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LONG-RANGE EXCLUSION PROCESSES, GENERATOR
AND INVARIANT MEASURES

BY ENRIQUE D. ANDJEL AND HERVE GuIOL!

Université de Provence and INP Grenoble

We show that if p is an invariant measure for the long range exclusion
process putting no mass on the full configuration, L is the formal gener-
ator of that process and f is a cylinder function, then Lf € Ll ) and
JLfdu = 0. This result is then applied to determine (i) the set of invari-
ant and translation-invariant measures of the long range exclusion process
on Z4 when the underlying random walk is irreducible; (ii) the set of invari-
ant measures of the long range exclusion process on Z when the underlying
random walk is irreducible and either has zero mean or allows jumps only to
the nearest-neighbors.

1. Results and notation. As the simple exclusion and zero-range processes,
the long range exclusion process was introduced by Spitzer [8]. While the other
two processes have been extensively studied (see [7] and the references therein),
rather little is known about the long range exclusion process (see [3, 6, 9]). We
believe that this is mostly due to the fact that the long range exclusion process does
not satisfy the Feller property. The main goal of this paper is to, at least partially,
overcome the difficulties related to the non-Feller character of the process.

The long range exclusion process, denoted by (1;);>0, is a continuous-time
Markov process on the state space X = {0, l}s, where S is a finite or countable
set whose elements are called sites. If n;(x) = 1, we say that at time ¢ there is a
particle at x. Otherwise we say that x is vacant at that time. Particles will attempt
to move according to a Markov chain on S whose transition matrix is p(x, y). The
movement of particles will obey the following rules:

(1) Exclusion rule: There is always at most one particle at each x € S.

(i) Random clocks: At each site there is a random clock which rings at times
given by the jumps of a Poisson process of parameter 1. These processes are inde-
pendent.

(iii) Long jumps: When a clock rings at an occupied site x, the particle at x
moves to site X;, where { X, },>1 is a Markov chain on S with transition probability
matrix p and initial condition X = x, and t is the first (positive integer) time n
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such that X, is a vacant site (site x itself is considered vacant during the jump; i.e.,
if the chain returns to site x without visiting before an empty site, then the jump is
cancelled). If the stopping time 7 is infinite, then the particle disappears.

The construction of this process for an infinite number of particles is based on
monotonicity arguments and is due to [6]. We recall his construction in the next
section.

Let nf be the long range exclusion starting from the initial configuration &,
let S(¢) be the semigroup, acting on the set of bounded measurable functions on X,
given by S(t) f(§) =E(f (nf)) and for any probability measure © on X let wS(#)
be the unique probability measure such that

[ rausw = [ s fan.

for all bounded measurable f.

Denote by J = {u: uS(t) = wu forall t > 0} the set of invariant probability mea-
sures on X for the long range exclusion process. Obviously J is nonempty since it
contains at least the measure concentrated on the empty configuration.

For any cylinder function f and n € X we write

Lfm= Y qx,y.mn[1—nWMILF0™) = fm)]

x,y€S

+ > 8C, mLf () — f(],

xeS

)]

where for x #£ y

o(y)—1
q(x,y, 17)=Ex[ [T nX),0(3) <ox),0() <oo},

i=1
X; is a Markov chain with transition matrix p(x, y), the exponent x on [E denotes
the starting point of the chain X;,

o(y) =inf{n > 1: X, =y},

5(x,n) = EX[H (X)), 0 (x) = oo},

i=0
n*Y is configuration n where the states of sites x and y have been interchanged:

T](x)s lf = y,
@) ={n0(), ifz=ux,
n(z), otherwise,

and

nx(z):{n(z), if 7 # x,

0, if z=1x.
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The operator L can be thought of as the “formal” infinitesimal generator of the
process. Note that the series above might not converge for some values of 1 even
if f is a cylinder function. To see this, suppose the transition matrix p(x, y) corre-
sponds to a nearest-neighbor random walk on Z with drift toward the right. Then
take an initial configuration n € X such that n(x) =1 Vx < 0 and n(0) =0 and
apply the generator to f(n) := n(0).

Our first result relates the operator L to the invariant measures of our process:
Denote by 1 the full configuration, that is, the element of X such that 1(x) =1 for
all x € S, and by v; the point mass measure on 1.

THEOREM 1.1. Suppose that p(-,-) is irreducible and vy € J. Let p € J be
such that ;1 ({1}) = 0 and for any finite subset R C S let fr(n) =[1,cg n(x). Then,

the series defining Lfr(n) converges u a.e. Moreover, Lfr(n) € L' (1) and
/ Lfrdp=0.

REMARK. Although we believe that the conclusions of this theorem also hold
when vy ¢ J, this will require a different proof. Since we will apply the theorem in
cases where v; € J we have only treated this case.

In the last two sections of this paper we will use coupling techniques to deter-
mine the set of invariant measures for some long range exclusion processes on Z.
For this purpose we will need a process on X x X whose marginals are versions
of the long range exclusion process and such that particles of different marginals
move together as much as possible. The exact meaning of this will become clear in
the next section. We denote by L the “formal” coupled generator. The expression
of this generator, written below, is quite involved and we suggest the reader skip it
until he has seen the next section:

Lf(n,&)

2) = Y qyn®lf0Y.EY) = F(n,§)]

n(x)=£(x)=1
n(y)=£(y)=0

(3) + Z q(xv Vs Z, U,é)[f(nxyvé:xz)_f(n,f)]

n(x)=£(x)=1
n(y)=£(2)=0

4) + Y gy L EDIFOTEEY) — f(n.6)]

n(x)=§(x)=1
n(z)=§(y)=0

(5) + ) qxy.n OOV 6 — f(.8)]

n(x)=£(x)=1
n(y)=0
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(6) + Y gy EDIfMEY) = f(n,8)]
nx)=£(x)=1
E(»)=0

©) + Y gyl e - f(. )]
n(yggg(:xl)ﬂ

(8) + > gy O EY) = f(n, )]
1) 220)=0

(9) + Z 45(?5» Yy, 7775)[f(77xy,§x) - f(n,f)]
nx)=£(x)=£(y)=1

n(y)=0

(10) + > q8(x,y, &, MIf (e, §) — f(n. )]

n(x)=£(x)=n(y)=1
E(y)=0

(11) + ) &) — f(0.8)]
n(x)=1,£(x)=0

(12) + ) SO (.E) — f(1.6)]
n(x)=0,6(x)=1

(13) + > S@ndf e, E) — F(n )],
nx)=1&(x)=1

where

o(y)-1
q(x,y,n§)=Ex[ I1 n(Xn)S(Xn),o(y)<a(X),0(y)<OO}

n=1

is the rate at which 7 and & particles at x move together to y # x;
q(x,y,z,1,§)

o(y)—1 o(z)—1
ZEX[ H n(Xn) X H £(Xp),0(y) <0(2),0(z) <o(x),0(z) <oo}

n=1 n=1

is the rate at which n and & particles at x move, the n particle stopping at y # x
and the £ particle continuing to z # x; g(x, ¥, z,&,n) isas g(x, y, z, n, §) with the
roles of & and » interchanged;

o(y)—1 o(x)—1
Q(x,y,n,$)=ﬂ'3x[ [T n(xw)x ] $(Xn),0(y)<0(X)<OO}

n=1 n=1
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is the rate at which n and & particles at x move to y # x and remain at x, respec-
tively; g(x, y,&,n) is as g(x, y, n, &) with the roles of & and 7 interchanged;

o(y)—1 00
q5<x,y,n,s>=EX[ [T n(xw) x []6&Xn),0() <oo,o(x>=oo]
n=1 n=1

is the rate at which 7 and £ particles at x move to y # x and disappear, respectively;
qé(x,y,&,n)isas gd(x,y,n, &) with the roles of £ and » interchanged and

oo

8(x,n§) =E* []_[ N(Xn)§(Xy),0(x) = OO}
n=1

is the rate at which n and & particles at x disappear; finally g (x, y,n), g(x,y,&),

6(x,n) and §(x, &) are as in (1). Observe that

q(x,y,z,n,8)=q(x,y,n,§)=¢qdé(x,y,n,§)=0
unless £(y) = 1.

THEOREM 1.2. Under the same hypothesis as in Theorem 1.1, let [ be an
invariant measure for the coupled long range exclusion process whose marginals
w1 and po put no mass on 1. Then, for any cylinder function f, L f(n, &) is well
defined [i almost everywhere, belongs to L' (i) and

f’ifdﬁzo.

REMARK. The proof of Theorem 1.2 will be omitted since it is similar to the
one of Theorem 1.1. One just has to remark that f is a linear combination of
functions of the form ]_[(x,y)eRl xR, N(X)&(y), where Ry and R; are finite subsets
of S and prove the result for these functions proceeding as in the proof of our
previous theorem.

Let (vp)pefo,1] be the one-parameter family of Bernoulli product measures such
that v,(n(x) =1) =p forany x € S = 74, Liggett has shown that, when p(-, -) is
a random walk on 72, these measures are invariant:

THEOREM 1.3 (Theorem 4.2 and Corollary 4.4 of [6]). Suppose p(y — x) =
p(x,y) forall x,y € Z¢; then v, €J for any p € [0, 1] and in particular vy € J.

In the last two sections of this paper, we apply Theorem 1.2 and coupling
methods similar to [5] to show that in some cases all the invariant measures are
convex combinations of the v,’s (0 < p < 1).

The following two theorems require that S is an integer lattice and p(x, y) is the
transition matrix of an irreducible random walk on that lattice. We recall that by
de Finetti’s theorem (see Chapter VII.4 of [2]) the set of exchangeable probability
measures coincides with the closed convex hull of {v,:0 < p < 1}.
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THEOREM 1.4. Suppose p(x,y) is the transition matrix of an irreducible ran-
dom walk on Z.%; then the set of invariant and translation-invariant measures co-
incides with the set of exchangeable measures.

This result is not new (see [3]). However, thanks to Theorem 1.2 we can give a
more natural proof which shortcuts Guiol’s.

THEOREM 1.5. Suppose X = {0, 1}~, p(x,y) is the transition matrix of an
irreducible random walk on Z such that )", |x|p(x) < ocoand ), xp(x) =0. Then

J = {all exchangeable measures}.

THEOREM 1.6.  Suppose X ={0, 1}%, p(x,x+1):=p=1—p(x,x — 1) for
all x € Z. Then

J = {all exchangeable measures}.

REMARK. Unlike the simple exclusion process, all the invariant measures of
the one-dimensional nearest-neighbor long range exclusion process are translation
invariant.

The paper is composed in the following way. Section 2 treats the construction
of the process. In Section 3 we prove Theorem 1.1 and in Section 4 we give results
relating the invariant measures of the coupled process to the invariant measures
of the single process. The one-dimensional zero-mean case is treated in Section 5
where we also sketch the proof of Theorem 1.4, and Section 6 is devoted to the
nearest-neighbor case. Throughout this paper N denotes the set of natural integers,
that is, N = {1, 2,...}; Z* denotes the set of nonnegative integers, that is, 7t =
{0,1,2,...} and Card(A) denotes the cardinality of A. Finally for x,y € R we
denote by x A y the minimum between x and y.

2. The construction. In this section we construct the long range exclusion
process simultaneously for all possible initial configurations. This construction
follows [6] with a slightly different approach.

Let (Ny(#))r>0 (x € S) be a collection of Poisson processes of parameter 1
and for each (n,x) € N x S let (X};"")rez+ be a Markov chain with transition
matrix p(x, y) such that X(')l’)C = x. Assume that all these Poisson processes and
Markov chains are defined on the same probability space €2 and are independent.
Let X ¢ be the set of finite initial configurations:

Xr= neX:Zn(x)<oo .

x€S

We now provide a pathwise construction of the process starting from any n € X:
A particle at x € S will wait until the Poisson process Ny (¢) jumps. If this jump is
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the nth jump of N, (¢), then the particle jumps to X ;’ (g) where £ is the configuration
of the process just before the jump and

7(§)=inf{r > 1: X"* =x or §&(X"") =0}.

Call nf the random configuration obtained at time s when the initial configuration
was £.

It is now easy to verify that there exists a subset €2¢ of 2 of probability 1 on
which for any initial £ € X :

(1) there are no simultaneous jumps of particles,
(2) the total number of jumps of nf is finite on any finite time interval,
(3) 5 =¢.

To extend the construction to infinite configurations we will need the following
partial order in X: we say that n < & if n(x) <&(x), Vx € 8. Itis also easy to verify
that our construction satisfies the following property:

(4) if ¢, & € Xy are such that ¢ <&, then on 29 we have 77§ < nf,‘v’s > 0.

For an arbitrary initial configuration £ € X and s > 0 we define on :

§x)= lim  né(x).
s t1E.ceXy s

With this construction property (4) remains true for ¢, & € X.

We have now defined on the same probability space nf for all s > 0 and
all £ € X. The coupled process starting from (¢, ) is now defined as the process
(ng, n?). When there will be no ambiguity on the initial configuration we will just
denote by 7, the process.

In the rest of this paper we denote by P and E the probability and the expecta-
tion operator of the space in which the process has been constructed, that is, the
space 9. When computations involve auxiliary Markov chains or random vari-
ables, we call P and E the probability and the expectation operator which apply
to them. Finally, when we need to emphasize the initial condition of one of these
chains we will write P* and E*.

3. Invariant measures and generator. This section is devoted to the proof
of Theorem 1.1 which is performed in several lemmas. We begin by an informal
description of the adopted strategy: Suppose &p is a finite initial configuration.
Then standard results for Markov processes on countable state spaces yield

Ef () — f(6) =B /0 Lf(E,)ds.

Then, if we are able to pass to the limit as £y grows to an infinite configuration and
to integrate with respect to an invariant measure 1 we should obtain

/(E/Ot Lf(és)ds> du=0.
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Then, by Fubini and the invariance of u we should have 7 [ Lf(§)du = 0 as
required. To justify this, certain integrability results are needed. These are provided
by Lemmas 3.2 and 3.6.

3.1. Notation and definitions. Let R be a finite subset of S and let fr(n) =
[Tiern(x). When R = {x} we will write f, for fgr. We decompose L in two
pieces L = L™ — L™ where

LY fr) =" D nqx,y. =01 [] nG)
XERC yeR zZ€R\{y}

and

L™ fr) =) fr(n) <8<x, M+ gy, mll— n(y)]).

X€ER VF#Xx

Note that L™ fg is bounded by the cardinal of R. Therefore the main difficulties to
implement the strategy described at the beginning of this section are due to L™ fg.
Finally let

L™ fem) =) gy, x, n).

yeS

This represents the rate at which particles jump to x regardless of whether they
may or may not stay at that site.

3.2. Preliminary results. The first lemma is a general result about Markov
jump processes.

LEMMA 3.1. Let Q be the intensity matrix of a nonexplosive Markov jump
process X; on a countable space E. Let A be a nonempty subset of E, suppose
x € E\ A and define Q(x, A) = ZyeA Q(x, ). Then for all t € Rt we have

IP”‘(/TA 0(X,, A)ds > t) <e!
0

where T4 = inf{s > 0: X € A}.

PROOF. Let
Qx, A= > Q(x,y) and Qx)=Q(x,A)+ Qx, A°).

yeA\{x}

Thus, Q(x) is the rate at which the process leaves x. Let 7o =0, and for all n > 1
let 7, =inf{t > 7,_1:X; # X, ,} be the time of occurrence of the nth jump of
the process. Then, let

F™(t) = P* (forwn O(X,, A)ds > z)e’.
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To prove the statement we show by induction that F'(¢) <1 for all n > 1, all
xeAandallt > 0.
As 11 < 14 a direct computation gives

Fxl (=P (/Tl 0(X;,A)ds > t)et = ¢~ (/O At 1 — p=(Q(x,AD/Qx, ANt
0

The second equality is valid since Xy = x for all 0 < s < 71. Hence, Fx1 (1) <1 for
alxe E,AC E\{x}and? > 0.
Now supposing we have the property up to rank n, we write

F' () =PY(Q(x, A)ty > 1)e’

TANT+1

—l—IP’x(Q(x,A)tl 5[,[ Q(XS,A)ds>t—r1Q(x,A)>e’.

1

The first term on the right-hand side is F!(r) and therefore equal to
e~ (QW.AD/Q. ANt - Applying the strong Markov property to the second term we
obtain

FIF (1) = ¢~ (@ A9/ QG A

1/0(x,A)
+e [/ 0 (x)eeWs
0

Q(x,y) ( AN )
E =P X, A — LA
xyEAC\{X} 00 fo o( Ydu>t—s5sQ(x,A) dsi|

— ¢ (Q(x, A/ Q(x, A1

1/Q(x,4) A
+/ e P95 N QL ) F) (= 5Q(x, A))e?™ N ds
0 yeA\(x)

— ¢ (Q(x, A/ Q(x, )1

1/Q(x.A) p
+ O(x, y)f e AV (1 —5Q(x, A))ds.
yeAS\(x) 0

By the inductive hypothesis this implies
c 1/Q(x,A) .
FrH (1) < = (@ A9/ Q. A +/ O(x, A QWA gg — |
0
which concludes the proof of Lemma 3.1. [J
The second result shows that an invariant measure, which does not charge the

full configuration, gives weight 1 to the set of configurations for which the mean
over time of the arrival rate of particles on a given site is finite.



LONG-RANGE EXCLUSION PROCESSES 2323

LEMMA 3.2. Suppose p(-,-) is such that vi € J. Let u € J such that
nw({1}) =0 and let

Y= {é EX:/OIL++fx(17§)ds <oo\7’x€Sa.s.}.

Then u(Y) =1.

The main idea in the proof of this lemma is the following: If fol LTt f, (nf) ds =
00, then infinitely many particles will attempt to move to x in an arbitrarily small
time interval. These particles will fill arbitrarily large neighborhoods of x and the
full configuration will be attained, contradicting the hypothesis w({1}) = 0. To
develop this idea, we will need to introduce some notation and to prove an inter-
mediate result (Lemma 3.3) which itself will be a consequence of a subsequent
lemma.

Fix x and let Sy be an increasing sequence of finite subsets of S such that:

i) xe$Sy,
(ii) for each k and y € S; the Markov chain with transition matrix p(x, y)
starting at x has a positive probability of hitting y before leaving S, and

(i) U2, Sk =S.

For any arbitrary initial configuration £ € X, and all k > 1, let &K(y) =
&E(y)Is, (y), where I5(x) =1 if x € A, 0 otherwise. Observe that for each finite n
the long range exclusion restricted to {n € X:)>_, n(x) = n} is a nonexplosive
Markov chain on a countable state space. Let

5() =P(/O1 L¥* () ds = o0)

and suppose ¢ is a strictly positive integer. Let 7o = 0 and let 7; = 7;(£), i > 1, be
the successive times at which the Poisson process Zyese (Ny(1))r>0, jumps.
Let

AE) = {/01 L* o) ds = oo

and for j >0 let

A& = {/:’“M L* i) ds = oo,

j/\l
Fork, ¢, j € Z™, let
C)={neX:n(z)=1VzeS,,
k _. £
o“(¢, &) =inf{t > 0:n; €C¥)}
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and
kip ¢ gy = Lk
o"(t, j,&)=inf{t >1;:n; € C)}.
We will need the following lemma.
LEMMA 3.3. With the preceding notation

Jm Lok gy <oy 214,00 as.

PrROOF OF LEMMA 3.2. Fork>{¢>n>0

P(rf €Cm) = P(rf eCmlo(t,&) < NP, &) <1)

> inf P(n!' e C)P(ck (e, &) < 1),

where the last inequality follows from the strong Markov property applied at time
ak(e, &) and the fact that for any s € [0, 1], P(nf eC)) > P(n§ eCn))ifé =¢.
As ok, &) <ok (¢, j, &) forall j >0, Lemma 3.3 implies that

Jm Lok e <y 21040 =Tae)  as.
Therefore
. gk o 1¢
klgl;oP(nl e C(n)) > OélglP(ns € C(n))P(A(%)).
Hence

. . 4
P(r} € C(m) = P(A®)) lim inf P(n) € C(n) =P(AE)) =3().
where the first equality in the last formula is due to the invariance of the full con-
figuration. Hence P(r5 = 1) =lim, P(1/} € C(n)) > 8(£), and
0= (1) =uSMALD = [ 5E) duc®.

Hence §(&£) =0 p-a.e. This concludes the proof of Lemma 3.2. [

It remains to prove Lemma 3.3. To do so, we introduce some extra notation:
let Eg = {x}, for i > 1 we denote by E; the set of points in S; reachable by X,
visiting i — 1 intermediate points in Sy, that is,

Ei=E(@)={yeS;: Y  px)-pki-1,y)>0¢.

X1,..,Xi—1€S¢

For ¢ € Xy let
Fo=Fo(¢, &) =EoN{y €S¢:¢(y) =0},
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and for alli > 1 let

i—1
Fi=F(0=En{yeS:cy=01\ JF

j=0
Since Sy is finite, there exists » < oo such that
r
U Fi=tyeSe:c(y)=0}.
j=0
Let
b(€) = inf inf Yo plrx) - pio1, ),
i<ryek;
x;eE;, j=1,...,i—1

and note that 0 < b(£) < 1. Now we state and prove another lemma and then we
derive Lemma 3.3 from it.

LEMMA 3.4. Fixe > 0and c € (0, 1], let mg = Card(Sy) and let a be a posi-
tive real number such that e™" < ¢/my. Suppose { € Xy and let

B(2) = { / L ffyds = amo},
0
then
P(B.(5)N{o(£,5) =11 Ac}) <&,
where
o(€,¢)=inf{t > 0:n° € C0)}.

PROOF. Enumerate the points of | J;_ F; starting with points in Fy (if any),

then points in F1, and so on. Let yq, ..., ¥, be this enumeration. Define
Dy, ={n:n(yj =1},
po=0,

p1=inf{t > 0:n; (y1) = 1},
pi=inflt = pi_i:inf ) =1},  i=2,....m.

Since m < mg, we have

P( [ T B OLT o) ds = amo)

(14) < P( [ N b OL f ) ds = a>

i NT1

m-l i+1ATI
(15) +y P(/p’ bOLT fr(nf)ds > a>.
i=1 b
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Since the process 77§ is a nonexplosive Markov jump process on a countable
state space, we may apply to it Lemma 3.1. Using the notation of that lemma,
s € (0, p1 A 11) implies that

)L™ fr(n%) < 01, Dy,),

where Q is the intensity matrix of nf.
Therefore, it follows from Lemma 3.1 that (14) is bounded above by

&

P(/Op1 Q(né, Dy,)ds za) <—.

=
Similarly, for 1 <i <m — 1 each corresponding term in (15) is bounded above
by &/myg. Therefore

PmATI m
P(/ b(OLT fe(né)ds > amo) <e— <e.
0

mo

Hence

e[ HOLT 0 ds < amo. B.0)) = P8 .
0

Since on B.(¢)

TINC
amo < [ bOLY firf) ds,
0
this implies that
P(on <11 Ac, Be(£)) = P(Bc(8)) — .

It now follows from

{om <71 Ac, Be(D)} C {n5, € C(0), B(0)},
that

P(o(£,¢) <71 Ac, Be(£)) 2 P(B(2)) — e,

which implies the lemma. [

PROOF OF LEMMA 3.3. Fix ¢ > 0, let a be as in Lemma 3.4 and let

Tipinl P
Aj(E k)= ” b(OLTT £ (05 ds zamo}.

j/\l

k
Applying the strong Markov property to the process nf at the stopping time 7; we
get

P(AjE )N {o"(t, j €} = i1 AT))

— /P(BC@) Mot ¢} = Ac)du(. o),
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k
where (¢, c¢) is the joint distribution of (ni ;> 1 — 1) restricted to {7; < 1}. It now
follows from Lemma 3.4 that the right-hand side of this equation is less than &.
Since by monotone convergence
Tj+1 Tj+1

. j+inl Tt gk J
lim b(0)L fx(’?s )ds :/
T

k— 00 Tinl Nl

M b OL £ ds,

there exists ko such that
P(AjE)NAjE k) <e Yk > ko.
Hence,
P(A;E) N{o"E, j. ) =t nl)) <2e

holds for all k > k. Since ¢ is arbitrary and {Gk(ﬂ, J-&} = 41 A 1} decreases
with k, the lemma follows. [J

LEMMA 3.5. Let R be a finite subset of S. Then on Qg

. k
(16) Jim L*fr(nf) =LY frO)  VEeX.seRT,
and

. - k —
(17) Jim L™ fr(05) =L™ fr(nf)  VéeX seRY,

PROOF. To prove the first equality we consider three cases:

(a) I for x.y € R, y #x, nf(x) = nf(y) = 0, then nf (x) = nf () =0 for
all k and L* fr(rf ) = L™ fr(nf) =0.

(b) If x is the only point in R such that nf (x) =0, then nfk (x) =0 for all k.
Hence, the result follows from monotone convergence.

(©) Tf fr(n) = 1, then fr(nt) = 1 for k large enough and limy_ o L+ fr ()
=L fr(15) =0.

For the second equality we consider two cases:

@) T fr(n) =0, then fr(yf ) =0 for all k. This implies that L~ fr(nE ) =
0=L" fr(n5) for all k.

k
(b)) If fR(nf) =1, then fr (nf ) =1 for k large enough, and the result follows
from the bounded convergence theorem. g

Let Z,, n > 1, be a sequence of i.i.d. random variables, whose common dis-
tribution is the exponential of parameter 1, and let N be a Poisson random vari-
able of parameter 1 and independent of the Z’s. Then define U = Zf\’: Jql Z; and

U, = Z§N+1)/\n Z;

i=1 L
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LEMMA 3.6. Let U be as above. Then,

1
(18) P(/O L+fx(n§)ds>a)5P(U>a) VEeX.aeRY xeS.

PROOF. We start proving the lemma for § € X ¢. Define the following stopping
times:

UO=0,
t=inft >0 i) =1}, ix>1,
ai=inf{t>ti:nf(x)=0}, i>1.
Let
Ti 4
Xi= [ 1t fdds
o'~
and

Y,' =O'i —‘L’i.
Then applying Lemma 3.1 to the set A = {§ € Xy : §(x) = 1} we get

1

T
(19) P(/ L+fx(n§)dszt)5e—f VeEeXy, teRT.
0

Then note that each time x is occupied, it remains so for at least an exponential
time of parameter 1. Therefore, the number of subintervals of [0, 1] during which
x is not occupied is stochastically dominated by N + 1. Since during the time
intervals in which x is occupied L™ f(n) =0,

1 ) i—1
/0 LY fe(m$ds <Y X0 HX; < ZXiI[O,l)(Z Yj>,
i>1 i>1 j=1

where by convention Z;;ll Y;=0ifi=1.
Let F,,(x1, y1, - .., X,) be abounded measurable function, increasing in the vari-
ables x and decreasing in the variables y. We will now prove that

(20) E(F,(X1, Y1, ..., X)) <E(F(Z1, ..., Zoy—1)),

where the random variables Z; are as above.
This is done by induction on n. For n = 1 this is a consequence of (19). Condi-
tioning with respect to the o -algebras F_.-1 we get

E(FuX1 V1o Xl Fpet) = [ FaX0 Yoo Yot 5) AP 7, ().
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Since F}, is increasing in x, and by the strong Markov property and Lemma 3.1
the conditional distribution of X, given ¥_.-1 is a.s. stochastically bounded above
by the distribution of Z5,_1, the right-hand side is a.s. bounded above by

/Fn(Xla Ylv DR} Yn—laxn)d]P)Zz,,,l(xn)-

Conditioning this last expression on ¥,

wn—1 and arguing in a similar way we get

E(F (X1, Y1, ..., Xn)| Fpn1)
< f / Fu(X1, Y1 sy Xt Yuets X)) dP2y(ine1) P, | (i)

and (20) follows by the inductive hypothesis.
Applying (20) to

n i—1
Fn(xl,yl,...,xn)z 1’ lf ZXII[O,1)<12=:1))]> >a,

i>1
0, otherwise,

we get

n i—1
P(Z X,’I[OJ) (Z Yj) > a) < [P(Un > a),
j=1

i>1

and taking limits as n goes to infinity we obtain (18).

To prove (18) for an infinite initial configuration take an increasing limit of
finite initial configurations and deduce it from the finite case using (16) and Fatou’s
lemma. O

k k
3.3. Proof of Theorem 1.1. As Lt fr(f) < YeexLt i) <
Y eer LT fr (nf), by (16), the dominated convergence theorem and the defini-
tion of Y we have

. 1 ' 1
hm/O L+fR(n§)ds:/O LY fr(S)ds  as.,VEeY.

k— 00

As |L™ fr] < Card(R) a similar equality for L~ follows from (17). Therefore,
1 1
1) lim / LfR(nfk)ds:/ Lfr(nf)ds  as.VEeYy.
k—00J0 ’ 0

k k
Since L+ fr(nf ) < L+ > er fr (15, and by (18) the sequence (in k) of random

variables
1 k
{f LY f(nt )dS}
0 keN
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is uniformly integrable, it follows from |L~ fg| < Card(R) and (21) that

(22) [/ Lfr(n ds}—>E|:/ LfR(né)ds] V& € Y when k 4 oo.

As the process nf is a Markov process on the countable space Xy with a

bounded Q matrix we have
‘ 1
Efe(f) = /o6 =E [ Li()ds

k
Since |[E fR(nf ) — fr (Sk)| < 1, it follows from (22) and the dominated conver-
gence theorem that

Jim [ (E ) - fe€)du© = [ E( /0 1 LfR<n§>ds) dp(e).

By the dominated convergence theorem and the invariance of p the left-hand side
above is 0. Since | L™ fg| < Card(R) we may apply Tonelli’s theorem to the right-
hand side. It then follows from the invariance of w that this right-hand side is equal
to

/LfR(n) du(n),

thus the theorem is proved.

4. Coupled process and invariant measures. In this section we give some
general results relating the invariant measures of the single process to the invariant
measures of the coupled process. Let J and 7 be the set of invariant measures
for the single process and the set of invariant measures for the coupled process,
respectively, and let 4 and $ be the set of translation-invariant measures on X
and X2, respectively.

LEMMA 4.1. Suppose 1, uo € J. Then there exists a probability measure V
on X x X which is invariant for the coupled process and has marginals (1 and [1>.
Moreover, if S = 74, and p(x, ), u1 and uy are translation invariant, then we can
choose a translation-invariant measure v as above.

For a proof of this lemma we refer the reader to Proposition 5.4 and Remark 5.5
in [3].

LEMMA 4.2. LetV be an invariant measure for the coupled process such that

V{1, &) :inx) =& =1,n() =) =0})=0
whenever p(x,y) > 0. If p(x, y) is irreducible, then

V{(m,&):n<&org<n})=1.
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Thanks to Theorem 1.2 the proof of this lemma follows a standard induction
argument (see Lemma 2.5 in [5]) and will be omitted.

LEMMA 4.3.  Suppose that S is the d-dimensional integer lattice 74 and that
forany p €J and any p € [0, 1] there exists a probability measure v, on X2 such
that:

(i) Y, is invariant for the coupled process,
(ii) its first marginal is v, its second marginal is . and
(iii) Vp{(m,&):n<§or§ <n}=1

Then all elements of J are exchangeable.

PROOF. For n € X define

Un) =li : 2 @
n) = lmsupid T
n (21’1 + 1) (X100, XJ)GZd:linSn’i:l""’d
and
L _1. . f 1
O = o e 1y 2 e

(15 Xg) €24 xi | <n i=1,....d

Let u be an element of J and let § > 0. Then, as in page 426 in [1] it follows from
the hypothesis of this lemma that

Um) = L), pu-a.e.

Let0=ap<a; <---<ay_1<a,=1besuchthata; —a;_; <dfori=1,...,r
and u({n:U(m)=a;})=0fori=1,...,r — 1. Then, fori =1,...,r let

Ai={neX:Um =L €lai-1,al},
Bi={neX:U(n) =L1n) <ail,
and fori =0,...,r —1let
Ci={neX:U@m =L > a.

We will now show that under the assumption ©(A;) > 0 the conditional measure
w(-|A;) is in J. This is done in two steps: First let V; be an invariant measure
for the coupled process whose marginals are © and v, _, and concentrates on
{(n,&):n > E&orn < &}. Since the set {(n,&):n > &} is stable for the coupled
process, it follows that the conditional measure V; (-|{(n, &) :n > &}) is also invari-
ant for the coupled process. Hence, its first marginal w(-|C;—1) € J. Applying a
similar argument to this last measure we see that w(-|B; N Ci—1) = u(-|A;) € J.
Finally applying the hypothesis of the proposition to w(:|A;) we see that v, |, <
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n(-|A;) < v, . Therefore, there exist nonnegative reals Ay, ..., A, whose sum is 1
and satisfy

r r
Z)"iva,‘,1 =p= Z)"iv(l,‘-
i=l i=1

From this double inequality we conclude that for any n and any pair of subsets A
and B of Z¢ of cardinality n,

(e er=]) et

is bounded above by an expression which tends to 0 with §. Since ¢ is arbitrary

it follows that u({n:[[,can(x) =1}) = nu({n: [l ep n(x) = 1}). Hence u is ex-
changeable. [

REMARK. In view of the last two lemmas, to prove the last three theorems of
this paper it suffices to show for any u € J (u € IN &) and any p € [0, 1], there
exists an invariant (and translation-invariant) measure for the coupled process v,
with marginals p and v, such that

Vo ({(n, &) :n(x) =&(y) =1,n(y) = &(x) =0}) =0,
whenever p(x, y) > 0. Moreover, we may assume that ;«({1}) = 0, since otherwise
we can decompose u as u({1})vy + (1 — w({1}))” where 1 is an invariant mea-
sure such that i/ ({1}) = 0. Furthermore, we may also assume that p € (0, 1), since
the hypothesis of Lemma 4.3 follows immediately from Lemma 4.1 if p =0 or 1.

5. Random walk with zero mean. As remarked at the end of the previous
section, to prove Theorem 1.5 (Theorem 1.4) of this paper it suffices to show for
any w €J (u € IN 4) such that u({1}) =0 and any p € (0, 1), there exists an
invariant (and translation-invariant) measure for the coupled process v, with mar-
ginals v, and u such that

23) V({. &) ) =G =Ln()=Ex)=0})=0  if p(x,y)>0.
Since by Lemma 4.1 there is a measure v, € ij (50 g) with marginals v, and p,
we only have to prove that it satisfies (23).

In this section (except the very end of it where we sketch the proof of Theo-
rem 1.4) we restrict ourselves to dimension 1: X = {0, 1}% and we suppose that the
underlying transition matrix p corresponds to a zero-mean random walk, that is,
forall x,yeZ, p(y —x) = p(x, ),

(24) Z x| p(x) < o0
X€Z

and

(25) pr(x) =0.

X€Z
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5.1. Notation and definitions. Recall that for x € Z, o (y) denotes the hitting
time of {y} for the random walk with transition matrix p(x, y). We now change
slightly the notation. For any n € X we denote

o(n) =inf{k > 1:n(Xy) = 0}
where (X,),en is a random walk with transition probability p. Let p* be the transi-
tion probability of the reverse walk defined by p*(x, y) = p(y, x) forall x, y € Z.

Observe that the Markov chain X with transition matrix p* is also a zero-mean
random walk. Now, ¢*(x, y, n) and o*(n) are defined as ¢ and o substituting X;

for Xy.
Let
o(y)—1
(26) q(x,y, n)=Ex[ [1 n(Xk>,a<y)<oo].
k=1

Let Yo = Xg and Y,, = X,, — X,,_1 for n > 1 be the increments of the walk.
The (Y;)’s for i > 1 are i.i.d. random variables with distribution p. For a fixed
n € X observe that o (n) is a stopping time for the natural filtration of the (Y;)’s,
and forallx #yeZ

o (n)
(27) [l—n(y)]ﬁ(x,y,n)=1P”‘(Z Yn=y,6(n)<00>.

n=0
The couple (1;, &) will designate the basic coupled process. We will say that there
is a positive [negative] discrepancy at site x if n(x) > &(x) [n(x) < &(x)]. We now
define:

Ax,y,n,8)

(28)  =Ihw)=1,£0)=0 (In(y)=€(y):0 g(x,y,n)

+ 2 Th@=t@=110)=6:()=04 (2 X, 1E)G(x, ¥, 771))-
ZF#x

This represents the rate at which a positive discrepancy at site x reaches a vacant
site y: The term preceding the “+” sign considers the case in which the movement
of the n particle starts at x while the term after that sign takes into account a
movement due to the simultaneous arrival from z to x of n and £ particles. We
define also:

B(x,y,n,8)

(29) =IL,00)=1,6(0)=0 (In(y)zofJ(x, y.n)

+ Z Ly o)=t(0)=1.n.(»)=0 4 (2, X, n)q (x, y, m)) .
Z#X
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This is almost the same expression as (28) but site y may or may not be occupied
on the £ coordinate; thus the positive discrepancy may or may not coalesce with a
negative one. We also define:

Cx,y,n) =Iu)=1 (ln(y)=OQ(X, y.1n)
(30)

+ Z Lyo)=1.0.(n=04(z, x, n)q(x, y, m)) .
7#X

This is like the previous expression (29) without any restriction on the & coordi-
nate.
Finally let

(31) D(x,y,n,8) =q(x,y, Mlya)=£(y)=1&(x)=n()=0

which is the rate at which a positive discrepancy at site x moves and coalesces
with a negative one at site y.

REMARK. Obviously forall n,£ e Xandx,y e Z

A(x,y,n,8) < B(x,y,n,§) <C(x,y,n).

As before v, denotes the Bernoulli product measure with constant density p €
(0,1). Let u € J and denote by v, an invariant measure for the coupled process
with marginals v, and .

Let A,(x,y) = [A(x,y,n,&)dV,. Similarly, let B,(x,y), C,(x,y) and
D,(x,y) be the respective integrals of (29), (30) and (31) with respect to V.
From our previous remark we get

(32) Ap(x,y) = Bp(x,y) = Cp(x,y).
The proof of Theorem 1.5 relies on the following observations:

(1) jumps of positive discrepancies have mean 0,

(2) when discrepancies of different sign meet they disappear,

(3) the number of positive discrepancies in the interval [—n, n] can only in-
crease through boundary effects, but due to (1) the Cesaro averages on n of these
effects tend to O,

(4) from (2) and (3) we see that to keep the number of positive discrepancies
fixed under an invariant measure there should be no pair of discrepancies of differ-
ent signs.
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5.2. Some auxiliary results. Let Ry be the number of distinct points vis-
ited by the random walk with transition probability p(-,-) in k steps: Ry =
Card({Xg, ..., X¢}). Let 1y =0 and for k > 2 define 7y = min{n > 1: R, = k}.

In [6], page 888, the following result was stated without proof.

LEMMA 5.1.

sup E(tx)
P S
PROOF. Since 7, =) §_,(tx — Tx—1) for n > 2 we have
E — T
(T3n) < sup E('L'k ka 1>.
n 2<k<n k

Hence, it suffices to show that

Tk — Th—1
(33) /chgE<T> < 00.

From Theorem 1 in [4] we know that there exists a constant ¢ such that for any n
c
supP(X, =x) < —.
)Cp ( n X ) — ﬁ
Thus the probability that the walk lies in a given set of £ points at time m is trivially
bounded above by £c/\/m.

Let D be a positive integer to be chosen later, and let R;_; be the set of visited
sites by the walk up to time t;_;. We have

n
(34) {tc — te—1 > nDK*} C ({1 X4, yipk2 € Ri—1}-
i=1

But, using the strong Markov property and the previous bound, for any given
A C Z with Card(A) =k — 1, we have

n
IP)<(]{)(‘L'k1—i-ka2 € A}‘kafl € A)

i=1

n i—1
= HP<XU<—1+I'D/<2 c A’ m {ka_1+jDk2 € A})
i=1

j=0

IA

I
—_

SgpP(er_lJriDﬂ €AlX, | 1i-npr2=X)

(e’
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From this bound and (34) we get

c n
(35) P(tk — Tk > nDk?) < (—> .
VD
Now we choose /D > c. Summing (35) over n we have that >, P((tx — tx—1) >
nDk?) is bounded above by a constant that does not depend on k which im-
plies (33). U

LEMMA 5.2. Let o € (0, 1/3). There exists a constant ¢ such that

k3a
PRy < k%) < &

forall k> 1.
PROOF. For any x € R denote by [x] the smallest integer larger than or equal
to x. Observe that
(R <k} = {T[ka] > k}.
By Markov’s inequality
1
P(‘L’[ka] > k) < EE(‘L’[koq).

From Lemma 5.1 we have that c¢o = sup; E(tx)/ k3 < 00. Then
co[k®1?  8cok*
= . H
k k
LEMMA 5.3. Forall p € (0,1) and x € 7Z,

S%WwWDﬂWMweU%)

P(Rx < k%) <

and

supE* (0% (1)) < E*(a*(n)) € L*(vp).

Z€Z

PROOF. Observe that for all z € Z, o (n;) < o (n) since it is more likely to find
an empty site on 7, than on 7 (site z is empty for 7, not necessary for n). Hence,
it suffices to prove that E¥ (o ()) € Lz(vp). This is done as follows:

/ E* (o ())* dv, < / E* (o (n)?*)dv,

_ / S k2P (o () = k) dv,
k=1

00 k—1
< / ZkZIEx[]_[ U(Xg):| dv,.
k=1

=1
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By Tonelli’s theorem, this is bounded above by

36) > RES (R = 13 (k+ 2B (o).
k=1 P k=0

By Lemma 5.2 there exists ¢ such that
P(R; < k%) < ck™1/4,
This implies:
P(Rppz < k'/®) <P(Rpey < Tk < efk/27 1% < k™18,

Now, for m < n let R), = Card({X,,,..., X,}) and observe that, since k >
[k'/27(Tk'/21 — 2), for any x > 0 one has
2=z /2
{Ry <x}C ﬂ {Rﬁjwjl/iq 1 <x}.
j=0

(+DIKY) . hy b g
As RJ. %127 for j > 0 are i.i.d. r.v’s distributed as Rp;1/27, we deduce from the

previous bound that
P(Ry < k'/8) < (ck=1/8)IK"*1-2,

Therefore conditioning on {R; < k!/8} and its complement we obtain

— 1/29_ 1/8
E*(p™) < (ck™ 12 4 ok,

which implies that (36) converges. [

LEMMA 5.4. Forall p € (0,1) and all x € Z we have

>y — x|l —n(M1g(x, y.n) € L*(v,),
veZ

Yy —xI[1—n(Mlg(x, y. ) € L*(v,),
yeEZ

Y =0l —nMIgx.y. ) =0,  vy-ae.,
VEZ

Y =0 =nMlg,y,m =0,  vp-ae.
VeZ

PROOF. By (27)

o(n)
Doy —xll=nMIg&.y.m =1y —x|IP>X<Z Yi=y,o(n) < oo)

yEZL yeZ i=0

:Ex<

a(n)

>

i=l

,o(n)<00)-
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By Lemma 5.3, o () has v,-a.e. finite expectation and by the triangular inequality

It then follows from Wald’s equation that

D oly —xlll —n(WMIg, y.m) <E*(a() Y Ix[p(0.x),  v,-ae.

VEZ X€EZL

o(n)

> v,
i=1

The first assertion now follows from this upper bound, Lemma 5.3 and hypothe-
sis (24). The second assertion follows from the first and the inequality g (x, y, n) <
q(x,y,n). To prove the third assertion repeat the same argument, using hypothe-
sis (25) to get

o (n)
D=0l —nMIgx, y.n) = E"(Z Yi,o(n) < OO>

veZ i=1

=E*(o(n)) pr(O,x) =0, vp-a.e.

X€Z

The last assertion is proved as the third using o (5 ) instead of o (). U

LEMMA 5.5. Let

Cr=[ X Iy =xICC. v mdv,.

yeZ

Then, C, does not depend on x and is finite.

PROOF. The first assertion follows from the translation invariance of v,.
Hence, to complete the proof of the lemma we only need to show that

[ S 1vic. v mav, < oo,
YeZ

To prove this, we first note that the integrand is bounded above by

37) > Iyl = n(»)1q(0, y, n)
YEZL
(38) +Y I =M1 Y. q:.0.mq(,y,n.)
YEZ z#0,2#y
(39) +> 1v1g(y. 0, m)g(0, y. ny).

yEZL
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By Lemma 5.4 (37) is v,-integrable. We will now show that the other two terms
are v,-integrable. For (38) write

S =nM1 Y. q(z.0,7)q(0, y,n.)

YEZ 7#0,z#£y
=>"q0,m) Y Iylll —n(»Ig (0, y, ns).
z#0 Y#zZ

Since for y # z, ¢ (0, y, n;) <¢q(0, y, n), this last expression is bounded above by

(Z q(z,0, n)) (Z IyI[1 = n(»1g(0, y, n))-

z#0 YEZL

Hence, by Lemma 5.4 it is now enough to show that Z#O q(z,0,n) isin Lz(vp).
For this purpose, note that g(z, 0, n) = ¢*(0, z, n) and Z#O q*(0, z, n) is bounded
above by E(o*(179)) which is in Lz(vp) by Lemma 5.3.

For (39) first note that since g (y, 0, n) < 1, it suffices to show that ZyeZ |v]g (0,
¥sMy) = 2 yez1¥1g(0, y,m) is vy-integrable. Since v, is a product measure
and ¢ (0, y, n) does not depend on 1n(y), we have

[ S it =m0, v v, = (1= p) [ 15130, v, v,
YEZL yezZ
Since p < 1 and the left-hand side above is finite by Lemma 5.4 we also have
[ X 11g©. v mav, <o
veZ

which completes the proof. [J

LEMMA 5.6. Forall p e (0,1) and all x € Z

Y (y—x)B(x,y.n.6)=0, 7, —ae.
veZ

PROOF. Since B(x,y,n,&) < C(x,y,n) the series converges absolutely
Vp-a.e. by Lemma 5.5. Therefore it suffices to show that

Z(y —0)I;0=1,600=n(»)=04(x, y, 1) =0, Vp-a.e.
yeZ

and that for all z £ x

q(z, x, 5 y)=£)=1 Y — Oy)=1.60)=n.(»=0q(x, y, 12) =0, Vy-ae.
VeZ
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But the first of these terms is equal to

Lyo=1.600=0 3 (v — )1 —n(M]g(x, v, 1),
YEZL

and the second is equal to

4z, x, 08— ()= =150)=0 Y_ (¥ — )1 = n:(M]g(x, y, n2),
yeZ

and both these expressions vanish v,-a.e. by Lemma 5.4 and the fact that if »
is distributed according to v,, then the distribution of 7, is absolutely continu-
ous with respect to v,. Since this measure is the first marginal of vV, the lemma
follows. O

5.3. Proof of Theorem 1.5. Let v, be an invariant measure for the coupled
process with respective marginals v,, p € (0, 1) and u € J.

Let f,(n, &) =>"__,[n(x) — £(x)]™. This means that f,, counts the number
of positive discrepancies in the interval [—n, n].

LEMMA 5.7. The sum of the positive terms onfn(n, &) is equal to

Y Ax,y.n,8),

|x|>n
lyl<n

and the sum of the negative terms is less than or equal to

—Z B(x,y,ﬂ’f)_ Z D@J’ﬂ?vé)-

|x|<n —n=x,y<n
ly|>n XFEYy

PROOF. We compute L fn(n, &) using the expression given in Section 1. Note
that in this case (2), (5), (9), (12) and (13) vanish and that the positive terms only
come from (4), (6) and (7).

The sum of the positive terms of (4) is equal to

Y L=t =n()=1.£0)=n()=£@=04 (X, ¥, 2. £, 1),
X€Z,|y|>n
|z|<n

which using the notation of Section 5.1 we can write as

40) Y Ly=1.em=0 Y Lim=tm=1n =5 =04 X, y. EMT(Y. 2. nx).

[y|>n xX#y,z
|z|<n
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The positive terms from (6) are equal to

D Li=t=n(=1:;)=04 (. y, £, 1)

x| <n
ly|>n
41)
= > Lig=tem=olym=e=1n(0)=& (0)=0 4 (X, ¥, EMG (¥, X, 7).
x| <n
ly|>n
Finally from (7) we get
D Liw=1.e00=n(=£0)=04 (X, ¥, 1)
|x|>n
[y|<n
(42)
= Z In(X)=1,é(X)=OIn(y)=é(y)=0CI(X, v, ).
|x|>n
[y|<n

Applying the permutation y — x — z — y to (40) and the permutation y — x —
y to (41) and then adding (40), (41) and (42) we get

Y A,y m.8),
[x|>n
lyl=n
which proves the first assertion of the lemma.
Among the negative terms we focus on (part of ) those obtained through (4), (6)
and (7).
Part of the negative contribution of (4) is given by

Z Iyoy=t=n(n=1.£(n=n)=09(x, y,2,§, 1),
x€Z,|y|<n
|z|>n

which using the notation of Section 5.1 we can write as

@3) Y Liy=tem=0 ) Liw=tm=1m@=04(. Y. ENG(. 2.0x).
ly|<n X#Y,2
|z|>n
Observe that this is just part of the negative contribution of (4) since there should
be another term with x, y chosen as before and z € [—n, n] with £(z) = 1.
From (6) we get as negative terms

Y Liw=t=n()=1£0)=09x, ¥, &, 1)
|x|>n
[yl<n

(44)
= Z L =1,60)=0ly0)=ex)=1,7:0)=0 9 (X, ¥, EMG (¥, x, nx).

|x|>n
lyl<n
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Finally, from (7) we separate the contribution in two sums

Z In(x)=1,§(x):n(y)=0Q(x» y,n)

|x|<n
[y|>n

45)  + Y Lw=to)=1iw=n(;=04 X, y. 1)

|x|<n

[y|<n

= Z Ino=1,60=0lyn=09(x, y, m) + Z D(x,y,n,§).
|x|<n |x|<n
[yl>n [y|<n,x#y

Now, relabelling when necessary and summing the expressions in (43), (44) and
the first sum in (45) we get

Y B(x,y,n,6),

|x|<n
lyl>n

which proves the second assertion of the lemma. [J

It now follows from Theorem 1.2 and Lemma 5.7 that

Z Ap(x’y)+ ZAp(x7y)_ Z Bp(x»)’)Z Z Dp(xvy),

xX<—n X>n |x|<n —n=<x,y<n
yz=n y=n lyl>n x#y
which by (32) implies
Z Bp(x’y)-i_ZBp(x’y)_ Z B,O(xsy)z Z D,O(x’y)'
x<—n x>n |x|<n —n=x,y=n
yz-n y=n lyl>n x#y

Call I'y(n) the left-hand side of the previous inequality. We will show that
limsupy 5 Yn_o T (1) < 0. This will imply that

(46) Dy(x,y)=0 for all x, y.
Let M =M(N)besuchthat0 < M <N, M — oo as N — oo and

. M
47) lim — =0.
N

Then

1 N
— 5'r,n
N+1n§) p (1)

1 -1 00
(48) < [ > ) (V—x)Byx,y)

N+1 x=—N+M+1 y=x+1
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—N+M 0
(49) + ) D 6 —x)By(x.y)
x=—N—-M y=x+1
—N—-M—-1 o0
(50) + > Y =) AN+DIBy(x,y)
X=—00 y:—N
—1 x—1
(51) - > ) [(x—y)A(N+x+1)]Bp<x,y>}
x=—Ny=—00
1 N-—-M-1 x-—1
(52) +N—+1[ gl y;oo(x—y)Bp(x,w
N+M x—1
(53) + > D (k= By(x.y)
x=N—-M y=—0o0
o] N
(54) + > D = AWN+DIB(x,y)
x=N+M+1y=—00
N 00
(55) -y > [(y—x)/\(N—x-l-l)]Bp(x,y)}-
x=1y=x+1

Symbolically we will write the right-hand side as

1
N——i—l[(48) + 49+ (50) = 5D+ ol

The next three lemmas will show that

[(52) + (53) + (54) — (59)].

lim sup

SUp [(48) + (49) + (50) = SD] =<0.

The second bracket is treated analogously.
LEMMA 5.8. ' (49) > 0as N — oo.

PrOOF. It follows from Lemma 5.5 that

—N+M

49 < D Y ly—xICplx,y) =2M +1)C,.
x=—N-M yeZ

Hence, the lemma is a consequence of (47). [

LEMMA 5.9. (50) > 0as N — oo.

1
N+1
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PROOF. Observe that
—N-M-1 oo

N—H(50>< > ) Byxy)

X=—0 y=7N

—N—-M—-1 o0

= Z Z Cplx, y)

X=—00 y_—

< Z kC,(0, k),

k=M+1
which goes to 0 as M — oo since by Lemma 5.5 this series converges. [

LEMMA 5.10.  5[(48) — (51)] > 0 as N — oo.

PROOF. The expression (48)—(51) is bounded above by

—1 o0
> Y. (y=x)Byx, ).

x=—N+M+1y=—N+1
For x € (—N + M, 0), by Lemma 5.6 we have

00 —N
Y =B x, ) =) (y—x)By(x,y)— Y. (y—x)B,(x,y)

y=—N+1 yEZ y=—00

N
=0+ Z (x _y)Bp(xv »).

y=—00

Hence, for these x’s it follows from (32) that

o) —N o0
Y =0Bx. < Y (x—=y)Cplx,y) < Y kCp(k,0).

y=—N+1 y=—00 k=M

Therefore

1
N——l-l[(48) ShH] =<

(k,0) < Z kC,(0, —k),
k=M

which goes to 0 as M — oo by Lemma 5.5. This concludes the proof of
Lemma 5.10. O

These lemmas imply (46) which implies (23). As explained at the beginning of
this section this proves Theorem 1.5.

Suppose for the final part of this section that X = {0, I}Zd and p is an irreducible
random walk on Z¢.
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SKETCH OF PROOF OF THEOREM 1.4. Suppose p € (J N $) puts no mass
on 1. Apply Theorem 1.2 to the function f(n,&) = [n(x) — &(x)]T and the
translation-invariant coupled measure v, of Lemma 4.1 with marginals v, and u.
Due to the translation invariance of p(x, y) many of the terms of [ L fdv, cancel
each other and only negative terms are left. Since the sum of these is equal to —D,,
we again obtain (23) for any p € (0,1). U

6. The nearest-neighbor case. In this section we suppose that d = 1,
px,x+1)=pand p(x,x —1)=gq, p+q =1, and prove Theorem 1.6. In view
of Theorem 1.5 we may assume p # 1/2 and by symmetry it suffices to prove
the theorem for p > 1/2. Initially, we assume that p < 1 to keep the transition
matrix irreducible. At the end of the section we will explain which modifications
are needed to treat the case p = 1. As in the previous section let

L@, &)=Y [nx) —&@)]T

X=—n

be the number of positive discrepancies between n and & in [—n, n] and let
gn(n, &) =Card({x € [-n,n) :n(x) —&(x)=1and Iy € (x, n]
suchthatVz € (x, y),n(z) —&(z) =0
and (y) — £(y) = —1}).

This means that g, counts the number of times we see n — & changing from +1
to —1 when we move from —n to n.

Let 1 € J be such that u({1}) =0, let p € (0,1) and let V, be a probability
measure on X x X with marginals v, and p which is invariant for the coupled
process. As explained at the end of Section 4, to prove Theorem 1.6 it suffices to
show that v, is such that

Vo ({(, ) :n(x) =&(y) = L, n(y) =(x) =0}) =0,
whenever p(x, y) > 0. The proof relies loosely on the following observations:

(1) Suppose g, > 1; then it can decrease with time.
(2) To compensate this, some boundary effects must increase gj,.
(3) These boundary effects require g, to grow linearly with n.

Hence, many discrepancies of opposite signs are not far from each other and dis-
crepancies disappear in the interval [—n, n] at a rate which grows linearly with n.
But positive discrepancies enter that interval at a bounded rate and we get a con-
tradiction.

At different parts of the proof we must follow the movement of discrepancies.
When doing so it is important to realize that a discrepancy at a site x can move if
the clock rings at that site, but it can also move if the clock rings at another site z
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occupied by both n and & particles because these two particles may arrive at x
where only one will stay. Since we are dealing with a nearest-neighbor random
walk, for this last case to occur, all the sites between x and z must be occupied by
both 1 and & particles.

The generator L of the coupled process will be applied to several cylinder func-

tions f. We denote by Lt f( —L~ f) the sum of the positive (negative) terms
of Lf.Hence Lf =Ltf—L"f.

PROPOSITION 6.1.  Let vV, be as above. Then for any n > 1

Vol(m,8):8.(n,8) =2} =0.

To prove the proposition let R(x,V,) be the average under v, of the rate at
which a positive discrepancy originally at x disappears either because it moves to
a site occupied by a negative discrepancy or because a negative discrepancy moves
to x.

LEMMA 6.1. Fix 0 < p <1, let £ € N and let V,, be as in Proposition 6.1.
Then, there exists an increasing function hg : [0, 1) — [0, co) such that:

(1) he(®) >0ift >0, and
(ii) forany x € Z,

Z R(y, "jp)

y=x—4
> he(Upl(m, &) in(x =) —E(x = O =1, n(x —i) —&(x —i) =0,
l<i<t—1n()—§x)=-1)).
PROOF. We prove the lemma by induction on £. For £ = 1 the result is trivial

with &1(c) = ¢. We now assume that the conclusion of the lemma holds for ¢ =
1,...,k—1, k> 2, and suppose that

Vol &) :inx —k) —éx —k)=1,n(x —i) —&(x —i) =0,
l<i<k—1,n(x)—&x)=—1}=c> 0.

Let p be the probability that a p, g random walk starting at O never returns to the
origin (and therefore drifts to +00). It follows from (56) that either

VA E)inx —k) —E(x —k) =1, n(x —i) =&(x —i) =1,
lfisk—l,n(x)—é(x)z—l}z%,
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or3dr, 1 <r <k —1 such that

Vo, &) inx —k) —éx —k) =1, nx —i)=&(x —i)=1,
57 r+1<i<k—1,nx—r)y=&x—r)=0,

n(x—j)zé(x—j),lijr—l,n(X)—E(X)=—1}z£.

In the first case the average under v, of the rate at which a positive discrepancy
at x — k jumps to x (and is annihilated) is at least p - ¢/ k.

To treat the second case, let r € [1, kK — 1] be such that (57) is satisfied. We apply
Theorem 1.2 to the function

tr(10,8) = Lne—r)—g(x—r)=1,n(x— )= (x—j), 1<j <r—1,n(x) =& (x)=—1}-

Among the positive terms of [ Lt,(n, & )dv, there is one due to the jump of a
positive discrepancy from x — k to x — r. This term is greater than or equal to p -
c/ k. Hence, by Theorem 1.2, fz_tr(n, £)dv, >p - c/k. We now separate the
terms of L™t in five groups:

(1) terms due to jumps of particles from sites y > x into the interval [x —r, x];

(2) terms due to jumps starting from the interval [x — r, x];

(3) terms due to jumps of an n particle (and possibly a & particle too) from a
site y € [x —r —ng, x — r) into the interval [x — r, x] (ng will be chosen later);

(4) terms due to jumps of an n particle (and possibly a & particle too) from a
site y < x — r — ng into the interval [x — r, x];

(5) terms due to jumps of a & particle only from a site y < x — r into the
interval [x — r, x] that annihilate the positive discrepancy at x — r.

Letg = q/p, then (g)" is the probability that a p, ¢ random walk starting at n ever
hits 0. The sum of the terms in group 1 is bounded above by

gq)"fzr(n,s)dvp - lf—qur(n,@dvp.

The sum of the terms in group 2 is bounded above by

r + 1>/tr<n,s>dvp.

The sum of the terms in group 3 is bounded above by

no/tr(n,é)dﬁp-

The sum of the terms in group 4 is bounded above by

o0
2 "

n=ngo
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We choose ng in such a way that this sum is < pc/5(k). Then, either the jumps of
group 5 occur at a rate greater than or equal to pc/(5k), or one of the first three
upper bounds is at least pc/(5k). In this second case we get
1-qg 1 1 }

- cp .
1, ) d > — B s
/’(" §) ”"—Skmm{ 7 r+1 no

Therefore taking

hi(c) = min{%, hi(Ac), ha(Ac), ..., hk—l(Ac)}s

the result follows from the inductive hypothesis. [J

LEMMA 6.2. Suppose vV, is as in Proposition 6.1. If for some ng € N
Vo({(n,8):8ny(n, &) = 2}) =81 >0,

then there exists a 6o > 0 such that¥n > ng
/Z_gn dv, > 5.
The proof of this lemma requires some extra notation: For fixed (7, ) such that
&no(1,8) =m =2 let

Vl(’?aé) < ’”2(779‘5) < <’”2m+1(77v$)

be the smallest integers in the interval [—ng, ng + 1] such that:

(1) each of the intervals [ry,r> — 11, ..., [Fom—1, r2m — 1] contains at least one
positive discrepancy and no negative discrepancies,
(ii) each of the intervals [rp, 73 — 1], ..., [Fam, Fam+1 — 1] contains at least one

negative discrepancy and no positive discrepancies.
Foreachi e {l,...,m — 1}, let
X,"1 > . >xi,ji
be the position of the negative discrepancies in the interval [ry;, r2;+1 — 1] and let
Vil <0<V j!

be the position of the positive discrepancies in the interval [rp; 41, r2i42 — 1]. De-
fine

ji/\j,'/
Nin, &)=Y iy —xi,) and N(n,§)= min N;(n,§).
r=1 1<i<m—1

The quantity N;(n, &) is the total distance that the discrepancies in the interval
[r2i, r2i+1 — 1] must travel to the right to cause g, (n > ng) to decrease.
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PROOF OF LEMMA 6.2. Let

A={(,8):8n,(n. §) =2}.
For k > 1, let

Ap={n.§) € A:N(, &) =k}

and

Since N(n,&) < 4n%, it follows from the hypothesis of the lemma that for some
k< 4n(2) we have
EAVOES
v —.
pROKS = 4n(2)
Hence, to prove the lemma it suffices to show that for each k > 1, there exists
cr > 0 such that

(58) / L= ga(1.6)d¥, = c¥p(Ar) V= no.

We proceed by induction on k. On the set A there is a negative discrepancy in
some site x in the interval [—ng, ng] whose jump to the right causes g, to decrease.
Hence, for any configuration in A1, g, decreases at rate at least p and (58) holds for
k=1 and c; = p. Suppose now thatitholds fork =1, ..., ko —1.Let (n,§) € Ay,
and let i be such that N:(n,&) = N(n, &). Then, at rate at least p (as defined in the
proof of Lemma 6.1) the negative discrepancy at x; ; moves to the right. When this
happens either g, decreases or the new configuration belongs to By, 1. Therefore,
for all n > ng either

or
~_ . _ P
fL gndV, > EVD(Ako)~

In the second case the proof is complete. In the first case, by Theorem 1.2

/Z_IBkO—l dvp > _Vp(Ako)'

Write z_IBkO_1 as ZI_IBkO_l + ZZ_IBkO—l + Z3_IBk0—1’ where L, L, and Lj con-
tain the terms of L~ due to jumps of particles at sites in (—oo, —ng — 1], [—no, no]
and [ng + 1, 00), respectively. It follows from the last inequality that either

~_ ~ ~_ ~ _ D~
/Lz IBkO—l dv, + / Ly IBkO—l dvy, = ZUP(Ako)’
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or

ENI ST

/Z;IB,CO_1 dv, >

In the first case we use the inequalities

ip (Ako)'

/ LyTg, , dV, < (200 + 1)V, (Biy-1)

and

7"Vp(Biy—1) = (1 — )9, (Bry—1)

M2

/LS_IBkO—l dip <

I
—_

n

to obtain

laS]

N 1

P Blot) 2 e T T g — )
and the result follows from the inductive hypothesis. To complete the proof in the
second case it suffices to check all the terms of L, Ip, _, are also terms of L~g,
for all n > ng. This is done as follows: The arrival of an n particle from the left
of —ng can increase the value of N(n,§) only if it destroys a full interval of
negative discrepancies situated to the right of the first positive discrepancy and
the arrival of & particle can increase the value of N (7, &) only if it destroys the
first interval of positive discrepancies. In both cases the value of g, decreases for
alln >ng. O

Vp (Ako)’

The following lemma is elementary:
LEMMA 6.3. Let p be a strictly positive real number, let n,m € N and let a;,
i=1,...,m, be real numbers such that:

(i) 0<a; <1, V1<i<m,
(i) it a; = pn.
Then,

Card({i:l <i<m, a> in}) >

SRRS)
=

PROOF. Write
m
pn = Zai = Z a; + Z a;.
i=1 1<i<m:a;<(p/(2m))n I1<i<m:a;>(p/(2m))n

Since the first sum in the right-hand side is bounded above by gn, the second
sum is bounded below by %n and the result follows because all the a;’s are
in[0,1]. O
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Before stating our last lemma we introduce some notation: For k, n € N we say
that an increasing sequence of integers xi, yi, ..., Xm, ¥m 1S the k-partition of the
interval [—n, n] if:

(i) x1=-n, ym =n,

() xjip1=yi+1lfori=1,...,m—1,
(i) yj —xj=kfori=1,...,m—1,
1v) 0<yp —xp <k.

For integers a < b let g, »(n, &) be as g,(n, &) with [a, b] substituting for [—n, n].
It follows from these definitions that if x1, yi, ..., X;m, Ym 1S the k-partition of the
interval [—n, n], then

(59) 8n (0. E) D gxiy (0. &) +m — 1.
i=1

LEMMA 6.4. Let v be a probability measure on X x X such that for some
noeNand0<a <1

/gn(n,s>dv san  Vn=n

Let k =1[4/a] + 1 and let x1, y1, ..., Xm, ym be the k-partition of [—n, n]. Then,
there exists B > 0 such that

Card({l1 <i<m —1:v(gy,y,(n,§) > 1) > B}) > Bn Vn > ny.

PROOF. Since (m — 1)k <2n and k > 4/o we must have m — 1 < 27 lan. It
then follows from (59) that

m
Z/gxi,y,-(nf)dvz%n Vn > nyg.
i=1

Since gy;,y; is bounded above by k < 5/c, this implies

2

Z/gxi,yi(mf) Aldv > gZ/gxl-,y,-(n,S)dv > En
i=1 i=1

Since the last left-hand side can be written as 7 | v(gy; y, > 1) the lemma follows
from the previous lemma and the fact that n/m > 1. 0O

PROOF OF PROPOSITION 6.1. We argue by contradiction: If the proposition
does not hold, then there exists a §; > 0 and n¢ € N such that

Vp{(1,6):80(m, §) =2} > 6) Vn > no.
By Lemma 6.2 there exists a §, > 0 such that for all n > ny, fz_g,, dv, > 8.
Therefore, by Theorem 1.2 [ Lt gndV, > 8. The terms of L+ gn are due either
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to positive discrepancies coming from the left of —n or to negative discrepancies
coming from the right of .

A positive discrepancy at —n — k may move into the interval [—n, n] if all the
sites between —n — k and —n are occupied by 7 particles and either because the
clock rings at —n — k or the clock rings at another site x occupied by both 1 and &
particles and all the sites between x and —n — k are also occupied by both 7 and &
particles. Since the 7 particles are distributed according to v,, the contribution of

this discrepancy to [ Lt gndV, is at most

p"((l+p+p2+--~)+(a+62+---))=p"<ﬁ+lf—q),
where the first series bounds the probability that the discrepancy at —n — k moves
after the clock rings at some site y < —n — k, while the second series bounds the
probability that the discrepancy at —n — k moves after the clock rings at some site
y>—n—k.

Negative discrepancies at sites y > n may contribute because the clock rings
at their site or because the clock rings at a site z where there is an n and a &
particle. In this last case both the 1 and & particles may reach y forcing the negative
discrepancy at y to move. For this to happen all the sites from z to either y — 1
or y 4+ 1 have to be occupied by n particles, which under v, are distributed as a
Bernoulli product measure of parameter p. Thus, the contribution of a negative

discrepancy at y=n +k to [ Z+gn dv, is at most
1
F°0+2p+2p>+--) < 2qk<ﬂ).
We now choose kg large enough to satisfy
q 1 &2
Zp< lq )+2q<—1 )<?
k>ko - -
Hence the positive terms due to discrepancies within distance kg of [—n, n] con-
tribute at least 8/2. Note that if these terms are present for a given (n, £) config-
uration, then g,44,(n,§) > g,(n, &) + 1. Let s, (n, §) be the length of the longest
interval containing x whose sites are all occupied by n particles. Then, sy (1, §)
is an upper bound for the rate at which a positive discrepancy at x starts to
move. Therefore the contribution of the positive discrepancies in the interval
[—n — ko, —n — 1] to [ LT g, dV, is at most
—n—1
/ Do sxO) (g,  1.6)>g0(n.6)) ATp-
x=—n—kg
Similarly, the contribution of negative discrepancies in the interval [n 4 1, n 4 ko]
is bounded above by
n-+ko

D S0 O g, 16> 0.6 AVps
x=n+1
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where s/ (1, &) is the length of the longest interval containing x such that all its
sites distinct from x are occupied by n particles. Hence, at least one of the two
integrals above is bounded below by &> /4. Since under v, both x_:n ko Sx (1, 8)

and ZZJFﬁ?H s%(n, &) are integrable and have distributions that do not depend on n,

we conclude that there exists a §3 > 0 such that for all n > ng we have

ij(gn+k0 = 8n + 1) = 83 > 0.

This implies that f gndv, grows linearly with n. It now follows from Lemmas
6.1 and 6.4 that [ L™ JndV, diverges as n tends to infinity. Therefore, to get a con-
tradiction it suffices to show that [ Lt f,dv v, is bounded above by a constant that
does not depend on n. This is done as follows: Arguing as we did for [ Lt gndv,
we see that a positive discrepancy at —n — k contributes at most

= 1 q
/Ok((1+/0+/02+"')+(q+qz+"'))zpk<T+T>
and that a positive discrepancy at n + k contributes at most
1
G (1424207 ) <2c7k(m).

Therefore, we obtain as upper bound:
i 1
k
—_—t — 2q’
> () n ()
which is finite and does not depend on n. [

PROOF OF THEOREM 1.6. Let u € J be such that ({1}) =0 and let ¥, be
as in Proposition 6.1. Discrepancies move at rate at least 1 and the sites they visit
are part of the sites visited by a p, ¢ random walk. Therefore, if there are only a
finite number of positive (negative) discrepancies to the left of the origin, then the
probability of having a positive (negative) discrepancy at a given site x tends to 0
as time goes to infinity. To see this for a given configuration (5, £), use an approx-
imating sequence of finite configurations (7, &,) and note that the probability of
having a positive (negative) discrepancy at a given site goes to 0 uniformly in n
as time goes to infinity. Hence, it follows from Proposition 6.1 and the invariance
of v, thatforall x <y

Vp{(n, &) :n(x) =&(y) #n(y) =§()} =0,

therefore

Vo{(m,&):in=>&or&>n}=1.

The theorem now follows from the remark at the end of Section 4.
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The special case in which p =1 needs an adaptation of the proof of Lemma 3.2
where we assumed that p(x, y) was irreducible. In this particular case one can eas-
ily see that on the set fol L++fx(n§) ds = oo we also have fol L++fy(n§) ds = 00
a.s. for all y < x. This observation allows us to prove the lemma with basically the
same arguments as before. [J
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