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ON THE MAXIMUM QUEUE LENGTH IN THE
SUPERMARKET MODEL

BY MALWINA J. LUCZAK AND COLIN MCDIARMID

London School of Economics and University of Oxford

There are n queues, each with a single server. Customers arrive in a
Poisson process at rate λn, where 0 < λ < 1. Upon arrival each customer
selects d ≥ 2 servers uniformly at random, and joins the queue at a least-
loaded server among those chosen. Service times are independent exponen-
tially distributed random variables with mean 1. We show that the system
is rapidly mixing, and then investigate the maximum length of a queue in
the equilibrium distribution. We prove that with probability tending to 1 as
n → ∞ the maximum queue length takes at most two values, which are
ln lnn/ lnd + O(1).

1. Introduction. We study a well-known queueing model with n separate
queues, each with a single server. Customers arrive into the system in a Poisson
process at rate λn, where 0 < λ < 1 is a constant. Upon arrival each customer
chooses d queues uniformly at random with replacement, and joins a shortest
queue amongst those chosen (where she breaks ties by choosing the first of the
shortest queues in the list of d). Here d is a fixed positive integer. Customers are
served according to the first-come–first-served discipline. Service times are inde-
pendent exponentially distributed random variables with mean 1.

A number of authors have studied this model before, as well as its extension
to a Jackson network setting [2–4, 11, 13–15, 17]. For instance, it is shown in [2]
that the system is chaotic, provided that it starts close to a suitable deterministic
initial state, or is in equilibrium. This means that the paths of members of any fixed
finite subset of queues are asymptotically independent of one another, uniformly
on bounded time intervals. This result implies a law of large numbers for the time
evolution of the proportion of queues of different lengths, that is, for the empirical
measure on the path space [2]. In particular for each fixed positive integer k0, as n

tends to infinity the proportion of queues with length at least k0 converges weakly
(when the infinite-dimensional state space is endowed with the product topology)
to a function vt (k0), where vt (0) = 1 for all t ≥ 0 and (vt (k) :k ∈ N) is the unique
solution to the system of differential equations

dvt (k)

dt
= λ

(
vt (k − 1)d − vt (k)d

) − (
vt (k) − vt (k + 1)

)
(1)
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for k ∈ N. Here we assume appropriate initial conditions (v0(k) :k ∈ N) such that
1 ≥ v0(1) ≥ v0(2) ≥ · · · ≥ 0. Further, again for a fixed positive integer k0, as n

tends to infinity, in the equilibrium distribution this proportion converges in prob-
ability to λ1+d+···+dk0−1

, and thus the probability that a given queue has length at
least k0 also converges to λ1+d+···+dk0−1

.
Although these results refer only to fixed queue length k0 and bounded time

intervals, they suggest that when d ≥ 2, in equilibrium the maximum queue length
may usually be O(ln lnn). Our main contribution is to show that this is indeed the
case, and to give precise results on the behavior of the maximum queue length. In
particular, we shall see that when d ≥ 2, with probability tending to 1 as n → ∞,
in the equilibrium distribution the maximum queue length takes at most two val-
ues; and these values are ln lnn/ lnd + O(1). We show also that the system is
rapidly mixing, that is, the distribution settles down quickly to the equilibrium dis-
tribution. Another natural question concerns fluctuations when in the equilibrium
distribution: how long does it take to see large deviations of the maximum queue
length from its stationary median? We provide an answer by establishing strong
concentration estimates over time intervals of length polynomial in n. Our tech-
niques are partly combinatorial, and are used also in [7–9]. In particular, in [8]
we use the concentration estimates obtained here to establish quantitative results
on the convergence of the distribution of a queue length and on the asymptotic
independence of small subsets of queues, the “chaotic behavior” of the system.

Recently, in [6, 10], a quantitative approximation has been obtained for the su-
permarket model, including a law of large numbers and a central limit theorem.
These results rely on properties of continuous-time exponential martingales and
strong approximation of Poisson processes by Brownian motion. A “localization”
technique yields tight bounds on the deviation probabilities uniformly in all co-
ordinates of the infinite-dimensional state space, in a spirit somewhat akin to the
approach adopted in this paper and in [7–9]. However, the results in [6, 10] concern
solely fixed-length time intervals and do not extend to equilibrium behavior.

Let us introduce some notation so that we can state our results. Consider the
n-queue model. For each time t ≥ 0 and each j = 1, . . . , n let X

(n)
t (j) or Xt(j) de-

note the number of customers in queue j , always including the customer currently
being served if there is one. (We shall keep the superscript “n” in the nota-
tion in this section, but then drop it in later sections.) We make the usual as-
sumption of right-continuity of the sample paths. Let X

(n)
t or Xt be the queue-

lengths vector (X
(n)
t (1), . . . ,X

(n)
t (n)). For a given positive integer n, X

(n)
t is an

ergodic continuous-time Markov chain. Thus there is a unique stationary distrib-
ution �(n) or � for the vector of queue lengths; and, whatever the distribution of
the starting state, the distribution of the queue-lengths vector X

(n)
t at time t con-

verges to �(n) as t → ∞. We will show that, with reasonable initial conditions, the
convergence is very fast. Note that the L1-norm ‖Xt‖1 of Xt is the total number
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of customers present at time t , and the L∞-norm ‖Xt‖∞ is the maximum queue
length.

The probability law or distribution of a random variable X will be denoted
by L(X). The total variation distance between two probability distributions
µ1 and µ2 may be defined by dTV(µ1,µ2) = supA |Pr(X ∈ A) − Pr(Y ∈ A)|,
where the supremum is over all events A, or equivalently by dTV(µ1,µ2) =
inf Pr(X �= Y), where the infimum is over all couplings of X and Y where
L(X) = µ1 and L(Y ) = µ2.

For any given state x we shall write L(X
(n)
t , x) to denote the law of X

(n)
t given

X
(n)
0 = x. For ε > 0, the mixing time τ (n)(ε, x) starting from state x is defined by

τ (n)(ε, x) = inf
{
t ≥ 0 :dTV

(
L

(
X

(n)
t , x

)
,�(n)) ≤ ε

}
.

Our first theorem shows that if we start from any initial state in which the queues
are not too long, then the mixing time is small. In particular, if ε > 0 is fixed and 0
denotes the all-zero n-vector, then τ (n)(ε,0) is O(lnn). More generally, this holds
if ε > 0 is not too small (explicitly, if ε−1 is bounded polynomially in n), ‖x‖1 is
O(n) and ‖x‖∞ is O(lnn). Observe that the quantity δn,t below is 0 if the initial
state is 0.

THEOREM 1.1. Let 0 < λ < 1 and let d be a fixed positive integer. For each
constant c > 0 there exists a constant η > 0 such that the following holds for
each positive integer n. Consider any distribution of the initial queue-lengths vec-
tor X

(n)
0 , and for each time t ≥ 0 let

δn,t = Pr
(∥∥X(n)

0

∥∥
1 > cn

) + Pr
(∥∥X(n)

0

∥∥∞ > ηt
)
.

Then

dTV
(
L

(
X

(n)
t

)
,�(n)) ≤ ne−ηt + 2e−ηn + δn,t .

The O(lnn) upper bound on the mixing time τ is of the right order. Indeed, we
shall see that for a suitable constant θ > 0, if t ≤ θ lnn, then

dTV
(
L

(
X

(n)
t

)
,�(n)) = 1 − e−�(ln2 n).(2)

Thus τ (n)(ε,0) is �(lnn) as long as both ε−1 and (1 − ε)−1 are bounded polyno-
mially in n.

Our primary interest is in the maximum queue length M
(n)
t = ‖X(n)

t ‖∞. Since
the system mixes rapidly it is natural to consider the stationary case. Our model
exhibits the “power of two choices” phenomenon (see, e.g., [15]); that is, when we
move from d = 1 choice to d = 2 choices, the typical maximum queue length M

(n)
t

drops dramatically.
We are most interested in the case d ≥ 2, but first we consider the easy case

d = 1 in order to set the scene. This case is straightforward, since in equilibrium
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the queue lengths are i.i.d. geometric random variables with parameter λ. We find
that the maximum queue length M

(n)
t is about lnn

ln(1/λ)
, and it is not concentrated

on a bounded range of values (in contrast to the behavior in the balls-and-bins
model [7], where the maximum load is concentrated on at most two adjacent val-
ues, even when d = 1).

Given a sequence of events A1,A2, . . . , we say that An holds asymptotically
almost surely (a.a.s.) if An holds with probability tending to 1 as n → ∞.

THEOREM 1.2. Let 0 < λ < 1 and let d = 1. For each positive integer n,
suppose that the queue-lengths vector X

(n)
0 is in the stationary distribution (and

thus so is the maximum queue length M
(n)
t ).

(a) For each nonnegative integer m

Pr
(
M

(n)
t ≤ m

) = (1 − λm+1)n.

Thus if m = m(n) and n → ∞, then M
(n)
t ≥ m(n) a.a.s. if and only if m(n) −

lnn
ln(1/λ)

→ −∞; and M
(n)
t ≤ m(n) a.a.s. if and only if m(n) − lnn

ln(1/λ)
→ +∞.

(b) For any subexponential time τ ≥ 0 (i.e., τ = eno(1)
),(

min
0≤t≤τ

M
(n)
t

)
ln(1/λ)

lnn
→ 1 in probability as n → ∞.

(c) For any constant K > 0,(
max

0≤t≤nK
M

(n)
t

)
ln(1/λ)

lnn
→ K + 1 in probability as n → ∞.

Now we consider the case d ≥ 2, when the maximum queue length M
(n)
t is far

smaller, and it is concentrated on just two values md and md − 1. This is our main
result.

THEOREM 1.3. Let 0 < λ < 1 and let d ≥ 2 be an integer. Then there exists an
integer-valued function md = md(n) = ln lnn/lnd + O(1) such that the following
holds. For each positive integer n, suppose that the queue-lengths vector X

(n)
0 is

in the stationary distribution (and thus so is the maximum queue length M
(n)
t ).

Then for each time t ≥ 0, M
(n)
t is md(n) or md(n) − 1 a.a.s.; and further, for any

constant K > 0 there exists c = c(K) such that

max
0≤t≤nK

∣∣M(n)
t − ln lnn/ lnd

∣∣ ≤ c a.a.s.(3)

The functions m2(n),m3(n), . . . may be defined as follows. For d = 2,3, . . .

let id(n) be the least integer i such that λ(di−1)/(d−1) < n−1/2 ln2 n. Then we let
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m2(n) = i2(n) + 1, and for d ≥ 3 let md(n) = id(n). (We shall see that with high
probability the proportion of queues of length at least i is close to λ(di−1)/(d−1).)

Results can be obtained on deviations of the maximum queue length over longer
time intervals, using arguments just as in [7]; we shall not discuss such results
further here.

We have now described our model and stated our main results. The later sections
of this paper are organized as follows. In Section 2 we prove Theorem 1.1, which
shows that for each fixed positive integer d the process (X

(n)
t ) starting from a nice

initial state mixes in logarithmic time. The proof is based on considering a pair of
“adjacent” initial states and analyzing a suitable random walk. We give also a simi-
lar result involving the Wasserstein distance. In Section 3 we focus on the straight-
forward case d = 1, and prove Theorem 1.2. In Section 4 we show that a Lipschitz
function of the queue-lengths vector in equilibrium is tightly concentrated around
its mean. To do this, we consider a queue-lengths process (X

(n)
t ) starting from 0,

and use the bounded differences approach to establish concentration at a suitable
time t when L(X

(n)
t ) is close to the equilibrium distribution. In Section 5 we use

the concentration property to estimate the proportions of queues of at least some
given lengths, and to bound their fluctuations over long time intervals. In the short
Section 6 that follows we establish the logarithmic lower bound (2) on the mixing
times in Theorem 1.1. In Section 7 we prove Theorem 1.3, and thus complete the
proofs of the new results stated above. Finally, we make some brief concluding
remarks.

Several times we shall use the fact that, if X is a binomial or Poisson random
variable with mean µ, then for each 0 ≤ ε ≤ 1 we have

Pr(X − µ ≤ −εµ) ≤ e−(1/2)ε2µ(4)

and

Pr(X − µ ≥ εµ) ≤ e−(1/3)ε2µ;(5)

and if x ≥ 2eµ, then

Pr(X ≥ x) ≤ 2−x.(6)

For the above results, see, for example, Theorem 2.3(b) and inequalities (2.7)
and (2.8) in [12].

2. Rapid mixing: proof of Theorem 1.1. In this section we shall in fact
prove both Theorem 1.1 and a similar result involving the Wasserstein distance
instead of the total variation distance. The Wasserstein distance may be defined
by dW(µ1,µ2) = inf E[‖X − Y‖1] where the infimum is over all couplings where
L(X) = µ1 and L(Y ) = µ2. Observe that for integer-valued random variables,
the total variation distance between the corresponding laws is always at most the
Wasserstein distance. The following result will also be used in [8], where we con-
sider the asymptotic distribution of a queue length.
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LEMMA 2.1. Let 0 < λ < 1 and let d be a fixed positive integer. For each con-
stant c > λ

1−λ
there exists a constant η > 0 such that the following holds for each

positive integer n. Let M denote the stationary maximum queue length. Consider
any distribution of the initial queue-lengths vector X0 such that ‖X0‖1 has finite
mean. For each time t ≥ 0 let

δn,t = 2E
[‖X0‖11‖X0‖1>cn

] + 2cnPr(M0 > ηt).

Then

dW
(
L(Xt),�

) ≤ ne−ηt + 2cnPr(M > ηt) + 2e−ηn + δn,t .

In order to prove this result we shall couple the queue-lengths process (Xt) and a
corresponding copy (Yt ) of the process in equilibrium in such a way that with high
probability ‖Xt − Yt‖1 decreases quickly to 0. We model departures by a Poisson
process at rate n together with an independent selection process that generates a
uniformly random queue at each event time. If the queue selected is nonempty,
then the customer currently in service departs; otherwise nothing happens.

We start the proof with a lemma concerning the return times to the origin of a
generalized random walk on {0,1,2, . . .}. This lemma will be needed later to show
that a certain coupling happens quickly.

LEMMA 2.2. Let φ0, φ1, φ2, . . . be a filtration. Let Z1,Z2, . . . be {0,±1}-
valued random variables, where each Zi is φi -measurable. Let S0 ≥ 0 a.s. and
for each positive integer j let Sj = S0 + ∑j

i=1 Zi . Let A0,A1, . . . be events, where
each Ai is φi -measurable.

Suppose that there is a constant positive integer k0 and a constant δ with 0 <

δ < 1/2 such that

Pr(Zi = −1|φi−1) ≥ δ on Ai−1 ∩ {
Si−1 ∈ {1, . . . , k0 − 1}}

and

Pr(Zi = −1|φi−1) ≥ δ + 1/2 on Ai−1 ∩ {Si−1 ≥ k0}.
Then there exists η > 0 such that for each positive integer m

Pr

((
m⋂

i=1

Si �= 0

)
∩

(
m−1⋂
i=0

Ai

))
≤ Pr(S0 > ηm) + 2e−ηm.

PROOF. Let us ignore the events Ai in the meantime; we shall see later that it
is easy to incorporate them into the argument. We define random times Ij and Îj

as follows. Let

I0 = min{i ≥ 1 :Si < k0},
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and let

Ij+1 = min{i > Ij :Si < k0}.
Further, let Î0 = I0 and let

Îj+1 = min{i ≥ Îj + k0 :Si < k0}.
Observe that always Îj ≤ Ik0j .

The key fact is that for all positive integers m and j ,

Pr

(
m⋂

i=1

Si �= 0

)
≤ (1 − δk0)j + Pr(Îj > m).(7)

To see this, note first that if Îi = t , then St < k0 and, for 1 ≤ k < k0, on St = k we
have

Pr

(
k⋂

u=1

(Zt+u = −1)|φt

)
≥ δk.

Now for each i = 0,1, . . . let Bi be the event that Sr �= 0 for each r = Îi , . . . , Îi +
k0 − 1. Then Pr(Bi |φÎi

) ≤ 1 − δk0 , and so Pr(
⋂j−1

i=0 Bi) ≤ (1 − δk0)j . But

Pr

((
m⋂

i=1

Si �= 0

)
∩ (Îj ≤ m)

)
≤ Pr

(j−1⋂
i=0

Bi

)
,

and (7) follows.
We need to investigate the times Îj in order to be able to ensure that the

term Pr(Îj > m) in (7) is small. First we consider the times Ij . Note that
r
2 ≤ (1 − δ)r(1

2 + δ) for r ≥ 0. Let h = δ2/4. Then by (4), for all nonnegative
integers j and r ,

Pr
(
Ij+1 − Ij > r|φIj

) ≤ Pr
(
B

(
r,

1

2
+ δ

)
<

r

2

)
≤ e−hr .

(Here we are using B to denote a binomial random variable.) Now let s be a
positive integer. Let b = (δ − 2δ2)−1, so b > 0. Note that for r ≥ bs, we have
r+s

2 ≤ (1 − δ)r(1
2 + δ). Hence, again using (4), we see that, on the event {S0 ≤ s},

Pr(I0 > r|φ0) ≤ Pr
(
B

(
r,

1

2
+ δ

)
<

r + s

2

)
≤ e−hr .

Thus in particular, for r ≥ bs,

Pr(I0 ≥ r) ≤ e−hr + Pr(S0 > s).

Let Z be a random variable taking positive integer values and such that
Pr(Z > r) = e−hr for each positive integer r . Then Ij −I0 is stochastically at most
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the sum of j i.i.d. random variables, each distributed like Z. Note that MZ(h/2) =
E[e(h/2)Z] < ∞. Let c1 > 0 be sufficiently large that MZ(h/2)e−c1h/2 < 1, say
MZ(h/2)e−c1h/2 = e−c2 where c2 > 0. Then

Pr(Ij − I0 > c1j) ≤ e−(h/2)c1j E
[
e(h/2)(Ij−I0)

]
≤ e−(h/2)c1jMZ(h/2)j

= e−c2j .

Putting the last two results together, and using the fact that Îj ≤ Ijk0 , we have for
each r ≥ bs,

Pr(Îj > r + c1jk0) ≤ Pr(I0 > r) + Pr
(
Ijk0 − I0 > c1jk0

)
≤ e−hr + Pr(S0 > s) + e−c2jk0 .

We may now complete the proof (still for the case without the events Ai). Let
η1 > 0 and η2 > 0 be sufficiently small that 1 − η1 − η2c1k0 > 0. Let r = 	η1m
,
j = 	η2m
 and s = �r/b�. Then for m sufficiently large, r + c1jk0 ≤ m; and so
by (7) and the last inequality

Pr

(
m⋂

i=1

Si �= 0

)
≤ e−δk0j + e−hr + Pr(S0 > s) + e−c2jk0

≤ e−δk0η2m + e−hη1m + Pr(S0 > s) + e−c2k0η2m.

Thus there exists a constant η′ > 0 and an integer m0 such that for each integer
m ≥ m0

Pr

(
m⋂

i=1

Si �= 0

)
≤ Pr(S0 > η′m) + 2e−η′m.

But now we may set η = min{η′, ln 2/m0} > 0 and then for each positive integer m

Pr

(
m⋂

i=1

Si �= 0

)
≤ Pr(S0 > ηm) + 2e−ηm.

Let us now bring in the events Ai . For each i define Z̃i = ZiIAi
− IAi

(where Ai denotes the complement of Ai ). Then Pr(Z̃i = −1|φi−1) ≥ δ on
{Si−1 ∈ {1, . . . , k0 − 1}} and Pr(Z̃i = −1|φi−1) ≥ 1/2 + δ on {Si−1 ≥ k0}. Let
S̃j = S0 + ∑j

i=1 Z̃i . Then by what we have just proved applied to the Z̃i ,

Pr

((
m⋂

i=1

Si �= 0

)
∩ (A0 ∩ · · · ∩ Am−1)

)
≤ Pr

(
m⋂

i=1

S̃i �= 0

)

≤ Pr(S0 > ηm) + 2e−ηm,
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as required. �

We now introduce a natural coupling of n-queue queue-lengths processes (Xt)

with different initial states.
Arrival times form a Poisson process at rate λn, and there is a corresponding

sequence of uniform choices of lists of d queues. Departure times form a Poisson
process at rate n, and there is a corresponding sequence of uniform selections of a
queue, except that departures from empty queues are ignored. These four processes
are independent. Denote the arrival time process by T, the choices process by D,
the departure time process by T̃ and the selection process by D̃.

Suppose that we are given a sequence of arrival times t with corresponding
queue choices d, and a sequence of departure times t̃ with corresponding se-
lections d̃ of a queue, where all these times are distinct. For each possible ini-
tial queue-lengths vector x ∈ � = (Z+)

n this yields a deterministic queue-lengths
process (xt ) with x0 = x: let us write xt = st (x; t,d, t̃, d̃). Then for each x ∈ �,
the process (st (x;T,D, T̃, D̃)) has the distribution of a queue-lengths process with
initial state x.

LEMMA 2.3. Fix any 4-tuple t,d, t̃, d̃ as above, and for each x ∈ � write
st (x) for st (x; t,d, t̃, d̃). Then for each x, y ∈ �, both ‖st (x) − st (y)‖1 and
‖st (x) − st (y)‖∞ are nonincreasing; and further, if 0 ≤ t < t ′ and st (x) ≤ st (y),
then st ′(x) ≤ st ′(y).

(We shall not need the result about ‖st (x) − st (y)‖∞ in this paper, but it is
convenient to record the result for use elsewhere, in particular in [8].)

PROOF OF LEMMA 2.3. Let t0 be a jump time; let xt0− = x and yt0− = y; and
let xt0 = x′ and yt0 = y′.

Suppose that t0 is an arrival time. We want to show that

‖x′ − y′‖1 ≤ ‖x − y‖1(8)

and

‖x′ − y′‖∞ ≤ ‖x − y‖∞.(9)

If the customer joins the same queue in the two processes, then of course x′ −y′ =
x − y, and hence (8) and (9) hold. Suppose that the customer joins queue i in
the x-process and joins queue j in the y-process, where i �= j . Then δx = x(j) −
x(i) ≥ 0 and δy = y(i) − y(j) ≥ 0; and by the tie-breaking rule δx + δy > 0.

Suppose first that (8) does not hold. Then we must have x(i) ≥ y(i) and
y(j) ≥ x(j), and so

x(i) ≥ y(i) = y(j) + δy ≥ x(j) + δy = x(i) + δx + δy > x(i),

a contradiction. Hence (8) must hold.
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Now suppose that (9) does not hold. Then either x(i) − y(i) = ‖x − y‖∞ or
y(j) − x(j) = ‖x − y‖∞. But we cannot have x(i) − y(i) = ‖x − y‖∞, since

x(j) − y(j) = x(i) + δx − (
y(i) − δy

)
> x(i) − y(i).

Similarly we cannot have y(j) − x(j) = ‖x − y‖∞, and so (9) must hold.
Suppose now that t0 is a departure time, from queue i. If both queues are non-

empty or both are empty, then x′−y′ = x−y, and hence of course (8) and (9) hold.
If exactly one queue is nonempty, then |x′

i − y′
i | = |xi − yi | − 1, and so again (8)

and (9) hold.
The final comment on monotonicity is straightforward. For consider a jump

time t0 with x, x′, y and y′ defined as above, and suppose that x ≤ y. If t0 is a
departure time, then clearly x′ ≤ y′, so suppose that t0 is an arrival time. But if the
new customer joins queue i in the x-process and if x(i) = y(i), then the customer
joins queue i also in the y-process, so x′ ≤ y′. �

The position of a customer refers to first-in–first-out queue discipline; that is,
for a given customer in queue j at time t , her position is one plus the number
of customers in queue j at time t who arrived before her. Given a queue-lengths
vector x and a nonnegative integer i, let 
(i, x) be the number of queues with
length at least i. We shall be interested in 
(i,Xt), the random number of queues
with length at least i at time t . Observe that if ‖x‖1 ≤ cn, then 
(i, x) ≤ cn/i: this
is how we shall ensure that 
(i,Xt) is not too large.

Next, let us consider the equilibrium distribution, and note some upper bounds
on the total number of customers in the system and on the maximum queue length,
which follow from the easy case d = 1.

LEMMA 2.4. (a) For any constant c > λ
1−λ

, there is a constant η > 0 such that
for each positive integer n, in equilibrium the queue-lengths process (Xt) satisfies

Pr(‖Xt‖1 > cn) ≤ e−ηn

for each time t ≥ 0.
(b) For each positive integer n, in equilibrium the maximum queue length Mt

satisfies

Pr(Mt ≥ k) ≤ nλk

for each positive integer k and each time t ≥ 0.

PROOF. For both parts of the lemma, it suffices to consider the case d = 1;
for, as follows from a coupling result in [16] (see also [3]), if d ≤ d ′, then in
equilibrium for each k the number of customers with position at least k with d ′
choices is stochastically at most the corresponding number with d choices. (Note
that the maximum queue length Mt is at least k if and only if at time t there is at
least one customer with position at least k.) So, suppose that d = 1.
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But now by the splitting property of the Poisson process the n queue lengths
Xt(j) are independent; and each has the geometric distribution where Pr(Xt(j) =
k) = (1 − λ)λk , with mean λ/(1 − λ). Thus the total number of customers is a
sum of n i.i.d. random variables with finite moment-generating function in some
neighborhood of 0, and part (a) follows easily. For part (b), note that

Pr(Mt ≥ k) ≤ nPr
(
Xt(1) ≥ k

) = nλk. �

The bound in part (a) above extends easily over time.

LEMMA 2.5. Let c > λ
1−λ

be a constant. Then there is a constant η > 0 such
that for each positive integer n, in equilibrium the queue-lengths process (Xt)

satisfies

Pr(‖Xt‖1 > cn for some t ∈ [0, eηn]) ≤ 2e−ηn.

PROOF. Let λ
1−λ

< c′ < c and let ε = c − c′ > 0. By part (a) of the last result,
there exists a constant η > 0 such that for each positive integer n and each t ≥ 0
we have Pr(‖Xt‖1 > c′n) ≤ e−3ηn; and we may assume that η < ε/18.

Let δ = ε/2λ. Let j = 	eηn/δ
, and consider times tr = rδ, for r = 0, . . . , j .
The mean number of arrivals in a subinterval [tr−1, tr ) of length δ is εn/2, so
by (5) the probability that more than εn arrivals occur is at most e−εn/6. Then

Pr(‖Xt‖1 > cn for some t ∈ [0, eηn])

≤
j∑

r=0

Pr
(∥∥Xtr

∥∥
1 > c′n

) +
j∑

r=1

Pr
([tr−1, tr ) has > εn arrivals

)

≤ (eηn/δ + 2)(e−3ηn + e−εn/6) ≤ e−ηn

provided n is sufficiently large, and the lemma follows (for a suitable new value
of η). �

We say that two states are adjacent if they differ by adding one customer to one
of the queues in one of the states. The following lemma shows that two queue-
lengths processes (Xt) and (X′

t ) will coalesce rapidly if X0 and X′
0 are adjacent,

the “unbalanced” queues are not too long and the total numbers of customers are
not too large.

First we fix some constants. Let 0 < λ < 1 and let d be a positive integer. Let
c > λ

1−λ
, and let η > 0 be as in Lemma 2.5. (This will cause no loss of generality,

as the case c > λ
1−λ

of course implies the case c ≤ λ
1−λ

in Theorem 1.1.) Let ε > 0
satisfy ν = dλεd−1 < 1. Let k0 = 	2c/ε
. We shall keep all these constants fixed
from now on, until the end of the section.
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LEMMA 2.6. There exist constants α,β > 0 such that the following holds. Let
n be a positive integer. Let x, x′ be a pair of states such that x(k) = x′(k) − 1,
x(j) = x(j) for all j �= k, and ‖x′‖1 ≤ cn. Consider the queue-lengths processes
(Xt) and (X′

t ), given that X0 = x and X′
0 = x′. For all times t ≥ α‖x′‖∞ we have

E‖Xt − X′
t‖1 = Pr(Xt �= X′

t ) ≤ e−βt + 2e−βn.

PROOF. By Lemma 2.3, Xt and X′
t are always either neighbors or equal, al-

ways Xt ≤ X′
t , and if for some time s we have Xs = X′

s , then Xt = X′
t for all t ≥ s.

Thus in particular E‖Xt − X′
t‖1 = Pr(Xt �= X′

t ).
Initially, the queue k is “unbalanced” [i.e., X0(k) �= X

′
0(k)] and all other queues

are “balanced.” Observe that the index of the unbalanced queue in the coupled
process may change over time. [E.g., suppose that d = 2, and just before an arrival
time t , queue i is unbalanced, and queues i and j are chosen. Suppose further
that X′

t−(i) = X′
t−(j) or Xt−(i) = Xt−(j). In the former case we select queue i

for the (Xt) process, but we will select queue j for the (X′
t ) process if we chose j

before i. In the latter case we select queue j for the (X′
t ) process, but we will select

queue i for the (Xt) process if we chose i before j . In both cases, it will now be
queue j that is unbalanced.]

Let Wt denote the longer of the unbalanced queue lengths at time t if there is
such a queue, and let Wt = 0 otherwise. The time for the two processes to coalesce
is the time T until Wt hits 0. We shall use Lemma 2.2 to give a suitable upper
bound on Pr(Wt > 0). The idea is that with high probability the total number of
customers in the system is not too large, hence the unbalanced queue length Wt

will often be driven below k0, and then there is a chance of going all the way down
to 0.

For each time t ≥ 0 let Bt be the event that ‖X′
s‖1 ≤ 2cn for each s ∈ [0, t).

It follows from Lemmas 2.3 and 2.5 that there is a constant η > 0 such that
Pr(Bt ) ≤ 2e−ηn for each positive integer n and each time t ∈ [0, t0], where
t0 = eηn. To see this, note that if (X′′

t ) is a copy of the process such that X′′
0 = 0

a.s., then there is a coupling such that ‖X′
t − X′′

t ‖1 ≤ cn for all times t ≥ 0. But
then we can couple (X′′

t ) with an equilibrium process (X̂t ) so that X′′
t ≤ X̂t for

all times t ≥ 0, and thus Pr(‖X′′
t ‖1 > cn for some t ∈ [0, t0]) ≤ 2e−ηn. Finally, if

‖X′′
t ‖1 ≤ cn and ‖X′

t − X′′
t ‖1 ≤ cn, then ‖X′

t‖1 ≤ 2cn.
We need some notation concerning the jumps in the unbalanced queue

length Wt . Let Nt be the number of such jumps in the interval [0, t]. Also let
N = NT , the total number of these jumps. Let Tj be the time of the j th jump if
N ≥ j , and otherwise let Tj be the coalescence time T .

Let S0 = x′(k) = W0, the longer unbalanced queue length at time t = 0. For
each positive integer j , if N ≥ j , let Sj = WTj

, which is either 0 or the longer
of the unbalanced queue lengths at time Tj , immediately after the j th arrival or
departure at the unbalanced queue. Also, if N ≥ j , let Zj be the ±1-valued random
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variable Sj −Sj−1. For each nonnegative integer j , let φj be the σ -field generated
by all events before time Tj+1. Let also Aj be the φj -measurable event BTj+1 .

Let

δ = min
{

1

dλ + 1
,

1

ν + 1
− 1

2

}
,

and note that δ > 0 since 0 < ν < 1. We shall use Lemma 2.2, with this value of δ.
Note first that the arrival rate at the longer of the unbalanced queues is always at
most dλ, and the departure rate is 1. Thus on the event N ≥ j we have

Pr(Zj = −1|φj−1) ≥ 1

dλ + 1
≥ δ.

The key observation is that, on the event {N ≥ j} ∩ Aj−1 ∩ {Sj−1 ≥ k0}, we have

Pr(Zj = −1|φj−1) ≥ 1

ν + 1
≥ 1

2
+ δ.

For consider a time t > 0. Note that on Bt we have 
(k0,X
′
t−) ≤ 2cn/k0 ≤ εn, that

is, there are at most εn queues with length at least k0. Suppose that T > t , Bt holds
and Wt ≥ k0. Arrivals into the system occur at rate nλ, and the probability that such
an arrival joins the longer unbalanced queue is at most d

n
εd−1. Hence the rate of

arrivals at the longer unbalanced queue is at most ν = dλεd−1, whereas the rate of
departures is 1, and so the next jump is a departure with probability at least 1

ν+1 .
We have now shown that on the event N ≥ m, Sm − S0 can be written as a

sum
∑m

i=1 Zi for {−1,1}-valued random variables Zi that satisfy the conditions of
Lemma 2.2, with the same notation for δ, etc. Hence there exists a constant η1 > 0,
such that for all m ≥ m0 = 	η−1

1 x′(k)


Pr

(
{N ≥ m} ∩

(
m−1⋂
i=0

Ai

)
∩

(
m⋂

i=1

{Si �= 0}
))

≤ 2e−η1m.

Let n be sufficiently large that 2m0 ≤ t0 = eηn, let t satisfy 2m0 ≤ t ≤ t0 and let
m = �t/2�. Then, since jumps occur at rate at least 1 while the queue is nonempty,
by (4)

Pr({T > t} ∩ {Nt < m}) ≤ e−t/8.

Also,

Pr

(
{Nt ≥ m} ∩

(
m−1⋃
i=0

Ai

))
≤ Pr(Bt ) ≤ 2e−ηn.

This gives the desired upper bound on Pr(T > t), since

Pr(T > t) ≤ Pr({T > t} ∩ {Nt < m}) + Pr

(
{Nt ≥ m} ∩

(
m−1⋃
i=0

Ai

))

+ Pr

(
{Nt ≥ m} ∩

(
m−1⋂
i=0

Ai

)
∩

(
m⋂

i=1

{Si �= 0}
))

.
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Thus we have shown that

Pr(Xt �= X′
t ) ≤ e−βt + 2e−βn

whenever 2m0 ≤ t ≤ t0.
Now we check that we can drop the upper bound t0 on t . For let n be sufficiently

large that e−βt0 ≤ e−βn. If t > t0, then

Pr(Xt �= X′
t ) ≤ Pr

(
Xt0 �= X′

t0

) ≤ 3e−βn,

and so

Pr(Xt �= X′
t ) ≤ e−βt + 3e−βn

for all t ≥ 2m0.
Finally, by replacing β with a smaller constant β > 0, we can replace 3 by 2, and

ensure that the inequality holds for all positive integers n, not just for sufficiently
large n. �

Recall that we have fixed a constant c > λ/(1 − λ) and that we are using the
coupling introduced before Lemma 2.3.

LEMMA 2.7. Let α and β be as in the last lemma. Let (Xt) and (Yt ) have any
initial distributions. Let t ≥ 0, and let the “bad” set B be the set of z ∈ � = (Z+)

n

such that ‖z‖1 > cn or ‖z‖∞ > tα−1. Then

E
[‖Xt − Yt‖11{X0∈B}∩{Y0∈B}

] ≤ 2cn(e−βt + 2e−βn).

PROOF. Given two distinct states x and y in B = � \B , we can choose a path
x = z0, z1, . . . , zm = y of adjacent states in B from x down to the all zero state
and back up to y, where m ≤ ‖x‖1 + ‖y‖1. Let us write (Xx

t ) to denote the queue-
lengths process starting at x, and similarly for (Y

y
t ) (so in fact Xx

t = Yx
t always).

By the last lemma, for all states x and y in B

E[‖Xx
t − Y

y
t ‖1] ≤

m−1∑
i=0

E[‖Xzi
t − X

zi+1
t ‖1] ≤ (‖x‖1 + ‖y‖1)(e

−βt + 2e−βn).

Hence the lemma follows. �

We may now complete the proofs of Theorem 1.1 and Lemma 2.1, by tak-
ing (Yt ) to be in equilibrium, with X0 and Y0 independent, and handling the “bad”
initial states appropriately. Consider first Theorem 1.1. Note that

dTV
(
L(Xt),�

) ≤ Pr(Xt �= Yt )

≤ E
[
1Xt �=Yt 1{X0∈B̄}∩{Y0∈B̄}

] + Pr(X0 ∈ B) + Pr(Y0 ∈ B)

≤ E
[‖Xt − Yt‖11{X0∈B̄}∩{Y0∈B̄}

] + Pr(X0 ∈ B) + Pr(Y0 ∈ B).
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But Pr(‖Y0‖1 > cn) = e−�(n) (see Lemma 2.5), since c > λ/(1 − λ). Also,
from (25) in Section 5, for each j ∈ {1, . . . , n} and each nonnegative integer i,
Pr(Y0(j) ≥ i) ≤ λi ; and it follows that

Pr(‖Y0‖∞ > tα−1) ≤ ne−�(t).

Theorem 1.1 now follows from Lemma 2.7.
Finally let us complete the proof of Lemma 2.1. Note that dW(L(Xt),�) ≤

E[‖Xt − Yt‖1]. We break E[‖Xt − Yt‖1] into the sum of two parts

E
[‖Xt − Yt‖11{X0∈B}∩{Y0∈B}

] + E
[‖Xt − Yt‖11{X0∈B}∪{Y0∈B}

]
.

The first part is bounded in Lemma 2.7. For the second, we have by Lemma 2.3
that

E
[‖Xt − Yt‖11{X0∈B}∪{Y0∈B}

]
≤ E

[‖X0 − Y0‖11{X0∈B}∪{Y0∈B}
]

≤ E
[
(‖X0‖1 + ‖Y0‖1)

(
1‖X0‖1>cn + 1‖X0‖1≤cn,‖Y0‖1>cn

)]
+ E

[
(‖X0‖1 + ‖Y0‖1)1‖X0‖1≤cn,‖Y0‖1≤cn,max{‖X0‖∞,‖Y0‖∞}>tα−1

]
≤ E

[‖X0‖11‖X0‖1>cn

] + E[‖Y0‖1]Pr(‖X0‖1 > cn) + cnPr(‖Y0‖1 > cn)

+ E
[‖Y0‖11‖Y0‖1>cn

] + 2cn
(
Pr(‖X0‖∞ > tα−1) + Pr(‖Y0‖∞ > tα−1)

)
,

where the last inequality uses the independence of X0 and Y0. Now we may use
the estimates above concerning Y0, together with the fact that E[‖Y0‖1] ≤ λ

1−λ
n,

to complete the proof. (Note that

E[‖Y0‖1]Pr(‖X0‖1 > cn) ≤ λ

1 − λ
nPr(‖X0‖1 > cn) ≤ E

[‖X0‖11‖X0‖1>cn

]
since c ≥ λ

1−λ
.)

3. One choice: proof of Theorem 1.2. Let 0 < λ < 1 and let d = 1. Let X0 be
in equilibrium.

Part (a). The queue lengths Xt(j) for j = 1, . . . , n are independent geometric
random variables with parameter λ, and so Pr(Xt(j) ≥ m) = λm for each nonneg-
ative integer m. Hence

Pr(Mt ≤ m) = (1 − λm+1)n,

and so

exp
(−nλm+1/(1 − λm+1)

) ≤ Pr(Mt ≤ m) ≤ exp(−nλm+1).(10)

The rest of part (a) follows easily.
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Part (b). The proofs we give for parts (b) and (c) are similar to the proofs
of the corresponding parts of Theorem 1.2 in [7]. Let V = min0≤t≤τ Mt .
Let ε > 0, let m = m(n) = �(1 − ε) lnn

ln(1/λ)
� and let θ = 1

n2τ
. Consider the

times iθ for i = 0,1, . . . , 	τ/θ
. Let A be the event that Miθ < m for some
i ∈ {0,1, . . . , 	τ/θ
}. We have nλm = �(nε), and hence by (10)

Pr(A) ≤ (τ/θ + 1) exp(−nλm) = o(1).

Let B be the event that some queue receives at least two customers in some time
interval [iθ, (i + 1)θ), where i ∈ {0,1, . . . , 	τ/θ
}. For each queue, the number of
arrivals in the interval [iθ, (i + 1)θ) is Po(λθ), and so the probability that there are
at least two arrivals is at most (λθ)2. Hence

Pr(B) ≤ (τ/θ + 1)n(λθ)2 = O(nτθ) = o(1).

But

Pr(V ≤ m − 2) ≤ Pr(A) + Pr(B),

and so V ≥ m − 1 a.a.s. But by part (a)

V ≤ M0 ≤ (1 + ε)
lnn

ln(1/λ)
a.a.s.,

and part (b) follows.

Part (c). Let Z = max0≤t≤nK Mt . Let ε > 0. We show first that

Z ≤ (K + 1 + ε)
lnn

ln(1/λ)
a.a.s.(11)

We argue much as in the proof of part (b). Let θ = exp(− lnn/ ln lnn). Consider the
times iθ for i = 0,1, . . . , 	nK/θ
. Let k = k(n) = 	(K + 1 + ε/2) lnn/ ln(1/λ)
,
and let A be the event that Miθ ≥ k for some i ∈ {0,1, . . . , 	nK/θ
}. Then since
Pr(M0 ≥ k) ≤ nλk ,

Pr(A) ≤ (nK/θ + 1)nλk

= exp
((

K + 1 + o(1)
)

lnn − (
K + 1 + ε/2 + o(1)

)
lnn

)
= exp

(−(
ε/2 + o(1)

)
lnn

)
→ 0 as n → ∞.

For each queue, the number of arrivals in the interval [iθ, (i + 1)θ) is Po(λθ), and

Pr
(
Po(λθ) ≥ lnn/(ln lnn)2) ≤ (λθ)lnn/(ln lnn)2

= exp
(−�(ln2 n/(ln lnn)3)

)
.
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Thus, if B is the event that some queue in some interval [iθ, (i + 1)θ) where
i ∈ {0,1, . . . , 	nK/θ
} receives at least lnn/(ln lnn)2 customers, then

Pr(B) = exp
(−�(ln2 n/(ln lnn)3)

)
.

But, for n sufficiently large,

Pr
(
Z > (K + 1 + ε)

lnn

ln(1/λ)

)
≤ Pr(A) + Pr(B) → 0 as n → ∞,

and so (11) holds.

Now let 0 < ε < 1, and let k = k(n) = 	(K + 1 − ε) lnn/ ln(1/λ)
. We will
show that Z ≥ k a.a.s., which will complete the proof of this part and thus of the
theorem. For each time t > 0, let φt be the σ -field generated by all events until
time t . Let c > λ/(1 −λ). Let C be the event that ‖Xt‖1 ≤ cn for each t ∈ [0, nK ].
Then C holds a.a.s. by Lemma 2.5. Also, by Theorem 1.1 there are constants n0
and η > 0 such that the following holds. Let n ≥ n0 and consider the system with n

queues. Let x be a queue-lengths vector such that ‖x‖1 ≤ cn and ‖x‖∞ ≤ k − 1.
Then, given X0 = x,

dTV
(
L(Xt),�

) ≤ e− ln2 n

for all times t ≥ t1 = η−1 ln2 n. In particular, for n sufficiently large by (10)

Pr
(
Mt1 ≤ k − 1|X0 = x

) ≤ e−nλk + e− ln2 n.

Thus, since the system is in equilibrium, for each i = 0,1, . . .

Pr
(
M(i+1)t1 ≤ k − 1|φit1

) ≤ e−nλk + e− ln2 n

on the event Di = {‖Xit1‖1 ≤ cn} ∩ {Mit1 ≤ k − 1}. Hence if we denote �nK/t1�
by i0,

Pr({Z ≤ k − 1} ∩ C) ≤ Pr

(
i0⋂

i=0

Di

)

≤ Pr(D0)

i0−1∏
i=0

Pr

(
Di+1

∣∣∣ i⋂
j=0

Dj

)

≤ (
e−nλk + e− ln2 n)i0

≤ exp
(−(nK/t1)n

−(K−ε+o(1)))
= exp

(−nε+o(1))
→ 0 as n → ∞.

Since C holds a.a.s., it follows that Z ≥ k a.a.s., as required.
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4. Concentration. In this section we prove concentration of measure results
for the queue-lengths process (Xt). Let n be a positive integer, and let � be the
corresponding set of queue-lengths vectors, that is, the set of nonnegative vectors
in Z

n. Let us say that a real-valued function f on � is Lipschitz (with constant 1)
if

|f (x) − f (y)| ≤ ‖x − y‖1

for all x, y ∈ �. Let d be a fixed positive integer. The key result is the following
lemma.

LEMMA 4.1. There is a constant c > 0 such that the following holds. Let n ≥ 2
be an integer and consider the n-queue system. Let the queue-lengths vector Y

have the equilibrium distribution. Let f be a Lipschitz function on �. Then for
each u ≥ 0

Pr
(|f (Y ) − E[f (Y )]| ≥ u

) ≤ ne−cu/n1/2
.

Recall that 
(k, x) denotes |{j :x(j) ≥ k}|, the number of queues of length
at least k; and observe that for any fixed k this is Lipschitz as a function of x.
We deduce from the last lemma the following result concerning the random vari-
ables 
(k,Y ).

LEMMA 4.2. Consider the n-queue system, and let the queue-lengths vec-
tor Y have the equilibrium distribution. For each nonnegative integer k let 
(k) =
E[
(k,Y )]. Then for any constant c > 0,

Pr
(

sup
k

|
(k,Y ) − 
(k)| ≥ cn1/2 ln2 n

)
= e−�(ln2 n).

Also, for each integer r ≥ 2

sup
k

|E[
(k,Y )r ] − 
(k)r | = O(nr−1 ln2 n).

PROOF. We argue as in the proof of Lemma 5.2 of [7]. For the first part, let
c1 > λ

1−λ
, and note that by Lemma 2.5

Pr
(

(	c1n
, Y ) > 0

) = e−�(n).

It follows that we may restrict attention to queue lengths k < c1n. For, since always

(k,Y ) ≤ n we have 
(	c1n
) < 1 for n sufficiently large; and then

Pr
(

sup
k≥c1n

|
(k,Y ) − 
(k)| ≥ 1
)

≤ Pr
(

(	c1n
, Y ) ≥ 1

) = e−�(n).

Now the first part of the lemma follows easily from Lemma 4.1.
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For the second part, fix an integer r ≥ 2. By Lemma 4.1 there is a constant
c2 > 0 such that, if we set u = c2n

1/2 lnn, then

sup
k

Pr
(|
(k,Y ) − 
(k)| > u

) = o(n−r ).

Hence, for each positive integer s ≤ r ,

E[|
(k,Y ) − 
(k)|s] ≤ us + nsPr
(|
(k,Y ) − 
(k)| > u

) = us + o(1),

uniformly over k. The result now follows from

0 ≤ E[
(k,Y )r ] − 
(k)r

=
r∑

s=2

E
[(


(k,Y ) − 
(k)
)s]


(k)r−s

≤
r∑

s=2

E[|
(k,Y ) − 
(k)|s]nr−s

= O(nr−1 ln2 n),

uniformly over k. �

Our proof of Lemma 4.1 will follow the lines of the proof of Lemma 5.1 in [7].
The task is somewhat easier here, and we obtain tighter bounds, since for each
fixed n the departures process has a bounded rate. Departures occur as events in a
Poisson process at rate n, each one from an independently selected uniformly ran-
dom queue, except that departures from empty queues are ignored. As in [7], along
the way we prove concentration for Lipschitz functions of the time-dependent
process for “nice” initial conditions—see Lemma 4.3 below.

An overview of the proof is as follows. Consider a queue-lengths process (Xt)

where X0 = 0. For t > 0, let Zt be the total number of arrivals in [0, t], and let Z̃t

be the total number of departures in [0, t] (including “virtual ones,” i.e., departures
from empty queues). Thus Zt ∼ Po(λnt) and Z̃t ∼ Po(nt). Let µt = E[f (Xt)],
and µt(z, z̃) = E[f (Xt)|Zt = z, Z̃t = z̃]. We use earlier coupling results and
the bounded differences method to upper bound Pr(|f (Xt) − µt(z, z̃)| ≥ u|
Zt = z, Z̃t = z̃).

Next we remove the conditioning on Zt and Z̃t . To do this, we choose suitable
“widths” w and w̃, and use the fact that Pr(|Zt −λnt | > w) and Pr(|Z̃t − nt | > w̃)

are small, and for z, z̃ such that |z − λnt | ≤ w, |z̃ − nt | ≤ w̃ the difference
|µt(z, z̃) − µt | is at most about 4(w + w̃). We thus find that Pr(|f (Xt) − µt | ≥
5(w + w̃)) is small. The part of the proof up to here is encapsulated in Lemma 4.3
below. Finally we use the mixing results, Theorem 1.1 and Lemma 2.1, to relate
the distribution of Xt to the equilibrium distribution.

Let us start on the details of the proof. In this section we shall use the following
lemma with x0 = 0; we consider more general initial states for later use.
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LEMMA 4.3. There is a constant c > 0 such that the following holds. Let n ≥ 2
be an integer and let f be a Lipschitz function on �. Let also x0 ∈ � and assume
that the queue-lengths process (Xt) satisfies X0 = x0 a.s. Then for all times t > 0
and all u ≥ 0,

Pr
(|f (Xt) − µt | ≥ u

) ≤ ne−cu2/(nt+u).(12)

PROOF. Note first that we may assume without loss of generality that
f (x0) = 0, and so |f (Xt)| ≤ Zt + Z̃t , since we could replace f (x) by its trans-
lation f̃ (x) = f (x) − f (x0). Let z and z̃ be positive integers, and condition on
Zt = z and Z̃t = z̃. Now f (Xt) depends on 2(z + z̃) independent random vari-
ables T1, . . . , Tz, D1, . . . ,Dz, T̃1, . . . , T̃z̃, D̃1, . . . , D̃z̃ which specify the arrival
time and corresponding choice of d queues for each of z customers, and the z̃

departure times and corresponding selections of a queue during [0, t]. This prop-
erty relies on the well-known fact that conditional on the number of events of a
Poisson process during [0, t], the arrival times are a sample of i.i.d. random vari-
ables uniform on [0, t]. Let T = (T1, . . . , Tz), D = (D1, . . . ,Dz), T̃ = (T̃1, . . . , T̃z̃)

and D̃ = (D̃1, . . . , D̃z̃). We may write f (Xt) as g(T,D, T̃, D̃) where

g(t,d, t̃, d̃) = f
(
st (x0, t,d, t̃, d̃)

)
,

in the notation of Lemma 2.3.
We now prove that, conditional on Zt = z and Z̃t = z̃, the random vari-

able f (Xt) is strongly concentrated, by showing that g(t,d, t̃, d̃) satisfies a
“bounded differences” condition. Suppose first that we alter a single coordinate
value dj or d̃j . Then the value of g can change by at most 2; by Lemma 2.3 start-
ing at time tj with ‖xtj − ytj ‖1 ≤ 2. Similarly, if we change a coordinate value
tj or t̃j , the value of g can change by at most 2; we may see this by applying
Lemma 2.3 once at the earlier time and once at the later time. Now we use the in-
dependent bounded differences inequality; see, for instance, [12]. Hence, for each
u > 0

Pr
(|g(T,D, T̃, D̃) − E[g(T,D, T̃, D̃)]| ≥ u

) ≤ 2 exp
(
− u2

4(z + z̃)

)
.

In other words, we have proved that for any u > 0

Pr
(|f (Xt) − µt(z, z̃)| ≥ u|Zt = z, Z̃t = z̃

) ≤ 2 exp
(
− u2

4(z + z̃)

)
,(13)

which is the desired upper bound on the quantity on the left-hand side.
Next we will remove the conditioning on Zt . We will choose suitable “widths”

w = w(n) > 0 and w̃ = w̃(n) > 0, where 0 ≤ w ≤ λnt and 0 ≤ w̃ ≤ nt . Let I de-
note the interval of integer values z such that |z−λnt | ≤ w; let Ĩ denote the interval
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of integer values z̃ such that |z̃ − nt | ≤ w̃. Since Zt ∼ Po(λnt) and Z̃t ∼ Po(nt),
by inequalities (4) and (5),

Pr(Zt /∈ I ) = Pr(|Zt − λnt | > w) ≤ 2 exp
(
− w2

3λnt

)
(14)

and

Pr(Z̃t /∈ Ĩ ) = Pr(|Z̃t − nt | > w̃) ≤ 2 exp
(
− w̃2

3nt

)
.(15)

We shall assume that w ≥ 2(λnt lnn)1/2 and w̃ ≥ 2(nt lnn)1/2, and so it follows
by (14) and (15) that

E
[
(Zt + Z̃t )1{Zt /∈I }∪{Ẑt /∈Ĩ }

] = o(1).(16)

From Lemma 2.3, for each z

|µt(z + 1, z̃) − µt(z, z̃)| ≤ 1(17)

and

|µt(z, z̃ + 1) − µt(z, z̃)| ≤ 1.(18)

We claim that for each z ∈ I and z̃ ∈ Ĩ ,

|µt(z, z̃) − µt | ≤ 2(w + w̃) + o(1).(19)

To prove this, observe that

µt = ∑
z∈I,z̃∈Ĩ

µt (z, z̃)Pr(Zt = z, Z̃t = z̃) + E
[
f (Xt)1{Zt /∈I }∪{Z̃t /∈Ĩ }

]
.

Hence by (16), since |f (Xt)| ≤ Zt + Z̃t ,

µt ≤ max
z∈I,z̃∈Ĩ

{µt(z, z̃)} + E
[
(Zt + Z̃t )1{Zt /∈I }∪{Z̃t /∈Ĩ }

]
≤ max

z∈I,z̃∈Ĩ

{µt(z, z̃)} + o(1),

and by (14) and (15),

µt ≥ min
z∈I,z̃∈Ĩ

{µt(z, z̃)}Pr(Zt ∈ I, Z̃t ∈ Ĩ ) + o(1)

≥ min
z∈I,z̃∈Ĩ

{µt(z, z̃)} + o(1).

Now we may use (17) and (18) to complete the proof of (19). By (13), (14), (15)
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and (19),

Pr
(|f (Xt) − µt | ≥ 3(w + w̃)

)
≤ ∑

z∈I,z̃∈Ĩ

Pr
(|f (Xt) − µt | ≥ 3(w + w̃)|Zt = z, Z̃t = z̃

)
Pr(Zt = z, Z̃t = z̃)

+ Pr(Zt /∈ I ) + Pr(Z̃t /∈ Ĩ )

≤ ∑
z∈I,z̃∈Ĩ

Pr
(|f (Xt) − µt(z, z̃)| ≥ w + w̃ + o(1)|Zt = z, Z̃t = z̃

)

× Pr(Zt = z, Z̃t = z̃)

+ Pr(|Zt − λnt | > w) + Pr(|Z̃t − nt | > w̃)

≤ exp
(
− (w + w̃ + o(1))2

4(λnt + nt + w + w̃)

)
+ 2 exp

(
− w2

3λnt

)
+ 2 exp

(
− w̃2

3nt

)

≤ exp
(
−(1 + o(1))(w + w̃)2

8(λ + 1)nt

)
+ 2 exp

(
− w2

3λnt

)
+ 2 exp

(
− w̃2

3nt

)
.

Now let u and t satisfy

12(nt lnn)1/2 ≤ u ≤ 6λnt.(20)

Let w = w̃ = u/6. Then u = 3(w + w̃); and w and w̃ are as required, that is,
2(λnt lnn)1/2 ≤ w ≤ λnt and 2(nt lnn)1/2 ≤ w̃ ≤ nt . Hence for n sufficiently
large we have

Pr
(|f (Xt) − µt | ≥ u

) ≤ exp
(
− u2

144nt

)
.(21)

But if u ≤ 12(nt lnn)1/2, then exp(− u2

144nt
) ≥ n−1. Thus, as long as u ≤ 6λnt we

have

Pr
(|f (Xt) − µt | ≥ u

) ≤ n exp
(
− u2

144nt

)
.

Now let us get rid of the upper bound on u. If 6λnt < u < 6ent , then by the above
of course

Pr
(|f (Xt) − µt | ≥ u

) ≤ n exp
(
− λ2

144e2

u2

nt

)
.

Finally consider u ≥ 6ent . We saw that |f (Xt)| ≤ Zt + Z̃t . Thus |µt | ≤
E[|f (Xt)|] ≤ (1 + λ)nt ≤ 2nt . Hence, if u ≥ 6ent , then

Pr
(|f (Xt) − µt | ≥ u

) ≤ Pr
(|f (Xt)| ≥ 2u/3

)
≤ Pr(Zt ≥ u/3) + Pr(Z̃t ≥ u/3)

≤ 2Pr(Z̃t ≥ u/3).
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But Z̃t ∼ Po(nt) and u/3 ≥ 2ent , and so by (6) the last bound is at most 21−u/3.
The lemma now follows. �

We shall use Lemma 4.3 here with X0 = 0 to complete the proof of Lemma 4.1.
As we saw before, we may assume that f (0) = 0, and hence always |f (x)| ≤ ‖x‖1.
It remains to relate the distribution of Xt with X0 = 0 to the equilibrium distribu-
tion. But by Theorem 1.1 there exists a constant η > 0 such that, for each positive
integer n and each time t ≥ 0, if Y has the equilibrium distribution, then we have
dTV(L(Xt),L(Y )) ≤ ne−ηt + 2e−ηn. Also, by Lemma 4.3 we may assume that
η > 0 is sufficiently small that, for each n, each t > 0 and each u ≥ 0

Pr
(|f (Y ) − µt | ≥ u

) ≤ dTV
(
L(Xt),L(Y )

) + Pr
(|f (Xt) − µt | ≥ u

)
≤ ne−ηt + 2e−ηn + n exp

(
−ηu2

nt

)
+ ne−ηnt .

Further, we may assume that η > 0 is sufficiently small that also Lemma 2.1 holds
with this value of η.

Now let κ = max{1, ln−1(1/λ)}, let u ≥ 3κη−1n1/2 lnn and let t = n−1/2u.
Then

ηu2

nt
= ηt ≥ 3κ lnn.

Thus by the above,

Pr
(|f (Y ) − µt | ≥ u

) ≤ 3ne−ηt + 2e−ηn.

But µt = E[f (Xt)], and so by Lemmas 2.1 and 2.4

|µt − E[f (Y )]| ≤ dW
(
L(Xt),L(Y )

) = o(1),

since X0 = 0 and so δn,t = 0, and ηt ≥ 3κ lnn. Thus we find that

Pr
(|f (Y ) − E[f (Y )]| ≥ u + 1

) ≤ 3n exp(−ηn−1/2u) + 2e−ηn

≤ (3n + 2) exp(−ηn−1/2u)

for all n sufficiently large and all 3κη−1n1/2 lnn ≤ u ≤ n3/2.
Let c = η

3κ
. Note that ne−cn−1/2u ≥ 1 for u ≤ 3κη−1n1/2 lnn. Hence, since also

c ≤ η,

Pr
(|f (Y ) − E[f (Y )]| ≥ u + 1

) ≤ (3n + 2) exp(−cn−1/2u)

for all n sufficiently large and all 0 ≤ u ≤ n3/2.
We may assume that 0 < c ≤ 1. Then we may replace u+ 1 by u if we replace c

by c/2; that is,

Pr
(|f (Y ) − E[f (Y )]| ≥ u

) ≤ (3n + 2) exp
(−(c/2)n−1/2u

)
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for all n sufficiently large and all 0 ≤ u ≤ n3/2. For if u < 2, then the right-hand
side above is at least 1, and if u ≥ 2, then u ≥ u/2 + 1. Now consider square
roots: if we replace c by c/2 again, then we may replace the factor (3n + 2) by
(3n + 2)1/2, which is at most n for n ≥ 4. Thus, with a new c, we have

Pr
(|f (Y ) − E[f (Y )]| ≥ u

) ≤ n exp(−cn−1/2u)

for all n sufficiently large and all 0 ≤ u ≤ n3/2. One further minor adjustment
to c lets us assert that the last inequality holds for all integers n ≥ 2 and all
0 ≤ u ≤ n3/2.

It remains only to consider values of u > n3/2. But always |f (y)| ≤ ‖y‖1, and
E[‖Y‖1] ≤ λ

1−λ
n. Thus |f (Y ) − E[f (Y )]| ≤ ‖Y‖1 + λ

1−λ
n. Hence for u > 3λ

1−λ
n,

Pr
(|f (Y ) − E[f (Y )]| ≥ u

) ≤ Pr(‖Y‖1 ≥ E[‖Y‖1] + u/3) = e−�(u),

from the proof of Lemma 2.4 and a standard large deviations calculation for a
sum of independent geometric random variables (see [5], pages 201–202), and so
Lemma 4.1 follows.

Lemma 4.3 is a quantitative version of some earlier results in [2–4, 13, 14, 17].
It will also be used in [8] for analyzing the asymptotic distribution of the length of
a given queue and for analyzing the “propagation of chaos.”

5. Balance equations and long-term behavior. In this section we consider
the system in equilibrium, and present the key equation (24). We then show that the
expected number 
(i) of queues with at least i customers is close to nλ1+d+···+di−1

,
and that the random number 
(i, Yt ) of queues with at least i customers stays close
to this value over long periods of time. Here (Yt ) is a queue-lengths process in
equilibrium. We shall denote Y0 by Y below. As before, (Xt) will denote a queue-
lengths process with a “time-dependent” distribution. Observe that λ1+d+···+di−1

equals λi if d = 1, and equals λ(di−1)/(d−1) if d ≥ 2.
Let d be a fixed positive integer. Fix also a positive integer n, and consider

the corresponding set � of queue-length vectors. For x ∈ � and a nonnegative
integer k, let u(k, x) be the proportion of queues j of length x(j) at least k. Thus
always u(0, x) = 1. Let u(k) denote E[u(k,Y )]: thus u(k) = 
(k)/n. We also let
ut(k) = E[u(k,Xt)].

If f is the bounded function f (x) = u(k, x), then the generator operator A of
the Markov process (see, e.g., [1], Section 1.1, and see also [17]) satisfies

Af (x) = λ
(
u(k − 1, x)d − u(k, x)d

) − (
u(k, x) − u(k + 1, x)

)
.

[Compare with (1) earlier.] This is true, since u(k, x)−u(k+1, x) is the proportion
of queues of length exactly k, and u(k−1, x)d −u(k, x)d is the probability that the
minimum queue length of the d attempts is exactly k − 1. From standard theory
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(see [1], Chapters 1 and 4), for each bounded function f , whatever the initial
distribution of X0,

dE[f (Xt)]
dt

= E[Af (Xt)],
and so in particular, for each positive integer k,

duk(t)

dt
= λ

(
E[u(k − 1,Xt)

d ] − E[u(k,Xt)
d ]) − (

ut(k) − ut (k + 1)
)
.(22)

As Y is in equilibrium,

λ
(
E[u(k − 1, Y )d ] − E[u(k,Y )d ]) − (

u(k) − u(k + 1)
) = 0.(23)

We shall consider only the equilibrium case for the remainder of this section, and
rest our analysis on (23). Now

∑
k≥1

u(k, x) = 1

n

n∑
j=1

x(j) = 1

n
‖x‖1,

and so ∑
k≥1

u(k) = 1

n
E[‖Y‖1] < ∞.

Hence u(k) → 0 as k → ∞. Also E[u(k,Y )d ] ≤ u(k). Summing (23) for k ≥ i we
obtain, for each i = 1,2, . . . , that

λE[u(i − 1, Y )d ] − u(i) = 0.(24)

(This is equivalent to saying that E[Af (Y )] = 0, where f (x) is the number of
customers with position at least i, but since f is not bounded we cannot assert the
result directly.) Equation (24) is crucial to our analysis.

Note first that by (24), u(1) = λ, and for each i = 2,3 . . .

u(i) = λE[u(i − 1, Y )d ] ≤ λu(i − 1).

Thus by induction on i

u(i) ≤ λi for each i = 0,1,2, . . . .(25)

By (24) and the second part of Lemma 4.2, there exists a constant c1 > 0 such that
for each positive integer n,

sup
i

|u(i) − λu(i − 1)d | ≤ c1n
−1 ln2 n.(26)

We claim that, for some constant c2 > 0, for each positive integer n

sup
i

∣∣u(i) − λ1+d+···+di−1 ∣∣ ≤ c2n
−1 ln2 n;(27)
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and hence

sup
i

∣∣
(i) − nλ1+d+···+di−1 ∣∣ ≤ c2 ln2 n(28)

for all positive integers n.
Let us prove the claim. Note first that for x, y ≥ 0 we have

|yd − xd | = |y − x|(yd−1 + yd−2x + · · · + xd−1)
(29)

≤ d(x ∪ y)d−1|y − x|.
Now by (25), u(i) ≤ λi and λ1+d+···+di−1 ≤ λi , so by (29),∣∣u(i + 1) − λ1+d+···+di ∣∣

≤ |u(i + 1) − λu(i)d | + λ
∣∣u(i)d − (

λ1+d+···+di−1)d ∣∣(30)

≤ |u(i + 1) − λu(i)d | + λd · λi(d−1)
∣∣u(i) − λ1+d+···+di−1 ∣∣.

Since u(0) = 1, an easy induction on i using (26) and (30) gives

∣∣u(i) − λ1+d+···+di−1 ∣∣ ≤
(

i−1∑
j=0

(λd)j

)
· c1n

−1 ln2 n

for each i = 1,2, . . . . Let i0 be the least i such that λd · λi(d−1) ≤ 1/2. Let c2 =
c1 · max{2,

∑i0−1
j=0 (λd)j }. Clearly

∣∣u(i) − λ1+d+···+di−1 ∣∣ ≤ c2n
−1 ln2 n

for i = 0,1, . . . , i0. We shall prove by induction on i that this holds for all i. Let
i ≥ i0 and suppose that the inequality holds for i. Then by (26) and (30)∣∣u(i + 1) − λ1+d+···+di ∣∣ ≤ c1n

−1 ln2 n + 1
2c2n

−1 ln2 n

≤ c2n
−1 ln2 n,

as required for the induction step. Thus we have proved the claim (27).
This completes the first half of our task here. Now let K > 0 be an arbitrary

constant, and let τ = nK . We see next that all the coordinates 
(i, Yt ) are likely to
stay close to 
(i) throughout the interval [0, τ ].

LEMMA 5.1. Let (Yt ) be in equilibrium and let c > 0 be a constant. Let Bτ

be the event that for all times t with 0 ≤ t ≤ τ

sup
i

∣∣
(i, Yt ) − nλ1+d+···+di−1 ∣∣ ≤ cn1/2 ln2 n.

Then Pr(Bτ ) ≤ e−�(ln2 n).
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PROOF. By the first part of Lemma 4.2, there exists γ > 0 such that for all n

sufficiently large, for each time t ≥ 0

Pr
(

sup
i

|
(i, Yt ) − 
(i)| > cn1/2 ln2 n/4
)

≤ e−γ ln2 n.

Let s = c ln2 n/(8λn1/2), let j = 	τ/s
 and consider times rs for r = 0, . . . , j . The
mean number of arrivals in a subinterval [(r−1)s, rs) is cn1/2 ln2 n/8, so by (5) the
probability that more than cn1/2 ln2 n/4 arrivals occur is at most e−cn1/2 ln2 n/24 ≤
e−γ ln2 n for n sufficiently large. Then

Pr
(

sup
i

|
(i, Yt ) − 
(i)| > cn1/2 ln2 n/2 for some t ∈ [0, τ ]
)

≤
j∑

r=0

Pr
(

sup
i

|
(i, Yrs) − 
(i)| ≥ cn1/2 ln2 n/4
)

+
j∑

r=1

Pr
([

(r − 1)s, rs
)

has > cn1/2 ln2 n/4 arrivals
)

≤ (τ/s + 2) · 2e−γ ln2 n

≤ e−(γ /2) ln2 n

for n sufficiently large. Now we can use (28). �

6. Lower bound on mixing times. In this short section we show that the
upper bounds on the mixing times in Theorem 1.1 are of the right order, and in
particular we prove (2). We do this by considering the total number of nonempty
queues in the system. The idea is that this number is highly concentrated around its
mean. In equilibrium the mean is λn. On the other hand, if X0 = 0 and t ≤ θ lnn,
then the expected number of nonempty queues is less than (λ − θ)n for a suitable
constant θ . Thus for such t the two distributions are far apart.

Now for the details. Consider two n-queue processes (Xt) and (Yt ), where
X0 = 0 and (Yt ) is in equilibrium. By Lemma 2.3, we can couple (Xt) and (Yt )

in such a way that always Xt ≤ Yt and so u(i,Xt) ≤ u(i, Yt ) for each i. In par-
ticular, if as before we let ut(i) = E[u(i,Xt)], then ut (i) ≤ u(i). (Recall that
u(i) = E[u(i, Yt )] = 1

n
E[
(i, Yt )].) Let st (i) = u(i) − ut(i), so st (i) ≥ 0. Also

from (22)

dut (1)

dt
= λ

(
1 − E[u(1,Xt)

d ]) − (
ut(1) − ut(2)

)
and

0 = λ
(
1 − E[u(1, Yt )

d ]) − (
u(1) − u(2)

)
,
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so that

dst (1)

dt
= −st (1) − λ

(
E[u(1, Yt )

d ] − E[u(1,Xt)
d ]) + st (2).

But, as in (29), given 0 ≤ y ≤ x ≤ 1, we have

xd − yd = (x − y)(xd−1 + · · · + yd−1) ≤ d(x − y).

Hence, since we may assume that always u(1,Xt) ≤ u(1, Yt ), we have

E[u(1, Yt )
d − u(1,Xt)

d ] ≤ d
(
u(1) − ut (1)

) = dst (1).

It follows [using also the fact that st (2) ≥ 0] that for all t ≥ 0,

dst (1)

dt
≥ −(1 + λd)st (1).

Thus

st (1) ≥ λe−(1+λd)t

for all times t ≥ 0, since s0(1) = u(1) = λ. Thus if t ≤ 1
2(1+λd)

lnn − 2
1+λd

ln lnn,

then s1(t) ≥ λn−1/2 ln2 n, that is,

λn − E[
(1,Xt)] ≥ λn1/2 ln2 n.

But if t is O(lnn), then from (21) in the proof of Lemma 4.3,

Pr
(|
(1,Xt ) − E[
(1,Xt)]| ≥ n1/2 ln3/2 n

) = e−�(ln2 n).

Also, by the first part of Lemma 4.2,

Pr
(|
(1, Yt ) − λn| ≥ 1

2λn1/2 ln2 n
) = e−�(ln2 n).

Inequality (2) now follows.

7. Proof of Theorem 1.3. We assume throughout that the process is in equi-
librium. For each time t ≥ 0 and each i = 0,1, . . . let the random variable Zt(i)

be the number of new customers arriving during [0, t] with position at least i on
arrival. Let J0 = 0 and enumerate the arrival times after time 0 as J1, J2, . . . . We
define a “horizon” time t0 = ln2 n, and let N = 	2λnt0
. Note that 
(1, Yt ) is the
number of nonempty queues at time t . For each time t , let At be the event

{λn/2 ≤ 
(1, Ys) ≤ 2λn ∀ s ∈ [0, t]}.
Then by Lemma 5.1, the event At0 holds a.a.s.

We need two more preliminary results. The first one is an analogue of a special
case of Lemma 2.1 in [7]. It may be proved quickly along the lines of the proof of
that lemma; for completeness we give a proof here.
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LEMMA 7.1. Let (Xt) be in equilibrium. Let s, τ > 0 and let a, b be nonneg-
ative integers. Let δ = n(λds)b+1/(b + 1)!. Then

Pr
[
Mt ≤ a for some t ∈ [0, τ ]] ≤

(
τ

s
+ 1

)(
Pr(M0 ≤ a + b) + δ

)
(31)

and

Pr
[
Mt ≥ a + b for some t ∈ [0, τ ]] ≤

(
τ

s
+ 1

)(
Pr(M0 ≥ a) + δ

)
.(32)

PROOF. The j = � τ
s
� + 1 disjoint intervals [(r − 1)s, rs) for r = 1, . . . , j

cover [0, τ ]. Let Cr denote the event of having at least b + 1 arrivals in the in-
terval [(r − 1)s, rs) which are placed into a single bin. Then

Pr(Cr) ≤ nPr
(
Po(λds) ≥ b + 1

) ≤ δ.

But

{Mt ≤ a for some t ∈ [0, τ ]} ⊆
( j⋃

r=1

{Mrs ≤ a + b}
)

∪
( j⋃

r=1

Cr

)

and (31) follows. Similarly

{Mt ≥ a + b for some t ∈ [0, τ )} ⊆
( j−1⋃

r=0

{Mrs ≥ a}
)

∪
( j⋃

r=1

Cr

)

and (32) follows. �

We shall use the second lemma to bound “initial” effects. For each time t ≥ 0
let St be the event that some initial customer survives at least to time t .

LEMMA 7.2. Let 0 < λ < 1 and let d be a positive integer. Let α =
min{1

4 ln( 1
λ
), 1

4}, so α > 0. Then for each positive integer n and each time t ≥ 0,

Pr(St ) ≤ 2ne−αt .

PROOF. Let k = �t/4�. By (25)

Pr(M0 ≥ k + 1) ≤ nλk+1 ≤ nλt/4.

Let Z be distributed like the sum of k independent service times. Thus Z has a
gamma distribution, and has moment generating function E[esZ] = (1 − s)−k for
s < 1. So by Markov’s inequality, for each 0 ≤ s < 1,

Pr(Z ≥ t) ≤ e−ts(1 − s)−k

= e−t/22k taking s = 1

2

≤
(

e2

2

)−t/4

≤ e−t/4.
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Hence

Pr(St ) ≤ Pr(M0 ≥ k + 1) + nPr(Z ≥ t) ≤ nλt/4 + ne−t/4 ≤ 2ne−αt . �

Let i∗ = i∗(n) be the smallest integer such that λ(di−1)/(d−1) < n−1/2 ln2 n (see
the discussion following Theorem 1.3). Note that i∗ = ln lnn/ lnd + O(1).

We can handle the lower bound on Mt easily. By Lemma 5.1, Pr(M < i∗ −1) =
e−�(ln2 n). In particular M ≥ i∗ − 1 a.a.s. Further, (31), with τ = nK , a = i∗ − 3,
b = 1 and s = n−K−2, shows that

min{Mt : 0 ≤ t ≤ nK} ≥ i∗ − 2 a.a.s.,(33)

since

δ = nPr
(
Po(λds) ≥ 2

) ≤ n(λds)2 = O(n−2K−3).

This result establishes the lower bound half of (3).
The upper bounds on Mt are less straightforward to prove. We consider first the

easier case when d ≥ 3.

7.1. The case d ≥ 3. We shall show that M ≤ i∗ a.a.s. For k = 0,1, . . . , let
Ek be the event that 
(i∗, YJk

) ≤ 2n1/2 ln2 n; that is, at time (just after) Jk there
are no more than 2n1/2 ln2 n queues with at least i∗ customers. Then Pr(Ek) =
e−�(ln2 n) by Lemma 5.1. Consider the customer who arrives at time Jk : on Ek−1,
he has probability at most p1 = (2n−1/2 ln2 n)d of joining a queue of length at
least i∗. Note that

Pr(JN+1 ≤ t0) ≤ Pr[Po(λnt0) ≥ 2λnt0] = e−�(n ln2 n).

Also, for each positive integer r ,

Pr
(
B(N,p1) ≥ r

) ≤ (Np1)
r = O

((
n−(d/2−1)(lnn)2d+2)r)

.

Hence, for each positive integer r ,

Pr
[
Zt0(i

∗ + 1) ≥ r
]

≤ Pr
(
B(N,p1) ≥ r

) + Pr

(
N−1⋃
k=0

Ek

)
+ Pr(JN+1 ≤ t0)

= O
((

n−(d/2−1)(lnn)2d+2)r)
.

Also, by Lemma 7.2 there exists a constant α > 0 such that the probability that
some “initial” customer has not departed by time t0 is at most 2ne−αt0 . Hence, for
each positive integer r ,

Pr[M ≥ i∗ + r] ≤ Pr
[
Zt0(i

∗ + 1) ≥ r
] + 2ne−αt0 .
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In particular, Pr(M ≥ i∗ + 1) = o(1), which together with the earlier result that
M ≥ i∗ − 1 a.a.s. completes the proof that M is concentrated on at most the two
values i∗ and i∗ − 1. Also,

Pr[M ≥ i∗ + 2K + 5] = o(n−K−2).(34)

Now (32), with τ = nK , a = i∗ + 2K + 5, b = 	K/2
 + 1 and s = n−2, lets us
complete the proof of (3), since

δ = nPr
(
Po(λds) ≥ b + 1

) ≤ n(λds)K/2+2 = O(n−K−3).

7.2. The case d = 2. The case d = 2 needs a little more effort, and uses the
“drift” results from Section 7 in [7]. For convenience we restate these results here,
as the next two lemmas. The first lemma concerns hitting times for a generalized
random walk with “drift.”

LEMMA 7.3. Let φ0 ⊆ φ1 ⊆ · · · ⊆ φm be a filtration, and let Y1, Y2, . . . , Ym be
random variables taking values in {−1,0,1} such that each Yi is φi -measurable.
Let E0,E1, . . . ,Em−1 be events where Ei ∈ φi for each i, and let E = ⋂

i Ei . Let
Rt = R0 + ∑t

i=1 Yi . Let 0 ≤ p ≤ 1/3, let r0 and r1 be integers such that r0 < r1
and let pm ≥ 2(r1 − r0). Assume that for each i = 1, . . . ,m,

Pr(Yi = 1|φi−1) ≥ 2p on Ei−1 ∩ {Ri−1 < r1}
and

Pr(Yi = −1|φi−1) ≤ p on Ei−1 ∩ {Ri−1 < r1}.
Then

Pr
(
E ∩ {

Rt < r1 ∀ t ∈ {1, . . . ,m}}|R0 = r0
) ≤ exp

(
−pm

28

)
.

The second lemma shows that if we try to cross an interval against the drift, then
we will rarely succeed.

LEMMA 7.4. Let a be a positive integer. Let p and q be reals with q > p ≥ 0
and p + q ≤ 1. Let φ0 ⊆ φ1 ⊆ φ2 ⊆ · · · be a filtration, and let Y1, Y2, . . . be ran-
dom variables taking values in {−1,0,1} such that each Yi is φi -measurable. Let
E0,E1, . . . be events where each Ei ∈ φi , and let E = ⋂

i Ei . Let R0 = 0 and let
Rk = ∑k

i=1 Yi for k = 1,2, . . . . Assume that for each i = 1,2, . . . ,

Pr(Yi = 1|φi−1) ≤ p on Ei−1 ∩ {0 ≤ Ri−1 ≤ a − 1}
and

Pr(Yi = −1|φi−1) ≥ q on Ei−1 ∩ {0 ≤ Ri−1 ≤ a − 1}.
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Let

T = inf
{
k ≥ 1 :Rk ∈ {−1, a}}.

Then

Pr(E ∩ {RT = a}) ≤ (p/q)a.

Having stated the two “drift” lemmas, let us resume the proof for the case d = 2.
Still let t0 = ln2 n and N = 	2λnt0
. We first show that M ≥ i∗, by showing that in
fact



(
i∗, Yt0

) ≥ ln3 n a.a.s.(35)

Let J ′
0 = 0, and enumerate all jump times after time 0 (not just the arrival times)

as J ′
1, J

′
2, . . . . For k = 0,1, . . . let Ek be the event that 
(i∗ −1, YJ ′

k
) ≥ 1

2n1/2 ln2 n;

and let E′
k be the event that 
(i∗, YJ ′

k
) ≤ 2 ln3 n. By Lemma 5.1 as before,

Pr(Ek) = e−�(ln2 n). Let Vk = 
(i∗, YJ ′
k
) − 
(i∗, YJ ′

k−1
) for k = 1,2, . . . , so that



(
i∗, YJ ′

k

) = 
(i∗, Y0) +
k∑

j=1

Vj .

Let p2 = ln4 n/(25n). On AJ ′
k−1

∩ Ek−1 ∩ E′
k−1,

Pr
(
Vk = 1|φJ ′

k−1

) ≥ 2p2

and

Pr
(
Vk = −1|φJ ′

k−1

) ≤ p2,

for n sufficiently large.
Also then np2 ≥ 4 ln3 n for n sufficiently large. Hence by Lemma 7.3, a.a.s.


(i∗, YJ ′
i
) ≥ 2 ln3 n for some i ≤ n. Also J ′

n ≤ t0 a.a.s., since

Pr(J ′
n > t0) ≤ Pr(Jn > t0) = Pr

(
Po(λnt0) < n

) = e−�(n ln2 n).

Thus a.a.s. 
(i∗, Yt ) ≥ 2 ln3 n for some t ∈ [0, t0].
It now suffices to show that a.a.s. there will be no “excursions” that cross down-

ward from 	2 ln3 n
 to at most ln3 n during the interval [0, τ ]. Let B be the event
that there is such a crossing. The only possible start times for such a crossing are
departure times during [0, t0], and a.a.s. there are at most N such times. We may
use Lemma 7.4 to upper bound the probability that any given excursion leads to a
crossing. Let a = 	ln3 n
. Let p = p2 and let q = 2p2. We apply the lemma with Yk

replaced by −Vk and with a, p and q as above, and with the events Ẽk = AJ ′
k
∩Ek .

We obtain

Pr(B) ≤ N2−a + Pr

(
N−1⋃
k=0

Ẽk

)
+ o(1) = o(1).
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Thus we have proved that M ≥ i∗ a.a.s.
We now consider upper bounds on M . We shall show that M ≤ i∗ + 1 a.a.s., by

showing that 
(i∗ + 2, Yt0) = 0 a.a.s. For k = 0,1, . . . , let Fk be the event that at
the arrival time Jk there are no more than 2n1/2 ln2 n queues of length at least i∗.
By Lemma 5.1 we have Pr(Fk) = e−�(ln2 n). Consider the customer arriving at
time Jk : on Fk−1 he has probability at most p3 = 4 ln4 n/n of joining a queue of
length at least i∗. Thus for each positive integer r ,

Pr
(
Zt0(i

∗ + 1) ≥ r
) ≤ Pr

(
B(N,p3) ≥ r

) + Pr

(
N−1⋃
k=0

Fk

)
+ Pr(JN+1 ≤ t0).

Also, by Lemma 7.2 the probability that some “initial” customer has not departed
by time t0/2 is at most 2ne−αt0/2 for a suitable constant α > 0. Hence, there is a
constant c̃ such that with probability 1 − e−�(ln2 n) we have 
(i∗ + 1, Yt ) ≤ c̃ ln6 n

uniformly for all t ∈ [t0/2, t0]. Thus this also holds over [0, t0].
For k = 0,1, . . . , let F ′

k be the event that 
(i∗ + 1, YJk
) ≤ c̃ ln6 n; that is,

at time Jk there are no more than c̃ ln6 n queues with at least i∗ + 1 cus-
tomers. On F ′

k−1, the customer arriving at time Jk has probability at most
p4 = c̃2(lnn)12n−2 of joining a queue of length at least i∗ + 1. Then for each
positive integer r ,

Pr
(
Zt0(i

∗ + 2) ≥ r
) ≤ Pr

(
B(N,p4) ≥ r

) + Pr

(
N−1⋃
k=0

F ′
k

)
+ Pr(JN+1 ≤ t0).

Also, by Lemma 7.2, the probability that some initial customer stays until time t0
is at most 2ne−αt0 . It follows that a.a.s. Mt0 ≤ i∗ + 1, and

Pr
(
Mt0 ≥ i∗ + K + 5

) = O(n−K−3).(36)

Now the inequality (32) in Lemma 7.1 with τ = nK , a = i∗+K+5, b = 	K/2
 + 1
and s = n−2 yields the upper bound part of (3), since

δ = nPr
(
Po(λds) ≥ b + 1

) ≤ n(λds)b+1 = O(n−K−3).

Finally, let us note one result which will be useful in [8]. Let the integer d ≥ 2
be fixed. Then, as in (36), if r = O(lnn),

Pr(M ≥ i∗ + 1 + r) = e−�(r lnn).(37)

8. Concluding remarks. We have investigated the well-known “supermar-
ket” model with n servers and a fixed number d of random choices. We have
shown that the system converges rapidly to its equilibrium distribution. Our main
result is that, for d ≥ 2, in equilibrium the maximum length of a queue is a.a.s. con-
centrated on two adjacent values close to ln lnn/ lnd . In contrast, when d = 1 the
maximum length of a queue is a.a.s. close to lnn/ ln lnn. Along the way we used
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the fact (27) that, in equilibrium, for each nonnegative integer k the proportion of
queues of length at least k is close to λ1+d+···+dk−1

.
In [8] we use this last result together with mixing and concentration estimates

(and upper bounds on the maximum length of a queue) obtained here to prove
quantitative results on the convergence of the distribution of a queue length. In par-
ticular, we give a quantitative version of the convergence result mentioned in the
Introduction. Let (vt (k) :k ∈ N) be as in (1) above. It turns out that, for suitable
initial conditions, uniformly over all t ≥ 0 the distribution of a given queue length
at time t is close in total variation distance to the distribution of an integer-valued
nonnegative random variable Vt such that Pr(Vt ≥ k) = vt (k). Also in [8] we in-
vestigate the asymptotic independence of small subsets of queues, the “chaotic
behavior” of the system.
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