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Université de Provence and University of Leeds

We study the Poisson equatidiu + f = 0 in R?, where L is the
infinitesimal generator of a diffusion process. In this paper, we allow the
second-order part of the generatbrto be degenerate, provided a local
condition of Doeblin type is satisfied, so that, if we also assume a condition
on the drift which implies recurrence, the diffusion process is ergodic. The
equation is understood in a weak sense. Our results are then applied to
diffusion approximation.

1. Introduction. This is the third in a series of papers devoted to the study of
the Poisson equation iR? and diffusion approximation. In this paper we consider
the degenerate case.

The study of diffusion approximation [i.e., obtaining the limit Bf in (19)]
was initiated by Khasminskii [5], and developed by many authors, including
Papanicolaou, Stroock and Varadhan [10] and Kushner [8]. Such results, and the
formulation of the limiting stochastic differential equation, require the solution
of a Poisson equatiohAu + f = 0, whereL is the infinitesimal generator of a
Markov process (at least in the case where the disturbance is Markovian; in the
non-Markov case a substitute of the Poisson equation replaces it), whose right-
hand sidef is the highly oscillating coefficient of the approximating differential
system. When the disturbance in the approximating ODE is compact valued, the
Poisson equation is formulated in a compact set, and the corresponding theory
is well known; the result can be proved under quite explicit conditions on the
coefficients (see [2], Chapter 12, Section 2). When, however, the disturbance of
the diffusion takes values in all &, there was until recently no way of deriving
estimates for the solution of the Poisson equation in terms of explicit conditions
on the data; see Chapter 12, Section 3 in [2].

This was the starting point for our work. We focused on the case where
the disturbance is an ergodi?-valued diffusion process, and the ergodicity
follows from explicit conditions on the coefficients. In the first paper [13], using
mainly probabilistic arguments (together with some estimates from the theory
of partial differential equations), we solved the Poisson equatidR“irfor the
generator of an elliptic and ergodic diffusion, and obtained estimates (which we
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1112 E. PARDOUX AND A. YU. VERETENNIKOV

believe are rather sharp) of the solution. We then used that result to establish
a diffusion approximation result under very explicit conditions on the coefficients.

In the second paper [14], we considered the case where the coefficients of the
equation (18) depend on th& process. This forced us to study a Poisson equation
where both the PDE operator and the right-hand side depend on a parameter, and
establish regularity results of the solution in terms of that parameter. We were
forced for that purpose to use essentially results from the PDE theory.

The aim of this third paper is to consider the situation of the first paper, where we
now relax the ellipticity assumption. While a condition on the behavior of the drift
at infinity [condition (4,)] implies the positive recurrence, irreducibility, which
was in our previous works a consequence of ellipticity, is now a consequence from
a type of “local Doeblin condition” [conditionZ§;)]. While those conditions are
not explicit conditions on the coefficients of the diffusion, they are implied both
by the ellipticity assumption and by the “restricted Hérmander condition” (i.e.,
the assumptions that the diffusion vector fields, together with their brackets of
arbitrary order, span the whole space at each point). We further give one example
where none of these conditions holds, while our conditién)(is satisfied,
together with the additional “regularity” conditiod ).

We then consider a weak formulation of the Poisson equation, which is solved
by the same probabilistic formula as in the elliptic case. We finally apply those
results to the diffusion approximation problem. We prove weak convergence in the
sense of theS-topology of Jakubowski [4]. The difficulty in proving convergence
in a stronger sense is related to the lack of smoothness of the solution of the Poisson
equation. Let us also mention that our diffusion approximation is “less general”
than the one considered in [13] (except that we relax the ellipticity condition, as
explained above), in that the approximating differential system does not contain
a stochastic integral (i.e., the coefficidiitin [13] does not appear here).

Let us point out that precise regularity of the solution of the Poisson equation
under the Hormander condition follows from Theorem 18 in [16].

The paper is organized as follows. Section 2 contains our assumptions, as well
as some essential ergodicity results from Veretennikov [23]. Section 3 is devoted to
the study of one example of degenerate coefficients, which satisfy our assumptions.
The Poisson equation is studied in Section 4, while the diffusion approximation
result is derived in Section 5.

2. Moment bounds and convergence to the invariant measure. Consider
the stochastic Ité equation

1) dX; =b(X;)dt +o(X,)dB;, Xo=xeRY,

where{B;,t > 0} is a k-dimensional Brownian motior}; is a locally Lipschitz
vector-function of dimensiod ando is ad x k matrix-valued locally Lipschitz
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function. We assume thato* is bounded and possibly degenerate, and that the
unique solution of (1) satisfies

(A1) VR=>0 SUpE,inf{r >0:|X;| > R+ 1} < oc0.
Ix|<R

Let us introduce the following recurrence condition:

(Ap) Jim (b(0), ) = —o0.

Note that this condition prevents the solution of the SDE (1) from explod-
ing, so that the procesgX;} is well defined for allz > 0. Let R > 0 and
=R =inf(t > 0:|X;| < R).

Finally, we assume the following “local Doeblin” type condition.
Let B c RY and

1§ :=inf{r > 0:X, € B},
and (in the following formulasz > 0 depends only o)
tfa=inf{t >tf +15:X, € B).

Define the process inB” in discrete time as(? := X, 5. Denote byPZ(n, x, dx")
the n-step transition probability ofX 2). We say that théocal Doeblin condition
holds true for the proceds;} if for any R’ > 0 there exist®R > R’ such that the
process inB = By := {x € R¥: |x| < R} satisfies the following: there exists an
integerng = no(R) > 0 such that

. . PB(”va’dx//) B
(De) lx’:?,LR/Bm'n{m, 1}P (no, x",dx") =:q(R, no) > 0,

PB(ng,x,dx") - :
whereip,g(no’x/’dx”) is defined as follows. Let

PB(no, x,dx") = gy v (x")PB (no, x', dx"") + v, o (dx")

be the decomposition aP 2 (ng, x, dx”) into its absolutely continuous part w.r.t.
PB(no, x’,dx"), and the parv, . (dx") which is singular w.r.tP58 (ng, x’, dx").
Then

PB(no, x,dx") y
PR xodary o)
0, X',
The assumption;) requires, in particular, that the mass of the singular part
is not close to 1, and moreover, it imposes a certain quantitative estimate on
the total variation norm for the difference of two measures uniformly on the
compactB. We assume throughout the paper that the pro¢Esssatisfies this
assumption. We shall give in the next section one example with a nonelliptic
diffusion coefficient, for which conditionsA(;) and (D¢) hold. The proof that
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example satisfies our conditions will use stronger conditions, which are easier to
verify.

We note that the two assumptiond,) and (D;) imply the existence and
unigueness of an invariant probability measure. For this and the proof of the next
proposition, see [23]. Note that in [23] the “processBihis defined in a slightly
different manner, since it is extracted from the sequdiGe n € N} rather than
from {X,, r > 0} as defined here. However, the adaptation of those proofs is rather
obvious.

ProPoOSITION 1. Under the assumption$Ar), (A,) and (D¢), for all
m' > m + 2> 2, there existL such that for allx e R?, 7 > 0,

) E. | X,|" < C(1+|x|™).
Moreover
3) E, X" < o0 Vm >0,

and for anyk > 0, 2k + 2 < m,
@) var(s; — ) < C(L+ |x ") (L4 1)~ ¢+,

where“var” denotes the total variation norm of a signed measure over the Borel
o-field, u} is the law ofX; whenXo = x, u is the unique invariant measure &f
andE,, means the expectationni; .

PROPOSITION2. Letthe assumptionsir), (Ap) and(Dy) be satisfiedThen
foranyp > 0,

Ex( sup |X,/|1’> =o(vt)  ast— .

O<t'<t

The proof of Proposition 2 is similar to that in [13]; hence, we drop it. The
following corollary will be used in Section 4, for the proof of tightness.

COROLLARY 1. Under the same assumptiotigr any7 > 0, p > 0,

SEX( sup |X,/82]p> -0 ase—>0.

O<t<T

3. Sufficient conditions and one example. In this section, we first state two
conditions, which we prove to be, respectively, stronger thgn)(and stronger
than (D¢). Then we give one example with a degenerate diffusion coefficient,
which satisfies those stronger conditions.
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PropPoOsSITION3. A sufficient condition for conditiofAr) to hold is that for
eachR > 0, there existsf € C(R?, [0, 1]) with supf( f) C {x; |x| > R + 1} andrg
such that

inf E, f(X,) > 0.

|x|<R

PrROOFR Let R > 0. It follows from our condition that there existszy > 0
such that for allk € R?, |x| < R, Py(IX1ol > R+ 1) > c; this implies P, (| X 15 >
R|) > ¢, and the same is true f@t + 1 instead ofR, with newc andz. Let

Spy1=inf{t; | X;| > R+ 1}.

It follows from the Markov property ofX,, r > 0} and the previous estimate that
forall x e R,

P, (Sg+1 > ntg) < (1 —o)".

The result follows. [

We now formulate what we call the conditioD{,) (“strong local Doeblin
condition”).

For eachR > 0, there existsAgr C Bg, tg > 0, ¢(R) > 1 such that for all
x € Bg, the transition probability of our diffusion procegx;, r > 0} satisfies

p(tr, x;dy) = q(tg, x, y)u(dy) + v(tg, x; dy),
(Dsé)

1
—F =< tv ) S Ra Aa
C(R)_q( x,y) <c(R) y € AR

wherep is a probability measure di? such thatu(Ag) > 0.
Note that the upper bound here is not actually necessary for our aims; however,
it holds along the lower bound in all cases known to the authors.

PropPoSITION4. The strong local Doeblin conditiofD,,) implies the local
Doeblin condition(Dy).

PROOF We choose an arbitrari > 0, and denote8 = Bg. We decompose
the transition probability of the processi(defined withsg = tg) as follows. For
X € B,

PB(1, x,dx") =P, (X,, €dx’, X;, € B) +V'(x,dx").

It follows from (Dy,) that

1
Py (X, €dx’', X;, € B) > @JIAR(x’)M(dx’).

Hence ;) holds withno =1 andg(R, 1) = L4480
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ExamMPLE 1. Let b and og satisfy the above conditionsAf) and (4,),
b e CLRY, RY), o9 € C2(R?, R¥*?), and letog be uniformly nondegenerate. Let
o :R? — [0, 1] be aC! mapping, such that the sfet = 0} is the union of countably
many disjoint connected closed subset®&6fsuch that each bounded subseRéf
intersects at most finitely many of those, and thgget 0} is connected. We now
assume that for somg> 0 such that{e > §} is connected and for eadk’ > 0
there existsR > R’ such that the sdix| = R} does not intersect the sgt < §},
and moreover that for ang > 0, there exista/ such that the solution of

fl—);(t) =b(x(1)
exits in time less than from {« < §}, wheneverx(0) € {&@ < 8} N Bg. Let
o (x) = a(x)op(x). Then the pailb, o) satisfies the assumptiond£) and (Dy).
We first prove the following.

LEMMA 1. The condition of PropositioB is satisfied in Exampl.

PrROOF We consider the stochastic equation for the prodess: > 0},
written in Stratonovich form (the reason for this is that we shall soon use Stroock
and Varadhan’s support theorem), that is,

dX, =b(X,)dt + o (X;) odB,,
where
~ 1 0;;
bi(x) =bi(x) — > (Z ax,: Ukj)(x)-

Jj.k

We will use below the notatioriVo)ag for the vector 2= 1(b — b). We now
consider the controlled ODE

d -
=0 =B )+ (@),
y(0) = Xo,
where we choose the feedback contr@) = ®(y(z)), with
D) = %ao_l(Vcr)o*o(x), if a(x) >0,
0, if a(x)=0.
It is easy to check thdty(¢), ¢ > 0} coincides with the solution of the ODE
d
—O=bx@).  x(0)=X(0).

Let
T =1(x(0)) =inf{r > 0; a(x(¢)) > §}.
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Choosep = (2| Va[loo,r) 718, g € C(R?; [0, 1]) with suppig) C {x. |x| < p} and
g =1 on a neighborhood of 0. We have used the notation

[Vatlloo,r = sUp [[Va(x)]|.
|x|<R
The above considerations and Stroock and Varadhan’s support theorem (cf. [17])
imply that

Ex(o)g(xr — x(r)) > 0.

Moreover, that last quantity depends continuouslyx@®), hence it is bounded
away from zero forc (0) € {« < §} N Bg. Hence our construction yields that with
a probability which is bounded away from zewa X,) > §/2, wherer < M is a
deterministic time which depends only ©0). ¢ = 0 whenevew (x(0)) > §.

Let f € C(R?,[0,1]) satisfy suppf) C {x;|x| > R + 1} and f(x) = 1,
wheneverx| > R + 2. Using again Stroock and Varadhan’s support theorem, we
have that

xlenl;R x/eBRlﬂn{fxz(S/Z} B f(Xau-cw) > 0.
Proposition 3 withzg = 2M and the abovef now follows from the Markov
property. U

LEMMA 2. The pair(b, o) from Examplel satisfies the conditio(D,).

ProoF It follows from the proof of Lemma 1 that there exigts- 0 and a
mappingr € C(Bg, [0, M]) such that for allk € Bg,

Pr(e(Xr(w) 28/2) 2 €.

Next, we choose a closed ballcC int Bg N {« > 0}. Using again Stroock and
Varadhan’s support theorem, we deduce that there eXistsM such that
inf inf P (Xn_z(x) € A) >0.
xeBg x'eBrNa=5/2) (XN € 4) >
Combining the above two statements with the help of the Markov property, we
obtain that

(5) inf P,(Xy € A) > 0.
XGBR

Next we choose another closed ball such thatA c intA’ c A’ C B N
{a > 0}.

For any functionp € C(A’,R), with supgy) C A, we consider the solu-
tion {u(z,x),0 <t < 1,x € A’} of the backward linear parabolic PDE [here
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a(x)=o00*(x)]

2y

ad ou
t, bl a ts :0’
a0+ L 0.0

u 1
E(t’x) + Elzj:aij(x)

O<t<lxeA,
u(l, x) = p(x), u(t,x)=0, xedA.

We have that for alk € A’, u(0, x) = E,¢(Y1), where the procesy;,0 <t < 1}
is the solution of the SDE (1), which is killed when it reaches the boundary of the
setA’. It follows from the parabolic Harnack inequality (see, e.g., [7], page 131)
that there exist®v > 0 such that
u(0, x)
<

x,x'€A u(0,x") —

’

that is,

sup Ex(p(Yl) <N,
x,x'€A Eo(Y1)
forall ¢ € C(A’,Ry), with supfg) C A. We choose one particular poirg € A,
and defingu(dy) = P, (Y1 € dy). It follows from the above that for eache A,
P, (Y1 € dy) is absolutely continuous with respectiioand moreover the Radon—
Nikodym derivativeg (x, y) satisfies

(6) Nt<g(x,y) <N,

forall x,y € A.
Condition (Ds¢) now follows from (5), (6) and the Markov property]

REMARK 1. It is rather clear that one can verify our assumptions in many
other situations, where det(x)) may vanish in a similar fashion agx) does in
Example 1. All that is to be verified is a condition like (5), both for a set of the
same type ad and forBy,_ ;.

REMARK 2. In the strictly elliptic case the same arguments based on
Harnack's inequality establish the conditioD(), provided a = oo*/2 is
continuous, and locally bounded. The same is true, wjih= Lebesgue measure,
whenever the coefficients are smooth, and the Lie algebra of vectors fields
generated by the columns of the matihas full rank at any point dR¢.

4. The Poisson equation in R4, We consider the Poisson equatioriifi

(7 Lu(x) = —f(x),
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where
L =Y a;j(x)dy; 0x; + Y _ bi(x)dy,,
with
a(x)=00%(x)/2,
and f € C(R?) satisfies
lf(x)<C@A+|x])f  forsomeB e R,

so that due to Proposition %,is integrable with respect to the invariant measure
and

(Af) / FOudx) =0.

In the nondegenerate case, the solution of (7) has the representation

®) utw = [ TELf(Xy) ds.

In the degenerate case it is useful to extend the notion of equation (or solution; we
prefer the former): we say that solvesthe integral Poisson equatioif for any
t>0,x e RY u(X,) is P,-integrable and

t
€) u(x) = B (X)) + /0 E. f(X,)ds.

This notion is similar to probabilistic or martingale solution of a parabolic equation
in [18], also for the degenerate case; in this respect it is worth remembering that
a classicalsolution to the degenerate parabolic equation was first constructed by
Gikhman [3]. It is also easy to show that a continuous function solution of the
integral Poisson equation is a viscosity solution of the Poisson equation, in the
sense of [1].

Notice that (9) may be reformulated in the following form: for ak R?,

(10) u(X;) —u(x) + /Ot f(Xs)ds is a martingale undép,..

Indeed, (10) implies (9) by taking expectation. Vice versa, if we substitute zero
by ¢/, andx by X, in (9) (¢ < t), then by virtue of the Markov property we get

t
u(Xy) =Ex,u(X) +Ex, [ f(X)ds,
or

t
E[—u(X,/) +u(X;) +fﬂ f(Xs)ds'F,/] —0.
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Hence, it follows that

B+ ) + [ 0 as|F] 2w —u + | "

which means exactly the desired martingale property.
Define

() = /0 B, £(X))|dr.

THEOREM 1. Let the assumption§Ar), (Ap) and (D;) be satisfied We
assume that there exists< g such that| f(x)| < C(1 + |x|#) with C > 1 and
that (A ) holds true Then(8) defines a continuous functien which is a solution
of (9) and satisfies the following propertigSor anym > g + 4, there existC,,
which depends only on, g, the valuesup , |b; (x)| and on the constanis in (2),
such that

(11) lu(x)| <ii(x) < Cu(L+[x|™),  xeRY,

so that in particularu is u-integrable Moreoveragain for anym > g + 4,

N
(12) SU[Z(1—|—|)c|m)_l u(x)—/o Exf(X,)dt‘—>O asN — oo.

In addition, « is centered in the sense that

(13) /u(x)u(dx) =0.
The solution is unique in the class of solutions(8) which satisfy properties
(11)and (13).
THEOREMZ2. Letthe assumptions of Theordrbe in force
(i) If there existC such that
(14) @) < CA+[x)P2
for somes < 0, thenu is boundedMoreovey

(15) sUplu()| = CSURLf ()11 + lx) P+,

where the constan€ depends only on the constants m, k from (2)—(4) in
Propositionl.
(i) If there existC, B8 > 0 with

(16) 1f(0O)] < CA+ |xDP2,
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then there exist€’ such that
lu(x)] < C'(L+ |x]P.

Moreover
|u(x)] " |f (0l
17 sup——— < C"sup——,

() P =0 SPT e

where the constant” depends only on the constar@s m, k from (2)—(4) in
Propositionl.

The assertion of Theorem 1 is used in Theorem 2, which means that the last
theorem gives additional information under additional assumptions. Theorem 2
gives in particular a criterion far to be bounded.

PROOF OF THEOREM 1. The calculations are similar to those in [14];
however, they are not identical. Therefore we present the proof for the reader’s
convenience.

A. u is well defined and satisfies (11). This follows from [22]; see Proposi-
tion 1. Indeed,

f(x) = /OOO B, f (X)) dt
=/0 ’f f(y)uf(dy)'dt

- | [ st @ —u(dy)]‘a’t.
0

Without loss of generality, we assume tlfat- 2 < m. Due to the inequalities in
Proposition 1, one can choope> 1,¢g > 1 with p~1+4¢~1 =1, such thap <m
andg < k + 1.

Indeed, if 8 = 0, then it is evident. Consider the cage- 0. Let p = m/B.
Theng=t=1—pg/m, and(k + 1)/q > 1 is equivalent tak + 1)(1 — g/m) > 1.
Sincek + 1 is an arbitrary number less thary2, then the last inequality can be
satisfied if(m/2)(1 — 8/m) > 1, which is equivalent te: > 8 + 2, and this is our
assumption. Now, using Hoélder’s inequality, and denoting all new constands by
(they may be different on each line), one has

Ji ] [ roluran - u(dy)]‘ dr
0
00 1/p 1/q
< /o (/ If(y)l"[uf(dyHu(dy)]) (/ mf—m(dy)) dr

) 1/p 1
<c fo ( / (1+|y|m)[uf(dy)+u(dy)]> (vare: — )Y di
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o0
<c / (L B X, ™ + B X, ™MYP (L [x ™) (L + 1)=& D)4 gy
0
’ o0
<C(1+ x| )1/"/0 (B X, 1"+ DYP (L4 - C+D/a gy

/ 00 !
< CL+ ™) [T EIX P ) dr O (1 x)H

<C(1+[x|™).

Thus,u is locally bounded and, moreover, (11) holds true with ary> 8 + 4.
The assertion (12) follows from the same calculations vithinstead of/;".

B. u satisfies (13). Notice that if some functign is integrable w.r.t. the
invariant measurg, then for anys > 0

/ E.[g(Xs)]p(dx) = / g(X)u(dx).

Due to(11), the functioni is u-integrable. So, by virtue of Fubini’s theorem,

[["mraodsuan = [ [ rxonan s

But clearly

f E. f(X;)u(dx) = / Fu(dx) =0.

C. u is continuous. It follows from the locally uniform convergence (12).
D. u solves the integral Poisson equation (9). Let0 be a nonrandom value.
First note that

t o0
u(x)=fo Exf<xs)ds+ft E. f(X,)ds,

where both integrals are well defined. On the other hand, from the Markov property
of X,

[ TE,f(Xy)ds = / T E.Ex, f(X,)ds
1 0

N
= lim [ ExExtf(Xs)dS
0

N—o00

N
— lim Ex/ Ex, f(Xs)ds
0

N—o0
= lim E.u" (X))
N—o00

= EXM(XI)’
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whereu®™ (x) := [3' E, f(X,) dt. Hence,

t
u(x) — Exu(X,) = /0 E. f(X,)ds.

This is exactly (9).
E. Uniqueness. For the difference of two solutionss u — u’, we have due
to (9),v(x) = E,v(X;). So

v(x) =Eyv(X;) —> /dv(x)u(dx):o, t — 0.
R
Hencep(x)=0. O

PROOF OFTHEOREMZ2. The proofisidentical to thatin [14]; in particular, the
strong Markov property of the proce&s makes possible the use of the formula

u(x) = Equ(Xor) + By /0 U r(xr,

which leads to boundedness condition for the functiom the first assertion.
We refer to the calculations in [14].00

5. Diffusion approximation. Let{X,, s > 0} denote the solution of the SDE

dXt:b(Xt)dt+G(X[)dB[, XO:.X,

and defineX; := X, 2, t > 0. Note that for some Brownian motiof;}
depending om, X; solves the SDE
(18) dXf =& 2b(X5)dt + ¢ Yo (XF)dBE,  X§=x.
In this section, we are going to apply Theorem 1 to the singularly perturbed ODE

dye

(19) = F(XS,YE)+e71G(XE, Yf), 0<i<T,Y,=y.

Heree is a small parameter. The proceX¥sis the same as that of the previous
sections, and we will again assume the same conditidp$, (A7) and (Dy).

F andG are Borel vector-functions. The dimensionXis againd, the dimension
of Y is £. We denote again by the generator of the proce&s The problem we
are interested in is the weak convergence of the slow compdffease — 0.
Concerning (19), we require the Lipschitz condition with respect to the variable
with a constant which may depend on

(AL) |F (e, y) = Fx, y)I +1G(x, y) = G(x, YN = C(0)ly = y'l,

wherex — C(x) is locally bounded. We now assume that forxad R, G(x,-)e
CLRY; RY), thatd, G € C(RIH; R’y and the functions, G satisfy the following
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polynomial growth conditions:
|F(x, »)I < KL+ |yD(L+|x|?),
(Ap) |G, I < KL+ [yDA+ [x]|?),
IVyG(x, ) < KL+ [x]|%).

We assume moreover that for ale Rf andj =1,2, ..., ¢,

(4c) | Gityun =o,
whereuu(dx) again denotes the (unigue) invariant measurg& oft then follows
from Theorem 1 that the Poisson equations
LGj(x,y)=—G(x,y), ji=1....¢,

which we in fact interpret as integral Poisson equations, see (9), have unique
centered solutions

_ 0

Gy = [ EGy(xhyydr.
Moreover, for some& andgs, g3, the following holds:

G,y < KL+ [yD(1+ [x]),
(20) ] ,
IVyG(x, Il < K(1+ |x]%).
The values ofg; and ¢g; can be deduced from those g and g3 by using
Theorem 1 or Theorem 2, and the fact tNgiG = V, G.
In the next theorem, we make use of th&opology of Jakubowski on the space
([0, T; RY) of “cadlag” R¢-valued functions defined of, 7]. We refer to [4]
for a definition of that topology and the presentation of its properties.

THEOREM 3. Let the assumptionfA,), (D), (A7) and (AL), (Ap), (Ag)
be satisfiedThen for anyl" > 0, the family of processelg?, 0 <t < T}o<¢<1 IS
uniformly S-tight in ([0, T]; RY). If Y is an accumulation point of the family
{Y¢,e — 0}, then it is as. continuous and it is a solution of the martingale
problem associated to the operator

£ = 3a;;()dy, dy, + bi ()dy,,
where

b») = F0)+ Y [ Gitx, 02, Gx, ytax)
with
Fo) = [ Feyu@n
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and
aoo=/Kxnwéﬁmyy+éayxfquMwm.

If, moreoverthe martingale problem associated 4is well posed(it is easy to
state sufficient conditions for tHathenY? = Y in the sense of th§-topology
andY is the uniqudin law) diffusion process with generatat.

Notice that all integrals in the definition of are well defined, as follows from
Proposition 1.

PROOF OFTHEOREM 3.

Stepl. Preliminary computation. Lef € C?(RZ) (the set of functions of
classC? which, together with their partial derivatives of order 1, 2 and 3, have
at most polynomial growth of some order) and define

foGe,y)=f(y) +eulx,y),
wherecsu(x, y) is a corrector tof, defined as followsu is the solution of the
Poisson equation

Lu(x,y)=—(Vy f(y),G(x, ),
or in other words
(21) u(x,y) =(Vy f(»), G(x, ),
whereG :R? x Rt — R solves
L(_;(]C, )7) = _G(-x7 )’)

in the integral form (9). Note that

[#G yuan =0, yer"
and
0,G(x,y) =3,G(x, ).
For eachs > 0, we associate a mesh=0rm <1 < --- <1, < ---, such that
t, —ti—1<6,i>0, andy; — oo, asi — oo. For eachr > 0, let N(¢) denote that
smallest integer such that< 7y;. It follows from our definition of the Poisson

equation solved byG(x, y) that for alle > 0, § > 0, the following is a local
martingale:

Mteya = Z |:8M(X2+1At’ th) - su(Xfi, Y’f)
i<N(t1)-1
1 tipaNnt

o [, e v as |

& J
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Moreover,
Z [M(XZ_H/\Z’ th) - ”(th,-’ Yzf)]
i<N()—-1
= ”(Xf’ Yffv(r)—l) — u(Xp, Yo) — Z [M(thﬂrl’ th+l) o ”(thiﬂ’ th)]’

i<N(t)—2
and fori < N(t) — 2,

eu(X; Y0 ) —eu(Xy ., Y[)

fi+1> “lit1 lit1’
li+1
- S/z- (Vyu (X7, ), ¥7), F(XE, Y0))ds

Liy1

+ (Vyu(Xy

tiy1’ ° S8
7 i+1

Y?), G(XE, Y?))ds.

s*s
Finally,

ME =eu(XE,YE, ) —eu(X§, Y5)

IN@)-1

li+1
e Y / (Vyu(XE, . YE), F(XE, YE))ds
i<N(r)—2""

tit1
-y ft (Vyu(XE . YE), G(XE, YE))ds

tiy1’ 7S s> rs
i<N()—2

1 titant
208 [T 60 s

i<N()—1"1

We now lets — O in the last identity, from which we deduce that the following is
a local martingale:

M? = eu(X8,YE) — eu(X§, Y5)
t
—s/ (Vyu(XE, YE), F(X2,Y?))ds
0
t
—/ (Vyu(XE, YE), G(XE, YE)) ds
0
1 t
+2 [(w, 000, 60 v ds.
Moreover, we have that

d 1
f(Yf):f(Yé)—i—fo <Vf(Yf), F(Xf,Ys8)+gG(Xf,Ys8)>ds,
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hence
FYH) = f(¥g) + /Oth(Yf), F(XS, Y9 +VyG(XS, YOG(XS,Y)) ds
+ [ @2 nGe v0, Gxt Yoy ds
+ Mo
(22)

+&(Vy £(YE), G(XE, YE)) — e(Vy f(Yf), G(XE, YF))
t —_
te /O [V f(YE), VyG(XE, YEYF(XE, YE))
+ (P F(YHG(XE, YE), F(XE, YE))]ds,

Where{Mf’f,t > 0} is a continuous local martingale which is localized by the
sequence of stopping times
Sy :=inf{t; |Y7| > n}, n=12....
Step2. S-tightness. We shall make use of theiopology onID([0, 7'1; RY),

introduced by Jakubowski. The following result is a consequence of the results
in [4] and [9]:

ProPOSITIONS. The collection{Y;/,0 <t < T}{0<s<y; is uniformly S-tight
if it satisfies the two conditions
(i) Forall 8 > 0,there existdf > 0 s.t.

P( sup |Yf|>M>§8, O<e<l
O<r<T

(i) Y& —YE=EF + VF+ M?, with

(23) E; -0 in probability, uniformly forz € [0, T,

and for eachn € N,

(24) sup E(IVElizass + (M®)7ase) < 00,
O<e<1

where||V¢||; denotes the total variation df* betweerD andz, and (M¢) denotes
the quadratic variation of the continuous local martinga .

We first prove that the sequen@¥’) satisfies (i). For that sake, we will use (22),
with the functionf(y) = log(1 + |y|?). Recall that the functiom depends ory .
Notice that for this choice of one has

A+ [yDIdy fF D+ @+ [yD2I0ZF DI+ A+ [yD3183 (Il < C.
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and then in particular [see (20)]
u(x, y)| < K (L+ |x]%).

Consequently, the absolute values of the integrands in the right-hand side of (22)

do not exceed’(1+ | X£|7) with someg < co. So{Mtf’g} is in fact a martingale,
and there exist two constanfsandq such that for O< ¢ <1,

E[ sup log(1+ |Yf|2)} <C sup E(1+|X;]9) < oo.

0<r<T 0<t<T

This implies that the condition (i) in Proposition 5 is satisfied.
It remains to prove that (ii) is satisfied. For that sake, we chofge = y
in (22), yielding

(25) Y=Yy +E +V+ M,
where
Ef =eG(X§, Y5 —eG(XE, X)),

t _ t _
V;“:/O (1+evyG(X§,Y§))F(X§,Yf)ds+fo V,G(XE, YOG (X2, YE)ds,

and{M;,t > 0} is a continuous local martingale.

Now (23) follows from Corollary 1, (20) and (i), and the first half of (24) follows
from (Ap) and (20), and we finally comput@/¢).

From (22) with £ (y) = |y|?,

£y £ YOG(XE, YE))ds

l’ -
|Yt8|2: |Y8|2+2A <YSS’F(X5 Y€)+VyG(X
t_
+2fo (G(XE,Y5), G(XE, YE)) ds
+ M2
+26(YEG (X5, YE)) — 26 (YEG(XE, YE))
; i _
- 28/0 (Y5, VyG (XS, YOG (XS, Y))) +(G(XS, YY), G(XS, Y))ds,

where{Mf’z, t > 0} is a continuous local martingale.
Now from Ité’s formula for continuous semimartingales and (25), we deduce
that

IYE +eG(XE, YE)?
= Y5 +eG (X5, Y§)?

N

t _
#2 [ (V5 FOEL Y + V6 X V)G V) ds
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4 _
+2g/ (Y2, V,G(XE, YE)F(XE, YP)) ds
0

ro_
+2s/0 (G(xE, Y9,
(I +eVyG(XE, YE)F(XE, YE) + VyG(XE, YE)G(XE, YE))ds
t ~
+2[0 YEdM; 4+ (M),

whereY? = Y¢ +eG(X¢, Y¢). Comparing the last two identities, we deduce that

(M*®), = 2fot<c';(x§, Y?), G(XE, YE))ds
+2|G(XE, YE) |2 — e2|G (X5, Y§)|?
+ e/ot Ve (X, YE)ds + M2 — 2fot YEdM?,
where
We(x, )| < C(ALA+ ) A+ [y (A + [x]3).

The second half of (24) now follows from (20) and the assumptions on the growth
of G.

Step3. Identification of the limit. LetO<s <t < T, and let®; be a bounded
and S-continuous functional defined dn([0, T1; R¢), which is measurable with
respect to ther-algebrao (x(r), x € D([0, T; RY) 0 < r <s). Let f € CPRY)
be a smooth function with compact support. It follows from (22) that for al 0,
suchthat +a < T,

E(Lf (Vo) = [ (Y )1®5(Y))

= IE(CDS(Y) /Hu(w(yf), F(XE,YH) + VyG(XE, YEYG(XE, YY) dr)
s+a
t+a _
+1E(<1>S(Y) f (@2 F(YHGXE, YF), G(XE, Yf)>dr)
s+a

+ eE(®s(N[(Vy f (YL, G(XEL, YELD)
- <vyf(Ytg+u)’ G(th-i—a’ Ytg-i-u)ﬂ)

rotr

+5E(©5(Y)/t+a<Vf(Yf),VyC_;(Xf,Yf)G(XS Yf))dr>
s+a

t+a _
—i—eE(CDS(Y)/ (02F(YHG(XE, YE), G(XE, Yf))dr).
s+a
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We chooseS > 0 small enough, such that+ § < T, and deduce from the last
identity that

B( e [ L) PV da)
—E(e.m [ ' da / :an(Yf),

F(X;, Y+ VyG(X;, Y)HG(X;, Yf)>dr>

r>tr

§ t+a _
+E(0 [da [ 020060 1), GO ) dr
0 s+a
(26) 5
+sﬂ«:<c1>s<Y) | daltv, 7,0, 6Ky ¥

— (V) f(VEr)s G(XE Y;;am)
) t+a _
=+ 81E<d>S(Y)/0 da /+ (Vf(Yrs), VyG(Xf, Yf)G(Xf, Yrs))dr)

+8E<<I>S(Y) /08 da /S:awzf(yf)é(xﬁ, Y?),G(X¢, Yf))dr).
It follows from Lemma 5in [11] thatforany & s <t <T,
[(Vf(Yf), F(X;, Y) +VyG(X;, Y)G(X], Y)) —b(Y)))dr — 0
and
/St Tra? f(YH[G(XE, Y ® G(XE, Yf) — 3a(Y)]dr — 0

in probability, ase — 0.

We can then take the limit in (26) as— 0, divide bys > 0, and lets — 0 since
the procesy is right-continuous, yielding that for alf € C*(R%), all 0 < s <
¢t < T and all®d, bounded and-continuous functional defined dx([0, T']; RY),

E([f(Yt) - f(Ys)]q)s(Y))
(27)

4 _
=E(d>s<¥> [ 1w s by + %Trazf(Yr)Mr)]dr),
or in other words that
t _
M = f¥) — F(Yy) — / [(V (V). B(Y)) + 3 Tra? F(racy,)] dr

is a martingale.
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It remains to show that— Y, is a.s. continuous frorf0, 7'] into R¢, which is
done in the following.

PROPOSITIONG. Let{Y;,0<1t < T} be an¢-dimensional semimartingale
suchthatforalll <i <¢,all f € C(R),

, . R t R .
M = F ) — Fvd) - /O LF' (b (Yy) + 77 (YDasi (v,)] ds
is a martingale Then{Y;,0 < < T} is continuous

PROOF We note that the assumption implies thaf € C*°(R), M,i’f is a
local martingale. Hence in particular, for eack 1 < ¢,

. . . r_
M=y - Y(’)—/O b(Yi)ds

is a local martingale, wherﬁ," denotes theéth component off;, and it follows
from Ité’s formula for (possibly discontinuous) semimartingales (see, e.g., [15],
page 72) tha¥ f € C*°(R),

. . t .o t . , 1 t . .
FIy = F(vd) + /O FIYDb(Yy)ds + fo FOydmi+ /O £y i,
+ 3 (fxH = fx) — iA=L (riarhH?),

O<s<t

where{[M'];,t > 0} denotes the quadratic variation process of the martingfale
In the particular casg (y) = (y')?2, this identity reads

. . o r . .
(Y;)2:(Y6)2+2/ Y;bi(dez/ Yl dM! + M),
0 0
Writing the assumption in the cagdy) = (y)2, we obtain that
. . . r
M2 = (V)2 — ()2 - /0 [2Y]b; (Yy) + @i (Yy)]ds

is a local martingale. Comparing the last two identities, we deduce Aigt —
fé aji (Ys)ds is a local martingale. Next, comparing the two different ways of
writing (¥/)2 and using the identity

(Y3 =1 )3 +3(r1 )2AY! +3Y! (AYH? 4+ (AYHS,

we deduce thz;\EOqSt(AY;')3 is a local martingale, from which we deduce, by
comparing the two different ways of writing’/)* and using the identity

(YH%*= i+ 4! BAYi +6(Y1 )2(AYH2+4Y! (AY)3 + (AYHA,
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that ZO<S§,(AYS")4 is a local martingale, which is impossible, unless it is
identically zero. Since this result holds for any<li < ¢, the proposition is
established. O
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