\left\{K_{n} \cdot L_{n}\right\}$ is uniformly integrable, that is, $\lim \sup _{t \rightarrow+\infty} \lim \sup _{n \rightarrow \infty} E\left(K_{n} L_{n} I_{\left\{K_{n} L_{n} \geq t\right\}}\right)=0$. It follows that $E\left|K_{n} L_{n}-1\right| \rightarrow 0$ as $n \rightarrow \infty$. The proof is then complete.

Now we prove claim (2.22). Let us go back to the proof of Lemma 2.7. Since $p_{n}=q_{n}=o(\sqrt{n})$, the term $c(x, y)$ in (2.13) is equal to zero. So, correspondingly, $\Omega_{n}=\left\{\max _{1 \leq i \leq q} \lambda_{i} \leq \sqrt{n}\right\}$ and $P\left(\Omega_{n}^{c}\right) \rightarrow 0$ as $n \rightarrow \infty$. Recall the definition of $f(x)$ in (2.11) and $L_{n}=\exp \left(\sum_{i=1}^{q} f\left(\lambda_{i}\right)\right)$. On Ω_{n}, similar to (2.15),

$$
\begin{align*}
\sum_{i=1}^{q} f\left(\lambda_{i}\right)= & \frac{p+q+1}{2 n} \operatorname{tr}\left(X^{\prime} X\right)-\frac{n-p-q-1}{4 n^{2}} \operatorname{tr}\left(\left(X^{\prime} X\right)^{2}\right) \\
& +\tilde{g}_{n} \frac{\operatorname{tr}\left(\left(X^{\prime} X\right)^{3}\right)}{n^{2}} \\
= & \frac{p^{2} q+p q^{2}}{4 n}+\frac{p+q+1}{2 n} \cdot h_{1}-\frac{n-p-q-1}{4 n^{2}} \cdot h_{2} \tag{2.23}\\
& +\tilde{g}_{n} \frac{\operatorname{tr}\left(\left(X^{\prime} X\right)^{3}\right)}{n^{2}},
\end{align*}
$$

where \tilde{g}_{n} is a random variable satisfying $\left|\tilde{g}_{n}\right| \in[0,2)$, as n is sufficiently large, and $h_{i}=\operatorname{tr}\left(X^{\prime} X\right)^{i}-E\left(\operatorname{tr}\left(X^{\prime} X\right)^{i}\right)$. Obviously, h_{i} is well defined on the same probability space as those of $x_{i j}$'s which do not depend on Ω_{n}. Note that $p=q=o(\sqrt{n})$. Then

$$
\begin{equation*}
\frac{p}{n} h_{1}=\frac{p^{2}}{n} \cdot \frac{\sum_{i=1}^{p} \sum_{i=1}^{q}\left(x_{i j}^{2}-1\right)}{p} \rightarrow 0, \tag{2.24}
\end{equation*}
$$

in probability as $n \rightarrow \infty$ by the classical central limit theorem of independent and identically distributed random variables. We will show next that the third term on the right-hand side of (2.23) also goes to zero in probability. Indeed,

$$
P\left(\frac{\left|h_{2}\right|}{n} \geq \varepsilon\right) \leq \frac{\operatorname{Var}\left(\operatorname{tr}\left(\left(X^{\prime} X\right)^{2}\right)\right)}{n^{2} \varepsilon^{2}}=O\left(\frac{(p q)^{2}+8 p q(p+q)^{2}}{n^{2}}\right) \rightarrow 0
$$

by (i) of Lemma 2.4. This says that

$$
\begin{equation*}
\frac{n-p-q-1}{4 n^{2}} \cdot h_{2} \rightarrow 0 \tag{2.25}
\end{equation*}
$$

in probability as $n \rightarrow \infty$. Last,

$$
\frac{\operatorname{tr}\left(\left(X^{\prime} X\right)^{3}\right)}{n^{2}}=\frac{p^{4}}{n^{2}} \cdot \frac{\operatorname{tr}\left(\left(X^{\prime} X\right)^{3}\right)-E\left(\operatorname{tr}\left(\left(X^{\prime} X\right)^{3}\right)\right)}{p^{4}}+\frac{E\left(\operatorname{tr}\left(\left(X^{\prime} X\right)^{3}\right)\right)}{n^{2}}
$$

By (ii) of Lemma 2.3, the first term on the right-hand side goes to zero in probability. By (i) of Lemma 2.3, $E \operatorname{tr}\left(\left(X^{\prime} X\right)^{3}\right) \sim p q\left(p^{2}+q^{2}+3 p q\right)$ as $n \rightarrow \infty$. So the second term on the right-hand side goes to zero. Consequently,

$$
\begin{equation*}
\frac{\operatorname{tr}\left(\left(X^{\prime} X\right)^{3}\right)}{n^{2}} \rightarrow 0 \tag{2.26}
\end{equation*}
$$

in probability. Combining (2.23)-(2.26), we obtain

$$
\sum_{i=1}^{q} f\left(\lambda_{i}\right)-\frac{p^{2} q+p q^{2}}{4 n} \rightarrow 0
$$

in probability, which, together with the fact that $P\left(\Omega_{n}^{c}\right) \rightarrow 0$, implies (2.22).
3. The proof of Theorem 3. The main tool of proving Theorem 3 is the Gram-Schmidt algorithm. Let us briefly review it first.

Suppose $\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{n}\right\}$ is a sequence of $n \times 1$ vectors. Set $\mathbf{w}_{1}=\mathbf{y}_{1}$ and

$$
\begin{equation*}
\mathbf{w}_{j}=\mathbf{y}_{j}-\sum_{i=1}^{j-1} \frac{\mathbf{y}_{j}^{T} \mathbf{w}_{i}}{\left\|\mathbf{w}_{i}\right\|^{2}} \mathbf{w}_{i}, \quad j=2,3, \ldots, n \tag{3.1}
\end{equation*}
$$

where $\left\|\mathbf{w}_{j}\right\|^{2}=\mathbf{w}_{j}^{T} \mathbf{w}_{j}(j=1,2, \ldots, n)$. Then, $\left\{\mathbf{w}_{j}, 1 \leq j \leq n\right\}$ are orthogonal, that is, $\mathbf{w}_{i}^{T} \mathbf{w}_{j}=0$ for any $1 \leq i<j \leq n$. Let $\boldsymbol{\gamma}_{j}=\left(1 /\left\|\mathbf{w}_{j}\right\|\right) \mathbf{w}_{j}, j=1,2, \ldots, n$. Then the matrix $\boldsymbol{\Gamma}_{n}=\left(\boldsymbol{\gamma}_{1}, \boldsymbol{\gamma}_{2}, \ldots, \boldsymbol{\gamma}_{n}\right)$ is orthonormal. So (3.1) can be rewritten as follows:

$$
\begin{equation*}
\mathbf{w}_{j}=\mathbf{y}_{j}-\sum_{i=1}^{j-1}\left(\mathbf{y}_{j}^{T} \boldsymbol{\gamma}_{i}\right) \boldsymbol{\gamma}_{i}, \quad j=2,3, \ldots, n \tag{3.2}
\end{equation*}
$$

The reader is referred to Section A. 5 on page 603 from [1] and page 15 from [18] for further details.

Define

$$
\begin{align*}
& \boldsymbol{\Delta}_{1}=\mathbf{0}, \quad \boldsymbol{\Delta}_{j}=\sum_{i=1}^{j-1}\left(\mathbf{y}_{j}^{T} \boldsymbol{\gamma}_{i}\right) \boldsymbol{\gamma}_{i} \quad \text { and } \\
& L_{j}=\left|\sqrt{\frac{n}{\left\|\mathbf{w}_{j}\right\|^{2}}}-1\right|, \quad j=1,2, \ldots, n \tag{3.3}
\end{align*}
$$

Note $\mathbf{y}_{j}^{T} \boldsymbol{\gamma}_{i} \in \mathbb{R}^{1}$ and rewrite $\left(\mathbf{y}_{j}^{T} \boldsymbol{\gamma}_{i}\right) \boldsymbol{\gamma}_{i}=\left(\boldsymbol{\gamma}_{i} \boldsymbol{\gamma}_{i}^{T}\right) \mathbf{y}_{j}$. It is easy to check that

$$
\begin{align*}
\mathbf{w}_{j} & =\left(\mathbf{I}_{n}-\boldsymbol{\Gamma}_{n, j} \boldsymbol{\Gamma}_{n, j}^{T}\right) \mathbf{y}_{j}, \quad \boldsymbol{\Delta}_{j}=\boldsymbol{\Gamma}_{n, j} \boldsymbol{\Gamma}_{n, j}^{T} \mathbf{y}_{j} \quad \text { and } \tag{3.4}\\
\boldsymbol{\gamma}_{j} & =\frac{\mathbf{y}_{j}}{\sqrt{n}}-\frac{\boldsymbol{\Delta}_{j}}{\sqrt{n}}+\mathbf{u}_{j},
\end{align*}
$$

where $\boldsymbol{\Gamma}_{n, j}=\left(\boldsymbol{\gamma}_{1}, \boldsymbol{\gamma}_{2}, \ldots, \boldsymbol{\gamma}_{j-1}\right)$ and $\mathbf{u}_{j}=\left(1-n^{-1 / 2}\left\|\mathbf{w}_{j}\right\|\right) \boldsymbol{\gamma}_{j}$.

One repeatedly used fact in later proofs is that if the n^{2} elements of $\mathbf{Y}=$ $\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{n}\right)$ are i.i.d. standard normals, then $\boldsymbol{\Gamma}_{n}=\left(\boldsymbol{\gamma}_{1}, \boldsymbol{\gamma}_{2}, \ldots, \boldsymbol{\gamma}_{n}\right)$ follows the normalized Haar measure on the orthogonal group $O(n)$. In particular, $\boldsymbol{\gamma}_{i}$'s are identically distributed and

$$
\begin{equation*}
\mathcal{L}\left(\boldsymbol{\gamma}_{i}\right)=\mathcal{L}\left(\frac{\mathbf{y}_{1}}{\left\|\mathbf{y}_{1}\right\|}\right) \tag{3.5}
\end{equation*}
$$

for any $i=1,2, \ldots, n$.
For any $n \times n$ orthogonal matrix \mathbf{G}, observe that $\mathcal{L}\left(\mathbf{G} \boldsymbol{\Gamma}_{n}^{-1}\right)=\mathcal{L}\left(\left(\boldsymbol{\Gamma}_{n} \mathbf{G}^{T}\right)^{-1}\right)=$ $\mathcal{L}\left(\boldsymbol{\Gamma}_{n}^{-1}\right)$ by the invariance property of Haar measures. Also, $\boldsymbol{\Gamma}_{n}^{-1}=\boldsymbol{\Gamma}_{n}^{T}$. From the uniqueness of Haar measures, we obtain another useful fact that

$$
\begin{equation*}
\mathcal{L}\left(\boldsymbol{\Gamma}_{n}\right)=\mathcal{L}\left(\boldsymbol{\Gamma}_{n}^{T}\right) . \tag{3.6}
\end{equation*}
$$

We will use the following notation. Let $A=\left(a_{i j}\right)$ be a p by q matrix. Then

$$
\begin{equation*}
\|A\|:=\max _{1 \leq i \leq p, 1 \leq j \leq q}\left|a_{i j}\right| . \tag{3.7}
\end{equation*}
$$

The following definition will also be used:

$$
\begin{align*}
\varepsilon_{n}(m) & =\max _{1 \leq i \leq n, 1 \leq j \leq m}\left|\sqrt{n} \gamma_{i j}-y_{i j}\right| \quad \text { and } \\
n_{\alpha} & =\left[\frac{n}{\log n-(5 / 4) \log (\log n)} \alpha\right] \tag{3.8}
\end{align*}
$$

for $\alpha>0$ and $n \geq 2$.
The following says that, to prove part (iii) of Theorem 3, we only need to work on $\max _{2 \leq j \leq m}\| \| \boldsymbol{\Delta}_{j} \|$.

Lemma 3.1. Let $\varepsilon_{n}(m)$ and n_{α} be as in (3.8). Then

$$
P\left(\left|\varepsilon_{n}\left(n_{\alpha}\right)-\max _{2 \leq j \leq n_{\alpha}}\| \| \boldsymbol{\Delta}_{j} \|| | \geq \delta\right) \rightarrow 0\right.
$$

as $n \rightarrow \infty$ for any $\alpha>0$ and $\delta>0$.
The following lemma is the key in the proof of Theorem 3. A recursive inequality is derived. It implies that all $\boldsymbol{\Delta}_{j}$'s are almost independent when $j \leq n_{\alpha}$.

Lemma 3.2. Let ξ be a standard normal. Given $\alpha>0$ and $t>0$, define

$$
f_{n}^{+}(k)=P\left(|\xi|>t\left(\sqrt{\frac{n}{k}}+\frac{(\log n)^{8}}{\sqrt{n}}\right)\right), \quad k=1,2, \ldots, n,
$$

and $f_{n}^{-}(k)$ as the probability above when " + " on the right-hand side is replaced by "-." Then there exists a constant $C=C_{\alpha, t}>0$ such that $P\left(\max _{2 \leq j \leq k+1}\| \| \boldsymbol{\Delta}_{j} \| \leq\right.$ t) is bounded below and above, respectively, by

$$
\left(1-n f_{n}^{-}(k)\right) P\left(\max _{2 \leq j \leq k}\left\|\boldsymbol{\Delta}_{j}\right\| \leq t\right)-\frac{(\log n)^{C}}{n^{\left(t^{2} / \alpha\right)-2}}
$$

and

$$
\left(1-n f_{n}^{+}(k)\right) P\left(\max _{2 \leq j \leq k}\| \| \boldsymbol{\Delta}_{j}\| \| \leq t\right)+\frac{(\log n)^{C}}{n^{\left(t^{2} / \alpha\right)-2}}
$$

uniformly on $n /(\log n)^{3} \leq k \leq n_{\alpha}$ as n is sufficiently large, where n_{α} is as in (3.8).
Proof of Theorem 3. Part (i) is obvious. As for (ii), take $r=1 / \log n$, $s=(\log n)^{3 / 4}, t=t, m=m_{n}^{\prime}=[\delta n / \log n]$ for some $\delta<\min \left\{1 / 4, t^{2} / 100\right\}$ in Lemma A.4. Trivially, $t^{2} /(3(m+\sqrt{n})) \geq t^{2}(\log n) /(6 n \delta)$ and $1 / s \leq 1$, as n is sufficiently large. We obtain that

$$
\begin{aligned}
& P\left(\varepsilon_{n}\left(m_{n}^{\prime}\right) \geq 3 t\right) \\
& \quad \leq 4 n e^{-n /(4 \log n)^{2}}+3 n^{2} e^{-(\log n)^{3 / 2} / 2}+\frac{3 n^{2}}{t}\left(1+\frac{t^{2}}{6 \delta} \frac{\log n}{n}\right)^{-n / 2} \\
& \quad \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$ by the choice of δ.
Now we prove (iii). To simplify notation, set $m=n_{\alpha}$. We actually will show that

$$
P\left(\max _{2 \leq j \leq m}\left\|\boldsymbol{\Delta}_{j}\right\| \leq t\right) \rightarrow \begin{cases}1, & \text { if } t>2 \sqrt{\alpha}, \tag{3.9}\\ e^{-K t^{2}}, & \text { if } t=2 \sqrt{\alpha}, \\ 0, & \text { if } t \in(\sqrt{3 \alpha}, 2 \sqrt{\alpha})\end{cases}
$$

where $K=(8 \sqrt{2 \pi})^{-1}$. Since $P\left(\max _{2 \leq j \leq m}\| \| \boldsymbol{\Delta}_{j} \| \leq t\right)$ is increasing in t, the above implies that the left-hand side above goes to zero for any $t \in(0,2 \sqrt{\alpha})$. This together with (3.9) implies that $\max _{2 \leq j \leq m}\| \| \boldsymbol{\Delta}_{j}\| \|$ converges to $2 \sqrt{\alpha}$ in probability. Lemma 3.1 says that $\varepsilon_{n}\left(n_{\alpha}\right)-\max _{2 \leq j \leq n_{\alpha}}\| \| \boldsymbol{\Delta}_{j}\| \|$ converges to zero in probability as $n \rightarrow \infty$. It follows that

$$
\begin{equation*}
\varepsilon_{n}\left(n_{\alpha}\right) \rightarrow 2 \sqrt{\alpha}, \tag{3.10}
\end{equation*}
$$

in probability as $n \rightarrow \infty$. We next show that this implies that $\varepsilon_{n}([n \alpha / \log n]) \rightarrow$ $2 \sqrt{\alpha}$ as $n \rightarrow \infty$. Indeed, set $k_{\alpha}=[n \alpha / \log n]$. For any $\delta \in(0, \sqrt{\alpha})$, choose α_{1} such that

$$
\left(\sqrt{\alpha}-\frac{\delta}{4}\right)^{2}<\alpha_{1}<\alpha
$$

Then $n_{\alpha_{1}}<k_{\alpha} \leq n_{\alpha}$, as n is sufficiently large. It follows from the definition of $\varepsilon_{n}(m)$ that $\varepsilon_{n}\left(n_{\alpha_{1}}\right) \leq \varepsilon_{n}\left(k_{\alpha}\right) \leq \varepsilon_{n}\left(n_{\alpha}\right)$, as n is sufficiently large. Therefore,

$$
\begin{aligned}
P\left(\left|\varepsilon_{n}\left(k_{\alpha}\right)-2 \sqrt{\alpha}\right|>\delta\right) & \leq P\left(\varepsilon_{n}\left(k_{\alpha}\right)>2 \sqrt{\alpha}+\delta\right)+P\left(\varepsilon_{n}\left(k_{\alpha}\right)<2 \sqrt{\alpha}-\delta\right) \\
& \leq P\left(\varepsilon_{n}\left(n_{\alpha}\right)>2 \sqrt{\alpha}+\delta\right)+P\left(\varepsilon_{n}\left(n_{\alpha_{1}}\right)<2 \sqrt{\alpha_{1}}-\frac{\delta}{2}\right)
\end{aligned}
$$

as n is sufficiently large. The above two terms go to zero as $n \rightarrow \infty$ by (3.10). Then (iii) follows.

Now we show (3.9).
We continue to use the notation in Lemma 3.2. Set

$$
\begin{aligned}
A_{k} & =P\left(\max _{2 \leq j \leq k}\left\|\boldsymbol{\Delta}_{j}\right\| \leq t\right), \quad b_{k}^{+}=1-n f_{n}^{+}(k), \quad b_{k}^{-}=1-n f_{n}^{-}(k), \\
c_{n} & =\frac{(\log n)^{C}}{n^{\left(t^{2} / \alpha\right)-2}} \quad \text { and } \quad m^{\prime}=\left[\frac{n}{(\log n)^{3}}\right]+2 .
\end{aligned}
$$

By Lemma A.1, $P(|\xi| \geq x) \sim(2 /(\sqrt{2 \pi} x)) \exp \left(-x^{2} / 2\right)$ as $x \rightarrow+\infty$ for a standard normal ξ. Here and later, the notation " $f(x) \sim g(x)$ as $x \rightarrow+\infty$ " means that $\lim _{x \rightarrow+\infty} f(x) / g(x)=1$. The same interpretation applies to $\alpha_{n} \sim \beta_{n}$ as $n \rightarrow \infty$. It is easy to check that

$$
\begin{equation*}
\text { both } f_{n}^{+}(k) \text { and } f_{n}^{-}(k) \sim \frac{2}{t \sqrt{2 \pi}}\left(\frac{k}{n}\right)^{1 / 2} e^{-\left(t^{2} / 2\right)(n / k)} \tag{3.11}
\end{equation*}
$$

uniformly on $m^{\prime} \leq k \leq m$ as $n \rightarrow \infty$, and also that

$$
\begin{equation*}
1>\max \left\{b_{i}^{+}, b_{i}^{-} ; m^{\prime} \leq i \leq m\right\} \rightarrow 1 \tag{3.12}
\end{equation*}
$$

as $n \rightarrow \infty$, provided $t>\sqrt{2 \alpha}$. By Lemma 3.2,

$$
b_{k}^{-} A_{k-1}-c_{n} \leq A_{k} \leq b_{k}^{+} A_{k-1}+c_{n}
$$

for all $m^{\prime} \leq k \leq m$, as n is sufficiently large. By iteration, we obtain

$$
\begin{equation*}
A_{m} \geq\left(\prod_{j=m^{\prime}}^{m} b_{j}^{-}\right) A_{m^{\prime}-1}-c_{n} \sum_{j=0}^{m-m^{\prime}+2}\left[\max _{m^{\prime} \leq i \leq m}\left\{b_{i}^{-}\right\}\right]^{j} \tag{3.13}
\end{equation*}
$$

By (3.12), the second term on the right-hand side is no larger than $n c_{n} \leq$ $(\log n)^{C} / n^{\left(t^{2} / \alpha\right)-3}$, as n is sufficiently large. Further, applying the same argument in (3.13) to the "+" case, we obtain

$$
\begin{equation*}
\left(\prod_{j=m^{\prime}}^{m} b_{j}^{-}\right) A_{m^{\prime}-1}-\frac{(\log n)^{C}}{n^{\left(t^{2} / \alpha\right)-3}} \leq A_{m} \leq\left(\prod_{j=m^{\prime}}^{m} b_{j}^{+}\right) A_{m^{\prime}-1}+\frac{(\log n)^{C}}{n^{\left(t^{2} / \alpha\right)-3}} \tag{3.14}
\end{equation*}
$$

as n is sufficiently large. By definition, $A_{k}=P\left(\max _{2 \leq j \leq k}\| \| \boldsymbol{\Delta}_{j} \| \leq \leq\right)$. From the proved (ii), we know that $A_{m^{\prime}-1} \rightarrow 1$ as $n \rightarrow \infty$ for any $t>0$. Evidently, $(\log n)^{C} n^{3-\left(t^{2} / \alpha\right)} \rightarrow 0$, provided $t>\sqrt{3 \alpha}$. So to prove (3.9), we only need to show that

$$
\text { both } \prod_{j=m^{\prime}}^{m} b_{j}^{-} \text {and } \prod_{j=m^{\prime}}^{m} b_{j}^{+} \rightarrow \begin{cases}1, & \text { if } t>2 \sqrt{\alpha}, \tag{3.15}\\ e^{-K t^{2}}, & \text { if } t=2 \sqrt{\alpha}, \\ 0, & \text { if } t \in(\sqrt{3 \alpha}, 2 \sqrt{\alpha})\end{cases}
$$

as $n \rightarrow \infty$. Recall $b_{j}^{+}=1-n f_{n}^{+}(k)$ and $b_{j}^{-}=1-n f_{n}^{-}(k)$. Since $\mid \log (1+x)-$ $x \mid \leq x^{2}$ for x small enough, by (3.11) and (3.12),

$$
\begin{aligned}
& \prod_{j=m^{\prime}}^{m} b_{j}^{+} \leq \exp \left(-n \sum_{k=m^{\prime}}^{m} f_{n}^{+}(k)\right) \cdot \exp \left(+n^{2} \sum_{k=m^{\prime}}^{m} f_{n}^{+}(k)^{2}\right), \\
& \prod_{j=m^{\prime}}^{m} b_{j}^{-} \geq \exp \left(-n \sum_{k=m^{\prime}}^{m} f_{n}^{-}(k)\right) \cdot \exp \left(-n^{2} \sum_{k=m^{\prime}}^{m} f_{n}^{-}(k)^{2}\right),
\end{aligned}
$$

as n is sufficiently large. Also, the fact $f_{n}^{+}(k) \leq f_{n}^{-}(k)$ implies that $b_{j}^{+} \geq b_{j}^{-}$. So (3.15) is reduced to show that

$$
\begin{equation*}
n^{2} \sum_{k=m^{\prime}}^{m} f_{n}^{+}(k)^{2} \rightarrow 0 \quad \text { and } \tag{3.16}
\end{equation*}
$$

$$
n \sum_{k=m^{\prime}}^{m} f_{n}^{+}(k) \rightarrow \begin{cases}0, & \text { if } t>2 \sqrt{\alpha}, \\ K t^{2}, & \text { if } t=2 \sqrt{\alpha}, \\ +\infty, & \text { if } t \in(\sqrt{3 \alpha}, 2 \sqrt{\alpha})\end{cases}
$$

and that the above is also true if $f_{n}^{+}(k)$ is replaced by $f_{n}^{-}(k)$.
By (3.11) again, $n^{2} \sum_{k=m^{\prime}}^{m} f_{n}^{+}(k)^{2} \leq(\log n)^{C} n^{3-\left(t^{2} / \alpha\right)} \rightarrow 0$ as $n \rightarrow \infty$, provided $t>\sqrt{3 \alpha}$. Similarly, $n^{2} \sum_{k=m^{\prime}}^{m} f_{n}^{-}(k)^{2} \rightarrow 0$ for $t>\sqrt{3 \alpha}$. Let

$$
g(x)=\frac{2}{t \sqrt{2 \pi}} x^{1 / 2} e^{-t^{2} /(2 x)}
$$

for $x>0$. By the uniform convergence of $f_{n}^{+}(k) / g(k / n)$ and $f_{n}^{-}(k) / g(k / n)$ as $n \rightarrow \infty$ over $k \in\left[m^{\prime}, m\right]$ as in (3.11), to prove the second part in (3.16), it is enough to show

$$
\begin{equation*}
n \sum_{k=m^{\prime}}^{m} g\left(\frac{k}{n}\right) \text { goes to the second limit in (3.16) } \tag{3.17}
\end{equation*}
$$

as $n \rightarrow \infty$. Note that $g(x)$ is nonnegative and increasing in x over $[0,+\infty)$, it is elementary to see that

$$
\left|\frac{1}{n} \sum_{k=m^{\prime}}^{m} g\left(\frac{k}{n}\right)-\int_{0}^{m / n} g(x) d x\right| \leq \int_{m / n}^{(m+1) / n} g(x) d x+\int_{0}^{m^{\prime} / n} g(x) d x
$$

Using $\sqrt{x} e^{-t^{2} /(2 x)} \leq e^{-t^{2} /(2 x)}$ on $x \in[0,1]$, the first integral on the right-hand side is bounded by $(1 / n) \exp \left(-n t^{2} /(2 m+2)\right) \leq n^{-1-\left(t^{2} /(2 \alpha)\right)}(\log n)^{C}$, as n is sufficiently large; the second one is bounded by $\exp \left(-(\log n)^{2}\right)$ as n is large because $m^{\prime} \sim n(\log n)^{-3}$ by definition. Hence,

$$
\begin{equation*}
\frac{1}{n} \sum_{k=m^{\prime}}^{m} g\left(\frac{k}{n}\right)-\int_{0}^{m / n} g(x) d x=o\left(\frac{1}{n^{2}}\right) \tag{3.18}
\end{equation*}
$$

as $n \rightarrow \infty$ if $t>\sqrt{2 \alpha}$. Now we evaluate the integral.
Write $\sqrt{x} \exp \left(-t^{2} /(2 x)\right) d x=\left(2 t^{-2} x^{5 / 2}\right) d\left(e^{-t^{2} /(2 x)}\right)$. By integration by parts, $I_{n}:=\int_{0}^{m / n} \sqrt{x} e^{-t^{2} /(2 x)} d x=\frac{2}{t^{2}}\left(\frac{m}{n}\right)^{5 / 2} e^{-n t^{2} /(2 m)}-\frac{5}{t^{2}} \int_{0}^{m / n} \sqrt{x^{3}} e^{-t^{2} /(2 x)} d x$.

Note that $\sqrt{x^{3}} \leq(m / n) \sqrt{x}$ on $[0, m / n]$. The last integral is less than or equal to $(m / n) I_{n}$. But $m / n \rightarrow 0$, thus,

$$
I_{n} \sim \frac{2}{t^{2}}\left(\frac{m}{n}\right)^{5 / 2} e^{-n t^{2} /(2 m)}
$$

By the definition of $m, n t^{2} /(2 m)=\left(t^{2} /(2 \alpha)\right)\left(\log n-(5 / 4) \log _{2} n\right)+$ $O\left(n^{-1}(\log n)^{2}\right)$ as $n \rightarrow \infty$. It follows that

$$
\begin{equation*}
I_{n} \sim \frac{2 \alpha^{5 / 2}}{t^{2}} \cdot \frac{1}{n^{t^{2} /(2 \alpha)}}(\log n)^{5 t^{2} /(8 \alpha)-5 / 2} \tag{3.19}
\end{equation*}
$$

From (3.18),

$$
\begin{aligned}
n \sum_{k=m^{\prime}}^{m} g\left(\frac{k}{n}\right) & \sim n^{2} \int_{0}^{m / n} g(x) d x \\
& =\frac{2 n^{2}}{\sqrt{2 \pi} t} \cdot I_{n} \sim \frac{4 \alpha^{5 / 2}}{\sqrt{2 \pi} t^{3}} \cdot \frac{1}{n^{t^{2} /(2 \alpha)-2}} \cdot(\log n)^{5 t^{2} /(8 \alpha)-5 / 2}
\end{aligned}
$$

provided $t>\sqrt{3 \alpha}$. Recall $K=(8 \sqrt{2 \pi})^{-1}$. The above implies (3.17).
4. Technical lemmas. Now we prove the lemmas used in the previous sections. To see them clearly, we break them into two subsections.

4.1. The proofs of lemmas used in Section 2.

Proof of Lemma 2.1. (i) First, when $n=1, \Gamma(n+(1 / 2)) /(\sqrt{n} \Gamma(n))=$ $\sqrt{\pi} / 2 \in(5 / 6,1)$. So (i) is true for $n=1$. Now assume $n \geq 2$.

Using the fact that $\Gamma(x+1)=x \Gamma(x)$ for any $x>0$ and $\Gamma(1 / 2)=\sqrt{\pi}$, we have that

$$
\frac{\Gamma(n+(1 / 2))}{\Gamma(n)}=\frac{\sqrt{\pi} n}{2^{2 n}} \cdot \frac{(2 n)!}{(n!)^{2}} .
$$

By Stirling's formula (see, e.g., Lemma 1 on page 45 from [6]), $n!=\sqrt{2 \pi n} n^{n}$. $e^{-n+\theta_{n} /(12 n)}$ for all $n \geq 2$, where

$$
\begin{equation*}
\frac{n}{n+1 / 12}<\theta_{n}<1 \tag{4.1}
\end{equation*}
$$

It is easily checked that

$$
\begin{equation*}
\frac{\Gamma(n+(1 / 2))}{\sqrt{n} \Gamma(n)}=\exp \left(\frac{\theta_{n}-4 \theta_{n}^{\prime}}{24 n}\right) \tag{4.2}
\end{equation*}
$$

for some θ_{n} corresponding to $2 n$ and θ_{n}^{\prime} corresponding to n in (4.1). Evidently, $\left(\theta_{n}-4 \theta_{n}^{\prime}\right) / 24 \in(-1 / 6,0)$ for all $n \geq 2$. Then the desired result follows by using the inequality $e^{x}>1+x$ for all $x \neq 0$.
(ii) A direct verification shows that (ii) is true for $n=1$. Now assume $n \geq 2$. If $n=2 k$ for some integer $k \geq 1$, then (ii) follows from (i). Now suppose $n=2 k+1$ for $k \geq 1$. Trivially,

$$
\frac{\Gamma((n+1) / 2)}{\sqrt{n / 2} \Gamma(n / 2)}=\left(\frac{\Gamma(k+(1 / 2))}{\sqrt{k} \Gamma(k)}\right)^{-1} \cdot \sqrt{\frac{2 k}{2 k+1}} .
$$

By (i), the above ratio is between $\sqrt{2 k /(2 k+1)}$ and $\left(1-(6 k)^{-1}\right)^{-1}$. By a simple calculation, $\sqrt{2 k /(2 k+1)} \geq 1-(3 / 5 n)$ and $\left(1-(6 k)^{-1}\right)^{-1} \leq 1+(5 k)^{-1}$ for all $k \geq 1$. So (ii) follows.

Proof of Lemma 2.2. By the multivariate Taylor's expansion formula (see page 361 from [2] and page 172 from [22]),

$$
f(x, y)=f\left(\frac{i}{n}, \frac{j}{n}\right)+f_{x}^{\prime}\left(\frac{i}{n}, \frac{j}{n}\right)\left(x-\frac{i}{n}\right)+f_{y}^{\prime}\left(\frac{i}{n}, \frac{j}{n}\right)\left(y-\frac{j}{n}\right)+\delta_{i j}(\xi, \eta),
$$

for some $\xi \in[i / n, x]$ and $\eta \in[j / n, y]$, where

$$
\begin{align*}
\delta_{i j}(x, y)=\frac{1}{2} & \left(\left(x-\frac{i}{n}\right)^{2} \frac{\partial^{2} f}{\partial x^{2}}\right. \tag{4.3}\\
& \left.+2\left(x-\frac{i}{n}\right)\left(y-\frac{j}{n}\right) \frac{\partial^{2} f}{\partial x \partial y}+\left(y-\frac{j}{n}\right)^{2} \frac{\partial^{2} f}{\partial y^{2}}\right)
\end{align*}
$$

By the given condition,

$$
\left|\delta_{i j}(x, y)\right| \leq \frac{M}{2}\left(\left(x-\frac{i}{n}\right)+\left(y-\frac{j}{n}\right)\right)^{2} \leq M\left(\left(x-\frac{i}{n}\right)^{2}+\left(y-\frac{j}{n}\right)^{2}\right)
$$

Then

$$
\begin{aligned}
& \int_{j / n}^{(j+1) / n} \int_{i / n}^{(i+1) / n} f(x, y) d x d y \\
& \quad=\frac{1}{n^{2}} f\left(\frac{i}{n}, \frac{j}{n}\right)+\frac{1}{2 n^{3}} f_{x}^{\prime}\left(\frac{i}{n}, \frac{j}{n}\right)+\frac{1}{2 n^{3}} f_{y}^{\prime}\left(\frac{i}{n}, \frac{j}{n}\right)+\delta_{i j}^{\prime},
\end{aligned}
$$

where
$\left|\delta_{i j}^{\prime}\right|=\left|\int_{j / n}^{(j+1) / n} \int_{i / n}^{(i+1) / n} \delta_{i j}(\xi, \eta) d x d y\right| \leq M \int_{0}^{1 / n} \int_{0}^{1 / n}\left(x^{2}+y^{2}\right) d x d y=\frac{2 M}{3 n^{4}}$
since $\left|\delta_{i j}(\xi, \eta)\right| \leq M\left((x-i / n)^{2}+(y-j / n)^{2}\right)$ by (4.3). The desired result follows by taking the sum over i from i_{1} to i_{2}, and j from j_{1} to j_{2}.

Proof of Lemma 2.4. (i) It is not difficult to check that

$$
\begin{align*}
\operatorname{tr}\left(X^{\prime} X\right)= & \sum_{j=1}^{q} \sum_{i=1}^{p} x_{i j}^{2} ; \\
\operatorname{tr}\left(\left(X^{\prime} X\right)^{2}\right)= & \sum_{j=1}^{q} \sum_{i=1}^{p} x_{i j}^{4}+\sum_{j=1}^{q} \sum_{i \neq l=1}^{p} x_{i j}^{2} x_{l j}^{2} \tag{4.4}\\
& +\sum_{i=1}^{p} \sum_{j \neq k=1}^{q} x_{i j}^{2} x_{i k}^{2}+\sum_{i \neq l, j \neq k} x_{i j} x_{i k} x_{l k} x_{l j} .
\end{align*}
$$

Let

$$
\begin{array}{ll}
B_{1}=\sum_{j=1}^{q} \sum_{i=1}^{p}\left(x_{i j}^{4}-3\right), & B_{2}=\sum_{j=1}^{q} \sum_{i \neq l=1}^{p}\left(x_{i j}^{2}-1\right)\left(x_{l j}^{2}-1\right), \\
B_{3}=\sum_{i=1}^{p} \sum_{j \neq k=1}^{q}\left(x_{i j}^{2}-1\right)\left(x_{i k}^{2}-1\right), & B_{4}=\sum_{i \neq l, j \neq k} x_{i j} x_{i k} x_{l k} x_{l j} .
\end{array}
$$

By a simple algebra,

$$
\begin{equation*}
\operatorname{tr}\left(\left(X^{\prime} X\right)^{2}\right)=\left(\sum_{i=1}^{4} B_{i}\right)+2(p+q-2) \operatorname{tr}\left(X^{\prime} X\right)+C_{p, q} \tag{4.5}
\end{equation*}
$$

where $C_{p, q}$ is a constant on p and q. It is easy to check that $E B_{i}=0$ for $1 \leq$ $i \leq 4, \operatorname{Cov}\left(B_{i}, B_{j}\right)=0$ for all $1 \leq i \neq j \leq 4$, and $\operatorname{Cov}\left(B_{i}, \operatorname{tr}\left(X^{\prime} X\right)\right)=0$ for $i=$ $2,3,4$. Also, each B_{i} is a sum of uncorrelated random variables. Therefore,

$$
\begin{aligned}
\operatorname{Var}\left(\operatorname{tr}\left(\left(X^{\prime} X\right)^{2}\right)\right)= & \left(\sum_{i=1}^{4} \operatorname{Var}\left(B_{i}\right)\right)+4(p+q-2)^{2} \operatorname{Var}\left(\operatorname{tr}\left(X^{\prime} X\right)\right) \\
& +2 \operatorname{Cov}\left(B_{1}, \operatorname{tr}\left(X^{\prime} X\right)\right)
\end{aligned}
$$

Now it is easy to verify that $\operatorname{Cov}\left(B_{1}, \operatorname{tr}\left(X^{\prime} X\right)\right)=O\left(p^{2}\right)$ and $\operatorname{Var}\left(B_{i}\right)=O\left(p^{3}\right)$ for $i=1,2,3$ as $p \rightarrow \infty$. Moreover, $\operatorname{Var}\left(B_{4}\right)=p q(p-1)(q-1)$ and $\operatorname{Var}\left(\operatorname{tr}\left(X^{\prime} X\right)\right)=$ $2 p q$. Combining these quantities together, we obtain (i).
(ii) By (4.5) again,

$$
\begin{aligned}
\operatorname{Cov}\left(\operatorname{tr}\left(X^{\prime} X\right), \operatorname{tr}\left(\left(X^{\prime} X\right)^{2}\right)\right) & =\operatorname{Cov}\left(\operatorname{tr}\left(X^{\prime} X\right), B_{1}\right)+2(p+q-2) \cdot \operatorname{Var}\left(\operatorname{tr}\left(X^{\prime} X\right)\right) \\
& \sim 4 p q(p+q)
\end{aligned}
$$

as $n \rightarrow \infty$.
4.2. The proofs of lemmas used in Section 3. Before the proof of these lemmas, we need some preliminary results for a preparation.

LEMmA 4.1. Let $E_{i}, i=0,1,2, \ldots, n$, be events in a probability space (Ω, \mathcal{F}, P). Then

$$
\left|P\left(\bigcap_{i=0}^{n} E_{i}\right)-P\left(E_{0}\right)+\sum_{i=1}^{n} P\left(E_{0} \backslash E_{i}\right)\right| \leq \sum_{1 \leq i<j \leq n} P\left(E_{i}^{c} E_{j}^{c}\right) .
$$

Proof. First, $P\left(E_{0}\right)-P\left(\bigcap_{i=0}^{n} E_{i}\right)=P\left(\bigcup_{i=1}^{n} E_{0} \backslash E_{i}\right)$. By Bonferoni's inequality, it is bounded above and below, respectively, by

$$
\sum_{i=1}^{n} P\left(E_{0} \backslash E_{i}\right) \quad \text { and } \quad \sum_{i=1}^{n} P\left(E_{0} \backslash E_{i}\right)-\sum_{1 \leq i<j \leq n} P\left(\left(E_{0} \backslash E_{i}\right) \cap\left(E_{0} \backslash E_{j}\right)\right)
$$

Note that $\left(E_{0} \backslash E_{i}\right) \cap\left(E_{0} \backslash E_{j}\right) \subset E_{i}^{c} E_{j}^{c}$. The desired conclusion follows.
LEMMA 4.2. Let $\left\{\xi_{i} ; i \geq 1\right\}$ be a sequence of i.i.d. random variables with the standard normal distribution. Set $S_{k}=\sum_{i=1}^{k} \xi_{i}^{2}$. Then

$$
P\left(\left|\frac{S_{n}}{S_{m}}-\frac{n}{m}\right| \geq x\right) \leq 6 \exp \left(-\frac{m^{4} x^{2}}{48 n^{3}}\right)
$$

for any $m \geq 1, n \geq 1$ and $x>0$ satisfying $m \leq n / 2$ and $x \leq n / m$.
Proof. Write

$$
\frac{S_{n}}{S_{m}}-\frac{n}{m}=\frac{(m-n)\left(S_{m}-m\right)+m\left[\left(S_{n}-S_{m}\right)-(n-m)\right]}{m S_{m}}
$$

Then

$$
\left|\frac{S_{n}}{S_{m}}-\frac{n}{m}\right| \leq \frac{n}{m S_{m}} \max \left\{\left|S_{m}-m\right|,\left|\left(S_{n}-S_{m}\right)-(n-m)\right|\right\}
$$

Since the distribution of $S_{n}-S_{m}$ is equal to that of S_{n-m}, we have that

$$
\begin{align*}
& P\left(\left|\frac{S_{n}}{S_{m}}-\frac{n}{m}\right| \geq x\right) \\
& \quad \leq P\left(S_{m} \leq \frac{m}{2}\right)+P\left(\left|S_{m}-m\right|>\frac{m^{2} x}{2 n}\right) \tag{4.6}\\
& \quad+P\left(\left|S_{n-m}-(n-m)\right|>\frac{m^{2} x}{2 n}\right) .
\end{align*}
$$

Let P_{1}, P_{2} and P_{3} stand for the previous three probabilities in order. Define $I(x):=\sup _{\theta \in \mathbb{R}}\left\{\theta x-\log \left(E \exp \left(\theta \xi_{1}^{2}\right)\right)\right\}$ for $x \in \mathbb{R}$. It is not difficult to verify the following:
(i) $I(x)=(x-1-\log x) / 2$ for $x>0 ; I(x)=+\infty$ for $x \leq 0$;
(ii) $I(x)$ is increasing on $[1, \infty)$ and decreasing on $(0,1)$.

The above two facts can be also seen in Lemma 3.2 from [19]. By (i) of Lemma A.3,

$$
P_{1} \leq 2 e^{-m I(1 / 2)} \leq 2 \exp (-(\log 4-1) m / 4) \leq 2 \exp (-m / 12)
$$

Define $\eta(x)=x-\log (1+x)-\left(x^{2} / 3\right)$ for $x>-1$. Then $\eta(0)=0$ and $\eta^{\prime}(x)=$ $x(1-2 x)(1+x)^{-1} / 3$. Hence, $\eta^{\prime}(x) \geq 0$ for $x \in[0,1 / 2]$ and $\eta^{\prime}(x)<0$ for $x \in$ $[-1 / 2,0)$. It follows that $x-\log (1+\bar{x}) \geq x^{2} / 3$ for $|x|<1 / 2$. Therefore,

$$
\begin{aligned}
P_{2} & \leq 2 \exp \left\{-m \cdot \max \left\{I\left(1+\frac{m x}{2 n}\right), I\left(1-\frac{m x}{2 n}\right)\right\}\right\} \\
& \leq 2 e^{-m^{3} x^{2} /\left(24 n^{2}\right)},
\end{aligned}
$$

provided $x \leq n / m$, where property (ii) of $I(x)$ above is used. Similarly,

$$
\begin{aligned}
P_{3} & \leq P\left(\left|\frac{S_{n-m}}{n-m}-1\right|>\frac{m^{2} x}{2 n^{2}}\right) \\
& \leq 2 \exp \left\{-(n-m) \cdot \max \left\{I\left(1+\frac{m^{2} x}{2 n^{2}}\right), I\left(1-\frac{m^{2} x}{2 n^{2}}\right)\right\}\right\} \\
& \leq 2 e^{-m^{4} x^{2} /\left(48 n^{3}\right)},
\end{aligned}
$$

provided $m \leq n / 2$ and $x \leq n^{2} / m^{2}$, where the fact that $n-m \geq n / 2$ is used in the last step. Thus,

$$
P_{1}+P_{2}+P_{3} \leq 6 \exp \left(-\min \left\{\frac{m}{12}, \frac{m^{3} x^{2}}{24 n^{2}}, \frac{m^{4} x^{2}}{48 n^{3}}\right\}\right)
$$

if $m \leq n / 2$ and $x \leq n / m$. By a simple verification, the minimum above is actually $m^{4} x^{2} /\left(48 n^{3}\right)$. This together with (4.6) proves the lemma.

Proof of Lemma 3.1. Write $m=n_{\alpha}$ for simplification. By (3.4), we know that

$$
\max _{1 \leq j \leq m}\| \| \sqrt{n} \boldsymbol{\gamma}_{j}-\mathbf{y}_{j}+\boldsymbol{\Delta}_{j}\| \| \leq \max _{1 \leq j \leq m}\| \| \sqrt{n} \mathbf{u}_{j}\| \|,
$$

where $\mathbf{u}_{j}=\left(1-n^{-1 / 2}\left\|\mathbf{w}_{j}\right\|\right) \boldsymbol{\gamma}_{j}$. By the triangle inequality,

$$
\begin{aligned}
\left|\varepsilon_{n}(m)-\max _{2 \leq j \leq m}\left\|\left|\boldsymbol{\Delta}_{j}\| \|\right|\right.\right. & \leq \max _{1 \leq j \leq m}\left\|\sqrt{n} \mathbf{u}_{j}\right\| \\
& \leq\left\{\max _{1 \leq j \leq n}\left\|\mid \sqrt{n} \boldsymbol{\gamma}_{j}\right\| \|\right\} \cdot \max _{1 \leq j \leq m}\left|1-\frac{\left\|\mathbf{w}_{j}\right\|^{2}}{n}\right|
\end{aligned}
$$

where the inequality $|1-\sqrt{x}| \leq|1-x|$ is used in the last step. Proposition 1 from [19] implies that

$$
\sqrt{\frac{n}{\log n}} \max _{1 \leq j \leq n}\left\|\boldsymbol{\gamma}_{j}\right\| \xrightarrow{P} 2
$$

as $n \rightarrow \infty$. To prove the lemma, it suffices to show that

$$
\begin{equation*}
B_{n}:=\sqrt{\log n} \max _{1 \leq j \leq m}\left|1-\frac{\left\|\mathbf{w}_{j}\right\|^{2}}{n}\right| \rightarrow 0 \tag{4.7}
\end{equation*}
$$

in probability as $n \rightarrow \infty$. By orthogonality, $\left(I_{n}-\boldsymbol{\Gamma}_{n, j} \boldsymbol{\Gamma}_{n, j}^{T}\right)^{2}=I_{n}-\boldsymbol{\Gamma}_{n, j} \boldsymbol{\Gamma}_{n, j}^{T}$. This says that $I_{n}-\boldsymbol{\Gamma}_{n, j} \boldsymbol{\Gamma}_{n, j}^{T}$ is an idempotent matrix. So by (3.4), $\mathbf{w}_{j} \sim N_{n}\left(\mathbf{0}, I_{n}-\right.$ $\left.\boldsymbol{\Gamma}_{n, j} \boldsymbol{\Gamma}_{n, j}^{T}\right)$ conditioning on $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{j-1}$, where $\boldsymbol{\Gamma}_{n, j}=\left(\boldsymbol{\gamma}_{1}, \boldsymbol{\gamma}_{2}, \ldots, \boldsymbol{\gamma}_{j-1}\right)$. In this context, " \sim " means that both sides of " \sim " have the same probability distribution. It also follows that $\operatorname{rank}\left(I_{n}-\boldsymbol{\Gamma}_{n, j} \boldsymbol{\Gamma}_{n, j}^{T}\right)=\operatorname{trace}\left(I_{n}-\boldsymbol{\Gamma}_{n, j} \boldsymbol{\Gamma}_{n, j}^{T}\right)=$ $\operatorname{trace}\left(I_{n}\right)-\operatorname{trace}\left(\boldsymbol{\Gamma}_{n, j} \boldsymbol{\Gamma}_{n, j}^{T}\right)=n-j+1$. By Lemma A. $2,\left\|\mathbf{w}_{j}\right\|^{2} \sim \chi^{2}(n-j+1)$. Obviously, $2 t n / \sqrt{\log n}-j \geq t n / \sqrt{\log n}$ for all $1 \leq j \leq m$, as n is sufficiently large. Let $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\}$ be independent standard normals. Then

$$
\begin{aligned}
& P\left(\left|1-\frac{\left\|\mathbf{w}_{j}\right\|^{2}}{n}\right| \geq 2 t(\log n)^{-1 / 2}\right) \\
& \quad \leq P\left(\left|\sum_{k=1}^{n-j+1}\left(\xi_{k}^{2}-1\right)\right| \geq \frac{t n}{\sqrt{\log n}}\right) \\
& \quad \leq P\left(\frac{1}{(n-j+1)^{1 / 2}}\left|\sum_{k=1}^{n-j+1}\left(\xi_{k}^{2}-1\right)\right| \geq n^{1 / 3}\right) \\
& \quad \leq \exp \left(-n^{1 / 3}\right)
\end{aligned}
$$

uniformly for $1 \leq j \leq m$ as n is sufficiently large, where Lemma A. 3 is used in the last inequality [heuristically, since $\sum_{k=1}^{n-j+1}\left(\xi_{k}^{2}-1\right)$ is a sum of i.i.d. random variables with mean zero and variance equal to two, one can think of $\sum_{k=1}^{n-j+1}\left(\xi_{k}^{2}-\right.$ 1) $/ \sqrt{n-j+1}$ as a normal. Then the last inequality above is intuitive]. By the union bound,
$P\left(B_{n} \geq 2 t\right) \leq n \cdot \max _{1 \leq j \leq m} P\left(\left|1-\frac{\left\|\mathbf{w}_{j}\right\|^{2}}{n}\right| \geq 2 t(\log n)^{-1 / 2}\right) \leq n \cdot \exp \left(-n^{1 / 3}\right) \rightarrow 0$ as $n \rightarrow \infty$. So (4.7) follows.

We need the following two lemmas for the proof of Lemma 3.2.

Lemma 4.3. Let $\boldsymbol{\Delta}_{j}$ be as in (3.3) and n_{α} in (3.8). Write $\boldsymbol{\Delta}_{j}=\left(\Delta_{1 j}\right.$, $\left.\Delta_{2 j}, \ldots, \Delta_{n j}\right)^{T} \in \mathbb{R}^{n}$. Then, for any $t>0$,

$$
P\left(\left|\Delta_{1 j}\right| \geq t,\left|\Delta_{2 j}\right| \geq t\right) \leq e^{-t^{2} n / j}+e^{-(\log n)^{2} / 11}
$$

uniformly on $j \in\left(n /(\log n)^{3}, n_{\alpha}\right)$ as n is sufficiently large.
Proof. Again, write $m=n_{\alpha}$. By (3.4), $\boldsymbol{\Delta}_{j}=\boldsymbol{\Gamma}_{n, j} \boldsymbol{\Gamma}_{n, j}^{T} \mathbf{y}_{j}$, where $\boldsymbol{\Gamma}_{n, j}=$ $\left(\boldsymbol{\gamma}_{1}, \boldsymbol{\gamma}_{2}, \ldots, \boldsymbol{\gamma}_{j-1}\right)$ and $\mathbf{y}_{j}=\left(y_{1 j}, y_{2 j}, \ldots, y_{n j}\right)^{T} \in \mathbb{R}^{n}$. It is easy to see from the orthogonality of the γ_{i} 's and the independence between \mathbf{y}_{j} and $\boldsymbol{\Gamma}_{n, j}$ that

$$
\begin{equation*}
\boldsymbol{\Delta}_{j} \stackrel{d}{=} \boldsymbol{\Gamma}_{n, j}\left(y_{1 j}, y_{2 j}, \ldots, y_{j-1 j}\right)^{T} \tag{4.9}
\end{equation*}
$$

Here and later, the notation " $\stackrel{d}{=}$ " means that the distributions of both sides are identical. Thus,

$$
\begin{equation*}
\left(\Delta_{1 j}, \Delta_{2 j}\right)^{T} \stackrel{d}{=}\left(\sum_{k=1}^{j-1} \gamma_{1 k} y_{k j}, \sum_{k=1}^{j-1} \gamma_{2 k} y_{k j}\right)^{T} \tag{4.10}
\end{equation*}
$$

Observe that $\boldsymbol{\gamma}_{1}, \boldsymbol{\gamma}_{2}, \ldots, \boldsymbol{\gamma}_{j-1}$ are functions of $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{j-1}$. We know from (4.10) that $\left(\Delta_{1 j}, \Delta_{2 j}\right)^{T} \sim N_{2}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ conditioning on $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{j-1}$. Easily, $\boldsymbol{\mu}=$ 0 and $\operatorname{Var}\left(\Delta_{p j}\right) \sim \sum_{k=1}^{j-1} \gamma_{p k}^{2}$ for $p=1,2$, and the correlation coefficient of $\Delta_{1 j}$ and $\Delta_{2 j}$ is

$$
\begin{equation*}
\rho_{j}:=\frac{\sum_{k=1}^{j-1} \gamma_{1 k} \gamma_{2 k}}{\sqrt{\sum_{k=1}^{j-1} \gamma_{1 k}^{2}} \sqrt{\sum_{k=1}^{j-1} \gamma_{2 k}^{2}}} . \tag{4.11}
\end{equation*}
$$

Therefore, there exists two independent standard normals ξ and η such that the conditional distribution of $\Delta_{1 j}$ and $\Delta_{2 j}$ given $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{j-1}$ is the same as that of $\left(\sum_{k=1}^{j-1} \gamma_{1 k}^{2}\right)^{1 / 2} \xi$ and $\left(\sum_{k=1}^{j-1} \gamma_{2 k}^{2}\right)^{1 / 2}\left(\rho_{j} \xi+\sqrt{1-\rho_{j}^{2}} \eta\right)$. It follows that

$$
\begin{align*}
& P\left(\left|\Delta_{1 j+1}\right| \geq t,\left|\Delta_{2 j+1}\right| \geq t \mid \mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{j}\right) \\
& \leq P\left(|\xi| \geq t\left(\sum_{k=1}^{j} \gamma_{1 k}^{2}\right)^{-1 / 2},\right. \tag{4.12}\\
& \left.\quad|\eta| \geq t\left(\sum_{k=1}^{j} \gamma_{2 k}^{2}\right)^{-1 / 2}-\left|\rho_{j+1} \xi\right| \mid \mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{j}\right) .
\end{align*}
$$

Now, by (3.5) and (3.6), there exists a sequence of i.i.d. standard normals $\psi_{1}, \psi_{2}, \ldots, \psi_{n}$ such that $\mathcal{L}\left(\sum_{k=1}^{j} \gamma_{p k}^{2}\right)=\mathcal{L}\left(S_{j} / S_{n}\right)$ for $p=1,2$, where $S_{j}=$
$\sum_{l=1}^{j} \psi_{l}^{2}$. By Lemma 4.2,

$$
\begin{aligned}
& \max _{n /(\log n)^{3} \leq j \leq m} P\left(\left|\frac{S_{n}}{S_{j}}-\frac{n}{j}\right| \geq n^{-1 / 5}\right) \\
& \quad \leq 6 \max _{n /(\log n)^{3} \leq j \leq m}\left\{\exp \left(-\frac{j^{4} n^{-2 / 5}}{48 n^{3}}\right)\right\} \leq e^{-\sqrt{n}}
\end{aligned}
$$

as n is sufficiently large. By (4.12),

$$
\begin{align*}
& P\left(\left|\Delta_{1 j+1}\right| \geq t,\left|\Delta_{2 j+1}\right| \geq t\right) \\
& \quad \leq P\left(|\xi| \geq t \sqrt{(n / j)-n^{-1 / 5}},|\eta| \geq t \sqrt{(n / j)-n^{-1 / 5}}-\left|\rho_{j+1} \xi\right|\right) \tag{4.13}\\
& \quad+2 e^{-\sqrt{n}}
\end{align*}
$$

Since $P(|\xi| \geq x) \leq(1 / x) \exp \left(-x^{2} / 2\right)$ for any $x>0$, by Lemma 4.4 below,

$$
\begin{aligned}
P\left(\left|\rho_{j+1} \xi\right| \geq(\log n)^{7} / n^{1 / 4}\right) & \leq P\left(\left|\rho_{j+1}\right| \geq \frac{(\log n)^{6}}{\sqrt{n}}\right)+P(|\xi| \geq \log n) \\
& \leq 2 e^{-(\log n)^{2} / 10}
\end{aligned}
$$

for sufficiently large n. Thus, combining this with (4.13), we obtain from the independence of ξ and η that $P\left(\left|\Delta_{1 j+1}\right| \geq t,\left|\Delta_{2 j+1}\right| \geq t\right)$ is bounded above by

$$
\begin{aligned}
P(|\xi| \geq & \underbrace{t \sqrt{(n / j)-n^{-1 / 5}}}_{A},|\eta| \geq \underbrace{t \sqrt{(n / j)-n^{-1 / 5}}-n^{-1 / 4}(\log n)^{7}}_{B}) \\
& +3 e^{-(\log n)^{2} / 10} \\
\leq & 2 e^{-t^{2} n / j}+e^{-(\log n)^{2} / 11},
\end{aligned}
$$

uniformly on $j \in\left(n /(\log n)^{3}, m\right)$ as n is sufficiently large, where A and B are essentially $t \sqrt{n / j}$ when using Lemma A. 1 in the last step.

Now we measure how fast the correlation coefficient ρ_{j} goes to zero. The idea behind the proof is that we view $\gamma_{i j}$'s in the expression of ρ_{j} in (4.11) as independent normals with mean zero and standard deviation $n^{-1 / 2}$. This intuition will be carried out rigorously by using Lemma A.4.

Lemma 4.4. Let ρ_{j} be as in (4.11). Then

$$
P\left(\left|\rho_{j+1}\right| \geq(\log n)^{6} / n^{1 / 4}\right) \leq e^{-(\log n)^{2} / 10}
$$

uniformly on $j \in\left(n /(\log n)^{3}, n_{\alpha}\right)$ for sufficiently large n.

Proof. Write $m=n_{\alpha}$ for simplification. Note that $\left(\gamma_{11}, \gamma_{12}, \ldots, \gamma_{1 n}\right)$ has the same distribution as that of $\left(\gamma_{21}, \gamma_{22}, \ldots, \gamma_{2 n}\right)$ because of the Haar invariance of $\boldsymbol{\Gamma}=\left(\boldsymbol{\gamma}_{1}, \boldsymbol{\gamma}_{2}, \ldots, \boldsymbol{\gamma}_{n}\right)$. For any $a>0$,

$$
\begin{equation*}
P\left(\left|\rho_{j+1}\right| \geq a\right) \leq P\left(\left|\sum_{k=1}^{j} \gamma_{1 k} \gamma_{2 k}\right| \geq \frac{a j}{2 n}\right)+2 P\left(\left(\sum_{k=1}^{j} \gamma_{1 k}^{2}\right)^{-1} \geq \frac{2 n}{j}\right) \tag{4.14}
\end{equation*}
$$

By (3.5) and (3.6), the sum appearing in the last probability in (4.14) is equal to S_{j} / S_{n} in law as in Lemma 4.2. By this lemma,

$$
P\left(\left|\left(\sum_{k=1}^{j} \gamma_{1 k}^{2}\right)^{-1}-\frac{n}{j}\right| \geq \frac{n}{j}\right)=P\left(\left|\frac{S_{n}}{S_{j}}-\frac{n}{j}\right| \geq \frac{n}{j}\right)
$$

$$
\begin{align*}
& \leq 6 \exp \left(-\frac{j^{4}}{48 n^{3}}\left(\frac{n}{j}\right)^{2}\right) \tag{4.15}\\
& \leq e^{-\sqrt{n}}
\end{align*}
$$

uniformly on $j \in\left(n /(\log n)^{3}, m\right)$ for n sufficiently large. Recall (3.6) again. Choosing $m=2, t=n^{-1 / 4} \log n, s=\log n$ and $r=(\log n)^{2} / \sqrt{n}$ in Theorem A.4, by (3.6), we have $2 n^{2}$ i.i.d. standard normals $\left\{y_{i j} ; 1 \leq i \leq 2,1 \leq j \leq n\right\}$ such that

$$
\begin{align*}
& P\left(\varepsilon_{n}(2) \geq \frac{(\log n)^{2}}{n^{1 / 4}}\right) \\
& \quad \leq 4 n^{2} \exp \left(-\frac{(\log n)^{4}}{16}\right) \\
& \quad+3 n^{2} e^{-(\log n)^{2} / 2}+3 n^{5 / 4}\left(1+\frac{(\log n)^{2}}{3 \sqrt{n}(\sqrt{n}+2)}\right)^{-n / 2} \tag{4.16}\\
& \quad \leq e^{-(\log n)^{2} / 9}
\end{align*}
$$

for n large enough, where $\varepsilon_{n}(2)=\max _{1 \leq i \leq 2,1 \leq j \leq n}\left|\sqrt{n} \gamma_{i j}-y_{i j}\right|$. Notice that
(4.17) $n\left|\sum_{k=1}^{j} \gamma_{1 k} \gamma_{2 k}\right| \leq\left|\sum_{k=1}^{j} y_{1 k} y_{2 k}\right|+\frac{(\log n)^{2}}{n^{1 / 4}} \sum_{i=1}^{2} \sum_{k=1}^{j}\left|y_{i k}\right|+\frac{2 j(\log n)^{4}}{\sqrt{n}}$
on $\left\{\varepsilon_{n}(2) \leq(\log n)^{2} / n^{1 / 4}\right\}$. Note that $E \exp \left(\left|y_{11} y_{21}\right| / 8\right)<\infty$ and $E\left|y_{11}\right| \leq 1$. By Lemma A.3, there exists a universal constant $C>0$ such that

$$
\begin{align*}
P\left(\sum_{i=1}^{2} \sum_{k=1}^{j}\left|y_{i k}\right| \geq 3 j\right) & \leq e^{-C j} \quad \text { and } \tag{4.18}\\
P\left(\left|\sum_{k=1}^{j} y_{1 k} y_{2 k}\right| \geq \sqrt{j} \log j\right) & \leq e^{-(\log n)^{2} / 3},
\end{align*}
$$

uniformly on $j \in\left(n /(\log n)^{3}, m\right)$, where the first one comes from (i) of Lemma A. 3 and the second is obtained by (ii) of Lemma A. 3 in the same way as in (4.8). If neither of the events in the above two probabilities occurs and $\varepsilon_{n}(2) \leq(\log n)^{2} / n^{1 / 4}$, then from (4.17)

$$
n\left|\sum_{k=1}^{j} \gamma_{1 k} \gamma_{2 k}\right| \leq \sqrt{j} \log j+\frac{3 j(\log n)^{2}}{n^{1 / 4}}+\frac{2 j(\log n)^{4}}{\sqrt{n}}<5 n^{3 / 4}(\log n)^{2}
$$

uniformly on $j \in\left(n /(\log n)^{3}, m\right)$ for sufficiently large n. Thus, from (4.16) and (4.18),

$$
P\left(\left|\sum_{k=1}^{j} \gamma_{1 k} \gamma_{2 k}\right| \geq \frac{5(\log n)^{2}}{n^{1 / 4}}\right) \leq 2 e^{-(\log n)^{2} / 9}
$$

as n is sufficiently large. Choose $a=(\log n)^{6} / n^{1 / 4}$ in (4.14). Then, $a j /(2 n) \geq$ $5(\log n)^{2} / n^{1 / 4}$ for all $j \in\left(n(\log n)^{-3}, m\right)$, as n is sufficiently large. It follows from the above that

$$
\begin{equation*}
P\left(\left|\sum_{k=1}^{j} \gamma_{1 k} \gamma_{2 k}\right| \geq \frac{a j}{2 n}\right) \leq 2 e^{-(\log n)^{2} / 9} \tag{4.19}
\end{equation*}
$$

uniformly on $j \in\left(n /(\log n)^{3}, m\right)$ as n is sufficiently large. It is easy to see that the last probability in (4.14) is bounded by the first probability in (4.15). Combining (4.14), (4.15) and (4.19) together, we obtain that

$$
P\left(\left|\rho_{j+1}\right| \geq(\log n)^{6} / n^{1 / 4}\right) \leq 2 e^{-(\log n)^{2} / 9}+2 e^{-\sqrt{n}} \leq e^{-(\log n)^{2} / 10}
$$

as n is sufficiently large.
PROOF OF LEMMA 3.2. Write $m=n_{\alpha}$. Rewrite $\boldsymbol{\Delta}_{k+1}=\left(\Delta_{1, k+1}, \Delta_{2, k+1}, \ldots\right.$, $\left.\Delta_{n, k+1}\right)^{T} \in \mathbb{R}^{n}$. By (4.9) and (4.10), $\mathcal{L}\left(\Delta_{i, k+1}\right)=\mathcal{L}\left(\sum_{l=1}^{k} \gamma_{i l} y_{l k+1}\right)$, so conditioning on $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{k}$,

$$
\begin{equation*}
\Delta_{i, k+1} \sim N\left(0, \sum_{l=1}^{k} \gamma_{i l}^{2}\right) \tag{4.20}
\end{equation*}
$$

Let $E_{0}=\left\{\max _{2 \leq j \leq k}\| \| \boldsymbol{\Delta}_{j} \| \mid \leq t\right\}$ and $E_{i}=\left\{\left|\Delta_{i, k+1}\right| \leq t\right\}$. Although each E_{i} depends on n and k, we would rather use the notation E_{i} for simplification. This will not cause confusion in the context. Evidently,

$$
\begin{equation*}
\left\{\max _{2 \leq j \leq k+1}\| \| \boldsymbol{\Delta}_{j} \| \leq t\right\}=\bigcap_{i=0}^{n} E_{i} \tag{4.21}
\end{equation*}
$$

To apply Lemma 4.1, we now calculate $P\left(E_{0} \backslash E_{i}\right)$. Define

$$
\delta_{n}=\max _{(i, l) \in \Omega_{n}}\left|\left(\sum_{j=1}^{l} \gamma_{i j}^{2}\right)^{-1 / 2}-\sqrt{\frac{n}{l}}\right|
$$

where

$$
\Omega_{n}=\left\{(i, l) ; 1 \leq i \leq n, n /(\log n)^{3} \leq l \leq m\right\} .
$$

Recall (4.20). Let S_{j} be as in Lemma 4.2, then by the lemma and the fact that $|\sqrt{a}-\sqrt{b}| \leq|a-b|$ if $a \geq 1$,

$$
\begin{equation*}
P\left(\delta_{n} \geq \frac{(\log n)^{8}}{\sqrt{n}}\right) \leq n^{2} \max P\left(\left|\frac{S_{n}}{S_{l}}-\frac{n}{l}\right| \geq \frac{(\log n)^{8}}{\sqrt{n}}\right) \leq e^{-(\log n)^{2}} \tag{4.22}
\end{equation*}
$$

for sufficiently large n, where the max above is taken over all l such that $n /(\log n)^{3} \leq l \leq m$. By (4.20), for some standard normal ξ, we have $\Delta_{i, k+1} \sim$ $\left(\sum_{j=1}^{k} \gamma_{i j}^{2}\right)^{\overline{1} / 2} \xi$ conditioning on $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{k}$. Thus, $P\left(E_{i}^{c} \mid \mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{k}\right)=$ $P\left(|\xi|>\left(\sum_{j=1}^{k} \gamma_{i j}^{2}\right)^{-1 / 2} t \mid \mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{k}\right)$. It follows that on $\left\{\delta_{n} \leq(\log n)^{8} / \sqrt{n}\right\}$,

$$
\begin{aligned}
f_{n}^{+}(k) & =P\left(|\xi|>t\left(\sqrt{\frac{n}{k}}+\frac{(\log n)^{8}}{\sqrt{n}}\right)\right) \\
& \leq P\left(E_{i}^{c} \mid \mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{k}\right) \\
& \leq P\left(|\xi|>t\left(\sqrt{\frac{n}{k}}-\frac{(\log n)^{8}}{\sqrt{n}}\right)\right)=f_{n}^{-}(k),
\end{aligned}
$$

uniformly on $(i, k) \in \Omega_{n}$. The key observation for this proof is that the above conditional probability is bounded above and below by unconditional probabilities. Obviously, E_{0} is a set in the σ-algebra generated by $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{k}$. By (4.22) and (4.23),

$$
P\left(E_{0} \backslash E_{i}\right)=E\left\{I_{E_{0}}\left(P\left(E_{i}^{c} \mid \mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{k}\right)\right)\right\} \leq P\left(E_{0}\right) f_{n}^{-}(k)+e^{-(\log n)^{2}}
$$

for all $(i, k) \in \Omega_{n}$ when n is sufficiently large. Similarly, use the first step above to obtain

$$
P\left(E_{0} \backslash E_{i}\right) \geq P\left(E_{0} \cap F_{n}\right) \cdot f_{n}^{+}(k) \geq P\left(E_{0}\right) \cdot f_{n}^{+}(k)-e^{-(\log n)^{2}},
$$

for all $(i, k) \in \Omega_{n}$, where $F_{n}:=\left\{\delta_{n} \leq(\log n)^{8} / \sqrt{n}\right\}$. Therefore,

$$
\begin{align*}
n P\left(E_{0}\right) \cdot f_{n}^{+}(k)-n e^{-(\log n)^{2}} & \leq \sum_{i=1}^{n} P\left(E_{0} \backslash E_{i}\right) \\
& \leq n P\left(E_{0}\right) \cdot f_{n}^{-}(k)+n e^{-(\log n)^{2}} \tag{4.24}
\end{align*}
$$

uniformly on $n /(\log n)^{3} \leq k \leq m$ as n is sufficiently large.
Finally, note that $e^{-t^{2} n / j}$ is increasing in j. By Lemma 4.3, $P\left(E_{1}^{c} E_{2}^{c}\right) \leq$ $n^{-t^{2} / \alpha}(\log n)^{C}$ for some constant $C>0$ as n is sufficiently large. Also, the n random variables in $\left(\Delta_{1, k+1}, \Delta_{2, k+1}, \ldots, \Delta_{n, k+1}\right)$ are exchangeable by the Haarinvariance. Hence,

$$
\begin{equation*}
\sum_{1 \leq i<j \leq n} P\left(E_{i}^{c} E_{j}^{c}\right) \leq \frac{n^{2}}{2} P\left(E_{1}^{c} E_{2}^{c}\right) \leq \frac{(\log n)^{C}}{n^{t^{2} / \alpha-2}} \tag{4.25}
\end{equation*}
$$

as n is sufficiently large. By (4.24), the quantity $P\left(E_{0}\right)-\sum_{i=1}^{n} P\left(E_{0} \backslash E_{i}\right)$ is bounded above and below respectively by

$$
\left(1-n f_{n}^{+}(k)\right) P\left(E_{0}\right)+n e^{-(\log n)^{2}} \text { and }\left(1-n f_{n}^{-}(k)\right) P\left(E_{0}\right)-n e^{-(\log n)^{2}}
$$

This together with (4.25) yields the desired conclusion via Lemma 4.1.

APPENDIX

The following is a standard result. It can be found in, for example, Lemma 3 on page 49 from [6].

Lemma A.1. Suppose $X \sim N(0,1)$. Then

$$
\frac{1}{\sqrt{2 \pi}} \cdot \frac{x}{1+x^{2}} e^{-x^{2} / 2} \leq P(X>x) \leq \frac{1}{\sqrt{2 \pi}} \cdot \frac{1}{x} e^{-x^{2} / 2}
$$

for all $x>0$.
The following lemma is part (ii) on page 186 from [29].
Lemma A.2. Suppose \mathbf{y} is an \mathbb{R}^{n}-valued random vector with multi-normal distribution with mean $\mathbf{0}$ and covariance matrix Σ of rank r. If $\Sigma^{2}=\Sigma$, then there exists a sequence of independent standard normals $\left\{\xi_{j} ; j=1,2, \ldots, n\right\}$ such that $\|\mathbf{y}\|^{2}$ has the same distribution as that of $\sum_{j=1}^{r} \xi_{j}^{2}$, that is, $\|\mathbf{y}\|^{2} \sim \chi^{2}(r)$.

For $A \subset \mathbb{R}$, the interior and the closure of A in \mathbb{R} are denoted by A° and \bar{A}, respectively. The following are Chernoff's bound and a moderate deviation result. They can be found from, for example, (c) of Remarks on page 27 from [9] and Theorem 3.7.1 on page 109 from [9].

Lemma A.3. Let $\left\{X, X_{i}, i=1,2, \ldots\right\}$ be a sequence of i.i.d. random variables. Let $S_{n}=\sum_{i=1}^{n} X_{i}, n \geq 1$. Then:
(i) For any $A \subset \mathbb{R}$ and $n \geq 1$,

$$
P\left(S_{n} / n \in A\right) \leq 2 e^{-n I(A)},
$$

where $I(x)=\sup _{t \in \mathbb{R}}\left\{t x-\log E\left(e^{t X}\right)\right\}$ and $I(A)=\inf _{x \in A} I(x)$.
(ii) Assume further that $E X=0, \operatorname{var}(X)=\sigma^{2}>0$ and $E e^{t_{0} X}<\infty$ for some $t_{0}>0$. Let $\left\{a_{n} ; n=1,2, \ldots\right\}$ be a sequence of positive numbers such that $a_{n} \rightarrow 0$ and $n a_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Then

$$
\lim _{n \rightarrow \infty} a_{n} \log P\left(\sqrt{\frac{a_{n}}{n}} S_{n} \in A\right)=-\inf _{x \in A}\left\{\frac{x^{2}}{2 \sigma^{2}}\right\}
$$

for any subset $A \subset \mathbb{R}$ such that $\inf \left\{|x| ; x \in A^{\circ}\right\}=\inf \{|x| ; x \in \bar{A}\}$.

The following lemma is Theorem 5 from [19].
LEMmA A.4. For each $n \geq 2$, there exists matrices $\boldsymbol{\Gamma}_{n}=\left(\gamma_{i j}\right)_{1 \leq i, j \leq n}$ and $\mathbf{Y}_{n}=\left(y_{i j}\right)_{1 \leq i, j \leq n}$ whose $2 n^{2}$ elements are random variables defined on the same probability space such that:
(i) the law of $\boldsymbol{\Gamma}_{n}$ is the normalized Haar measure on the orthogonal group O_{n};
(ii) $\left\{y_{i j} ; 1 \leq i, j \leq n\right\}$ are i.i.d. random variables with the standard normal distribution;
(iii) set $\varepsilon_{n}(m)=\max _{1 \leq i \leq n, 1 \leq j \leq m}\left|\sqrt{n} \gamma_{i j}-y_{i j}\right|$ for $m=1,2, \ldots, n$. Then

$$
P\left(\varepsilon_{n}(m) \geq r s+2 t\right) \leq 4 m e^{-n r^{2} / 16}+3 m n\left(\frac{1}{s} e^{-s^{2} / 2}+\frac{1}{t}\left(1+\frac{t^{2}}{3(m+\sqrt{n})}\right)^{-n / 2}\right)
$$

for any $r \in(0,1 / 4), s>0, \quad t>0$, and $m \leq(r / 2) n$.
Acknowledgments. The author very much thanks Amir Dembo, Persi Diaconis, Morris Eaton, William Sudderth and Ofer Zeitouni for very useful discussions, email and correspondence.

REFERENCES

[1] Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis, 2nd ed. Wiley, New York. MR0771294
[2] Apostol, T. M. (1974). Mathematical Analysis, 2nd ed. Addison-Wesley, Reading, MA. MR0344384
[3] BAI, Z. D. (1999). Methodologies in spectral analysis of large-dimensional random matrices, a review. Statist. Sinica 9 611-677. MR1711663
[4] Billingsley, P. (1979). Probability and Measure. Wiley, New York. MR0534323
[5] BOREL, E. (1906). Introduction géometrique á quelques théories physiques. Gauthier-Villars, Paris. JFM 45.0808 .10
[6] Chow, Y. S. and Teicher, H. (1988). Probability Theory, Independence, Interchangeability, Martingales, 2nd ed. Springer, New York. MR0953964
[7] Collins, B. (2003). Intégrales matricielles et probabilitiés non-commutatives. Thèse de Doctorat, Univ. Paris 6.
[8] D'Aristotle, A., Diaconis, P. and Newman, C. M. (2002). Brownian motion and the classical groups. Probability, Statistics and Their Applications: Papers in Honor of Rabi Bhattacharya 97-116. IMS Lecture Notes Monogr. Ser. 41. IMS, Beachwood, OH. MR1999417
[9] Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications, 2nd ed. Springer, New York. MR1619036
[10] Diaconis, P. (2003). Patterns in eigenvalues: The 70th Josiah Willard Gibbs lecture. Bull. Amer. Math. Soc. (N.S.) 40 155-178 (electronic). MR1962294
[11] Diaconis, P. and Freedman, D. (1987). A dozen de Finetti-style results in search of a theory. Ann. Inst. H. Poincaré Probab. Statist. 23 397-423. MR0898502
[12] Diaconis, P. and Shahshahni, M. (1994). On the eigenvalues of random matrices. Studies in applied probability. J. Appl. Probab. 31A 49-62. MR1274717
[13] Diaconis, P. and Evans, S. N. (2001). Linear functionals of eigenvalues of random matrices. Trans. Amer. Math. Soc. 353 2615-2633 (electronic). MR1828463
[14] Diaconis, P. W., Eaton, M. L. and Lauritzen, S. L. (1992). Finite de Finetti theorems in linear models and multivariate analysis. Scand. J. Statist. 19 289-315. MR1211786
[15] Eaton, M. L. (1989). Group Invariance Applications in Statistics. IMS, Hayward, CA. MR1089423
[16] Gallardo, L. (1983). Au sujet du contenu probabiliste d'un lemma d'Henri Poincaré. Ann. Univ. Clemont 69 192-197. MR0645576
[17] Geman, S. (1980). A limit theorem for the norm of random matrices. Ann. Probab. 8 252-261. MR0566592
[18] Horn, R. and Johnson, C. (1990). Matrix Analysis. Cambridge Univ. Press. MR1084815
[19] Jiang, T. (2005). Maxima of entries of Haar distributed matrices. Probab. Theory Related Fields 131 121-144. MR2105046
[20] Johansson, K. (1997). On random matrices from the compact classical groups. Ann. of Math. (2) $\mathbf{1 4 5}$ 519-545. MR1454702
[21] JONSSON, D. (1982). Some limit theorems for the eigenvalues of a sample covariance matrix. J. Multivariate Anal. 12 1-38. MR0650926
[22] Lang, S. (1987). Calculus of Several Variables. Springer, New York. MR0886677
[23] Letac, G. (1981). Isotropy and sphericity: Some characterisations of the normal distribution. Ann. Statist. 9408-417. MR0606624
[24] Maxwell, J. C. (1875). Theory of Heat, 4th ed. Longmans, London.
[25] Maxwell, J. C. (1878). On Boltzmann's theorem on the average distribution of energy in a system of material points. Cambridge Phil. Soc. Trans. 12 547. JFM 11.0776.01
[26] McKean, H. P. (1973). Geometry of differential space. Ann. Probab. 1 197-206. MR0353471
[27] Poincaré, H. (1912). Calcul des probabilitiés. Gauthier-Villars, Paris. JFM 43.0308 .04
[28] Rains, E. M. (1997). High powers of random elements of compact Lie groups. Probab. Theory Related Fields 107 219-241. MR1431220
[29] RaO, C. R. (1973). Linear Statistical Inference and Its Applications. Wiley, New York. MR0346957
[30] Stam, A. J. (1982). Limit theorems for uniform distributions on spheres in high-dimensional Euclidean spaces. J. Appl. Probab. 19 221-228. MR0644435
[31] Yin, Y. Q., Bai, Z. D. and Krishnaiah, P. R. (1988). On the limit of the largest eigenvalue of the large-dimensional sample covariance matrix. Probab. Theory Related Fields 78 509-521. MR0950344
[32] YOR, M. (1985). Inégalitiés de martingales continus arrêtès à un temps quelconques I. Lecture Notes in Math. 1118. Springer, Berlin. Zbl 0563.60045

SChool of Statistics
University of Minnesota
313 Ford HaLl
224 Church Street S.E.
Minneapolis, Minnesota 55455
USA
E-MAIL: tjiang@stat.umn.edu

[^0]: Received February 2003; revised August 2005.
 ${ }^{1}$ Supported in part by NSF Grants DMS-03-08151 and DMS-04-49365.
 AMS 2000 subject classifications. 15A52, 60B10, 60B15, 60F05, 60F99, 62H10.
 Key words and phrases. Haar measure, Gram-Schmidt algorithm, large deviation, maxima, product distribution, random matrix theory, variation distance.

