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SKEW CONVOLUTION SEMIGROUPS AND
AFFINE MARKOV PROCESSES

BY D. A. DAWSON1 AND ZENGHU LI2

Carleton University and Beijing Normal University

A general affine Markov semigroup is formulated as the convolution of
a homogeneous one with a skew convolution semigroup. We provide some
sufficient conditions for the regularities of the homogeneous affine semi-
group and the skew convolution semigroup. The corresponding affine Markov
process is constructed as the strong solution of a system of stochastic equa-
tions with non-Lipschitz coefficients and Poisson-type integrals over some
random sets. Based on this characterization, it is proved that the affine process
arises naturally in a limit theorem for the difference of a pair of reactant
processes in a catalytic branching system with immigration.

1. Introduction. The concept of affine processes unifies a wide class of
Markov processes including Ornstein–Uhlenbeck processes (OU-processes) and
continuous state branching processes with immigration (CBI-processes). Those
processes involve rich common mathematical structures and the unified treatment
of them develops interesting connections between several areas in the theory of
probability. The “affine property” is roughly that the logarithm of the character-
istic function of the transition semigroup is given by an affine transformation of
the initial state x �→ 〈x,ψ(t, u)〉 + φ(t, u); see Section 3. An important special
case is where the affine transformation is homogeneous, that is, it only contains
a nontrivial linear part 〈x,ψ(t, u)〉. In this case, we refer to the affine semigroup
as homogeneous. A general affine semigroup can be constructed as the convolu-
tion of a homogeneous one with an associated skew convolution semigroup, which
corresponds to the constant term φ(t, u) and gives the one-dimensional distribu-
tions of the affine process started with the trivial initial state. A complete char-
acterization of general finite-dimensional affine processes was recently given by
Duffie, Filipović and Schachermayer [10] under a regularity assumption, which
requires that the coefficients ψ(t, u) and φ(t, u) are both differentiable at t = 0.
Based on this characterization, they discussed a wide range of applications of affine
processes in mathematical finance.
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The problems of characterizing different particular classes of affine processes
have also been studied by some other authors. In particular, Watanabe [28] gave
a complete description of regular two-dimensional continuous state branching
processes. He also proved that the regularity property of such processes is im-
plied by the stochastic continuity. A similar characterization of finite-dimensional
continuous state branching processes was given in [23]. The same problem for
measure-valued branching processes was investigated in [11]. In those cases,
the processes are defined by homogeneous affine semigroups. On the other
hand, a complete characterization for stochastically continuous one-dimensional
CBI-processes was given in [16]; see also [27]. In the setting of measure-valued
processes, Li [18] gave a formulation of immigration structures in terms of skew
convolution semigroups. It was proved in [18] that the skew convolution semi-
groups associated with a measure-valued branching process are in 1–1 corre-
spondence with a class of infinitely divisible probability entrance laws; see also
[19, 20]. A construction of trajectories of the corresponding immigration processes
was given in [21] by summing up measure-valued paths in some Kuznetsov
processes. Skew convolution semigroups and OU-processes on real separable
Hilbert spaces were studied in [3, 7, 8, 14, 22, 26]. Roughly speaking, a skew con-
volution semigroup is regular if and only if it is determined by a closable entrance
law. For both the Hilbert spaces and the spaces of measures, a stochastically con-
tinuous skew convolution semigroup can be irregular. A number of such examples
arising in applications were discussed in [7, 8, 19, 20].

The main purpose of this paper is to investigate the basic characterizations and
regularities of affine Markov semigroups and processes. For simplicity of the pre-
sentation we shall confine ourselves to the nondegenerate two-dimensional case,
but most of the arguments can be generalized to higher dimensions. From the
results of [10] we know that the constant part in the affine structure is usually
smoother than the linear part. Therefore, we discuss separately the regularities
of homogeneous affine semigroups and those of skew convolution semigroups. It
turns out that a skew convolution semigroup always consists of infinitely divisible
probability measures. We prove that such a semigroup is regular if and only if the
linear part of the logarithm of its characteristic function is absolutely continuous.
Some sufficient conditions for the regularities of homogeneous affine semigroups
and skew convolution semigroups are given in terms of their first moments. Those
results give a partial solution of the problem of characterizing all affine semigroups
without regularity assumption; see [10], Remark 2.11. We then give a construc-
tion of the affine process as the strong solution of a system of stochastic integral
equations with random and non-Lipschitz coefficients and jumps of Poisson type
selected from some random sets. A similar equation system is used to construct
a class of catalytic CBI-processes. The concept of catalytic branching processes
was first introduced by Dawson and Fleischmann [5] in the setting of measure-
valued diffusions; see, for example, [4] and [6] for some related developments.
As an application of the characterization by stochastic equations, we show that an
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affine process arises naturally in a limit theorem for the difference of a pair of re-
actant processes in a catalytic CBI-process. This result is of interest since it seems
that the connection between affine processes and catalytic branching processes has
not been noticed before. The studies of those two classes of processes have been
undergoing rapid developments in recent years with different motivations. The in-
terplay between them provides new motivations for both sides and might stimulate
some further studies on related topics.

NOTATION. Let R+ = [0,∞) and R− = (−∞,0]. Let λ denote the Lebesgue
measure on R. For a Borel measure ν and a Borel function f on E ⊆ R or R

2, we
write ν(f ) for

∫
E f dν if the integral exists. Write �ξf (x) = f (x + ξ) − f (x) if

the right-hand side is well defined. Let ν̂ denote the characteristic function of ν

defined by

ν̂(u) :=
∫
E

exp{〈u, ξ〉}ν(dξ), u ∈ U,

where U ⊆ C or C
2 is to be specified. For x ∈ R set l1(x) = |x| and l12(x) =

|x| ∧ |x|2. Let

χ(x) =



x, if x ∈ [−1,1],
1, if x ∈ (1,∞),
−1, if x ∈ (−∞,1).

For x = (x1, x2) ∈ R
2 define χ(x) = (χ(x1),χ(x2)). We make the convention that∫ t

r
= −

∫ r

t
=

∫
(r,t]

and
∫ ∞
r

=
∫
(r,∞)

for r ≤ t ∈ R.

2. Homogeneous affine semigroups. In this section we give the definition
and prove some simple properties of homogeneous affine semigroups. Let D =
R+ × R and U = C− × (iR), where C− = {a + ib :a ∈ R−, b ∈ R} and iR =
{ib :b ∈ R}. Note that the word “homogeneous” in the following definition has a
meaning different from the one of “time-homogeneous.”

DEFINITION 2.1. A transition semigroup (Q(t))t≥0 with state space D

is called a homogeneous affine semigroup (HA-semigroup) if for each t ≥ 0
there exists a continuous two-dimensional complex-valued function ψ(t, ·) :=
(ψ1(t, ·),ψ2(t, ·)) on U such that∫

D
exp{〈u, ξ〉}Q(t, x, dξ) = exp{〈x,ψ(t, u)〉}, x ∈ D,u ∈ U.(2.1)

The HA-semigroup (Q(t))t≥0 given by (2.1) is called regular if it is stochastically
continuous and the derivative ψ ′

t (0, u) exists for all u ∈ U and is continuous at
u = 0.
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PROPOSITION 2.1. Let (Q(t))t≥0 be a HA-semigroup defined by (2.1). Then
ψ(t, u) ∈ U and

ψ(r + t, u) = ψ
(
r,ψ(t, u)

)
, r, t ≥ 0, u ∈ U.(2.2)

Moreover, ψ2(t, u) has the form

ψ2(t, u) = β22(t)u2, t ≥ 0, u ∈ U,(2.3)

where β22(·) is a function on [0,∞) satisfying

β22(r + t) = β22(r)β22(t), r, t ≥ 0.(2.4)

PROOF. From (2.1) we see that 〈x,ψ(t, u)〉 ∈ C− for all x ∈ D. This implies
that ψ(t, u) ∈ U for all u ∈ U . For any x2 ∈ R we have

Q
(
t, (0, x2), ·) ∗ Q

(
t, (0,−x2), ·) = δ(0,0).

Then Q(t, (0, x2), ·) must be degenerate. Let Q(t, (0, x2), ·) = δβ(t,x2) for β(t,

x2) ∈ D. It follows that

exp{x2ψ2(t, u)} =
∫
D

exp{〈u, ξ〉}Q(
t, (0, x2), dξ

) = exp{〈u,β(t, x2)〉}.(2.5)

Then x2ψ2(t, u) = 〈u,β(t, x2)〉 and so β(t, x2) = β(t,1)x2. Since β(t, x2) ∈ D

for all x2 ∈ R, we must have β1(t,1) = 0 and hence ψ2(t, u) = β2(t,1)u2
for all u ∈ U . That is, (2.3) holds with β22(t) = β2(t,1). The relation (2.2)
follows from (2.1) and the Chapman–Kolmogorov equation for (Q(t))t≥0. By
(2.2) and (2.3) we obtain

β22(r + t)u2 = ψ2
(
r,ψ(t, u)

) = β22(r)ψ2(t, u) = β22(r)β22(t)u2,

which implies (2.4). �

COROLLARY 2.1. If (2.1) defines a stochastically continuous HA-semigroup
(Q(t))t≥0, then there is a constant β22 ∈ R such that β22(t) = exp{β22t} for all
t ≥ 0.

PROPOSITION 2.2. Let (Q(t))t≥0 be a HA-semigroup defined by (2.1). Then
ψ1(t, u) has the representation

ψ1(t, u) = β11(t)u1 + β12(t)u2
(2.6)

+ α(t)u2
2 +

∫
D

(
e〈u,ξ〉 − 1 − u2χ(ξ2)

)
µ(t, dξ),

where α(t) ∈ R+, (β11(t), β12(t)) ∈ D and µ(t, dξ) is a σ -finite measure on D

supported by D \ {0} such that∫
D

[χ(ξ1) + χ2(ξ2)]µ(t, dξ) < ∞.
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Moreover, for any r, t ≥ 0 we have

β11(r + t) = β11(r)β11(t),(2.7)

β12(r + t) = β11(r)β12(t) + β12(r)β22(t)
(2.8)

+
∫
D

[Q(t)χ2(ξ) − β22(t)χ(ξ2)]µ(r, dξ),

α(r + t) = β11(r)α(t) + α(r)β2
22(t),(2.9)

µ(r + t, ·) =
∫
D

µ(r, dξ)Q(t, ξ, ·) + β11(r)µ(t, ·),(2.10)

where

Q(t)χ2(ξ) =
∫
D

χ(η2)Q(t, ξ, dη)(2.11)

and β22(t) is given by Proposition 2.1.

PROOF. In view of (2.1) it is easy to see that each Q(t, (x1,0), ·) is an in-
finitely divisible probability measure on D. Then (2.6) follows by the special
structure of D and the Lévy–Khintchine representation for the characteristic func-
tion of an infinitely divisible distribution; see, for example, [17], pages 499–500.
From (2.6) and the results of Proposition 2.1 we get

ψ1(r + t, u) = β11(r)ψ1(t, u) + β12(r)β22(t)u2 + α(r)β2
22(t)u

2
2

+
∫
D

[
e〈ψ(t,u),ξ 〉 − 1 − β22(t)u2χ(ξ2)

]
µ(r, dξ)

= β11(r)β11(t)u1 + β11(r)β12(t)u2

+ β11(r)α(t)u2
2 + β12(r)β22(t)u2

+ α(r)β2
22(t)u

2
2 + β11(r)

∫
D

[
e〈u,ξ〉 − 1 − u2χ(ξ2)

]
µ(t, dξ)

+
∫
D

[
e〈ψ(t,u),ξ 〉 − 1 − u2Q(t)χ2(ξ)

]
µ(r, dξ)

+ u2

∫
D

[Q(t)χ2(ξ) − β22(t)χ(ξ2)]µ(r, dξ).

Then (2.7)–(2.10) follow by a comparison of the above expression with (2.6). �

LEMMA 2.1. If (2.1) defines a stochastically continuous HA-semigroup and
ψ1(t, u) is given by (2.6), then t �→ β12(t) is continuous.

PROOF. The proof of [10], Lemma 3.1, shows that ψ(t, u) is jointly continu-
ous in (t, u). Let µ2(t, dξ2) denote the projection of µ(t, dξ) to R. Then

ψ1
(
t, (0, iz)

) = iβ12(t)z − α(t)z2 +
∫

R

(
eizξ2 − 1 − izχ(ξ2)

)
µ2(t, dξ2)
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is a continuous function of (t, z) ∈ [0,∞) × R. It is not hard to find universal
constants 0 < c1 < c2 < ∞ so that

c1 ≤
(

1 − sin ξ2

ξ2

)
χ(ξ2)

−2 ≤ c2(2.12)

for all ξ2 ∈ R \ {0}. Then for each t ≥ 0 we can define the Borel measure G(t, dξ2)

on R by setting G(t, {0}) = α(t)/3 and

G(t, dξ2) =
(

1 − sin ξ2

ξ2

)
µ2(t, dξ2), ξ2 ∈ R \ {0}.

It follows that

ψ1
(
t, (0, iz)

) = iβ12(t)z
(2.13)

+
∫

R

(
eizξ2 − 1 − izχ(ξ2)

)(
1 − sin ξ2

ξ2

)−1

G(t, dξ2)

where the integrand is defined at ξ2 = 0 by continuity as −3z2. By dominated
convergence,

t �→ v(t, λ) := 2ψ1
(
t, (0, iλ)

) −
∫ λ+1

λ−1
ψ1

(
t, (0, iz)

)
dz

is continuous for each λ ∈ R. One may check easily that v(t, λ) is the characteristic
function of G(t, dξ2). Then Lévy’s continuity theorem implies that t �→ G(t, dξ2)

is continuous by weak convergence. For any fixed z ∈ R, the integrand in (2.13) is
bounded and continuous in ξ2, so the integral term is continuous in t ≥ 0. By the
continuity of ψ1(t, (0, iz)) we find that t �→ β12(t) is continuous. �

PROPOSITION 2.3. Suppose that (2.1) defines a stochastically continuous
HA-semigroup and ψ1(t, u) is given by (2.6). Then

B(t) := β11(t) + β2
12(t) + α(t) +

∫
D

[χ(ξ1) + χ2(ξ2)]µ(t, dξ)(2.14)

is a locally bounded function of t ≥ 0.

PROOF. Let µ1(t, dξ1) denote the projection of µ(t, dξ) to R+. Then

ψ1
(
t, (−z,0)

) = −β11(t)z +
∫ ∞

0
(e−zξ1 − 1)µ1(t, dξ1)(2.15)

is continuous in (t, z) ∈ [0,∞) × R+. In particular, (2.15) is locally bounded in
t ≥ 0 for any fixed z ∈ R+. Taking λ = 1 one finds that

β11(t) +
∫ ∞

0
χ(ξ1)µ1(t, dξ1)
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is locally bounded in t ≥ 0. By the proof of Lemma 2.1,

v(t,0) = 1

3
α(t) +

∫
R

(
1 − sin ξ2

ξ2

)
µ2(t, dξ2)

is continuous and hence locally bounded in t ≥ 0. In view of (2.12) we find that

α(t) +
∫

R

χ2(ξ2)µ2(t, dξ2)(2.16)

is also locally bounded in t ≥ 0. By Lemma 2.1, β12(t) is locally bounded in t ≥ 0.
Then we have the desired result. �

PROPOSITION 2.4. Let (Q(t))t≥0 be a stochastically continuous HA-semi-
group defined by (2.1). Then there is a locally bounded nonnegative function c0(·)
on [0,∞) such that ∫

D
χ(ξ1)Q(t, x, dξ) ≤ c0(t)χ(x1)(2.17)

and ∫
D

χ2(ξ2)Q(t, x, dξ) ≤ c0(t)[χ(x1) + χ2(x2)].(2.18)

PROOF. In view of (2.15), we have ψ1(t, (−z,0)) ≤ 0. From (2.1) it follows
that∫

D
(1 − e−zξ1)Q(t, x, dξ) = 1 − exp

{−x1
∣∣ψ1

(
t, (−z,0)

)∣∣} ≤ c1(t, z)(1 − e−x1),

where c1(t, z) := 1 ∨ |ψ1(t, (−z,0))| is locally bounded in t ≥ 0. Then we get
the first inequality by letting λ = 1. The second inequality is obvious if x1 ≥ 1 or
|x2| ≥ 1. On the other hand, we have∫

D

(
1 − sin ξ2

ξ2

)
Q(t, x, dξ) = 1

2

∫ 1

−1
dz

∫
D

(1 − eizξ2)Q(t, x, dξ)

= 1

2

∫ 1

−1

(
1 − exp

{
x1ψ1

(
t, (0, iz)

) + ix2β22(t)z
})

dz

≤ 1

2

∫ 1

−1

[
x1

∣∣ψ1
(
t, (0, iz)

)∣∣ + h(t, x1, x2, z)
]
dz,

where

h(t, x1, x2, z) =
∞∑

k=2

1

k!
(
x1

∣∣ψ1
(
t, (0, iz)

)∣∣ + |x2β22(t)z|)k

≤
∞∑

k=2

1

k!(x1 + |x2|)k(∣∣ψ1
(
t, (0, iz)

)∣∣ + |β22(t)z|)k

≤ 2(x2
1 + x2

2)q(t, x1, x2, z)
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with

q(t, x1, x2, z) =
∞∑

k=2

1

k!(x1 + |x2|)k−2(∣∣ψ1
(
t, (0, iz)

)∣∣ + |β22(t)z|)k.

It follows that∫
D

(
1 − sin ξ2

ξ2

)
Q(t, x, dξ) ≤ 1

2
x1

∫ 1

−1

∣∣ψ1
(
t, (0, iz)

)∣∣dz

+ (x2
1 + x2

2)

∫ 1

−1
q(t, x1, x2, z) dz,

which implies (2.18) for 0 ≤ x1 ≤ 1 and |x2| ≤ 1. �

As an immediate consequence of the above proposition we have the following.

COROLLARY 2.2. Suppose that (Q(t))t≥0 is a stochastically continuous
HA-semigroup defined by (2.1). Let Uε = [0, ε) × (−ε, ε) for ε > 0. Then for each
T ≥ 0 we have

lim|x|→0
sup

0≤t≤T

Q(t, x,D \ Uε) = 0.(2.19)

3. Skew convolution semigroups. In this section we give a formulation of
the general affine Markov semigroup in terms of a homogeneous one and a skew
convolution semigroup. It turns out that a skew convolution semigroup always con-
sists of infinitely divisible probability measures. We prove that such a semigroup
is regular if and only if the linear part of the logarithm of its characteristic function
is absolutely continuous. We shall fix a regular HA-semigroup (Q(t))t≥0 on D de-
fined by (2.1), where ψ(t, u) = (ψ1(t, u), β22(t)u2) is given by Corollary 2.1 and
Proposition 2.2.

DEFINITION 3.1. A family of probability measures (γ (t))t≥0 on D is called
a skew convolution semigroup (SC-semigroup) associated with (Q(t))t≥0 if

γ (r + t) = (γ (r)Q(t)) ∗ γ (t), r, t ≥ 0,(3.1)

where “∗” denotes the convolution operation and γ (r)Q(t) is the probability mea-
sure on D defined by

γ (r)Q(t)(B) =
∫
D

Q(t, ξ,B)γ (r, dξ), B ∈ B(D).(3.2)

The concept of SC-semigroup generalizes that of the usual convolution semi-
group; see also [7, 18–21]. We refer the reader to [2, 24] for the general theory of
convolution semigroups and Lévy processes.
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PROPOSITION 3.1. Let (γ (t))t≥0 be a stochastically continuous SC-semi-
group associated with (Q(t))t≥0. Then each γ (t) is an infinitely divisible prob-
ability measure, so we have the representation∫

D
exp{〈u, ξ〉}γ (t, dξ) = exp{φ(t, u)}, u ∈ U,(3.3)

with

φ(t, u) = b1(t)u1 + b2(t)u2 + a(t)u2
2

(3.4)
+

∫
D

(
e〈u,ξ〉 − 1 − u2χ(ξ2)

)
m(t, dξ),

where a(t) ∈ R+, (b1(t), b2(t)) ∈ D and m(t, dξ) is a σ -finite measure on D sup-
ported by D \ {0} such that∫

D
[χ(ξ1) + χ2(ξ2)]m(t, dξ) < ∞.

Moreover, for any r, t ≥ 0 we have

b1(r + t) = b1(r)β11(t) + b1(t),(3.5)

b2(r + t) = b1(r)β12(t) + b2(r)β22(t) + b2(t)
(3.6)

+
∫
D

[Q(t)χ2(ξ) − β22(t)χ(ξ2)]m(r, dξ),

a(r + t) = b1(r)α(t) + a(r)β2
22(t) + a(t),(3.7)

m(r + t, ·) =
∫
D

m(r, dξ)Q(t, ξ, ·) + b1(r)µ(t, ·) + m(t, ·).(3.8)

PROOF. Based on Corollary 2.2, the proof is a simplification of the arguments
of Schmuland and Sun [26]. Let t ≥ 0 be fixed. For each integer n ≥ 1 we may
use (3.1) inductively to obtain

γ (t) =
n∏

j=1

∗γ (t/n)Q
(
(j − 1)t/n

)
.

From the stochastic continuity of the SC-semigroup, we have limn→0 γ (t/n) = δ0.
By virtue of Corollary 2.2, it is easy to show that {γ (t/n)Q((j − 1)t/n) : j =
1, . . . , n;n = 1,2, . . .} form an infinitesimal triangular array. It follows that γ (t) is
infinitely divisible. Then we have representation (3.3) with φ(t, u) given by (3.4);
see, for example, [17], pages 499–500, 515–519. From (3.1) we have

φ(r + t, u) = φ
(
r,ψ(t, u)

) + φ(t, u), r, t ≥ 0, u ∈ U.(3.9)

Then relations (3.5)–(3.8) follow as in the proof of Proposition 2.2. �



1112 D. A. DAWSON AND Z. LI

DEFINITION 3.2. A SC-semigroup (γ (t))t≥0 associated with (Q(t))t≥0 is
called regular if φ(t, u) = log γ̂ (t, u) has representation

φ(t, u) =
∫ t

0
F

(
ψ(s,u)

)
ds, t ≥ 0, u ∈ U,(3.10)

where F = log ν̂ for an infinitely divisible probability measure ν on D.

We remark that if ν is an infinitely divisible probability measure on D, the
function F is well defined and (3.10) really determines a SC-semigroup. A simple
but irregular SC-semigroup can be constructed by letting Q(t) be the identity and
letting γ (t) = δ(0,b2(t)), where b2(t) is a discontinuous solution of b2(r + t) =
b2(r) + b2(t); see, for example, [24], page 37. This example shows that some
condition on the function t �→ b2(t) has to be imposed to get the regularity of the
SC-semigroup (γ (t))t≥0 given by (3.3) and (3.4).

DEFINITION 3.3. A transition semigroup (P (t))t≥0 on D is called a (general)
affine semigroup associated with the HA-semigroup (Q(t))t≥0 if its characteristic
function has representation∫

D
exp{〈u, ξ〉}P(t, x, dξ) = exp{〈x,ψ(t, u)〉 + φ(t, u)},(3.11)

where φ(t, ·) is a continuous function on U satisfying φ(t,0) = 0. The affine semi-
group (P (t))t≥0 defined by (3.11) is called regular if it is stochastically continu-
ous and the derivatives ψ ′

t (0, u) and φ′
t (0, u) exist for all u ∈ U and are continuous

at u = 0.

PROPOSITION 3.2. Let (γ (t))t≥0 be a stochastically continuous SC-semi-
group associated with the HA-semigroup (Q(t))t≥0. Then P(t, x, ·) = Q(t, x, ·) ∗
γ (t, ·) defines a Feller affine semigroup (P (t))t≥0.

PROOF. It is easy to show that the kernels P(t, x, ·) satisfy the Chapman–
Kolmogorov equation. From [10], Proposition 8.2 we know that (Q(t))t≥0 is a
Feller semigroup. For any f ∈ C0(D) we have

P(t)f (x) =
∫
D

γ (t, dy)

∫
D

f (ξ + y)Q(t, x, dξ).

Then we can use dominated convergence to find that P(t)f ∈ C0(D). Since both
(Q(t))t≥0 and (γ (t))t≥0 are stochastically continuous, so is (P (t))t≥0. It follows
that (P (t))t≥0 is a Feller semigroup. �

Clearly, if (γ (t))t≥0 is a regular SC-semigroup, then the general affine semi-
group (P (t))t≥0 defined in Proposition 3.2 is also regular. To study the regularity
of SC-semigroups, we need some preliminary results. The proofs in the sequel rely
heavily on estimates derived from the relations (3.5)–(3.8).
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PROPOSITION 3.3. Suppose that (3.3) and (3.4) define a stochastically con-
tinuous SC-semigroup (γ (t))t≥0. Then

A(t) := b1(t) + b2
2(t) + a(t) +

∫
D

[χ(ξ1) + χ2(ξ2)]m(t, dξ)(3.12)

is a locally bounded function of t ≥ 0. Moreover, we have A(t) → 0 as t → 0.

PROOF. The stochastic continuity of the SC-semigroup implies that φ(t, u)

is jointly continuous in (t, u). Since φ(t, u) → 0 as t → 0, the results follow by
slight modifications of the arguments in the proof of Proposition 2.3. �

Let B(·) and c0(·) be given respectively by Propositions 2.3 and 2.4. In the next
two lemmas, we fix a constant T ≥ 0 and let C(T ) ≥ 0 be a constant such that

max{B(t), c0(t), β
2
22(t)} ≤ C(T ), 0 ≤ t ≤ T .(3.13)

For 0 ≤ r1 < t1 < r2 < t2 < · · · we set σn = ∑n
j=1(tj − rj ).

LEMMA 3.1. Suppose that (3.3) and (3.4) define a stochastically continuous
SC-semigroup (γ (t))t≥0. Then for 0 ≤ r1 < t1 < r2 < t2 < · · · ≤ T we have

n∑
j=1

[b1(tj ) − b1(rj )] ≤ C(T )b1(σn)(3.14)

and
n∑

j=1

[a(tj ) − a(rj )] ≤ C(T )[b1(σn) + a(σn)].(3.15)

Consequently, b1(t) and a(t) are absolutely continuous in t ≥ 0.

PROOF. We shall only give the proof of (3.15) since the proof of (3.14) is
similar. By (3.7) we find that t �→ a(t) is nondecreasing and

a(t1) − a(r1) = b1(t1 − r1)α(r1) + a(t1 − r1)β
2
22(r1)

≤ C(T )[b1(t1 − r1) + a(t1 − r1)],
that is, (3.15) holds for n = 1. Now suppose that (3.15) is true for n − 1. By (3.13)
and Propositions 2.2 and 3.1,

n∑
j=1

[a(tj ) − a(rj )] ≤ [a(tn) − a(rn)] + C(T )[b1(σn−1) + a(σn−1)]

= b1(tn − rn)α(rn) + a(tn − rn)β
2
22(rn)

+ C(T )[b1(σn−1) + a(σn−1)]
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= b1(tn − rn)[β11(σn−1)α(rn − σn−1)

+ α(σn−1)β
2
22(rn − σn−1)]

+ a(tn − rn)β
2
22(rn) + C(T )[b1(σn−1) + a(σn−1)]

≤ C(T )b1(tn − rn)β11(σn−1) + C(T )b1(tn − rn)α(σn−1)

+ C(T )[a(tn − rn)β
2
22(σn−1) + a(σn−1)] + C(T )b1(σn−1)

= C(T )b1(σn) + C(T )a(σn).

That proves (3.15) by induction. The absolute continuity of b1(t) and a(t) follows
by Proposition 3.3. �

LEMMA 3.2. Suppose that (3.3) and (3.4) define a stochastically continuous
SC-semigroup (γ (t))t≥0. Set

f (t) =
∫
D

χ(ξ1)m(t, dξ) and g(t) =
∫
D

χ2(ξ2)m(t, dξ).(3.16)

Then for any 0 ≤ r1 < t1 < · · · < rn < tn ≤ T we have

n∑
j=1

[f (tj ) − f (rj )] ≤ C(T )[b1(σn) + f (σn)](3.17)

and
n∑

j=1

[g(tj ) − g(rj )] ≤ C(T )[b1(σn) + f (σn) + g(σn)].(3.18)

Consequently, f (t) and g(t) are absolutely continuous in t ≥ 0.

PROOF. The proofs of (3.17) and (3.18) are based on ideas similar to those in
the proof of the last lemma. We here give the proof of (3.18) since it involves more
careful calculations. By (3.8) we find that t �→ g(t) is nondecreasing and

g(t1) − g(r1) =
∫
D

m(t1 − r1, dξ)

∫
D

χ2(η2)Q(r1, ξ, dη)

+ b1(t1 − r1)

∫
D

χ2(ξ2)µ(r1, dξ)

≤ C(T )

∫
D

[χ(ξ1) + χ2(ξ2)]m(t1 − r1, dξ) + C(T )b1(t1 − r1)

= C(T )[b1(t1 − r1) + f (t1 − r1) + g(t1 − r1)],
where we used Proposition 2.4 for the inequality. Then (3.18) holds for n = 1.
Suppose the inequality is true for n − 1. By (3.13) and the results of Propositions
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2.4 and 3.1 we have
n∑

j=1

[g(tj ) − g(rj )] ≤ [g(tn) − g(rn)] + C(T )[b1(σn−1) + f (σn−1) + g(σn−1)]

=
∫
D

m(tn − rn, dξ)

∫
D

χ2(η2)Q(rn, ξ, dη)

+ b1(tn − rn)

∫
D

χ2(ξ2)µ(rn, dξ)

+ C(T )[b1(σn−1) + f (σn−1) + g(σn−1)]
≤ C(T )

∫
D

m(tn − rn, dξ)

∫
D

[χ(η1) + χ2(η2)]Q(σn−1, ξ, dη)

+ b1(tn − rn)

∫
D

µ(σn−1, dξ)

×
∫
D

χ2(η2)Q(rn − σn−1, ξ, dη)

+ b1(tn − rn)β11(σn−1)

∫
D

χ2(η2)µ(rn − σn−1, dη)

+ C(T )[b1(σn−1) + f (σn−1) + g(σn−1)]
≤ C(T )

∫
D

m(tn − rn, dξ)

∫
D

[χ(η1) + χ2(η2)]Q(σn−1, ξ, dη)

+ C(T )b1(tn − rn)

∫
D

[χ(ξ1) + χ2(ξ2)]µ(σn−1, dξ)

+ C(T )[b1(σn) + f (σn−1) + g(σn−1)]
= C(T )[b1(σn) + f (σn) + g(σn)].

Then (3.18) follows by induction. The second assertion follows by Proposition 3.3.
�

LEMMA 3.3. Suppose that (3.3) and (3.4) determine a stochastically continu-
ous SC-semigroup (γ (t))t≥0. Then there is a σ -finite kernel m′(s, dξ) from (0,∞)

to D supported by D \ {0} so that

m(t, dξ) =
∫ t

0
m′(s, dξ) ds, t ≥ 0.(3.19)

PROOF. From (3.8) we see that m(t, dξ) is increasing in t ≥ 0. By Lemma 3.2,
the function

t �→
∫
D

[χ(ξ1) + χ2(ξ2)]m(t, dξ)

is absolutely continuous. Then the assertion follows as in the proof of [8], Theo-
rem 2.2. �
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THEOREM 3.1. Let (γ (t))t≥0 be a stochastically continuous SC-semigroup
given by (3.3) and (3.4). Then (γ (t))t≥0 is regular if and only if the function t �→
b2(t) is absolutely continuous on [0,∞).

PROOF. Suppose that t �→ b2(t) is absolutely continuous. In view of Lem-
ma 3.1, we can find Borel measurable functions a′(·) ≥ 0 and b′

j (·) such that

a(t) =
∫ t

0
a′(s) ds and bj (t) =

∫ t

0
b′
j (s) ds, j = 1,2.

Let m′(s, dξ) be given by Lemma 3.3 and let

φ′(s, u) = b′
1(s)u1 + b′

2(s)u2 + a′(s)u2
2 +

∫
D

(
e〈u,ξ〉 − 1 − χ(ξ2)u2

)
m′(s, dξ).

Then we have

φ(t, u) =
∫ t

0
φ′(s, u) ds.(3.20)

By (3.9) and (3.20) it is easy to show that
∫ r

0
φ′(s + t, u) ds =

∫ r

0
φ′(s,ψ(t, u)

)
ds.(3.21)

Let νs be the infinitely divisible probability measure on D such that ν̂s(u) =
exp{φ′(s, u)}. Based on (3.21), it is easy to modify the definitions of φ′(s, ·) and
νs accordingly so that νt = νsQt−s for all t > s > 0 while (3.20) remains true;
see [18]. In other words, (νs)s>0 is an entrance law for (Q(t))t≥0. But (Q(t))t≥0
is a Feller semigroup by [10], Proposition 8.2. Then the Ray–Knight compactifica-
tion of D with respect to (Q(t))t≥0 coincides with its one-point compactification
D̄ := D ∪ {∂} and the Ray–Knight extension of (Q(t))t≥0 satisfies Q(t, ∂, ·) = δ∂

and Q(t, x, {∂}) = 0 for every x ∈ D. It follows that the entrance space for
(Q(t))t≥0 is just D. By [25], page 196, there is a probability measure ν0 on D such
that νs = ν0Qs for all s > 0. Then φ′(s, u) = log ν̂0(ψ(s, u)) and hence (γ (t))t≥0
is regular. Conversely, if (γ (t))t≥0 is regular, the function t �→ φ(t, u) is absolutely
continuous on [0,∞) for every u ∈ U . Then (3.4) and Lemmas 3.1 and 3.3 imply
that t �→ b2(t) is absolutely continuous. �

COROLLARY 3.1. Let (γ (t))t≥0 be a stochastically continuous SC-semigroup
defined by (3.1). Then (γ (t))t≥0 is regular if and only if t �→ γ̂ (t, u) is absolutely
continuous for all u ∈ U .

PROOF. By (3.4) and Lemmas 3.1 and 3.3, t �→ b2(t) is absolutely continuous
if and only if t �→ φ(t, u) is absolutely continuous on [0,∞) for all u ∈ U . Then
the result follows from Theorem 3.1. �
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4. Regularities under moment conditions. In this section we prove the reg-
ularities of HA-semigroups and their associated SC-semigroups under some con-
ditions on the first moments. Suppose that (Q(t))t≥0 is a stochastically continuous
HA-semigroup defined by (2.1), where ψ(t, u) = (ψ1(t, u), β22(t)u2) is given by
Corollary 2.1 and Proposition 2.2. Let us consider the following hypothesis.

HYPOTHESIS 4.1. Suppose that∫
D

[ξ1 + l12(ξ2)]µ(t, dξ) < ∞(4.1)

for all t ≥ 0 or, equivalently, ∫
D

|ξ |Q(t, x, dξ) < ∞(4.2)

for all t ≥ 0 and x ∈ D.

If Hypothesis 4.1 holds, we have a more convenient representation for the func-
tion ψ1(t, u). Indeed, we may differentiate both sides of (2.6) to see that

q11(t) := ∂ψ1

∂u1
(t, u)

∣∣∣∣
u=0

= β11(t) +
∫
D

ξ1µ(t, dξ)(4.3)

and

q12(t) := ∂ψ1

∂u2
(t, u)

∣∣∣∣
u=0

= β12(t) +
∫
D

[ξ2 − χ(ξ2)]µ(t, dξ).(4.4)

On the other hand, differentiating both sides of (2.1) we find that∫
D

ξ1Q(t, x, dξ) = x1q11(t)(4.5)

and ∫
D

ξ2Q(t, x, dξ) = x1q12(t) + x2β22(t).(4.6)

PROPOSITION 4.1. If Hypothesis 4.1 holds, we have

ψ1(t, u) = β11(t)u1 + q12(t)u2
(4.7)

+ α(t)u2
2 +

∫
D

(
e〈u,ξ〉 − 1 − u2ξ2

)
µ(t, dξ),

where α(t), β11(t) and µ(t, dξ) are as in Proposition 3.1 and q12(t) is given
by (4.4) and satisfies

q12(r + t) = q11(r)q12(t) + q12(r)β22(t), r, t ≥ 0.(4.8)
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PROOF. The representation (4.7) follows immediately from (2.6). By Propo-
sition 2.2,

q12(r + t) = β12(r + t) +
∫
D

[ξ2 − χ(ξ2)]µ(r + t, dξ)

= β11(r)β12(t) + β12(r)β22(t)

+
∫
D

[Q(t)χ2(ξ) − β22(t)χ(ξ2)]µ(r, dξ)

+
∫
D

[ξ1q12(t) + ξ2β22(t) − Q(t)χ2(ξ)]µ(r, dξ)

+ β11(r)

∫
D

[ξ2 − χ(ξ2)]µ(t, dξ)

= β11(r)β12(t) + β12(r)β22(t) + β22(t)

∫
D

[ξ2 − χ(ξ2)]µ(r, dξ)

+ q12(t)

∫
D

ξ1µ(r, dξ) + β11(r)

∫
D

[ξ2 − χ(ξ2)]µ(t, dξ)

= β11(r)q12(t) + q12(r)β22(t) + q12(t)

∫
D

ξ1µ(r, dξ).

Then we get (4.8) from (4.3). �

HYPOTHESIS 4.2. Suppose that (4.2) holds and for every fixed x ∈ D the
mapping

t �→ |ξ |Q(t, x, dξ)(4.9)

is continuous by the weak convergence of finite measures.

The following theorem can be regarded as an extension of Watanabe ([28], The-
orem 5) to the state space of the positive half plane.

THEOREM 4.1. If Hypothesis 4.2 holds, the HA-semigroup (Q(t))t≥0 is reg-
ular.

PROOF. Under the hypothesis, we may differentiate both sides of (2.1) with
respect to u1 and u2 to get∫

D
ξj exp{〈u, ξ〉}Q(

t, (x1,0), dξ
) = x1ψ

′
1,uj

(t, u) exp{x1ψ1(t, u)}
for j = 1,2. On the other hand, since (4.9) depends on t ≥ 0 continuously, we have

lim
t→0

∫
D

ξ1 exp{〈u, ξ〉}Q(
t, (x1,0), dξ

) = x1 exp{u1x1}
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and

lim
t→0

∫
D

ξ2 exp{〈u, ξ〉}Q(
t, (x1,0), dξ

) = 0.

Comparing the above equalities we obtain

lim
t→0

ψ ′
1,u1

(t, u) = 1 and lim
t→0

ψ ′
1,u2

(t, u) = 0.(4.10)

For t > 0 let

p(t, u) = 1

t

∫ t

0
ψ(s,u) ds.

Then (4.10) implies that limt→0 p′
1,u1

(t, u) = 1 and limt→0 p′
1,u2

(t, u) = 0. By
Proposition 2.1 and Corollary 2.1 we have p′

2,u1
(t, u) = 0 and limt→0 p′

2,u2
(t,

u) = 1. Let U1 be any fixed bounded subset of U . It is easy to see that the above
limits hold with uniform convergence on U1. Then we can choose sufficiently
small r > 0 so that the matrix

∂p(r, u) :=
(

p′
1,u1

(r, u) p′
2,u1

(r, u)

p′
1,u2

(r, u) p′
2,u2

(r, u)

)
(4.11)

is invertible for all u ∈ U1. Observe that

p
(
r,ψ(t, u)

) − p(r,u) = 1

r

[∫ r

0
ψ

(
s,ψ(t, u)

)
ds −

∫ r

0
ψ(s,u) ds

]

= 1

r

[∫ r+t

t
ψ(s, u) ds −

∫ r

0
ψ(s,u) ds

]

= 1

r

∫ t

0
[ψ(r + s, u) − ψ(s,u)]ds.

It follows immediately that

lim
t→0

1

t

[
p

(
r,ψ(t, u)

) − p(r,u)
] = 1

r

(
ψ(r,u) − u

)
.(4.12)

For t > 0 and u ∈ U1 let

q(r, t, u) := [
p

(
r,ψ(t, u)

) − p(r,u)
](

∂p(r, u)
)−1

.

Then we have

lim
t→0

1

t
q(r, t, u) = 1

r

(
ψ(r,u) − u

)(
∂p(r, u)

)−1
.(4.13)

By Taylor’s expansion,

p
(
r,ψ(t, u)

) − p(r,u) = (
ψ(t, u) − u

)(
∂p(r, u)

) + o
(|ψ(t, u) − u|)

and consequently

q(r, t, u) = (
ψ(t, u) − u

) + o
(|ψ(t, u) − u|)(4.14)
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as t → 0. It follows that

|q(r, t, u)| = |ψ(t, u) − u| + o
(|ψ(t, u) − u|)

and hence

lim
t→0

|q(r, t, u)| |ψ(t, u) − u|−1 = 1,

which together with (4.13) implies that

lim
t→0

1

t
|ψ(t, u) − u| = lim

t→0

1

t
|q(r, t, u)| = 1

r

∣∣(ψ(r,u) − u
)(

∂p(r, u)
)−1∣∣.

Then we get from (4.14) that

q(r, t, u) = (
ψ(t, u) − u

) + o(t).(4.15)

From (4.13) and (4.15) it follows that

lim
t→0

1

t

(
ψ(t, u) − u

) = 1

r

(
ψ(r,u) − u

)
(∂p(r, u))−1

for all u ∈ U1. Clearly, the entries of ∂p(r, u) and hence those of (∂p(r, u))−1

are continuous in u ∈ U1. Then the derivative ψ ′
t (0, u) exists and is continuous in

u ∈ U1. Since U1 can be arbitrary, we get the desired regularity. �

Now let (γ (t))t≥0 be a stochastically continuous SC-semigroup associated with
(Q(t))t≥0 with characteristic function determined by (3.3) and (3.4). We consider
the following.

HYPOTHESIS 4.3. Suppose that∫
D

[ξ1 + l12(ξ2)]m(t, dξ) < ∞(4.16)

or, equivalently, ∫
D

|ξ |γ (t, dξ) < ∞(4.17)

for all t ≥ 0.

Under the above hypothesis, there is a more convenient representation for the
function φ(t, u). Indeed, from (3.4) it follows that

h1(t) := ∂φ

∂u1
(t, u)

∣∣∣∣
u=0

= b1(t) +
∫
D

ξ1m(t, dξ)(4.18)

and

h2(t) := ∂φ

∂u2
(t, u)

∣∣∣∣
u=0

= b2(t) +
∫
D

[ξ2 − χ(ξ2)]m(t, dξ).(4.19)
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By differentiating both sides of (3.3) we get∫
D

ξ1γ (t, dξ) = h1(t) and
∫
D

ξ2γ (t, dξ) = h2(t).(4.20)

The proof of the next proposition is similar to that of Proposition 4.1.

PROPOSITION 4.2. If Hypotheses 4.1 and 4.3 hold, the function φ(t, u) has
representation

φ(t, u) = b1(t)u1 + h2(t)u2
(4.21)

+ a(t)u2
2 +

∫
D

(
e〈u,ξ〉 − 1 − u2ξ2

)
m(t, dξ),

where a(t), b1(t) and m(t, dξ) are as in Proposition 3.1 and h2(t) is defined
by (4.19) and satisfies

h2(r + t) = h1(r)q12(t) + h2(r)β22(t) + h2(t), r, t ≥ 0.(4.22)

PROPOSITION 4.3. If Hypotheses 4.2 and 4.3 hold, the function t �→ h1(t) is
continuously differentiable on [0,∞).

PROOF. By (3.11), for any u1 ∈ C− we have∫
D

exp{u1ξ1}P(t, x, dξ)

(4.23)
= exp

{
x1ψ1

(
t, (u1,0)

) + φ
(
t, (u1,0)

)}
, u1 ∈ C−.

Then the projection of P(t, x, ·) to R+ is independent of x2 ∈ R. Let P1(t, x1, ·)
denote this projection. In view of (4.23), we see that (P1(t))t≥0 is the transition
semigroup of a CBI-process in the sense of Kawazu and Watanabe [16]. By [16],
Theorem 1.1, we have the representation

φ
(
t, (u1,0)

) =
∫ t

0

[
b1ψ1

(
s, (u1,0)

)
(4.24)

+
∫ ∞

0

(
exp

{
ψ1

(
s, (u1,0)

)
ξ1

} − 1
)
m1(dξ1)

]
ds,

where b1 ≥ 0 is a constant and m1(dξ1) is a σ -finite measure on (0,∞) such that∫ ∞
0

χ(ξ1)m1(dξ1) < ∞.

By differentiating both sides of (4.24) with respect to u1 at zero and appealing to
(4.3) and (4.18) it is easy to show that

h1(t) =
(
b1 +

∫
D

ξ1m1(dξ1)

)∫ t

0
q11(s) ds.(4.25)
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Then we must have ∫ ∞
0

ξ1m1(dξ1) < ∞.

In view of (4.5), Hypothesis 4.2 implies that q11(s) is continuous in s ≥ 0 with
q11(0) = 1. By (4.25) we find that h1(t) is differentiable in t ≥ 0. �

THEOREM 4.2. Suppose that Hypotheses 4.1 and 4.3 hold. Then (γ (t))t≥0 is
regular if and only if t �→ h2(t) is absolutely continuous on [0,∞).

PROOF. Based on representation (4.21), this follows as in the proof of Theo-
rem 3.1. �

COROLLARY 4.1. Suppose that Hypotheses 4.2 and 4.3 hold. Then (γ (t))t≥0
is regular if and only if the function h2(·) is differentiable at some and hence all
t ≥ 0.

PROOF. By Proposition 4.3, the function t �→ h1(t) is continuously differen-
tiable. From (4.22) we know that the differentiability of h2(·) at any t0 ≥ 0 implies
its differentiability at 0. Using relation (4.22) once again we see that h2(·) has right
derivative at every t ≥ 0 with

h′
2(t+) = h′

1(0+)q12(t) + h′
2(0+)β22(t).

This function is continuous in t ≥ 0, so h2(·) is absolutely continuous. Then the
desired result follows from Theorem 4.2. �

5. One-dimensional stochastic equations. In this section we prove the exis-
tence and pathwise uniqueness of solution of a one-dimensional stochastic equa-
tion with non-Lipschitz coefficients and jumps of Poisson type. To simplify the
calculations, we only consider a special case for the coefficients which is sufficient
for the applications in the next section. The result may be regarded as an exten-
sion of the well-known result of Yamada and Watanabe [29]; see also [13] and the
references therein for various generalizations of their result in the setting of dif-
fusion processes. For the general background and notation of stochastic equations
we refer to [15].

Let θ0 ≥ 0 and θ1 ≥ 0 be constants and let m(dξ) and µ(dξ) be σ -finite mea-
sures on (0,∞) satisfying m(l1) + µ(l12) < ∞. Suppose that (�,F ,Ft ,P) is a
filtered probability space satisfying the usual hypotheses on which the following
are defined:

(a) an r-dimensional Brownian motion B(·) = (B1(·), . . . ,Br(·));
(b) a Poisson random measure N0(ds, dξ) on (0,∞)2 with intensity ds m(dξ);
(c) a Poisson random measure N1(ds, du, dξ) on (0,∞)3 with intensity

ds duµ(dξ);
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(d) an r-dimensional progressive process σ(·) = (σ1(·), . . . , σr(·)) such that
|σ(t)| ≤ σ̄ (t) for all t ≥ 0 and a nonnegative deterministic increasing function
σ̄ (·) on [0,∞);

(e) a nonnegative progressive process b(·) such that b(t) ≤ b̄(t) for all t ≥ 0
and a nonnegative deterministic increasing function b̄(·) on [0,∞);

(f ) a progressive process β(·) such that |β(t)| ≤ β̄(t) for all t ≥ 0 and a non-
negative deterministic increasing function β̄(·) on [0,∞);

(g) a nonnegative progressive process l(·) such that l(t) ≤ l̄(t) for all t ≥ 0 and
a nonnegative deterministic increasing function l̄(·) on [0,∞).

We assume that B(·), N0 and N1 are independent of each other and (Ft )t≥0 is
the augmented natural filtration generated by them. Consider the stochastic integral
equation

x(t) = x(0) +
∫ t

0

(
b(s) + β(s)x(s)

)
ds

+
r∑

j=1

∫ t

0
σj (s)

√
2x(s) dBj (s) +

∫ t

0

∫ ∞
0

θ0ξN0(ds, dξ)(5.1)

+
∫ t

0

∫ l(s)x(s−)

0

∫ ∞
0

θ1ξÑ1(ds, du, dξ),

where Ñ1(ds, du, dξ) = N1(ds, du, dξ) − ds duµ(dξ). Clearly, the diffusion co-
efficients of (5.1) do not meet the requirements of [15], page 265. Observe also
that integration in the last term on the right-hand side is taken over a random set.
By a solution of (5.1) we mean a nonnegative càdlàg progressive process x(·) sat-
isfying the equation a.s. for each t ≥ 0. We say pathwise uniqueness of solution
holds for (5.1) if any two solutions of the equation with the same initial state are
indistinguishable.

PROPOSITION 5.1. Let x(·) be a solution of (5.1) satisfying E[x(0)] < ∞.
Then we have

E[x(t)] ≤ {E[x(0)] + t b̄(t) + θ0m(l1)t} exp{t β̄(t)}(5.2)

for all t ≥ 0.

PROOF. Let τn = inf{t ≥ 0 :x(t) ≥ n} and xn(t) = x(t ∧ τn). By [12],
page 131, we have E[xn(s)] = E[xn(s−)] ≤ E[n∨x(0)] < ∞ for almost all s ≥ 0.
Since b̄(t) and β̄(t) are both increasing in t ≥ 0, it follows from (5.1) that

E[xn(t)] ≤ E[x(0)] + t b̄(t) + θ0m(l1)t + β̄(t)

∫ t

0
E[xn(s)]ds.
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By Gronwall’s inequality we get

E[xn(t)] ≤ {E[x(0)] + t b̄(t) + θ0m(l1)t} exp{β̄(t)t}.
Then (5.2) follows by Fatou’s lemma. �

PROPOSITION 5.2. Let x(·) be a solution of (5.1) satisfying E[x(0)] < ∞.
Then we have

E
[

sup
0≤s≤t

x(s)

]
≤ E[x(0)] + [b̄(t) + θ0m(l1)]t

+ [β̄(t) + θ1 l̄(t)µ(l12)]
∫ t

0
E[x(s)]ds(5.3)

+ 4
[
2rσ̄ (t) + θ1

√
l̄(t)µ(l12)

](
1 +

∫ t

0
E[x(s)]ds

)

for all t ≥ 0.

PROOF. Applying Doob’s inequality to the martingale terms in (5.1),

E
[

sup
0≤s≤t

x(s)

]
≤ E[x(0)] +

∫ t

0
E[b̄(s) + β̄(s)x(s)]ds + θ0t

∫ ∞
0

ξm(dξ)

+ 4
r∑

j=1

E1/2
[(∫ t

0
σj (s)

√
2x(s) dBj (s)

)2]

+ 4E1/2
[(∫ t

0

∫ l(s)x(s−)

0

∫ 1

0
θ1ξÑ1(ds, du, dξ)

)2]

+ E
[∫ t

0

∫ l(s)x(s−)

0

∫ ∞
1

θ1ξN1(ds, du, dξ)

]

≤ E[x(0)] +
∫ t

0
b̄(s) ds +

∫ t

0
β̄(s)E[x(s)]ds + θ0tm(l1)

+ 8
r∑

j=1

(∫ t

0
E[σ 2

j (s)x(s)]ds

)1/2

+ 4θ1µ(l12)

(∫ t

0
E[l(s)x(s)]ds

)1/2

+ θ1µ(l12)

∫ t

0
E[l(s)x(s)]ds.

Then we obtain (5.3) by combining the terms. �
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THEOREM 5.1. Suppose that x1(·) and x2(·) are two solutions of (5.1) satis-
fying E[x2(0) + x1(0)] < ∞. Then we have

E[|x2(t) − x1(t)|] ≤ E[|x2(0) − x1(0)|] exp{t β̄(t)}.(5.4)

Consequently, the pathwise uniqueness of solution holds for (5.1).

PROOF. By Proposition 5.1 it is easy to find that E[x2(t) + x1(t)] is locally
bounded in t ≥ 0. Let z(t) = x2(t) − x1(t). Then we have

z(t) = z(0) +
∫ t

0
β(s)z(s) ds

+
r∑

j=1

∫ t

0
σj (s)

(√
2x2(s) − √

2x1(s)
)
dBj (s)

(5.5)

+
∫ t

0

∫ l(s)x2(s−)

l(s)x1(s−)

∫ ∞
0

θ1ξ1{x1(s−)≤x2(s−)}Ñ1(ds, du, dξ)

−
∫ t

0

∫ l(s)x1(s−)

l(s)x2(s−)

∫ ∞
0

θ1ξ1{x1(s−)>x2(s−)}Ñ1(ds, du, dξ).

Let {ak} be the sequence defined inductively by a0 = 1 and ak = ak−1e
−k for

k ≥ 1. It is easy to check that
∫ ak−1
ak

(ku)−1 du = 1. For k ≥ 1 let gk be a non-
negative continuous function on [0,∞) which has support contained in [ak, ak−1]
and satisfies 0 ≤ gk(u) ≤ 2(ku)−1 and

∫ ak−1
ak

gk(u) du = 1. Then

hk(x) =
∫ |x|

0
dy

∫ y

0
gk(u) du, x ∈ R,

defines a twice continuously differentiable function hk such that hk(x) → |x| in-
creasingly as k → ∞. Set Hk(x, ξ) = �ξhk(x) − h′

k(x)ξ . By (5.5) and Itô’s for-
mula,

hk(z(t)) = hk(z(0)) +
∫ t

0
h′

k(z(s))β(s)z(s) ds + mart.

+
r∑

j=1

∫ t

0
h′′

k(z(s))σ
2
j (s)

(√
x2(s) − √

x1(s)
)2

ds

(5.6)

+
∫ t

0
ds

∫ ∞
0

Hk

(
z(s), θ1ξ

)
l(s)z(s)1{z(s)≥0}µ(dξ)

−
∫ t

0
ds

∫ ∞
0

Hk

(
z(s),−θ1ξ

)
l(s)z(s)1{z(s)<0}µ(dξ);

see, for example, [9], pages 334–335. Note that |h′
k(x)| ≤ 1 and 0 ≤ h′′

k(x) =
gk(|x|) ≤ 2|kx|−1. It follows that

h′′
k(z(s))

(√
x2(s) − √

x1(s)
)2 ≤ h′′

k(z(s))|x2(s) − x1(s)| ≤ 2/k.
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By the mean-value theorem and Taylor’s expansion it is easy to show that
|Hk(x, ξ)x| ≤ |2ξx| ∧ |k−1ξ2| whenever xξ ≥ 0. Then we may take the expec-
tations in (5.6) to find

E[hk(z(t))] ≤ E[hk(z(0))] + β̄(t)

∫ t

0
E[|z(s)|]ds

+ 2

k

r∑
j=1

∫ t

0
E[σ 2

j (s)]ds(5.7)

+ θ1 l̄(t)

∫ t

0
ds

∫ ∞
0

E[2ξ |z(s)|] ∧ (k−1θ1ξ
2)µ(dξ).

Letting k → ∞ in (5.7) we obtain

E[|z(t)|] ≤ E[|z(0)|] + β̄(t)

∫ t

0
E[|z(s)|]ds.

Then (5.4) follows by Gronwall’s inequality. �

Now we turn to the existence of the solution of (5.1). The Picard iteration
method fails for this equation because the diffusion coefficients are not Lipschitz.
Since the coefficients are random, we cannot follow the standard argument of mar-
tingale problem. In the approach given below, we first approximate the random co-
efficients by some simple processes and consider a sequence of equations without
small and large jumps. The original coefficients and the small jumps are retrieved
by a limit argument based on the second moment analysis. Finally, we obtain the
solution of (5.1) by adding the large jumps.

A stochastic process q(·) defined on (�,F ,Ft ,P) is called a simple process if
there is a sequence 0 = r0 < r1 < r2 < · · · increasing to infinity and a sequence of
random variables {ηk} such that ηk is Frk -measurable and

q(t) = η01{0}(t) +
∞∑

k=0

ηk1(rk,rk+1](t), t ≥ 0.(5.8)

We approximate the coefficients of (5.1) in the following way:

(a) Let {σn} be a sequence of r-dimensional simple processes such that
|σn(t)| ≤ σ̄ (t) for all t ≥ 0 and σn(·) → σ(·) a.s. in L2([0, J ], λ) for all integers
J ≥ 1.

(b) Let {bn} be a sequence of nonnegative simple processes such that bn(t) ≤
b̄(t) for all t ≥ 0 and bn(·) → b(·) a.s. in L2([0, J ], λ) for all integers J ≥ 1.

(c) Let {βn} be a sequence of simple processes such that |βn(t)| ≤ β̄(t) for all
t ≥ 0 and βn(·) → β(·) a.s. in L2([0, J ], λ) for all integers J ≥ 1.

(d) Let {ln} be a sequence of simple processes such that ln(t) ≤ l̄(t) for all
t ≥ 0 and ln(·) → l(·) a.s. in L2([0, J ], λ) for all integers J ≥ 1.
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Let L ≥ 1 be an integer and let {εn} be a decreasing sequence such that
µ({εn :n ≥ 1}) = 0, 0 < εn ≤ 1 and εn → 0 as n → ∞. Suppose that x(0) is a
nonnegative F0-measurable random variable satisfying E[x(0)] < ∞. Let xn(·)
denote the nonnegative solution of the stochastic equation

xn(t) = x(0) +
∫ t

0

(
bn(s) + βn(s)xn(s)

)
ds

+
r∑

j=1

∫ t

0
σn,j (s)

√
2xn(s) dBj (s) +

∫ t

0

∫ L

εn

θ0ξN0(ds, dξ)(5.9)

+
∫ t

0

∫ ln(s)xn(s−)

0

∫ L

εn

θ1ξÑ1(ds, du, dξ).

Based on Proposition 5.2 and the results in [15], pages 235–237, the existence of
the strong solution of the above equation follows by arguments similar to those
of [15], pages 245–246. Let

yn,j (t) :=
∫ t

0
σn,j (s)

√
2xn(s) dBj (s)(5.10)

and

zn(t) :=
∫ t

0

∫ ln(s)xn(s−)

0

∫ L

εn

ξÑ1(ds, du, dξ).(5.11)

LEMMA 5.1. For 1 ≤ j ≤ r the sequence yn,j (·) is tight in C([0,∞),R), and
the sequences xn(·) and zn(·) are tight in D([0,∞),R).

PROOF. By Proposition 5.1 it is easy to show that C(t) := supn≥1 E[xn(t)] is
a locally bounded function of t ≥ 0. By (5.10) we have

E[|yn,j (t)|2] = 2
∫ t

0
E[σ 2

n,j (s)xn(s)]ds ≤ 2
∫ t

0
σ̄ 2(s)C(s) ds(5.12)

and

E[|zn(t)|2] =
∫ t

0
E[ln(s)xn(s)]ds

∫ L

εn

ξ2µ(dξ)

(5.13)

≤
∫ t

0
l̄(s)C(s) ds

∫ L

0
ξ2µ(dξ).

Then yn,j (t) and zn(t) are tight sequences of random variables for every fixed
t ≥ 0. Now let {τn} be a sequence of stopping times bounded above by T ≥ 0. By
the properties of independent increments of the Brownian motion and the Poisson
process we obtain as in the calculations in (5.12) and (5.13) that

E[|yn,j (τn + t) − yn,j (τn)|2] ≤ 2
∫ t

0
σ̄ 2(T + s)C(T + s) ds
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and

E[|zn(τn + t) − zn(τn)|2] ≤
∫ t

0
l̄(T + s)C(T + s) ds

∫ L

0
ξ2µ(dξ).

Then yn,j (·) and zn(·) are tight in D([0,∞),R) by the criterion of Aldous [1].
Since C([0,∞),R) is a closed subset of D([0,∞),R), we infer that yn,j (·) is also
tight in C([0,∞),R). By similar calculations for other terms on the right-hand
side of (5.9) we find that xn(·) is tight in D([0,∞),R+). �

By Lemma 5.1 we may construct a new filtered probability space (�,F ,Ft ,P)

satisfying the usual hypotheses on which the following stochastic equations are
realized:

xn(t) = xn(0) +
∫ t

0

(
bn(s) + βn(s)xn(s)

)
ds

+
r∑

j=1

∫ t

0
σn,j (s)

√
2xn(s) dBn,j (s) +

∫ t

0

∫ L

εn

θ0ξNn,0(ds, dξ)(5.14)

+
∫ t

0

∫ ln(s)xn(s−)

0

∫ L

εn

θ1ξÑn,1(ds, du, dξ),

where the processes {xn,Bn,σn, bn,βn, ln} and the random measures {Nn,0,Nn,1}
are distributed as {xn,B,σn, bn,βn, ln} and {N0,N1} in (5.9). Moreover, as
n → ∞ we have:

(a) xn(·) → a process x(·) a.s. by the topology of D([0,∞),R+);
(b) Bn(·) → an r-dimensional Brownian motion B(·) a.s. by the topology of

C([0,∞),R
r );

(c) ξNn,0(ds, dξ) → ξN0(ds, dξ) a.s. by the weak convergence of finite mea-
sures on (0, J ] × (0,L] for all integers J ≥ 1, where N0(ds, dy) is a Poisson
random measure on (0,∞)2 with intensity ds m(dy);

(d) ξ2Nn,1(ds, du, dξ) → ξ2N1(ds, du, dξ) a.s. by the week convergence of
finite measures on (0, J ]2 × (0,L] for all integers J ≥ 1, where N1(ds, du, dy) is
a Poisson random measure on (0,∞)3 with intensity ds duµ(dy);

(e) σn(·), bn(·), βn(·) and ln(·) converge a.s. to processes σ(·), b(·), β(·) and
l(·), respectively, by the topology of L2([0, J ], λ) for each integer J ≥ 1;

(f ) for each 1 ≤ j ≤ r it holds that

yn,j (t) :=
∫ t

0
σn,j (s)

√
2xn(s) dBn,j (s) → a process yj (t) a.s.(5.15)

by the topology of C([0,∞),R);
(g) it holds that

zn(t) :=
∫ t

0

∫ ln(s)xn(s−)

0

∫ L

εn

ξÑn,1(ds, du, dξ)

(5.16)
→ a process z(t) a.s.
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by the topology of D([0,∞),R).

The existence of such a probability space follows by the Skorokhod representation;
see, for example, [12], page 102. Indeed, we can and do assume that the probabil-
ity space is constructed so that the above assertions hold simultaneously for all
integers L ≥ 1. Of course, the processes {xn(·), yn,j (·), zn(·), x(·), yj (·), z(·)} all
depend on L ≥ 1. We suppress this dependence for simplicity of the notation.
Note also that the processes {B(·), σ (·), b(·), β(·), l(·)} and the random measures
{N0(ds, dξ),N1(ds, du, dξ)} are distributed as those in (5.1).

LEMMA 5.2. For each t ≥ 0 we have a.s.

yj (t) =
∫ t

0
σj (s)

√
2x(s) dBj (s)(5.17)

and

z(t) =
∫ t

0

∫ l(s)x(s−)

0

∫ L

0
ξÑ1,n(ds, du, dξ).(5.18)

PROOF. For m ≥ 1 let τm = inf{t ≥ 0 : x(t) ≥ m or xn(t) ≥ m for some n ≥ 1}.
Let {qk,m(·)} be a sequence of nonnegative simple processes bounded above by m

such that qk,m(s) → x(s)1{s≤τm} a.s. by the topology of L2([0, T ], λ) for each
T ≥ 0. By (5.15) we have

yn,j (t ∧ τm) =
∫ t

0
σk,j (s)

√
2qk,m(s) dBn,j (s) + ηn,k,m,j (t),(5.19)

where

ηn,k,m,j (t) =
∫ t

0
σn,j (s)

(√
2xn(s) − √

2x(s)
)
1{s≤τm} dBn,j (s)

+
∫ t

0
σn,j (s)

(√
2x(s) −

√
2qk,m(s)

)
1{s≤τm} dBn,j (s)

+
∫ t

0

(
σn,j (s) − σk,j (s)

)√
2qk,m(s) dBn,j (s).

It is simple to see that

E[η2
n,k,m,j (t)] ≤ 6σ̄ (t)2

∫ t

0
E

[(√
xn(s) − √

x(s)
)21{s≤τm}

]
ds

+ 6σ̄ (t)2
∫ t

0
E

[(√
x(s) −

√
qk,m(s)

)21{s≤τm}
]
ds(5.20)

+ 6m

∫ t

0
E

[(
σn,j (s) − σk,j (s)

)2]
ds.
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In view of (5.19), the limit ηk,m,j (t) = limn→∞ ηn,k,m,j (t) exists and

yj (t ∧ τm) =
∫ t

0
σk,j (s)

√
2qk,m(s) dBj (s) + ηk,m,j (t).(5.21)

By (5.20) and Fatou’s lemma,

E[η2
k,m,j (t)] ≤ 6σ̄ (t)2

∫ t

0
E

[(√
x(s) −

√
qk,m(s)

)21{s≤τm}
]
ds

+ 6m

∫ t

0
E

[(
σj (s) − σk,j (s)

)2]
ds,

which goes to zero as k → ∞. Now we can take the limit in (5.21) to obtain

yj (t ∧ τm) =
∫ t

0
σj (s)

√
2x(s)1{s≤τm} dBj (s).

Then we have (5.17) since τm → ∞ as m → ∞. Equality (5.18) can be proved
using similar ideas. �

LEMMA 5.3. For each t ≥ 0 we have a.s.

x(t) = x(0) +
∫ t

0

(
b(s) + β(s)x(s)

)
ds

+
r∑

j=1

∫ t

0
σj (s)

√
2x(s) dBj (s) +

∫ t

0

∫ L

0
θ0ξN0(ds, dξ)(5.22)

+
∫ t

0

∫ l(s)x(s−)

0

∫ L

0
θ1ξÑ1(ds, du, dξ).

PROOF. By dominated convergence we have a.s.

lim
n→∞

∫ t

0

(
bn(s) + βn(s)xn(s)

)
ds =

∫ t

0

(
b(s) + β(s)x(s)

)
ds.

On the other hand, it is easy to show that a.s.

lim
n→∞

∫ t

0

∫ L

εn

ξNn,0(ds, dξ) =
∫ t

0

∫ L

0
ξN0(ds, dξ).

Then (5.22) follows from (5.14) and Lemma 5.2. �

THEOREM 5.2. There is a solution x(·) of (5.1).

PROOF. By Lemma 5.3 there is a sequence of processes {xk(·)} satisfying the
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equations

xk(t) = x(0) +
∫ t

0

(
b(s) + β(s)xk(s)

)
ds +

r∑
j=1

∫ t

0
σj (s)

√
2xk(s) dBj (s)

+
∫ t

0

∫ k

0
θ0ξN0(ds, dξ) +

∫ t

0

∫ l(s)xk(s−)

0

∫ 1

0
θ1ξÑ1(ds, du, dξ)

+
∫ t

0

∫ l(s)xk(s−)

0

∫ k

1
θ1ξN1(ds, du, dξ) −

∫ ∞
1

θ1ξµ(dξ)

∫ t

0
l(s)xk(s) ds.

The pathwise uniqueness of solutions holds for those equations by Theorem 5.1.
Based on this fact, it is easy to show that xk(·) is increasing in k ≥ 1. Let x(·) :=
limk→∞ xk(·). By Propositions 5.1 and 5.2 and Fatou’s lemma we conclude that
E[sup0≤s≤T x(s)] < ∞ for each T ≥ 0. Then we infer that x(·) satisfies (5.1).

�

In particular, if {σ, b,β, l} are all deterministic constants, Theorems 5.1 and 5.2
imply that (5.1) has a unique strong solution x(·) and the solution is a strong
Markov process; see, for example, [15], pages 163–166 and page 215. By Itô’s
formula, we find that x(·) has generator L determined by

Lf (x) = αxf ′′(x) + (b + βx)f ′(x) +
∫ ∞

0
�θ0ξ f (x)m(dξ)

(5.23)
+

∫ ∞
0

(
�θ1ξ f (x) − f ′(x)θ1ξ

)
lxµ(dξ),

where α = ∑r
j=1 σ 2

j . Then x(·) is a CBI-process; see [16] and [27]. The stochas-
tic equation (5.1) gives explicit representations of the two types of jumps of the
process in terms of the Poisson random measures N0(ds, dξ) and N1(ds, du, dξ).
As far as we know, this characterization of the CBI-process has not appeared in the
literature. In the general case, the solution of (5.1) can be regarded as a generalized
CBI-process with random parameters.

6. Constructions of the two-dimensional processes. Based on the results
in the last section, we here construct two classes of Markov processes as strong
solutions of stochastic integral equations. The first class is the regular affine
process and the second is the catalytic CBI-process. The characterizations of those
processes in terms of stochastic equations play the key role in the study of the
limit theorems in the next section. To simplify the discussions, we impose some
conditions on the jumps so that the processes possess finite first moments.

DEFINITION 6.1. A set of parameters (a, (αij ), (b1, b2), (βij ),m,µ) is called
admissible if:

(i) a ∈ R+ is a constant;
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(ii) (αij ) is a symmetric nonnegative definite (2 × 2)-matrix;
(iii) (b1, b2) ∈ D is a vector;
(iv) (βij ) is a (2 × 2)-matrix with β12 = 0;
(v) m(dξ) is a σ -finite measure on D supported by D \ {0} such that∫

D
[l1(ξ1) + l12(ξ2)]m(dξ) < ∞;

(vi) µ(dξ) is a σ -finite measure on D supported by D \ {0} such that∫
D

[l12(ξ1) + l12(ξ2)]µ(dξ) < ∞.

THEOREM 6.1 ([10]). Suppose that (a, (αij ), (b1, b2), (βij ),m,µ) is a set of
admissible parameters. For u = (u1, u2) ∈ U set

F(u) = b1u1 + b2u2 + au2
2 +

∫
D

(
e〈u,ξ〉 − 1 − ξ2u2

)
m(dξ)(6.1)

and

R(u) = β11u1 + β21u2 + α11u
2
1 + 2α12u1u2 + α22u

2
2

(6.2)
+

∫
D

(
e〈u,ξ〉 − 1 − ξ1u1 − ξ2u2

)
µ(dξ).

Then there is a unique regular affine semigroup (P (t))t≥0 determined by (3.11)
where ψ2(t, u) = eβ22tu2, ψ1(t, u) solves the generalized Riccati equation

∂

∂t
ψ1(t, u) = R

(
ψ1(t, u), eβ22tu2

)
, ψ1(0, u) = u1(6.3)

and

φ(t, u) =
∫ t

0
F

(
ψ1(s, u), eβ22su2

)
ds.(6.4)

Let (a, (αij ), (βij ), (bj ),m,µ) be a set of admissible parameters and let A be
the generator of the regular affine semigroup (P (t))t≥0 characterized by Theo-
rem 6.1. It is not hard to show that

Af (x) = α11x1f
′′
11(x) + 2α12x1f

′′
12(x) + α22x1f

′′
22(x) + af ′′

22(x)

+ (b1 + β11x1)f
′
1(x) + (b2 + β21x1 + β22x2)f

′
2(x)

(6.5)
+

∫
D

(
�ξf (x) − f ′

2(x)ξ2
)
m(dξ)

+
∫
D

(
�ξf (x) − 〈∇f (x), ξ 〉)x1µ(dξ)

for f ∈ C2(D), where ∇f (x) = (f ′
1(x), f ′

2(x)).
Let σ0 = √

a and let (σij ) be a (2 × 2)-matrix satisfying (αij ) = (σij )(σij )
τ .

Let (�,F ,Ft ,P) be a filtered probability space satisfying the usual hypotheses.
Suppose that on this probability space the following objects are defined:
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(a) a three-dimensional Brownian motion B(·) = (B0(·),B1(·),B2(·));
(b) a Poisson random measure N0(ds, dξ) on (0,∞) × D with intensity

ds m(dξ);
(c) a Poisson random measure N1(ds, du, dξ) on (0,∞)2 × D with intensity

ds duµ(dξ).

We assume that B0(·), N0 and N1 are independent of each other and (Ft )t≥0
is the augmented natural filtration generated by them. Let x(0) be a nonneg-
ative F0-measurable random variable defined on (�,F ,Ft ,P). By Theorems
5.1 and 5.2 there is a unique strong solution x(·) of

x(t) = x(0) +
∫ t

0

(
b1 + β11x(s)

)
ds +

∫ t

0
σ11

√
2x(s) dB1(s)

+
∫ t

0
σ12

√
2x(s) dB2(s) +

∫ t

0

∫
D

ξ1N0(ds, dξ)(6.6)

+
∫ t

0

∫ x(s−)

0

∫
D

ξ1Ñ1(ds, du, dξ).

As explained at the end of the last section, x(·) is a CBI-process. In addition, let
z(0) be an F0-measurable random variable defined on (�,F ,Ft ,P). We con-
sider the equation

z(t) = z(0) +
∫ t

0

(
b2 + β21x(s) + β22z(s)

)
ds +

∫ t

0

√
2σ0 dB0(s)

+
∫ t

0
σ21

√
2x(s) dB1(s) +

∫ t

0
σ22

√
2x(s) dB2(s)(6.7)

+
∫ t

0

∫
D

ξ2Ñ0(ds, dξ) +
∫ t

0

∫ x(s−)

0

∫
D

ξ2Ñ1(ds, du, dξ).

THEOREM 6.2. The equation system (6.6) and (6.7) has a unique strong solu-
tion (x(·), z(·)). Moreover, (x(·), z(·)) is an affine Markov process with generator
A given by (6.5).

PROOF. By Itô’s formula it is not hard to show that

z(t) = eβ22t z(0) + eβ22t
∫ t

0
e−β22s

(
b2 + β21x(s)

)
ds

+ eβ22t
∫ t

0

√
2σ0e

−β22s dB0(s) + eβ22t
∫ t

0
σ21e

−β22s
√

2x(s) dB1(s)

(6.8)

+ eβ22t
∫ t

0
σ22e

−β22s
√

2x(s) dB2(s) + eβ22t
∫ t

0

∫
D

e−β22sξ2Ñ0(ds, dξ)

+ eβ22t
∫ t

0

∫ x(s−)

0

∫
D

e−β22sξ2Ñ1(ds, du, dξ)
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defines a solution of (6.7) and conversely any solution of (6.7) must be given
by (6.8). The uniqueness implies the strong Markov property of (x(·), z(·)). By
Itô’s formula, we find that the Markov process (x(·), z(·)) has generator A. �

Now suppose that b2 ≥ 0 and m2(l1) ≤ ∞, were m2 denotes the projection of m

to R. Let D+ = R
2+ ⊂ D. Given a nonnegative F0-measurable random variable

y(0) defined on (�,F ,Ft ,P), we consider the equation

y(t) = y(0) +
∫ t

0

(
b2 + β21x(s)y(s) + β22y(s)

)
ds +

∫ t

0
σ0

√
2y(s) dB0(s)

+
∫ t

0
σ21

√
2x(s)y(s) dB1(s) +

∫ t

0
σ22

√
2x(s)y(s) dB2(s)(6.9)

+
∫ t

0

∫
D+

ξ2N0(ds, dξ) +
∫ t

0

∫ lx(s−)y(s−)

0

∫
D+

ξ2Ñ1(ds, du, dξ).

A solution y(·) of (6.9) can be regarded as a generalized CBI-process with random
parameters governed by the process x(·). Following Dawson and Fleischmann [5],
we shall call the pair (x(·), y(·)) a catalytic CBI-process, where x(·) is the catalyst
process and y(·) is the reactant process.

THEOREM 6.3. The equation system (6.6) and (6.9) has a unique strong so-
lution (x(·), y(·)).

PROOF. It suffices to consider the case where the initial states x(0) and y(0)

are deterministic. For n ≥ x(0) let τn = inf{s ≥ 0 :x(s) ≥ n} and xn(t) = x(t ∧τn).
By Theorems 5.1 and 5.2, there is a unique strong solution (x(·), yn(·)) of the
equation system formed by (6.6) and

yn(t) = y(0) +
∫ t

0

(
b2 + β21xn(s)yn(s) + β22yn(s)

)
ds

+
∫ t

0
σ0

√
2yn(s) dB0(s) +

∫ t

0
σ21

√
2xn(s)yn(s) dB1(s)

(6.10)

+
∫ t

0
σ22

√
2xn(s)yn(s) dB2(s) +

∫ t

0

∫
D+

ξ2N0(ds, dξ)

+
∫ t

0

∫ lxn(s−)yn(s−)

0

∫
D+

ξ2Ñ1(ds, du, dξ).

By the uniqueness, for any n ≥ m ≥ x(0) the two processes yn(t ∧ τm) and ym(t ∧
τm) are indistinguishable. Since τn → ∞ as n → ∞, it is easy to see that y(t) :=
limn→∞ yn(t) is the unique solution of (6.9). �

By Theorem 6.3, the catalytic CBI-process (x(·), y(·)) is a strong Markov
process with state space D+. Let D− = R+ × R−. By Itô’s formula we find that
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(x(·), y(·)) has generator L determined by

Lf (x) = α11x1f
′′
11(x) + 2α12x1

√
x2f

′′
12(x) + α22x1x2f

′′
22(x) + ax2f

′′
22(x)

+ (b1 + β11x1)f
′
1(x) + (b2 + β21x1x2 + β22x2)f

′
2(x)

+
∫
D+

�ξf (x)m(dξ) +
∫
D−

�(ξ1,0)f (x)m(dξ)

+
∫
D+

[�ξf (x) − 〈∇f (x), ξ 〉](x1 ∧ lx1x2)µ(dξ)(6.11)

+
∫
D+

[
�(ξ1,0)f (x) − f ′

1(x)ξ1
][x1 − (x1 ∧ lx1x2)]µ(dξ)

+
∫
D+

[
�(0,ξ2)f (x) − f ′

2(x)ξ2
][lx1x2 − (x1 ∧ lx1x2)]µ(dξ)

+
∫
D−

[
�(ξ1,0)f (x) − f ′

1(x)ξ1
]
x1µ(dξ).

7. Fluctuation limit theorems. In this section we show that an affine process
arises naturally from a limit theorem based on catalytic CBI-processes. By virtue
of the characterizations given in the last section, we can establish the limit theorem
in the sense of convergence in probability. Let (�,F ,Ft ,P) be a filtered prob-
ability space satisfying the usual hypotheses and let B(·), N0 and N1 be given as
in the last section. Let (a, (αij ), (βij ), (bj ),m,µ) be admissible parameters with
β22 < 0 and m2(l1) < ∞. Let σ0 = √

a and let (σij ) be a (2 × 2)-matrix satisfying
(αij ) = (σij )(σij )

τ .
Let {θk} be a sequence such that 1 ≤ θk → ∞ as k → ∞. For each k ≥ 1 let

yk(0) be an F0-measurable random variable and let yk(·) be the solution of

yk(t) = yk(0) +
∫ t

0

(−θkβ22 + β21x(s)ỹk(s) + b2ỹk(s) + β22yk(s)
)
ds

+
∫ t

0
σ0

√
2ỹk(s) dB0(s) +

∫ t

0
σ21

√
2x(s)ỹk(s) dB1(s)

(7.1)

+
∫ t

0
σ22

√
2x(s)ỹk(s) dB2(s) +

∫ t

0

∫
D+

ξ2Ñ0(ds, dξ)

+
∫ t

0

∫ x(s−)ỹk(s−)

0

∫
D+

ξ2Ñ1(ds, du, dξ),

where ỹk(t) = yk(t)/θk and x(·) is defined by (6.6). When θk is sufficiently large,
(7.1) is essentially a special form of (6.9). Then the pair (x(·), yk(·)) is a catalytic
CBI-process. Set zk(t) = yk(t) − θk .
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THEOREM 7.1. Suppose that z(0) is an F0-measurable random variable such
that E[|z(0)|] < ∞ and

lim
k→∞ E[|zk(0) − z(0)|] = 0.(7.2)

Then zk(·) converges in probability by the topology of D([0,∞),R) to the solu-
tion z(·) of

z(t) = z(0) +
∫ t

0

(
b2 + β21x(s) + β22z(s)

)
ds +

∫ t

0

√
2σ0 dB0(s)

+
∫ t

0
σ21

√
2x(s) dB1(s) +

∫ t

0
σ22

√
2x(s) dB2(s)(7.3)

+
∫ t

0

∫
D+

ξ2Ñ0(ds, dξ) +
∫ t

0

∫ x(s−)

0

∫
D+

ξ2Ñ1(ds, du, dξ).

PROOF. From (7.1) we get

ỹk(t) = ỹk(0) +
∫ t

0

(−β22 + θ−1
k β21x(s)ỹk(s) + θ−1

k b2ỹk(s) + β22ỹk(s)
)
ds

+
∫ t

0
θ−1
k σ0

√
2ỹk(s) dB0(s) +

∫ t

0
θ−1
k σ21

√
2x(s)ỹk(s) dB1(s)

(7.4)

+
∫ t

0
θ−1
k σ22

√
2x(s)ỹk(s) dB2(s) +

∫ t

0

∫
D+

θ−1
k ξ2Ñ0(ds, dξ)

+
∫ t

0

∫ x(s−)ỹk(s−)

0

∫
D+

θ−1
k ξ2Ñ1(ds, du, dξ).

For n ≥ 1 let τn = inf{s ≥ 0 :x(s) ≥ n}. Then τn → ∞ as n → ∞. Under condi-
tion (7.2) we clearly have supk≥1 E[ỹk(0)] < ∞. By Proposition 5.2,

sup
k≥1

E
[

sup
0≤s≤T

ỹk(s ∧ τn)

]
< ∞.(7.5)

Let ηn,k(t) = ỹk(t ∧ τn) − 1. By (7.4) and Doob’s martingale inequality we get

E[|ηn,k(t)|] ≤ E[|ηn,k(0)|] + |β22|
∫ t

0
E[|ηn,k(s)|]ds

+ θ−1
k

∫ t

0
(b2 + n|β21|)E[ỹk(s ∧ τn)]ds

+ θ−1
k

(√
2σ0 + √

2nσ21 + √
2nσ22

)(∫ t

0
E[ỹk(s ∧ τn)]ds

)1/2

+ θ−1
k

√
tm2(l12) + 2θ−1

k tm2(l12)

+ θ−1
k

√
nµ2(l12)

(∫ t

0
E[ỹk(s ∧ τn)]ds

)1/2

(7.6)



AFFINE MARKOV PROCESSES 1137

+ 2nθ−1
k µ2(l12)

∫ t

0
E[ỹk(s ∧ τn)]ds,

where m2 and µ2 denote, respectively, the projections of m and µ to R. An appli-
cation of Gronwall’s inequality shows that

E[|ηn,k(t)|] = E[|ỹk(t ∧ τn) − 1|] → 0(7.7)

as k → ∞. From (7.1) we see that zk(·) satisfies

zk(t) = zk(0) +
∫ t

0

(
b2ỹk(s) + β21x(s)ỹk(s) + β22zk(s)

)
ds

+
∫ t

0
σ0

√
2ỹk(s) dB0(s) +

∫ t

0
σ21

√
2x(s)ỹk(s) dB1(s)

(7.8)

+
∫ t

0
σ22

√
2x(s)ỹk(s) dB2(s) +

∫ t

0

∫
D+

ξ2Ñ0(ds, dξ)

+
∫ t

0

∫ x(s−)ỹk(s−)

0

∫
D+

ξ2Ñ1(ds, du, dξ).

Let ζn,k(t) = zk(t ∧ τn) − z(t ∧ τn). Then we have

ζn,k(t) = ζn,k(0) +
∫ t∧τn

0

(
b2 + β21x(s)

)
ηn,k(s) ds

+ β22

∫ t∧τn

0
ζn,k(s) ds +

∫ t∧τn

0

√
2σ0

(√
ỹk(s) − 1

)
dB0(s)

+
∫ t∧τn

0
σ21

√
2x(s)

(√
ỹk(s) − 1

)
dB1(s)

+
∫ t∧τn

0
σ22

√
2x(s)

(√
ỹk(s) − 1

)
dB2(s)

+
∫ t∧τn

0

∫ x(s−)ỹk(s−)

x(s−)

∫
D+

ξ2Ñ1(ds, du, dξ).

By Itô’s formula,

e−β22t ζn,k(t) = ζn,k(0) +
∫ t∧τn

0
e−β22s

(
b2 + β21x(s)

)
ηn,k(s) ds

+
∫ t∧τn

0

√
2σ0e

−β22s
(√

ỹk(s) − 1
)
dB0(s)

+
∫ t∧τn

0
σ21e

−β22s
√

2x(s)
(√

ỹk(s) − 1
)
dB1(s)

+
∫ t∧τn

0
σ22e

−β22s
√

2x(s)
(√

ỹk(s) − 1
)
dB2(s)
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+
∫ t∧τn

0

∫ x(s−)ỹk(s−)

x(s−)

∫
D+

e−β22sξ21{|ξ2|≤1}Ñ1(ds, du, dξ)

+
∫ t∧τn

0

∫ x(s−)ỹk(s−)

x(s−)

∫
D+

e−β22sξ21{|ξ2|>1}N1(ds, du, dξ)

−
∫ t∧τn

0
e−β22sx(s)[ỹk(s) − 1]ds

∫
D+

ξ21{|ξ2|>1}µ(dξ).

By Doob’s inequality we get

E
[

sup
0≤s≤t

|e−β22sζn,k(s)|
]

≤ E[ζn,k(0)] +
∫ t

0
e−β22s(b2 + n|β21|)E[|ηn,k(s)|]ds

+ 4
√

2σ0

(∫ t

0
e−2β22sE

[(√
ỹk(s ∧ τn) − 1

)2]
ds

)1/2

+ 4
√

2n(σ22 + σ21)

(∫ t

0
e−2β22sE

[(√
ỹk(s ∧ τn) − 1

)2]
ds

)1/2

+ 4
√

nµ2(l12)

(∫ t

0
e−2β22sE[|ηn,k(s)|]ds

)1/2

+ 2nµ2(l12)

∫ t

0
e−β22sE[|ηn,k(s)|]ds,

where

E
[(√

ỹk(s ∧ τn) − 1
)2] ≤ E[|ỹk(s ∧ τn) − 1|] = E[|ηn,k(s)|].

Then (7.2) and (7.7) imply that

E
[

sup
0≤s≤t

|e−β22sζn,k(s)|
]

→ 0(7.9)

as k → ∞. For any ε > 0, η > 0 and T ≥ 0 we first choose n so that P{τn ≤ T } ≤
ε/2. In view of (7.9), there is some k0 so that

P
{

sup
0≤s≤T

|ζn,k(s)| ≥ η

}
≤ η−1E

[
sup

0≤s≤T

|ζn,k(s)|
]

≤ ε/2

for every k ≥ k0. It then follows that

P
{

sup
0≤s≤T

|zk(s) − z(s)| ≥ η

}
≤ P{τn ≤ T } + P

{
sup

0≤s≤T

|ζn,k(s)| ≥ η

}
≤ ε.

Then zk(·) converges to z(·) in probability by the topology of D([0,∞),R). �
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Clearly, the pair (x(·), z(·)) defined by (6.6) and (7.3) is an affine process with
nonnegative jumps. In other words, Theorem 7.1 gives an interpretation of a par-
ticular class of affine processes in terms of catalytic CBI-processes. To consider
general affine processes, we assume the following decompositions of the parame-
ters:

σ0 = σ+
0 − σ−

0 , σ2j = σ+
2j − σ−

2j ,
(7.10)

b2 = b+
2 − b−

2 , β21 = β+
21 − β−

21.

Let x(·) be defined by (6.6) and let y±
k (·) be the solutions of the equations

y+
k (t) = y+

k (0) +
∫ t

0

(−θkβ22 + β+
21x(s)ỹ+

k (s) + b+
2 ỹ+

k (s) + β22y
+
k (s)

)
ds

+
∫ t

0
σ+

0

√
2ỹ+

k (s) dB0(s) +
∫ t

0
σ+

21

√
2x(s)ỹ+

k (s) dB1(s)

(7.11)

+
∫ t

0
σ+

22

√
2x(s)ỹ+

k (s) dB2(s) +
∫ t

0

∫
D+

ξ2Ñ0(ds, dξ)

+
∫ t

0

∫ x(s−)ỹ+
k (s−)

0

∫
D+

ξ2Ñ1(ds, du, dξ),

y−
k (t) = y−

k (0) +
∫ t

0

(−θkβ22 + β−
21x(s)ỹ−

k (s) + b−
2 ỹ−

k (s) + β22y
−
k (s)

)
ds

+
∫ t

0
σ−

0

√
2ỹ−

k (s) dB0(s) +
∫ t

0
σ−

21

√
2x(s)ỹ−

k (s) dB1(s)

(7.12)

+
∫ t

0
σ−

22

√
2x(s)ỹ−

k (s) dB2(s) −
∫ t

0

∫
D−

ξ2Ñ0(ds, dξ)

−
∫ t

0

∫ x(s−)ỹ−
k (s−)

0

∫
D−

ξ2Ñ1(ds, du, dξ),

where ỹ±
k (t) = y±

k (t)/θk . We may regard (x(·), y+
k (·), y−

k (·)) as a catalytic
CBI-process with a pair of reactant processes. Set z±

k (t) = y±
k (t) − θk and

zk(t) = z+
k (t) − z−

k (t) = y+
k (t) − y−

k (t).

THEOREM 7.2. Suppose that z+(0) and z−(0) are F0-measurable random
variables such that E[|z+(0)| + |z−(0)|] < ∞ and

lim
k→∞ E[|z+

k (0) − z+(0)| + |z−
k (0) − z−(0)|] = 0.(7.13)

Then zk(·) converges in probability by the topology of D([0,∞),R) to the solution
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z(·) of

z(t) = z(0) +
∫ t

0

(
b2 + β21x(s) + β22z(s)

)
ds +

∫ t

0

√
2σ0 dB0(s)

+
∫ t

0
σ21

√
2x(s) dB1(s) +

∫ t

0
σ22

√
2x(s) dB2(s)(7.14)

+
∫ t

0

∫
D

ξ2Ñ0(ds, dξ) +
∫ t

0

∫ x(s−)

0

∫
D

ξ2Ñ1(ds, du, dξ),

where z(0) = z+(0) − z−(0).

PROOF. By Theorem 7.1, the sequence (z+
k (·), z−

k (·)) converges in probability
by the topology of D([0,∞),R

2) to the solution (z+(·), z−(·)) of

z+(t) = z+(0) +
∫ t

0

(
b+

2 + β+
21x(s) + β22z

+(s)
)
ds +

∫ t

0

√
2σ+

0 dB0(s)

+
∫ t

0
σ+

21

√
2x(s) dB1(s) +

∫ t

0
σ+

22

√
2x(s) dB2(s)

+
∫ t

0

∫
D+

ξ2Ñ0(ds, dξ) +
∫ t

0

∫ x(s−)

0

∫
D+

ξ2Ñ1(ds, du, dξ),

z−(t) = z−(0) +
∫ t

0

(
b−

2 + β−
21x(s) + β22z

−(s)
)
ds +

∫ t

0

√
2σ−

0 dB0(s)

+
∫ t

0
σ−

21

√
2x(s) dB1(s) +

∫ t

0
σ−

22

√
2x(s) dB2(s)

−
∫ t

0

∫
D−

ξ2Ñ0(ds, dξ) −
∫ t

0

∫ x(s−)

0

∫
D−

ξ2Ñ1(ds, du, dξ).

It is simple to check that z(·) = z+(·)−z−(·) solves (6.7). That proves the theorem.
�

The pair (x(·), z(·)) defined by (6.6) and (7.14) is an affine process with admis-
sible parameters (σ 2

0 , (αij ), (βij ), (bj ),m,µ). Then the above theorem establishes
a connection between catalytic CBI-processes and affine processes. This result is
of interest since the studies of catalytic branching processes and affine processes
have been undergoing rapid developments in recent years with rather different mo-
tivations; see, for example, [6] and [10].
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