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CLASSICAL AND FREE INFINITELY DIVISIBLE DISTRIBUTIONS
AND RANDOM MATRICES

BY FLORENT BENAYCH-GEORGES

École Normale Supérieure

We construct a random matrix model for the bijection� between clas-
sical and free infinitely divisible distributions: for everyd ≥ 1, we associate
in a quite natural way to each∗-infinitely divisible distributionµ a distribu-
tion P

µ
d on the space ofd × d Hermitian matrices such thatP

µ
d ∗ Pν

d = P
µ∗ν
d .

The spectral distribution of a random matrix with distributionP
µ
d converges in

probability to�(µ) whend tends to+∞. It gives, among other things, a new
proof of the almost sure convergence of the spectral distribution of a matrix
of the GUE and a projection model for the Marchenko–Pastur distribution. In
an analogous way, for everyd ≥ 1, we associate to each∗-infinitely divisible
distributionµ, a distributionL

µ
d on the space of complex (non-Hermitian)

d × d random matrices. Ifµ is symmetric, the symmetrization of the spec-
tral distribution of|Md |, whenMd is L

µ
d -distributed, converges in probability

to �(µ).

Introduction. Free convolution�, defined in Bercovici and Voiculescu
(1993), is a binary operation on the set of probability measures on the real line,
arising from free probability theory (µ � ν is the distribution ofX + Y when
X,Y are free and have distributionsµ,ν). It is associative, commutative and
continuous with respect to the weak convergence. A probability measureµ on R

is said to be�-infinitely divisible if for every n ≥ 1, there exists a probability
measureµn on R such thatµ�n

n equals toµ.
It is shown in Bercovici, Pata and Biane (1999) that there exists an homeomor-

phism� from the set of∗-infinitely divisible distributions to the set of�-infinitely
divisible distributions which associates to every classical (resp. free) limit theorem
a free (resp. classical) analogue. Indeed, for every∗-infinitely divisible distribu-
tion µ, for every sequence(µn) of probability measures, for every sequence(kn)

of integers tending to infinity, the sequenceµ
∗kn
n tends toµ if and only if the se-

quenceµ�kn
n tends to�(µ).

The proofs in Bercovici, Pata and Biane (1999) rely on integral transformations
and complex analysis. We will, in this article, construct a matricial model for
the �-infinitely divisible distributions, and present in a more palpable way the
bijection�.
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Let µ be an ∗-infinitely divisible distribution. Let(µn) be a sequence of
probability measures and(kn) a sequence of integers which tends to infinity
such that the sequenceµ∗kn

n tends weakly toµ. Let, for d ≥ 1 and n ≥ 1,
Q

µn

d (resp. K
µn

d ) be the distribution ofU diag(Xn,1, . . . ,Xn,d)U∗ [resp. of
U diag(Xn,1, . . . ,Xn,d)V ], whereU,V are independent unitary Haar distributed
random matrices independent of the i.i.d. random variablesXn,1, . . . ,Xn,d with
distributionµn. We will prove, in Section 3 (resp. Section 7.1), that the sequence
((Q

µn

d )∗kn) [resp. ((K
µn

d )∗kn)] converges weakly to a probability measureP
µ
d

(resp.Lµ
d ). The main results of this article are the following ones: the spectral

distribution of a random matrix with distributionPµ
d converges in probability

to �(µ) whend tends to infinity, and so does the symmetrization of the spectral
distribution of |Md | when Md is distributed according toLµ

d . So we have
constructed matrix models which go from∗-infinitely divisible distributions to
�-infinitely divisible distributions when the dimension goes from one to infinity.
What is more, for all∗-infinitely divisible distributionsµ,ν and all d, P

µ∗ν
d =

P
µ
d ∗ Pν

d andL
µ∗ν
d = L

µ
d ∗ Lν

d . This property (and the fact that all formulas depend
analytically ond, so could be extended to nonintegerd) opens the perspective
of a continuum between the classical convolution∗ and the free convolution�
for infinitely divisible mesures [M. Anshelevich has already constructed such
a continuum in Anshelevich (2001), but the model we present here does not
interpolate his construction]. T. Cabanal-Duvillard, in Cabanal-Duvillard (2004),
has studied at the same time as the author the distributionsP

µ
d , and has proved the

same result, but with different methods (processes, measure concentration, integral
transforms).

At last, in the case whereµ is the standard normal distribution,�(µ) is the
semi-circle distribution with center zero and radius two, and the distributionP

µ
d

is closely related to the one of the GUE, so that the convergence of the spectral
distribution of a matrix with distributionPµ

d implies Wigner’s result. Likewise, the
distributionL

µ
d is the one of a matrix with independent Gaussian entries, and we

have a new proof of the convergence of the spectral distribution of the Wishart
matrix with parameter 1 to the Marchenko–Pastur distribution.

In the same way, in the case whereµ is the classical Poisson distribution, this
result allows us to see the Marchenko–Pastur distribution as the limit spectral
distribution of a sum of independent rank-one projections.

The text is organized as follows. In Section 1 we recall a few results about
infinitely divisible distributions and about their classical and free cumulants. In
Section 2 we explain the choice of the model (i.e., of the distributionsP

µ
d and L

µ
d ).

In Section 3 we construct the distributionsPµ
d . Finally, the convergence in

probability of the spectral distribution of a random matrix with distributionP
µ
d

to �(µ) is proved in two steps. In the first one, we show the convergence when the
Lévy measure has compact support, and in the second one (in Section 6), we extend
this result using approximation and compound Poisson distributions. The first step
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is achieved with the moment method, and is divided into two steps: convergence
of the mean of every moment in Section 4, almost sure convergence in Section 5.
The distributionsLµ

d are constructed in Section 7.1, the convergence in probability
of the symmetrization of the spectral distribution of|Md |, whenMd is distributed
according toLµ

d , is also divided in two steps.

1. Preliminary results about infinitely divisible distributions.

1.1. Definitions and the bijection�. The results of this section concerning
classical probabilities are in Gnedenko and Kolmogorov (1954) and in Petrov
(1995); the results concerning free probabilities are in Bercovici and Voiculescu
(1993) and in Bercovici, Pata and Biane (1999), except the continuity of the
inverse of the bijection�, which is shown in Barndorff-Nielsen and Thorbjørnsen
(2002). A probability measureµ on R is said to be∗-infinitely divisible (resp.
�-infinitely divisible) if for every n ≥ 1, there exists a probability measureµn

on R such thatµ∗n
n (resp.µ�n

n ) equalsµ, which is equivalent to the existence of
a sequence(µn) of probability measures, of a sequence(kn) of integers tending to
infinity, such thatµ∗kn

n (resp.µ�kn
n ) tends weakly toµ.

We can characterize∗-infinitely divisible distributions (resp.�-infinitely divis-
ible distributions) with their Fourier transform (resp. their Voiculescu transform).
A probability measureµ onR is ∗-infinitely divisible (resp.�-infinitely divisible)
if and only if there exists a realγ and a positive finite measureG on R such that
its Fourier transform̂µ (resp. its Voiculescu transformϕµ) has the form

µ̂(t) = exp
{
iγ t +

∫
u∈R

[
eitu − 1− itu

1+ u2

1+ u2

u2

]
︸ ︷︷ ︸

=− t2
2 for u=0

dG(u)

}

(
resp. ϕµ(z) = γ +

∫
t∈R

1+ tz

z − t
dG(t)

)
.

(1)

In this case, the pair(γ,G) is unique, and we denoteµ = ν
γ,G∗ (resp.νγ,G

� ).

REMARK. There exists other parametrizations of∗-infinitely divisible distri-
butions: for example, denotingγ ′ = γ,σ 2 = G({0}),L(A) = ∫

A
1+u2

u2 dG(u) for

all Borel setA of R \ {0}, one has
∫
u∈R\{0}(1 ∧ u2)dL(u) < ∞, and µ̂(t) =

exp(iγ ′t − σ2t2

2 + ∫u∈R\{0}(eitu − 1− itu
1+u2 )dL(u)).

We now give the definition of�, referred to in the Introduction.

THEOREM 1.1 (Bercovici–Pata’s bijection).We endow the set of positive
finite measures onR with the weak topology; the subsets{ ∗-infinitely divisible



FREE INFINITELY DIVISIBLE DISTRIBUTIONS 1137

distributions} and { �-infinitely divisible distributions} are also endowed with the
weak topology.

1. The maps

R × {positive finite measures} → {∗-infinitely divisible distributions},
(γ,G) �→ νγ,G∗

and

R × {positive finite measures} → {∗-infinitely divisible distributions},
(γ,G) �→ ν

γ,G
�

are homeomorphisms and we have

νγ+γ ′,G+G′
∗ = νγ,G∗ ∗ νγ ′,G′

∗ ,

ν
γ+γ ′,G+G′
� = ν

γ,G
� � ν

γ ′,G′
� .

2. Let us define the map�, from the set of∗-infinitely divisible distributions to
the set of�-infinitely divisible distributions, which maps, for all (γ,G), the
measureνγ,G∗ to the measureνγ,G

� . Then
(a) � is an homeomorphism called Bercovici–Pata’s bijection,
(b) for all µ,ν ∗-infinitely divisible distributions, �(µ ∗ ν) = �(µ) � �(ν),
(c) Dirac measures are invariant under� :�(δa) = δa ,
(d) �(N(m, r2)) is the semi-circle distribution with meanm and variancer2,

which iswm,2r (x)dx, with

wm,2r (x) = 1

2πr2

(
4r2 − (x − m)2)1/21|x−m|≤2r ,

(e) �, restricted to the Cauchy type, is the identity: for all a > 0,�(Ca) = Ca ,
whereCa = 1

π
a dx

a2+x2 ,
(f ) for all sequence(µn) of probability measures onR, for all sequence(kn)

of integers tending to infinity, the sequenceµ∗kn
n converges weakly to a

∗-infinitely divisible distributionµ if and only if µ�kn
n converges weakly

to �(µ).

REMARK 1.2. In the text, the positive finite measureG is called the Lévy
measure ofνγ,G∗ andν

γ,G
� . We will use the two following properties:

1. If the Lévy measure of a�-infinitely divisible distributionν has compact
support, then so doesν [see Hiai and Petz (2000)].

2. ν
γ,G
� is symmetric if and only ifνγ,G∗ is symmetric, if and only ifG is

symmetric andγ = 0.
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1.2. Classical compound Poisson distributions, approximation of∗-infinitely
divisible distributions by∗-infinitely divisible distributions with compactly
supported Lévy measures.

DEFINITION 1.3. Let λ be a nonnegative real,ρ be a probability measure
on R. Then the sequence of probability measures onR((

1− λ

n

)
δ0 + λ

n
ρ

)∗n

, n ≥ 1,

converges weakly to a distribution notedπ∗
ρ,λ, with Fourier transform

π̂∗
ρ,λ(t) = exp

(
λ
(
ρ̂(t) − 1

))
,

whereρ̂ is the Fourier transform ofρ.

REMARK 1.4. π∗
ρ,λ is ν

γ,G∗ , with

G = λ
u2

1+ u2 dρ(u), γ = λ

∫
u∈R

u

1+ u2 dρ(u).

We introduce now the compactly supported approximations of the positive finite
measureG.

DEFINITION 1.5. Let, forG positive finite measure onR, t > 0, G0
t ,Gt be

the positive finite measures onR defined by

G0
t (A) = G(A ∩ [−t, t]), Gt(A) = G(A \ [−t, t])

for all Borel setA of R.
We defineλt ≥ 0, the probability measureρt on R, andat ∈ R with

λt =
∫
u∈R\[−t,t]

1+ u2

u2 dG(u), ρt = 1

λt

1+ u2

u2 dGt(u),

at = −
∫
u∈R\[−t,t]

(1/u)dG(u).

We will use the following approximation:

∀ t > 0 νγ,G∗ = ν
γ+at ,G

0
t∗ ∗ π∗

ρt ,λt
,(2)

because one observes thatπ∗
ρt ,λt

= να,H∗ with

H = λt

u2

1+ u2 dρt (u) = Gt, α = λt

∫
u∈R

u

1+ u2 dρt (u) = −at .
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1.3. Partitions, moments and cumulants of infinitely divisible distributions.
For every probability measureµ, we will denote, when it is defined, bymn(µ)

thenth moment ofµ, which is
∫

xn dµ(x). In this case, we will denote byCn(µ)

[resp.Kn(µ)] its nth classical (resp. free) cumulant. Recall that [see Section 4 of
Speicher (1994) or Section 2.5 of Hiai and Petz (2000)]

mk(µ) = ∑
π∈Part(k)

∏
V ∈π

C|V |(µ)︸ ︷︷ ︸
denoted byCπ (µ)

,(3)

mk(µ) = ∑
π∈NC(k)

∏
V ∈π

K|V |(µ)︸ ︷︷ ︸
denoted byKπ (µ)

,(4)

where Part(k) denotes the set of the partitions of{1, . . . , k} and NC(k) denotes
the set of noncrossing partitions of[k] = {1, . . . , k} (a noncrossing partitionof
a finite totally ordered setI is a partitionπ of I such that there does not exist
x < y < z < t ∈ I with x andz belonging to the same class andy andt belonging
to another class).

We will need the following proposition [part of which was proved in Barndorff-
Nielsen and Thorbjørnsen (2004), but the proof we give here is shorter]:

THEOREM 1.6. Let µ be a∗-infinitely divisible distribution with compactly
supported Lévy measure, and let, for n integer, µn be a probability measure such
that µ∗n

n = µ. Then for eachk ≥ 1, the sequence(n × mk(µn))n tends toCk(µ),
which is equal toKk(�(µ)).

PROOF. By (3), one has

n × mk(µn) = n
∑

π∈Part(k)

∏
V ∈π

C|V |(µn)︸ ︷︷ ︸
C|V |(µ)/n

= ∑
π∈Part(k)

n1−|π |Cπ(µ) = Ck(µ) + o(1).

Let us denoteνn = µ�n
n . By part 2.(f ) of Theorem 1.1, the sequence(νn) con-

verges weakly to�(µ). By Hölder and Minkowski inequalities in tracial noncom-
mutativeW ∗-probability spaces, every moment ofνn is bounded uniformly inn,
so the cumulants ofνn tend to the cumulants of�(µ). But by (4),

n × mk(µn) = n
∑

π∈NC(k)

∏
V ∈π

K|V |(µn)︸ ︷︷ ︸
K|V |(νn)/n

= ∑
π∈NC(k)

n1−|π |Kπ(νn),

which tends to ∑
π∈NC(k)

δ
|π |
1 Kπ(�(µ)) = Kk(�(µ)).

�
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2. Free convolution and random matrices, choice of the models. For ν

probability measure onR, denote byν̃, the symmetrization ofν, which is the
probability measure defined byν̃(B) = 1

2(ν(B) + ν(−B)) for all Borel setB.
ForM Hermitian matrix, we will denote byµM its spectral distribution, that is,

the uniform distribution on its spectrum (with multiplicity).
For M complex (possibly non-Hermitian) matrix, denote byµ̃|M| the sym-

metrization of the spectral measure of|M|, where|M| = √
M∗M is the unique

Hermitian nonnegative matrix such thatM can be writtenM = U |M|, with U

unitary.
If M is a random matrix,µM is a random probability mesure on the real line.

For (Md)d sequence of random matrices, we will use the notion of convergence in
probability for the sequence(µMd

) of random probability measures.
The rest of this section may be skipped by the reader who wants to go straight to

the result. We will only explain the choice of the models, that is, is of the family’s
P

µ
d andL

µ
d of distributions.

Let us now explain in detail the choice of the family of the distributionsP
µ
d ,

the distributions of the random Hermitian matrices. We would not go into as much
detail for the distributionsLµ

d , which we construct in a similar way.
The following theorem is proved in Voiculescu (1991) and in Pastur and

Vasilchuk (2000) under more restrictive hypothesis, which can easily be removed
using functional calculus.

THEOREM 2.1. Let n be a positive integer. Let µ1, . . . ,µn be probability
measures onR. Let, for d ∈ N∗, (M

(i)
d )i=1,...,n be a family of independentd × d

Hermitian random matrices. We suppose that for alli = 1, . . . , n, the distribution
of M

(i)
d is invariant under the unitary group’s action, and µ

M
(i)
d

converges in

probability, when d → ∞, to µi . Then the spectral distribution of
∑n

i=1 M
(i)
d

converges in probability, whend → ∞, to µ1 � · · · � µn.

Let us consider a sequence(µn) of probability measures onR and a
sequence(kn) of integers tending to+∞ such thatµ∗kn

n converges weakly to
a probability measureµ onR. Let, forn ∈ N, d ∈ N∗, (M

(i)
d,n)1≤i≤kn be a family of

independent copies of a random Hermitiand × d matrixMd,n, whose distribution
is unitarily invariant. For everyn ∈ N, we suppose thatµMd,n

converges in
probability, whend → ∞, to µn.

Then we know that, for everyn ∈ N, the spectral distribution of
∑kn

i=1 M
(i)
d,n

converges in probability, whend → ∞, to µ
�kn
n .

Let us suppose that, on the other hand, for everyd ∈ N∗,
∑kn

i=1 M
(i)
d,n converges

in distribution, whenn → ∞, to a random matrixMd .
We know, by Theorem 1.1, thatµ�kn

n converges, whenn → ∞, to the
image�(µ) of µ by Bercovici–Pata’s bijection.
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A natural question is the following: does the spectral distribution ofMd

converge in probability, whend → ∞, to �(µ)?
In other words, is the limit, whend → ∞, of the spectral distribution of the

limit, when n → ∞, of
∑kn

i=1 M
(i)
d,n equal to the limit, whenn → ∞, of the limit,

whend → ∞, of the spectral distribution of
∑kn

i=1 M
(i)
d,n?

The answer of this question is affirmative in our model [Md,n = U ×
diag(Xn,1, . . . ,Xn,d)U∗, U unitary Haar-distributed, independent of the i.i.d.
random variablesXn,1, . . . ,Xn,d with distributionµn]. It can be summarized in
the following diagram:

M
(1)
d,n + · · · + M

(kn)
d,n

n→∞−−−−→ P
µ
d

| |
d goes to∞ d goes to∞

↓ ↓
spectral law:

µ
�kn
n

n→∞−−−−→ spectral law:
�(µ)

The choice of this model is supported by the three following remarks:

1. Ford, n ≥ 1, if µn = 1
π

1/ndx

(1/n)2 +x2 , the expectation of the spectral distribution of∑n
i=1 M

(i)
d,n is 1

π
dx

1+x2 .

2. For any fixedd ≥ 1,
∑kn

i=1 M
(i)
d,n converges in distribution, whenn → ∞, to a

distributionP
µ
d which depends only onµ = limn→∞ µ

∗kn
n .

3. For every pair(µ, ν) of ∗-infinitely divisible distributions, similarly to the
relation

�(µ ∗ ν) = �(µ) � �(ν),

we have, for everyd ≥ 1,

P
µ
d ∗ Pν

d = P
µ∗ν
d .

This property (and the fact that all formulas depend analytically ond, so could
be extended to nonintegerd) opens the perspective of a continuum between
the classical convolution∗ and the free convolution� for infinitely divisible
measures.

Let us now explain how to construct the distributionsL
µ
d . The following

theorem is easily obtained combining the results of Haagerup and Larsen (2000)
and Hiai and Petz (2000), and using functional calculus.

THEOREM 2.2. Let n be a positive integer. Let µ1, . . . ,µn be probability
measures onR. Let, for d ≥ 1, (M(i)

d )i=1,...,n be a family of randomd ×d matrices

with everyM
(i)
d having a distribution invariant under the left and right actions
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of the unitary group. We suppose that, for every i = 1, . . . , n, the distribution
of M

(i)
d is invariant under the left and right unitary group’s actions, and that

the symmetrizationµ̃|M(i)
d | of the spectral distribution of|M(i)

d | converges in
probability toµi .

Then the symmetrization of the spectral distribution of∣∣∣∣∣
n∑

i=1

M
(i)
d

∣∣∣∣∣
converges in probability, whend tends to infinity, to µ1 � · · · � µn.

Let us then consider, forµ symmetric ∗-infinitely divisible distribution,
a sequence(µn) of symmetric distributions and a sequence(kn) of integers
which tends to infinity such thatµ∗kn

n converges weakly toµ. Let d be a
positive integer. If for alln, (M

(i)
d,n)i=1,...,kn is a family of independent copies

of Udiag(X1, . . . ,Xd)V , whereU,V,X1, . . . ,Xd are independent,U andV are
unitary Haar-distributed, andX1, . . . ,Xd are distributed according toµn, then it
appears that

kn∑
i=1

M
(i)
d,n

converges in distribution to a distributionLµ
d which depends only onµ.

We will show that ifMd is distributed according toLµ
d , thenµ̃|Md | converges in

probability to�(µ).

3. The distributions P
µ
d . E denotes expectation. For any distributionP and

any functionf on a set of matrices,EP(f (M)) denotes
∫

f (M)dP(M). Tr denotes
the trace.

THEOREM 3.1. Let µ be an∗-infinitely divisible distribution. Let (µn) be a
sequence of probability measures onR and (kn) a sequence of integers tending
to +∞ such that the sequenceµ∗kn

n converges weakly toµ. Let, for d ≥ 1 and
n ≥ 1, Q

µn

d be the distribution ofU diag(Xn,1, . . . ,Xn,d)U∗, whereU is a Haar-
distributed unitary random matrix, independent of theµn-distributed i.i.d. random
variablesXn,1, . . . ,Xn,d .

Then the sequence((Qµn

d )∗kn) of probability measures on the space ofd × d

Hermitian matrices converges weakly to a distributionP
µ
d .

Moreover, Fourier transform of the distributionPµ
d on the space ofd × d

Hermitian matrices with the scalar product(M,N) �→ TrMN is given by this
formula: for every Hermitian matrixA,

EP
µ
d

(
exp(i TrAM)

)= exp
(
E
(
d × ψµ(〈u,Au〉))),(5)

where
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• ψµ is the Lévy exponent ofµ, that is, the unique continuous functionf from R

into C such thatf (0) = 0 and the Fourier transform ofµ is exp◦f ,
• 〈·, ·〉 is the usual Hermitian product ofCd ,
• u = (u1, . . . , ud) is a uniformly distributed random vector on the unit sphere

of Cd .

It appears clearly that, forµ,ν ∗-infinitely divisible distributions,Pµ
d ∗

Pν
d = P

µ∗ν
d .

PROOF. We will show the pointwise convergence of the Fourier transform
of the distribution(Q

µn

d )∗kn on the space ofd × d Hermitian matrices. LetA
be ad × d Hermitian matrix with spectruma ∈ Rd . Let Fn (resp.F ) be the
Fourier transform ofµ⊗d

n (resp.µ⊗d ). Then, whenn tends to infinity,kn(Fn − 1)

converges (uniformly on every compact set ofRd ) to the Lévy exponentψ of µ⊗d

(i.e., toψ⊕d
µ , whereψµ is the Lévy exponent ofµ).

We have

E(Q
µn
d )∗kn

(
exp(i TrAM)

)= (
EQ

µn
d

(
exp(i TrAM)

))kn.

RecallQµn

d is invariant under the unitary action, so

E(Q
µn
d )∗kn

(
exp(i TrAM)

)= (
EQ

µn
d

(
exp

(
i Tr
(
diag(a)M

))))kn.

Q
µn

d is the distribution ofUdiag(Xn,1, . . . ,Xn,d)U∗, whereU is a Haar distrib-
uted unitary matrix, independent of theµn-distributed i.i.d. random variables
Xn,1, . . . ,Xn,d . So

E(Q
µn
d )∗kn

(
exp(i TrAM)

)
= (

E
(
exp(i Tr

(
diag(a)U diag(Xn,1, . . . ,Xn,d)U∗))))kn

=
(

E

(
exp

(
i

d∑
k,l=1

akXn,l|uk,l|2
)))kn

=
(

E

(
Fn

((
d∑

k=1

ak|uk,l|2
)

l∈[d]

)))kn

,

which can be written(
1+ 1

kn

E

(
kn

(
Fn

((
d∑

k=1

ak|uk,l|2
)

l∈[d]

)
− 1

)))kn

(recall[d] = {1, . . . , d}).
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But kn(Fn − 1) converges uniformly on every compact set toψ whenn → ∞,
so we have

E(Q
µn
d )∗kn

(
exp(i TrAM)

) n→∞−→ exp

(
E

(
ψ

((
d∑

k=1

ak|uk,l|2
)

l∈[d]

)))
.

It implies that(Qµn

d )∗kn converges in distribution to a probability measureP
µ
d

and that the Fourier transform ofP
µ
d , evaluated on ad × d Hermitian matrixA

with spectruma ∈ Rd , is given by

EP
µ
d

(
exp(i TrAM)

)= exp

(
E

(
ψ

((
d∑

k=1

ak|uk,l|2
)

l∈[d]

)))
.

But ψ = ψ⊕d
µ , so

EP
µ
d

(
exp(i TrAM)

)= exp
(
E
(
d × ψµ(〈Z,a〉))),(6)

where 〈·, ·〉 is the usual scalar product ofRd and Z = (|u1|2, . . . , |ud |2), with
u = (u1, . . . , ud) a uniformly distributed random vector on the unit sphere ofCd .

Recall that the distribution ofu is invariant under the unitary action, so
E(d × ψµ(〈Z,a〉)) = E(d × ψµ(〈u,Au〉)). �

REMARK 3.2 (The Poisson case). One can already identifyP
µ
d when

µ = P (λ) is the classical Poisson distribution with parameterλ (denotedπ∗
δ1,λ

in Section 1.2). It is easy, using Fourier transform, to see that, in this case,P
µ
d is

the distribution of
X(dλ)∑
k=1

ud(k)ud(k)∗,

where(ud(k))k≥1 is an independent family of uniformly distributed random vec-
tors on the unit sphere ofCd , independent of theP (dλ)-random variableX(dλ).

Explicit computation of the Fourier transform ofP
µ
d —the Gaussian case.In

this section we give the distribution, the moments and the Fourier transform of
the random variableZ appearing in (6) of the Fourier transform ofP

µ
d . In the

following, we will only need the moments ofZ.

PROPOSITION 3.3. Let u be a random vector of the unit sphere ofCd

with uniform distribution. Then the distribution ofZ = (|u1|2, . . . , |ud |2) on the
standardd-symplexe is the uniform distribution, that is, for every bounded Borel
functionf ,

E
(
f (|u1|2, . . . , |ud |2))

= (d − 1)!
∫ 1

x1=0

∫ 1−x1

x2=0
· · ·
∫ 1−∑d−2

i=1 xi

xd−1=0
f

(
x1, . . . , xd−1,1−

d−1∑
i=1

xi

)
dx.
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To prove it, writeu as a renormalized Gaussian standard vector onCd , and do
an appropriate change of variables.

We deduce, by induction ond, the following:

PROPOSITION3.4. For d ≥ 1, for α ∈ Nd , denotings =∑
i αi ,

E(|u1|2α1 · · · |ud |2αd ) = (d − 1)!
∏d

i=1(αi !)
(s + d − 1)! ≤ (s!)s (d − 1)!

(s + d − 1)! .

REMARK 3.5. Whenµ = N(0,1), that is, ψµ(t) = − t2

2 , Proposition 3.4
allows us to compute the Fourier transform. It appears then that, whenMd

has distributionP
µ
d , Md has the distribution ofNd + 1√

d+1
X·Id , whereNd ∈

GUE(d, 1
d+1) [GUE(d, σ 2) is the Euclidean space of Hermitiand × d matrices

endowed with the standard Gaussian distribution with varianceσ 2] andX is a real
standard Gaussian random variable independent ofNd .

Proposition 3.3 allows us also to compute, by induction ond, the Fourier
transform of the random variableZ.

PROPOSITION3.6. Letd ≥ 2 be an integer and leta ∈ Rd be such that theak

are pairwise distinct. Then

E
(
exp(i〈a,Z〉))= −(d − 1)!

d∑
j=1

eiaj∏
k=1,...,ĵ ,...,d i(ak − aj )

.

This proposition, together with the formula

EP
µ
d

(
exp(i TrAM)

)
= exp

{
iγ Tr(A) + d

∫
u∈R

[
E
(
eiu〈Z,a〉)− 1− iuTr(A)

d(1+ u2)

]
1+ u2

u2︸ ︷︷ ︸
− E(〈Z,a〉2)

2 for u=0

dG(u)

}
,

gives us the explicit computation of the Fourier transform ofP
µ
d .

4. Convergence of the kth moment of the mean spectral distribution to the
kth moment of �(µ) when the Lévy measure has compact support.

4.1. Statement of the result, preliminaries for the proof.

PROPOSITION4.1. Let µ be an∗-infinitely divisible distribution with com-
pactly supported Lévy measure(in the sense of the definition given at Remark1.2).
Then we have

∀ k ∈ N, EP
µ
d

(
1

d
TrMk

)
− mk(�(µ)) = O

(
1

d

)
.
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Notation and preliminaries. Let, forn ∈ N∗, µn be a probability measure onR
such thatµ∗n

n = µ. Let us consider, ford ≥ 1 andn ≥ 1, (M(i)
d,n)1≤i≤n i.i.d. random

matrices with distributionQµn

d . Then we know by Theorem 3.1 that, ford ≥ 1, the

sum of theM(i)
d,n’s (i = 1, . . . , n) converges in distribution toPµ

d whenn → ∞. We
know, by Theorem 1.6, that, for allk ∈ N∗, the sequencenmk(µn) is bounded, and
so

∀ k ≥ 1,∀d ≥ 1 EP
µ
d

(
1

d
TrMk

)
= lim

n→∞E

(
1

d
Tr

((
n∑

i=1

M
(i)
d,n

)k))
.

Let us then fixk ∈ N∗.

4.2. Computation ofEP
µ
d
( 1
d

TrMk) and proof of Proposition4.1. Let us
define, ford,n ≥ 1,

ad,n = E

(
1

d
Tr

((
n∑

i=1

M
(i)
d,n

)k))
.

We have

ad,n = 1

d
Tr

(
E

( ∑
f ∈[n]k

k∏
r=1

M
(f (r))
d,n

))
.

We will transform this sum by summing on the partitions.
We denote by Bij(I ) the set of permutations of a setI . Consider a partitionπ

of [n] (we have defined[n] = {1, . . . , n}) andk ∈ [n]. We denote byπ(k) the index
of the class ofk, after having ordered the classes according to the order of their
first element [e.g.,π(1) = 1; π(2) = 1 if 1

π∼ 2 andπ(2) = 2 if 1 π
� 2]. We denote,

for l, n nonnegative integers, byAl
n, the number of one-to-one maps from[l] to [n],

that is,n(n − 1) · · · (n − l + 1).
The following lemma will be used quite often in the text.

LEMMA 4.2. Considerk,n ∈ N∗. Considerφ : [n]k → C such that

∀f ∈ [n]k, ∀σ ∈ Bij([n]) φ(σ ◦ f ) = φ(f ).

Then ∑
f ∈[n]k

φ(f ) = ∑
π∈Part(k)

A|π |
n φ

((
π(1), . . . , π(k)

))
.

By this lemma, we have

ad,n = 1

d
TrE

( ∑
π∈Part(k)

A|π |
n

k∏
r=1

M
(π(r))
d,n

)
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= 1

d
TrE

( ∑
π∈NC(k)

A|π |
n

k∏
r=1

M
(π(r))
d,n

)
︸ ︷︷ ︸

denoted byvd,n

+ 1

d
TrE

( ∑
π∈Part(k)

π /∈NC(k)

A|π |
n

k∏
r=1

M
(π(r))
d,n

)

︸ ︷︷ ︸
denoted bywd,n

.

LEMMA 4.3. Let π be a partition of a totally ordered finite setI . Then the
following assertions are equivalent:

(i) π is noncrossing,
(ii) there exists a classV of π which is an interval, and π \ {V } is a non-

crossing partition ofI \ V .

Using several times Lemma 4.3 and integrating successively with respect to the
different independent random variables, we have

vd,n = 1

d
Tr

( ∑
π∈NC(k)

A|π |
n

∏
V ∈π

m|V |(µn) · Id

)

= ∑
π∈NC(k)

A
|π |
n

n|π |︸ ︷︷ ︸
n→∞−→ 1

∏
V ∈π

n · m|V |(µn).

By Theorem 1.6, for everyk ≥ 1, one has

lim
n→∞n × mk(µn) = Kk(�(µ)).

So for everyd,

lim
n→∞vd,n = ∑

π∈NC(k)

∏
V ∈π

K|V |(�(µ)) = mk(�(µ)).

To treat the termwd,n, let us expand the trace:

wd,n = 1

d

∑
π∈Part(k)

π /∈NC(k)

∑
j∈[d]k

jk+1:=j1

A|π |
n E

(
k∏

r=1

(
M

(π(r))
d,n

)
jr ,jr+1

)

= 1

d

∑
π∈Part(k)

π /∈NC(k)

A|π |
n

∑
τ∈Part(k)

A
|τ |
d E

(
k∏

r=1

(
M

(π(r))
d,n

)
τ(r),τ (r+1)

)
,

where for eachτ ∈ Part(k), τ(k + 1) = τ(1).
Using the fact that(M(i)

d,n)1≤i≤n are independent copies of a matrix with
distributionQ

µn

d , we deduce

wd,n = 1

d

∑
π∈Part(k)

π /∈NC(k)

A|π |
n

∑
τ∈Part(k)

A
|τ |
d

∏
V ∈π

EQ
µn
d

( ∏
r∈V

Mτ(r),τ (r+1)

)
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= 1

d

∑
π∈Part(k)

π /∈NC(k)

A|π |
n

∑
τ∈Part(k)

A
|τ |
d

∏
V ∈π

E

( ∑
l∈[d]V

∏
r∈V

(
uτ(r),lr uτ(r+1),lr Xn,lr

))
,

where U ∈ Ud is Haar-distributed and independent of(Xn,1, . . . ,Xn,d). So,
applying Lemma 4.2,

wd,n = 1

d

∑
π∈Part(k)

π /∈NC(k)

A|π |
n

∑
τ∈Part(k)

A
|τ |
d

× ∏
V ∈π

E

( ∑
σ∈Part(V )

A
|σ |
d

∏
r∈V

(
uτ(r),σ (r)uτ(r+1),σ (r)Xn,σ(r)

))

integrating with respect to theXn,l ’s,

wd,n = 1

d

∑
π∈Part(k)

π /∈NC(k)

A|π |
n

∑
τ∈Part(k)

A
|τ |
d

∏
V ∈π

∑
σ∈Part(V )

A
|σ |
d

× E

( ∏
r∈V

(
uτ(r),σ (r)uτ(r+1),σ (r)

))
︸ ︷︷ ︸

denoted byαd,τ,σ

∏
v∈σ

m|v|(µn)

= 1

d

∑
π∈Part(k)

π /∈NC(k)

A
|π |
n

n|π |︸ ︷︷ ︸
n→∞−→ 1

∑
τ∈Part(k)

A
|τ |
d

× ∏
V ∈π

∑
σ∈Part(V )

A
|σ |
d n1−|σ |︸ ︷︷ ︸

n→∞−→ δ
|σ |
1

αd,τ,σ

∏
v∈σ

nm|v|(µn)︸ ︷︷ ︸
n→∞−→ C|v|(µ)

by Theorem 1.6

,

when n → ∞, for everyπ /∈ NC(k), for everyV ∈ π , the only remainingσ ∈
Part(V ) is {V }.

So one has

EP
µ
d

(
1

d
TrMk

)
− mk(�(µ))

= 1

d

∑
π∈Part(k)

π /∈NC(k)

∑
τ∈Part(k)

A
|τ |
d

∏
V ∈π

A1
dC|V |(µ)E

( ∏
r∈V

uτ(r)uτ(r+1)

)
,

whereu = (u1, . . . , ud) is a uniformly distributed random vector of the unit sphere
of Cd .
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Using the invariance of the distribution ofu under the action of diagonal unitary
matrices, one sees that for allk, l ≥ 0, i ∈ [d]k ,j ∈ [d]l , if

E

(
k∏

r=1

uir

l∏
r=1

ūjr

)
�= 0,

thenk = l and there exists a permutationφ of [k] such that for allr , ir = jφ(r).
So the preceding formula can be written

EP
µ
d

(
1

d
TrMk

)
− mk(�(µ))

= 1

d

∑
π∈Part(k)

π /∈NC(k)

∑
τ∈acc(π)

A
|τ |
d d |π | ∏

V ∈π

C|V |(µ)E

( ∏
r∈V

uτ(r)uτ(r+1)

)
,

where for any finite totally ordered setI (in which the following element of any
elementx < maxI is denoted byx +1 and maxI +1= minI ), for any partitionπ
of I , acc(π) is defined to be the set ofπ -acceptablepartitions, which is the set of
partitionsτ of I such that

∀V ∈ π,∃φ ∈ Bij(V ), ∀ r ∈ V τ(r) = τ
(
φ(r) + 1

)
.

LEMMA 4.4. Let I be a finite totally ordered set, π, τ be partitions ofI such
that:

• π has a crossing(i.e., π is not noncrossing),
• τ is π -acceptable.

Then we have

|π | + |τ | ≤ |I |.(7)

PROOF. We prove the lemma by induction on the cardinality ofI (which is
not less than four becauseπ has a crossing).

• If the cardinality of I is four, then we can supposeI = [4]. We have
π = {{1,3}, {2,4}} and the inequality (7) is easy to verify because there are only
threeπ -acceptable partitions:

{[4]}, {{1,2}, {3,4}}, {{1,4}, {2,3}}.
• Suppose the inequality (7) proved when the cardinality ofI is p, and

considerI with cardinalityp+1, andπ, τ partitions ofI such thatπ has a crossing
andτ is π -acceptable.

• If π andτ have no singleton class, then their cardinalities are not greater
than|I |/2 and (7) is verified.
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• If π has a singleton class{a}, thenτ(a) = τ(a + 1). This implies that if
one removes the elementa in I , the class{a} in π and the elementa of its class
in τ , thenτ staysπ -acceptable (and, clearly,π keeps a crossing). So, by induction
hypothesis, we have(|π | − 1) + |τ | ≤ |I | − 1.

• If τ has a singleton class{b}, denote byV the class ofb in π and byφ

the permutation ofV such that for allr ∈ V , τ(r) = τ(φ(r) + 1). We must have
φ(b) + 1 = b, sob − 1

π∼ b. Remove the elementb in I , the class{b} in τ and the
elementb of V . Then, clearly,π keeps a crossing. Definẽφ to be the permutation
of the “new”V by

φ̃(r) =
{

φ(r), if φ(r) �= b,
b − 1, if φ(r) = b.

Then for allr in the “new” V , r and φ̃(r) are in the same class of the “new”τ .
It implies thatτ staysπ -acceptable. So, by the induction hypothesis, we have
|π | + (|τ | − 1) ≤ |I | − 1. �

Now recall Proposition 3.4: forα ∈ Nd , denotings =∑
i αi ,

E(|u1|2α1 · · · |ud |2αd ) = (d − 1)!
∏d

i=1(αi !)
(s + d − 1)! ≤ (s!)s (d − 1)!

(s + d − 1)! .

But for π, τ ∈ Part(k), with τ π -acceptable, for allV ∈ π , there existsα ∈ Nd such
that

∑
i αi = |V | and

E

( ∏
r∈V

uτ(r)uτ(r+1)

)
= E(|u1|2α1 · · · |ud |2αd ).

So, by Proposition 3.4 we have∣∣∣∣EP
µ
d

(
1

d
TrMk

)
− mk(�(µ))

∣∣∣∣
≤ 1

d

∑
π∈Part(k)

π /∈NC(k)

∑
τ∈acc(π)

A
|τ |
d d |π ||Cπ(µ)| ∏

V ∈π

(|V |!)|V | (d − 1)!
(|V | + d − 1)! .

Let C be real such that

∀d ≥ 1, ∀ s ∈ [k] (s!)s (d − 1)!
(s + d − 1)! ≤ Cd−s .

We then have ∣∣∣∣EP
µ
d

(
1

d
TrMk

)
− mk(�(µ))

∣∣∣∣
≤ 1

d

∑
π∈Part(k)

π /∈NC(k)

∑
τ∈acc(π)

d |τ |d |π ||Cπ(µ)|C|π |d−k.
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But according to (7), for allπ /∈ NC(k) and for allτ ∈ acc(π), we have|τ |+ |π |−
k ≤ 0, so Proposition 4.1 is shown.

5. Convergence in probability of the spectral distribution to �(µ) when
the Lévy measure has compact support.

5.1. Statement of the result and preliminaries to the proof.

PROPOSITION5.1. Let µ be an∗-infinitely divisible distribution with com-
pactly supported Lévy measure(in the sense of the definition given at Remark1.2).
Then the spectral distribution of a random matrix with distributionP

µ
d converges

in probability to�(µ) asd tends to infinity.

Notation and preliminaries. We keep the notation and the objects introduced
in Section 4.1. We consider a sequence(Md) of random matrices defined on
the same probability space such that for alld, Md has distributionPµ

d , and we
will prove the almost sure weak convergence of the spectral distribution ofMd

to �(µ). It implies Proposition 5.1. Since�(µ) is determined by its moments,
the weak convergence of any sequence of distributions to�(µ) is implied by the
convergence of all moments to those of�(µ).

Let us fixk ≥ 1. We will show that almost surely,

1

d
TrMk

d

d→∞−→ mk(�(µ)).

Var denotes the variance.
Recall that by Borel–Cantelli’s lemma, a sequence(Yd)d∈N of square-integrable

real random variables converges almost surely to a reall if
∑

d(E(Yd) − l)2 and∑
d Var(Yd) are finite.
But we know thatEP

µ
d
( 1
d

TrMk) − mk(�(µ)) = O( 1
d
). So it suffices to show

that ∑
d

VarPµ
d

(
1

d
TrMk

)
< ∞.

We will show that VarPµ
d
( 1
d

TrMk) = O( 1
d2 ) using the formula

VarPµ
d

(
1

d
TrMk

)
= lim

n→∞ Var

(
1

d
Tr

((
n∑

i=1

M
(i)
d,n

)k))
︸ ︷︷ ︸

denoted byVd,n

.(8)
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5.2. Computation ofVarPµ
d
( 1
d

TrMk) and proof of Proposition5.1. We have

Vn,d = E

( ∑
f ∈[n]2k

1

d
Tr

(
k∏

r=1

M
(f (r))
d,n

)
1

d
Tr

( 2k∏
r=k+1

M
(f (r))
d,n

))

−
(

E

( ∑
f ∈[n]k

1

d
Tr

k∏
r=1

M
(f (r))
d,n

))2

.

Let us apply Lemma 4.2:

Vn,d = ∑
π∈Part(2k)

A|π |
n E

((
1

d
Tr

k∏
r=1

M
(π(r))
d,n

)(
1

d
Tr

2k∏
r=k+1

M
(π(r))
d,n

))

− ∑
π1,π2∈Part(k)

A|π1|
n A|π2|

n E

(
1

d
Tr

k∏
r=1

M
(π1(r))
d,n

)
E

(
1

d
Tr

k∏
r=1

M
(π2(r))
d,n

)
.

We split the sum into two parts: in the first one we sum over the partitions of[2k]
which can be split into two partitionsπ1 andπ2 respectivly of{1, . . . , k} and of
{k + 1, . . . ,2k}, in the second one we sum over other partitions of[2k],

Vn,d = ∑
π1,π2∈Part(k)

[
A|π1|+|π2|

n − A|π1|
n A|π2|

n

]

× E

[
1

d
Tr

k∏
r=1

M
(π1(r))
d,n

]
E

[
1

d
Tr

k∏
r=1

M
(π2(r))
d,n

]

+ ∑
π∈Part(2k)

∃ i≤k<j,i
π∼j

A|π |
n E

[
1

d
Tr

(
k∏

r=1

M
(π(r))
d,n

)
1

d
Tr

( 2k∏
r=k+1

M
(π(r))
d,n

)]
.

Let us expand the trace:

Vn,d = 1

d2

∑
π1,π2∈Part(k)

(
A|π1|+|π2|

n − A|π1|
n A|π2|

n

)

× E

( ∑
j∈[d]k

jk+1:=j1

k∏
r=1

(
M

(π1(r))
d,n

)
jr ,jr+1

)
E

( ∑
j∈[d]k

jk+1:=j1

k∏
r=1

(
M

(π2(r))
d,n

)
jr ,jr+1

)

+ 1

d2

∑
π∈Part(2k)

∃ i≤k<j,i
π∼j

A|π |
n

∑
j∈[d]2k

E
[(

M
(π(1))
d,n

)
j1,j2

· · · (M(π(k))
d,n

)
jk,j1

× (
M

(π(k+1))
d,n

)
jk+1,jk+2

· · · (M(π(2k))
d,n

)
j2k,jk+1

]
.
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We apply Lemma 4.2 once more:

Vn,d = 1

d2

∑
π1,π2∈Part(k)

(
A|π1|+|π2|

n − A|π1|
n A|π2|

n

) ∑
τ1,τ2∈Part(k)

A
|τ1|
d A

|τ2|
d

× E

[
k∏

r=1

(
M

(π1(r))
d,n

)
τ1(r),τ1(r+1)

]
E

[
k∏

r=1

(
M

(π2(r))
d,n

)
τ2(r),τ2(r+1)

]

+ 1

d2

∑
π∈Part(2k)

∃ i≤k<j,i
π∼j

A|π |
n

∑
τ∈Part(2k)

A
|τ |
d E

[ 2k∏
r=1

(
M

(π(r))
d,n

)
τ(r),τ̆ (r+1)

]
,

where for any partitionτ of [k], τ(k + 1) denotesτ(1), and for any partitionτ
of [2k], 1≤ r ≤ 2k + 1, we define

τ̆ (r) =


τ(r), if s /∈ {k + 1,2k + 1},
τ(1), if r = k + 1,
τ(k + 1), if r = 2k + 1.

Since(M
(i)
d,n)1≤i≤n are independent copies of a matrix with distributionQ

µn

d , we
have

Vn,d = 1

d2

∑
π1,π2∈Part(k)

(
A|π1|+|π2|

n − A|π1|
n A|π2|

n

) ∑
τ1,τ2∈Part(k)

A
|τ1|
d A

|τ2|
d

× ∏
V ∈π1

EQ
µn
d

[ ∏
r∈V

Mτ1(r),τ1(r+1)

] ∏
V ∈π2

EQ
µn
d

[ ∏
r∈V

Mτ2(r),τ2(r+1)

]

+ 1

d2

∑
π∈Part(2k)

∃ i≤k<j,i
π∼j

A|π |
n

∑
τ∈Part(2k)

A
|τ |
d

∏
V ∈π

EQ
µn
d

[ ∏
r∈V

Mτ(r),τ̆ (r+1)

]

= 1

d2

∑
π1,π2∈Part(k)

(
A|π1|+|π2|

n − A|π1|
n A|π2|

n

) ∑
τ1,τ2∈Part(k)

A
|τ1|
d A

|τ2|
d

× ∏
V ∈π1

E

[ ∑
l∈[d]V

∏
r∈V

uτ1(r),lr uτ1(r+1),lr Xn,lr

]

× ∏
V ∈π2

E

[ ∑
l∈[d]V

∏
r∈V

uτ2(r),lr uτ2(r+1),lr Xn,lr

]

+ 1

d2

∑
π∈Part(2k)

∃ i≤k<j,i
π∼j

A|π |
n

∑
τ∈Part(2k)

A
|τ |
d

∏
V ∈π

E

[ ∑
l∈[d]V

∏
r∈V

uτ(r),lr uτ̆ (r+1),lr Xn,lr

]
,
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whereU is a unitary Haar-distributed random matrix, independent of(Xn,1, . . . ,

Xn,d). So, after application of Lemma 4.2,

Vn,d = 1

d2

∑
π1,π2∈Part(k)

(
A|π1|+|π2|

n − A|π1|
n A|π2|

n

) ∑
τ1,τ2∈Part(k)

A
|τ1|
d A

|τ2|
d

× ∏
V ∈π1

E

( ∑
σ∈Part(V )

A
|σ |
d

∏
r∈V

uτ1(r),σ (r)uτ1(r+1),σ (r)Xn,σ(r)

)

× ∏
V ∈π2

E

( ∑
σ∈Part(V )

A
|σ |
d

∏
r∈V

uτ2(r),σ (r)uτ2(r+1),σ (r)Xn,σ(r)

)

+ 1

d2

∑
π∈Part(2k)

∃ i≤k<j,i
π∼j

A|π |
n

∑
τ∈Part(2k)

A
|τ |
d

× ∏
V ∈π

E

( ∑
σ∈Part(V )

A
|σ |
d

∏
r∈V

uτ(r),σ (r)uτ̆ (r+1),σ (r)Xn,σ(r)

)
,

integrating with respect to theXn,l ’s,

Vn,d = 1

d2

∑
π1,π2∈Part(k)

A
|π1|+|π2|
n − A

|π1|
n A

|π2|
n

n|π1|+|π2|
∑

τ1,τ2∈Part(k)

A
|τ1|
d A

|τ2|
d

× ∏
V ∈π1

∑
σ∈Part(V )

n1−|σ |A|σ |
d E

[ ∏
r∈V

uτ1(r),σ (r)uτ1(r+1),σ (r)

] ∏
v∈σ

n × m|v|(µn)

× ∏
V ∈π2

∑
σ∈Part(V )

n1−|σ |A|σ |
d E

[ ∏
r∈V

uτ2(r),σ (r)uτ2(r+1),σ (r)

] ∏
v∈σ

n × m|v|(µn)

+ 1

d2

∑
π∈Part(2k)

∃ i≤k<j,i
π∼j

A
|π |
n

n|π |
∑

τ∈Part(2k)

A
|τ |
d

∏
V ∈π

∑
σ∈Part(V )

n1−|σ |A|σ |
d

× E

[ ∏
r∈V

uτ(r),σ (r)uτ̆ (r+1),σ (r)

] ∏
v∈σ

n × m|v|(µn).
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Let n tend to infinity:

Vn,d = 1

d2

∑
π1,π2∈Part(k)

A
|π1|+|π2|
n − A

|π1|
n A

|π2|
n

n|π1|+|π2|︸ ︷︷ ︸
n→∞−→ 0

∑
τ1,τ2∈Part(k)

A
|τ1|
d A

|τ2|
d

× ∏
V ∈π1

∑
σ∈Part(V )

n1−|σ |︸ ︷︷ ︸
n→∞−→ δ

|σ |
1

A
|σ |
d

× E

[ ∏
r∈V

uτ1(r),σ (r)uτ1(r+1),σ (r)

] ∏
v∈σ

n × m|v|(µn)︸ ︷︷ ︸
n→∞−→ C|v|(µ)

by Theorem 1.6

× ∏
V ∈π2

∑
σ∈Part(V )

n1−|σ |︸ ︷︷ ︸
n→∞−→ δ

|σ |
1

A
|σ |
d

× E

[ ∏
r∈V

uτ2(r),σ (r)uτ2(r+1),σ (r)

] ∏
v∈σ

n × m|v|(µn)︸ ︷︷ ︸
n→∞−→ C|v|(µ)

by Theorem 1.6

+ 1

d2

∑
π∈Part(2k)

∃ i≤k<j,i
π∼j

A
|π |
n

n|π |︸ ︷︷ ︸
n→∞−→ 1

∑
τ∈Part(2k)

A
|τ |
d

∏
V ∈π

∑
σ∈Part(V )

n1−|σ |︸ ︷︷ ︸
n→∞−→ δ

|σ |
1

A
|σ |
d

× E

[ ∏
r∈V

uτ(r),σ (r)uτ̆ (r+1),σ (r)

] ∏
v∈σ

n × m|v|(µn)︸ ︷︷ ︸
n→∞−→ C|v|(µ)

by Theorem 1.6

whenn tends to infinity, for every partitionπ (or π1 or π2), for everyV ∈ π , the
only restingσ ∈ Part(V ) is {V }. So one has

VarPµ
d

(
1

d
TrMk

)

= 1

d2

∑
π∈Part(2k)

∃ i≤k<j,i
π∼j

∑
τ∈Part(2k)

A
|τ |
d

∏
V ∈π

A1
dC|V |(µ)E

( ∏
r∈V

uτ(r)uτ̆ (r+1)

)
,

whereu = (u1, . . . , ud) is a uniformly distributed random vector of the unit sphere
of Cd .
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But recall that by invariance of the distribution ofu under the action of diagonal
unitary matrices, for allk, l ≥ 0, i ∈ [d]k ,j ∈ [d]l , if

E

(
k∏

r=1

uir

l∏
r=1

ūjr

)
�= 0,

thenk = l and there exists a permutationφ of [k] such that for allr , ir = jφ(r).
So the preceding formula can be written

VarPµ
d

(
1

d
TrMk

)

= 1

d2

∑
π∈Part(2k)

∃ i≤k<j,i
π∼j

∑
τ∈adm(π)

A
|τ |
d d |π | ∏

V ∈π

C|V |(µ)E

( ∏
r∈V

uτ(r)uτ̆ (r+1)

)
,

where adm(π) is defined in the following way (splitting the set[2k] in two disjoint
sets[k], [2k] \ [k]): for any pair(I, J ) of disjoint finite totally ordered sets, for any
partition π of I ∪ J , adm(π) is defined to be the set ofπ -admissiblepartitions,
which is the set of partitionsτ of I ∪ J such that

∀V ∈ π, ∃φ ∈ Bij(V ), ∀ r ∈ V τ(r) = τ
(
φ(r) + 1

)
,

where for anyx ∈ I (resp.x ∈ J ), x + 1 denotes the element followingx in I

(resp.J ).

LEMMA 5.2. Let (I, J ) be a pair of disjoint finite totally ordered sets, π, τ

partitions ofI ∪ J such that:

• there existsi ∈ I, j ∈ J , with i
π∼ j ,

• τ is π -admissible.

Then we have

|π | + |τ | ≤ |I | + |J |.(9)

This inequality can be proved by induction, the proof is analaguous to the one
of (7).

Recall (Proposition 3.4) that forα ∈ Nd , using the notations =∑
i αi ,

E(|u1|2α1 · · · |ud |2αd ) = (d − 1)!
∏d

i=1(αi !)
(s + d − 1)! ≤ (s!)s (d − 1)!

(s + d − 1)! .(10)

But for everyπ, τ ∈ Part(2k), with τ π -admissible, for everyV ∈ π , there exists
α ∈ Nd such that

∑
i αi = |V | and

E

( ∏
r∈V

uτ(r)uτ̆ (r+1)

)
= E(|u1|2α1 · · · |ud |2αd ).
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So, by (10), we have

VarPµ
d

(
1

d
TrMk

)
≤ 1

d2

∑
π∈Part(2k)

∃ i≤k<j,i
π∼j

τ∈adm(π)

A
|τ |
d d |π | ∏

V ∈π

C|V |(µ)(|V |!)|V | (d − 1)!
(|V | + d − 1)! .

ConsiderC < ∞ such that

∀d ≥ 1, ∀ s ∈ [2k] (s!)s (d − 1)!
(s + d − 1)! ≤ Cd−s .

We have

|Vd | ≤ 1

d2

∑
π∈Part(2k)

∃ i≤k<j,i
π∼j

τ∈adm(π)

d |τ |d |π ||Cπ(µ)|C|π |d−2k.

But according to (9), for everyπ ∈ Part(2k) such that there existsi ≤ k < j with
i

π∼ j and for everyπ -admissibleτ ∈ Part(2k), we have|τ | + |π | − 2k ≤ 0, so

VarPµ
d

(
1

d
TrMk

)
= O

(
1

d2

)
and Proposition 5.1 is proved.

5.3. Applications to GUE and sums of independent projections.This section
is not necessary for the rest of the text.

Proposition 5.1 contains the almost sure convergence of the spectral distribution
of the matrices ofGUE(d, 1

d+1) to the semi-circle distribution, whereGUE(d, σ 2)

is the Euclidean space ofd ×d Hermitian matrices with the scalar product Tr(·×·),
endowed with the standard Gaussian distribution with varianceσ 2.

Indeed, let(Nd)d∈N∗ be a sequence of random matrices such that for everyd,
the distribution ofNd is the one of a matrix of theGUE(d, 1

d+1) [we do not do
any hypothesis about the joint distribution of(Nd)d∈N∗ ]. Let X be a real Gaussian
standard random variable, independent of(Nd)d∈N∗ . We have seen to Remark 3.5
that ford ∈ N∗, Md := Nd + X√

d+1
· Id has distributionPN(0,1)

d . We have proved
that µMd

converges almost surely to the centered semicircle distribution with
variance 1. SoµNd

, which is equal toδ− X√
d+1

∗ µMd
, converges almost surely to

the centered semicircle distribution with variance 1.
Another consequence of Proposition 5.1 is the following one. Recall that for

all λ ≥ 0, the Marchenko–Pastur distribution with indexλ is the image, by the
Bercovici–Pata bijection, of the classical Poisson distributionP (λ) with indexλ.
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PROPOSITION5.3. Let, for all d ≥ 1, (ud(k))k≥1 be an independent family of
uniformly distributed random vectors on the unit sphere ofCd . Then for allλ ≥ 0,
the spectral distribution of

d ′∑
k=1

ud(k)ud(k)∗

converges in probability to the Marchenko–Pastur distribution with indexλ when
d, d ′ tend to infinity and the ratiod ′/d tends toλ.

The proof of this result, which uses tools introduced in the following section, is
in the Appendix.

6. Convergence in probability of the spectral distribution Md to �(µ)
without condition on the Lévy measure.

6.1. Convergence in probability of a sequence of random distributions to a
deterministic distribution. We will denote, forz ∈ C, by �z and�z its real and
imaginary parts. Let us define, forν probability measure onR,

fν :C+ = {z ∈ C;�z > 0} → C,

z �→
∫
u∈R

dν(u)

u − z
.

Thenfν is a holomorphic function onC+, |fν(z)| ≤ 1
�z

, and the map

{probability measures onR}2 → R+,

(µ1,µ2) �→ sup
{∣∣fµ1(z) − fµ2(z)

∣∣;�z ≥ 1
}

is a distance which defines the weak topology.
So, for (Md)d≥1 sequence of Hermitian random matrices andρ probability

measure onR, we have equivalence between:

(i) the spectral distribution ofµMd
converges in probability toρ,

(ii) for every ε > 0,

P
(

sup
�z≥1

∣∣∣∣1d Tr
(
Rz(Md)

)− fρ(z)

∣∣∣∣> ε

)
d→∞−→ 0,

where, forM Hermitian matrix andz ∈ C \ R, Rz(M) = (M − z)−1.

6.2. Statement of the theorem and scheme of the proof.

THEOREM 6.1. Let µ be an∗-infinitely divisible distribution. Let, for d ≥ 1,
Md be a random matrix with distributionPµ

d .
Then the spectral distributionµMd

of Md converges in probability to�(µ).
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Scheme of the proof:

1. Notation, approximation ofMd by Mt
d .

2. Upper bound, fora > 0, of P(rg(Nt
d) > da) uniformly in d ≥ 1.

3. Conclusion.

6.3. Proof of Theorem6.1.

6.3.1. Notation, approximation ofMd byMt
d . Let γ,G be such thatµ = ν

γ,G∗ .
Recall [equation (2)] that fort > 0, denoting:

1. By G0
t andGt the positive finite measures onR,

G0
t (A) = G(A ∩ [−t, t]), Gt(A) = G(A \ [−t, t])

for all Borel setA of R.
2. Theat the number−∫u∈R\[−t,t] 1

u
dG(u).

3. By µt, nut the measuresν
γ+at ,G

0
t∗ , ν

−at ,Gt∗ ,

we have the following:

(i) µ = µt ∗νt , so for everyd, Md has the distribution ofMt
d +Nt

d , whereMt
d

andNt
d are independent random matrices with respective distributionsP

µt

d andP
νt

d ,
(ii) νt is the weak limit, whenn → ∞, of((

1− λt

n

)
δ0 + λt

n
ρt

)∗n

with

λt =
∫
u∈R\[−t,t]

1+ u2

u2 dG(u), ρt = 1

λt

1+ u2

u2 dGt(u).

So for all d ≥ 1, the distributionPνt

d of Nt
d is the weak limit of the distribution

of
∑n

i=1 N
t,(i)
d,n , where, for everyn ≥ 1, (N

t,(i)
d,n )1≤i≤n are independent copies of

U diag(Xn,1, . . . ,Xn,d)U∗ with:

(a) (Xn,1, . . . ,Xn,d) i.i.d. random variables with distribution(
1− λt

n

)
δ0 + λt

n
ρt ,

(b) U unitary Haar-distributed random matrix, independent of(Xn,1,

. . . ,Xn,d).
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6.3.2. Upper bound, for a > 0, of P(rg(Nt
d) > da) uniformly in d ≥ 1. We

denote by rg(M) the rank of a matrixM .
Let a be a positive real.
Rank is a lower semi-continuous function, so

E
(
rg(Nt

d)
) ≤ lim

n→∞E

(
rg

(
n∑

i=1

N
t,(i)
d,n

))

≤ lim
n→∞E

(
n∑

i=1

rg
(
N

t,(i)
d,n

))

= lim
n→∞

n∑
i=1

E
(
rg
(
N

t,(i)
d,n

))
= lim

n→∞nE
(
rgU diag(Xn,1, . . . ,Xn,d)U∗)

= lim
n→∞n

d∑
l=1

P(Xn,l �= 0)

= lim
n→∞nd P(Xn,1 �= 0)

= lim
n→∞nd

λt

n

= dλt .

So we have

E
(
rg(Nt

d)
)≤ dλt .

We deduce, with the Chebyshev inequality, that, for everya > 0,

P
(
rg(Nt

d) > da
)≤ 1

da
E
(
rg(Nt

d)
)≤ λt

a
.(11)

6.3.3. Conclusion. Let ε, η be positive reals. Let us show that there exists an
integerd0 such that, for every integerd ≥ d0,

P
(

sup
�z≥1

∣∣∣∣1d Tr
(
Rz(Md)

)− f�(µ)(z)

∣∣∣∣> ε

)
≤ η.

Choice oft > 0. Whent tends to+∞, the realat tends to 0 and the positive

finite measureG0
t converges weakly toG. So, by Theorem 1.1,ν

γ+at ,G
0
t

� converges

weakly toν
γ,G
� . In other words,�(µt) converges weakly to�(µ). So there exists

T1 > 0 such that, for allt ≥ T1,

sup
�z≥1

∣∣f�(µt )(z) − f�(µ)(z)
∣∣< ε

3
.(12)
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When t tends to+∞, the realλt tends to 0, so there existsT2 > 0 such that, for
everyt ≥ T2,

λt ≤ εη

12
.(13)

Let t = max(T1, T2).
For everyd ≥ 1, we have

P
(

sup
�z≥1

∣∣∣∣1d Tr
(
Rz(Md)

)− f�(µ)(z)

∣∣∣∣> ε

)

= P
(

sup
�z≥1

∣∣∣∣1d Tr
(
Rz(M

t
d + Nt

d)
)− f�(µ)(z)

∣∣∣∣> ε

)
and ∣∣∣∣1d Tr

(
Rz(M

t
d + Nt

d)
)− f�(µ)(z)

∣∣∣∣
≤
1

d
Tr
(
Rz(M

t
d + Nt

d) − Rz(M
t
d)
)∣∣∣∣

+
∣∣∣∣1d Tr

(
Rz(M

t
d)
)− f�(µt )(z)

∣∣∣∣+ ∣∣f�(µt )(z) − f�(µ)(z)
∣∣.

(14)

Let us deal with thefirst termof the sum (14):
We know that for every complexd ×d matrixM , | 1

d
TrM| ≤ ‖M‖

d
rg(M), where

‖M‖ is the operator norm ofM associated to the canonical Hermitian norm onCd ,
and‖Rz(M

t
d + Nt

d) − Rz(M
t
d)‖ ≤ ‖Rz(M

t
d + Nt

d)‖ + ‖Rz(M
t
d)‖ ≤ 2

�z
≤ 2.

Moreover, for all pairM,N of Hermitian matrices, for allz ∈ C \ R, Rz(M +
N) − Rz(M) = −Rz(M + N)NRz(M). So rg(Rz(M

t
d + Nt

d) − Rz(M
t
d)) ≤

rg(Nt
d).

So ∣∣∣∣1d Tr
(
Rz(M

t
d + Nt

d) − Rz(M
t
d)
)∣∣∣∣≤ 2

d
rg(Nt

d),(15)

but for alld ≥ 1,

P
(

sup
�z≥1

∣∣∣∣1d Tr
(
Rz(M

t
d + Nt

d) − Rz(M
t
d)
)∣∣∣∣≥ ε

3

)
≤ P

(∣∣∣∣2d rg(Nt
d)

∣∣∣∣≥ ε

3

)

= P
(
| rg(Nt

d)| ≥ dε

6

)
≤ 6λt

ε
by (11)

≤ η

2
by (13).
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By inequality (12), thethird termof the sum (14) is≤ ε
3 as soon as�z ≥ 1.

Let us now deal with thesecond termof the sum (14). The Lévy measure ofµt

(in the sense of the definition given at Remark 1.2), which isG0
t , is compactly

supported. By Proposition 5.1 and by the other results of Section 6.1, there exists
an integerd0 such that, for everyd ≥ d0,

P
(

sup
�z≥1

∣∣∣∣1d Tr
(
Rz(M

t
d)
)− f�(µt )(z)

∣∣∣∣≥ ε

3

)
<

η

2
.

Then for alld ≥ d0, replacing the terms of the sum (14) by the upper bounds we
just gave, we have

P
(

sup
�z≥1

∣∣∣∣1d Tr
(
Rz(Md)

)− f�(µ)(z)

∣∣∣∣> ε

)
≤ η

2
+ η

2
+ 0.

So, we have

lim
d→∞ P

(
sup
�z≥1

∣∣∣∣1d Tr
(
Rz(Md)

)− f�(µ)(z)

∣∣∣∣> ε

)
= 0,

and Theorem 6.1 is proved.

7. Study of the non-Hermitian model.

7.1. The distributionsLµ
d . This section is the analogue, for non-Hermitian

matrices, of Section 3. The distributionsL
µ
d are defined by the following theorem,

the proof of which is analoguous to the one of Theorem 3.1 using the polar
decomposition of non-Hermitian matrices and the bi-unitarily invariance of the
distributionsKµn

d .

THEOREM 7.1. Let µ be an∗-infinitely divisible distribution. Let (µn) be
a sequence of probability measures onR and (kn) be a sequence of integers
tending to+∞ such that the sequenceµ∗kn

n converges weakly toµ. Let, for d ≥ 1
andn ≥ 1, K

µn

d be the distribution ofUDiag(Xn,1, . . . ,Xn,d)V , whereU,V are
independent unitary Haar-distributedd × d random matrices, independent of the
µn-distributed i.i.d. random variablesXn,1, . . . ,Xn,d .

Then the sequence((Kµn

d )∗kn) of probability measures on the space ofd × d

complex matrices converges weakly to a distributionL
µ
d .

Moreover, the Fourier transform ofLµ
d on the Euclidean space of complexd ×d

matrices endowed with the scalar product(M,N) �→ �(TrM∗N) is given by the
following formula: for all complexd × d matrixA,

EL
µ
d

(
exp

(
i�(TrA∗X)

))= exp
(
E
(
d × ψµ

(�(〈u,Av〉)))),(16)

where:

• ψµ is the Lévy exponent ofµ,
• 〈·, ·〉 is the canonical Hermitian product ofCd ,
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• u = (u1, . . . , ud), v = (v1, . . . , vd) are independent random vectors, uniformly
distributed on the unit sphere ofCd .

REMARK 7.2. 1. NoticeLµ
d ∗ Lν

d = L
µ∗ν
d .

2. Whenµ = N(0,1), L
µ
d is the distribution of a matrix[Mi,j ] with (�Mi,j ,

�Mi,j )1≤i,j≤d N(0, 1
2d

)-distributed i.i.d. random variables.
3. The same construction can be done with rectangular bi-unitarily invariant

random matrices. It leads, when the dimensions of the matrices tend to
infinity in a certain ratio, to probability measures which are infinitely divisible
with respect to a certain convolution. The studying of this convolution has
led the author to construct a new noncommutative probability theory, called
the rectangular free probability theory, which allows us to understand the
asymptotic behavior of rectangular random matrices, as free probability theory
describes the asymptotic behavior of square random matrices. It might give rise
to a publication.

7.2. Convergence of thekth moment to thekth moment of�(µ) when the
Lévy measure is compactly supported.The purpose of this section is to show
the following result:

PROPOSITION 7.3. Let µ be a symmetric∗-infinitely divisible distribution
with compactly supported Lévy measure. Then for all integerk,

EL
µ
d

(
mk

(
µ̃|M|

))− mk(�(µ)) = O

(
1

d

)
.

PROOF. First, for every complexd × d matrix M , for all integerk, mk(µ̃|M|)
is null if k is odd and is equal to1

d
Tr(MM∗)k/2 if k is even. Asµ is symmetric,

�(µ) is symmetric. So it suffices to show that, for allk ∈ N∗,

EL
µ
d

(
1

d
Tr(MM∗)k

)
− m2k(�(µ)) = O

(
1

d

)
.

Let, for n ∈ N∗, µn be the probability measure such thatµ∗n
n = µ. Consider,

for d ≥ 1 andn ≥ 1, (M
(i)
d,n)1≤i≤n i.i.d. random matrices with distributionKµn

d .

Then we know by Theorem 7.1, that, for everyd ≥ 1, the sum of theM(i)
d,n’s

(i = 1, . . . , n) converges in distribution toLµ
d whenn goes to∞.

We know, by Theorem 1.6, that, for allk ∈ N∗, the sequence(n × mk(µn))n is
bounded, and so that, for allk, d ∈ N∗,

E
(
m2k

(
µ̃|M|

))= lim
n→∞E

(
1

d
Tr

((
n∑

i=1

M
(i)
d,n

)(
n∑

i=1

M
(i)∗
d,n

))k)
.(17)
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Let us fixk ∈ N∗. We are going to use (17).
Let, for d,n ≥ 1,

bd,n = E

(
1

d
Tr

((
n∑

i=1

M
(i)
d,n

)(
n∑

i=1

M
(i)∗
d,n

))k)
.

We have

bd,n = 1

d
Tr

(
E

( ∑
f ∈{1,...,n}2k

k∏
r=1

M
(f (2r−1))
d,n M

(f (2r))∗
d,n

))
.

Let us transform this sum using partitions (Lemma 4.2). Moreover, from now on,
we do not write anymore the indexd in M

(i)
d,n,

bd,n = 1

d
Tr

(
E

( ∑
π∈Part(2k)

A|π |
n M(π(1))

n M(π(2))∗
n M(π(3))

n · · ·M(π(2k))∗
n

))
.

But

E
(
M(1)∗

n M(1)
n · · ·M(1)∗

n︸ ︷︷ ︸
2l+1 alterned factors

)= E
(
M(1)

n M(1)∗
n · · ·M(1)

n︸ ︷︷ ︸
2l+1 alterned factors

)= 0= m2l+1(µn)Id,

E
(
M(1)∗

n M(1)
n · · ·M(1)

n︸ ︷︷ ︸
2l alterned factors

)= E
(
M(1)

n M(1)∗
n · · ·M(1)∗

n︸ ︷︷ ︸
2l alterned factors

)= m2l(µn)Id .

So, for π ∈ NC(2k), using many times Lemma 4.3 and integrating successively
with respect to the different independent random variables, we obtain

1

d
Tr
(
E
(
M(π(1))∗

n M(π(2))
n M(π(3))∗

n · · ·M(π(2k))
n

))= mπ(µn).

Proceeding then like in Section 4.2, we show easily that

EL
µ
d

(
m2k

(
µ̃|M|

))− m2k(�(µ))

= 1

d

∑
π,τ∈Part(2k)

π /∈NC(2k)

A
|τ |
d d |π |Cπ(µ)

∏
V ∈π

E

( ∏
r∈V
r odd

uτ(r)vτ(r+1)

∏
r∈V

r even

uτ(r+1)vτ(r)

)
,

with τ(2k + 1) = τ(1) and whereu = (u1, . . . , ud), v = (v1, . . . , vd) are indepen-
dent uniformly distributed random vectors of the unit sphere ofCd . But as we
have already seen, by invariance of the distribution ofu under the action of unitary
diagonal matrices, for every pair(π, τ ) of partitions of[2k], if

∏
V ∈π

E

( ∏
r∈V
r odd

uτ(r)vτ(r+1)

∏
r∈V

r even

uτ(r+1)vτ(r)

)
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is nonzero, then for every classV of π , there existsφ, permutation ofV , which
maps odd numbers to even numbers and vice versa, such that for allr ∈ V , τ(r) =
τ(φ(r) + 1). It implies thatτ is π -acceptable. Using inequality|τ | + |π | ≤ 2k

[equation (7)], the inequality on the moments of a uniform random vector on the
sphere ofCd (Proposition 3.4), we deduce, as in Section 4.2, that

1

d

∑
π,τ∈Part(2k)

π /∈NC(2k)

A
|τ |
d d |π |Cπ(µ)

∏
V ∈π

E

( ∏
r∈V
r odd

uτ(r)vτ(r+1)

∏
r∈V

r even

uτ(r+1)vτ(r)

)
= O

(
1

d

)
.

So

∀ k ∈ N EL
µ
d

(
mk

(
µ̃|M|

))− mk(�(µ)) = O

(
1

d

)
. �

7.3. Convergence in probability to�(µ) when the Lévy measure has compact
support. The purpose of this section is to show the following result:

PROPOSITION 7.4. Let µ be a symmetric∗-infinitely divisible distribution
with compactly supported Lévy measure(in the sense of the definition given at
Remark1.2).Let, for eachd, Md be a random matrix with distributionLµ

d .
Then the symmetrization of the spectral distribution of|Md | converges weakly

to �(µ) whend goes to infinity.

PROOF. We will show inequalities that would imply almost sure convergence
of the symmetrization of the spectral distribution of|Md | to �(µ) if the matrices
Md (d ≥ 1) were defined on the same probability space. So let us suppose that
the matrices are defined on the same probability space. We keep the notation and
objects introduced in Section 7.2. Since�(µ) is symmetric and determined by its
moments, the convergence of a sequence of symmetric distributions to�(µ) is
implied by the convergence of all the moments of even order to those of�(µ).

Let us fixk ≥ 1. We will show that almost surely,

1

d
Tr(M∗

dMd)k
d→∞−→ m2k(�(µ)).

But we know that

EL
µ
d

(
1

d
Tr(MM∗)k

)
− m2k(�(µ)) = O

(
1

d

)
.

So it suffices to show that

VarLµ
d

(
1

d
Tr(MM∗)k

)
= O

(
1

d2

)
.
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We will do it using the formula

VarLµ
d

(
1

d
Tr(MM∗)k

)
= lim

n→∞ Var

(
1

d
Tr

((
n∑

i=1

M
(i)
d,n

)(
n∑

i=1

M
(i)∗
d,n

))k)
.

Proceeding like in Section 5.2, we obtain

Var
(

1

d
Tr(M∗

dMd)k
)

= 1

d2

∑
π,τ∈Part(4k)

∃ i≤2k<j,i
π∼j

A
|τ |
d d |π |Cπ(µ)

∏
V ∈π

E

( ∏
r∈V
r odd

uτ(r)vτ̆ (r+1)

∏
r∈V

r even

vτ(r)uτ̆ (r+1)

)
,

whereu = (u1, . . . , ud), v = (v1, . . . , vd) are uniformly distributed independent
random vectors of the unit sphere ofCd .

But for all couple(π, τ ) of partitions of[4k], if

∏
V ∈π

E

( ∏
r∈V
r odd

uτ(r)vτ̆ (r+1)

∏
r∈V

r even

vτ(r)uτ̆ (r+1)

)

is nonzero, then for all classV of π , there exists a permutationφ of V , which
maps even numbers to odd numbers and vice versa, such that for allr ∈ V ,
τ(r) = τ̆ (φ(r) + 1), which implies thatτ is π -admissible. Using the inequality
|τ | + |π | ≤ 4k [equation (9)] and the inequality on the moments of a uniform
random vector on the sphere ofCd (Proposition 3.4), we deduce, as in Section 5,
that VarLµ

d
( 1
d

Tr(MM∗)k) = O( 1
d2 ). �

REMARK 7.5. In the case whereµ = N(0,1), we have a new proof of a well-
known result: the spectral distribution of a Wishartd × d matrix with d degrees
of freedom converges almost surely, whend tends to infinity, to the distribution
of X2 whenX is a centered semi-circular random variable with variance 1, which
is [see Speicher (1999)] the Marchenko–Pastur distribution with parameter 1.

7.4. Convergence in probability of̃µ|Md | to �(µ) in the general case.

THEOREM 7.6. Let µ be a symmetric∗-infinitely divisible distribution. Let,
for d ≥ 1, Md be a random matrix with distributionLµ

d .
Then the symmetrizatioñµ|Md | of the spectral distribution of|Md | converges in

probability to�(µ).

The proof is quite similar to the one of Theorem 6.1.
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PROOF OFTHEOREM 7.6.

Notation, approximation ofMd byMt
d . Let G be the symmetric positive finite

measure onR such thatµ = ν0,G∗ . Recall [equation (2)] that, fort > 0, if:

1. G0
t andGt are the positive finite measures

G0
t (A) = G(A ∩ [−t, t]), Gt(A) = G(A \ [−t, t])

for all Borel setA of R.
2. µt = ν

0,G0
t∗ andνt = ν

0,Gt∗ ,

then we have:

(i) µ = µt ∗ νt , so for alld ≥ 1, Md has the same distribution asMt
d + Nt

d ,
where Mt

d and Nt
d are independent random matrices with respective distribu-

tionsL
µt

d et Lνt

d ,
(ii) νt is the weak limit, whenn → ∞, of((

1− λt

n

)
δ0 + λt

n
ρt

)∗n

for

λt =
∫
u∈R\[−t,t]

1+ u2

u2 dG(u), ρt = 1

λt

1+ u2

u2 dGt(u).

So for all d ≥ 1, the distributionLνt

d of Nt
d is the weak limit of the distribution

of
∑n

i=1 N
t,(i)
d,n , where for all n ≥ 1, (N

t,(i)
d,n )1≤i≤n are independent copies of

U diag(Xn,1, . . . ,Xn,d)V with:

(a) (Xn,1, . . . ,Xn,d) i.i.d. random variables with distribution(1 − λt

n
)δ0 +

λt

n
ρt ,

(b) U,V unitary Haar-distributed random matrices, independent of
(Xn,1, . . . ,Xn,d).

In the same way as in Section 6.3.2, we show that, for alla > 0,

P
(
rg(Nt

d) > da
)≤ λt

a
.(18)

Let us denote, forρ probability measure onR, ρ2 the distribution ofX2 whenX

is a random variable with distributionρ.
Considerε, η > 0.
Let us show that there exists an integerd0 such that, for alld ≥ d0,

P
(

sup
�z≥1

∣∣∣∣1d Tr
(
Rz(M

∗
dMd)

)− f�(µ)2(z)

∣∣∣∣> ε

)
≤ η.
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Choice oft > 0. When t tends to+∞, the measureG0
t converges weakly

to G. So, by Theorem 1.1,ν
0,G0

t

� converges weakly toν0,G
� . In other words,�(µt)

converges weakly to�(µ). So�(µt)
2 converges weakly to�(µ)2. Hence, there

existsT1 > 0 such that, for allt ≥ T1,

sup
�z≥1

∣∣f�(µt )2(z) − f�(µ)2(z)
∣∣< ε

3
.(19)

Whent tends to+∞, the realλt tends to 0, so there existsT2 > 0 such that, for all
t ≥ T2,

λt ≤ εη

24
.(20)

Let t = max(T1, T2).
For alld ≥ 1, we have

P
(

sup
�z≥1

∣∣∣∣1d Tr
(
Rz(M

∗
dMd)

)− f�(µ)2(z)

∣∣∣∣> ε

)

= P
(

sup
�z≥1

∣∣∣∣1d Tr
(
Rz

(
(Mt∗

d + Nt∗
d )(Mt

d + Nt
d)
))− f�(µ)(z)

∣∣∣∣> ε

)
.

Hence,∣∣∣∣1d Tr
(
Rz

(
(Mt∗

d + Nt∗
d )(Mt

d + Nt
d)
))− f�(µ)(z)

∣∣∣∣
≤
∣∣∣∣1d Tr

(
Rz

(
(Mt∗

d + Nt∗
d )(Mt

d + Nt
d)
)− Rz(M

t∗
d Mt

d)
)∣∣∣∣

+
∣∣∣∣1d Tr

(
Rz(M

t∗
d Mt

d)
)− f�(µt )2(z)

∣∣∣∣+ ∣∣f�(µt )2(z) − f�(µ)2(z)
∣∣.

But for all pair (M,N) of Hermitian matrices, for allz ∈ C \ R, Rz(M + N) −
Rz(M) = −Rz(M + N)NRz(M).

So denoting�t
d = Mt∗

d Nt
d + Nt∗

d (Mt
d + Nt

d), we have∣∣∣∣1d Tr
(
Rz

(
(Mt∗

d + Nt∗
d )(Mt

d + Nt
d)
))− f�(µ)(z)

∣∣∣∣
≤
∣∣∣∣1d Tr

(
Rz

(
(Mt∗

d + Nt∗
d )(Mt

d + Nt
d)
)
�t

dRz(M
t∗
d Mt

d)
)∣∣∣∣

+
∣∣∣∣1d Tr

(
Rz(M

t∗
d Mt

d)
)− f�(µt )2(z)

∣∣∣∣+ ∣∣f�(µt )2(z) − f�(µ)2(z)
∣∣.

(21)

The conclusion is similar to the one of Section 6.3.3.�
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APPENDIX

We prove Proposition 5.3. Denote
∑d ′

k=1 ud(k)ud(k)∗ = Nd,d ′ . As explained in
Section 6.1, it is equivalent to prove that, for everyε > 0,

P
(

sup
�z≥1

∣∣∣∣1d Tr
(
Rz(Nd,d ′)

)− f�(P (λ))(z)

∣∣∣∣> ε

)
d,d ′→∞−−−−→
d ′/d�λ

0.

By Proposition 5.1,�(P (λ)) is the limit of the spectral distribution of a random
matrix with distribution P

P (λ)
d . But, as noticed in Remark 3.2,PP (λ)

d is the
distribution of

Md :=
X(dλ)∑
k=1

ud(k)ud(k)∗,

whereX(dλ) is aP (dλ)-random variable, independent of the sequence(ud(k)).
So it suffices to prove, that for everyε > 0,

P
(

sup
�z≥1

∣∣∣∣1d Tr
(
Rz(Nd,d ′) − Rz(Md)

)∣∣∣∣> ε

)
d,d ′→∞−−−−→
d ′/d�λ

0.

But it was noticed in Section 6.3.3, equation (15), that∣∣∣∣1d Tr
(
Rz(Nd,d ′) − Rz(Md)

)∣∣∣∣≤ 2

d
rg(Nd,d ′ − Md),

which is not greater than2
d
|X(dλ) − d ′|, which converges in probability to zero,

by the weak law of large numbers.
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