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We study the Poisson equationLu + f = 0 in R
d , whereL is the

infinitesimal generator of a diffusion process. In this paper, we allow the
second-order part of the generatorL to be degenerate, provided a local
condition of Doeblin type is satisfied, so that, if we also assume a condition
on the drift which implies recurrence, the diffusion process is ergodic. The
equation is understood in a weak sense. Our results are then applied to
diffusion approximation.

1. Introduction. This is the third in a series of papers devoted to the study of
the Poisson equation inRd and diffusion approximation. In this paper we consider
the degenerate case.

The study of diffusion approximation [i.e., obtaining the limit ofY ε in (19)]
was initiated by Khasminskii [5], and developed by many authors, including
Papanicolaou, Stroock and Varadhan [10] and Kushner [8]. Such results, and the
formulation of the limiting stochastic differential equation, require the solution
of a Poisson equationLu + f = 0, whereL is the infinitesimal generator of a
Markov process (at least in the case where the disturbance is Markovian; in the
non-Markov case a substitute of the Poisson equation replaces it), whose right-
hand sidef is the highly oscillating coefficient of the approximating differential
system. When the disturbance in the approximating ODE is compact valued, the
Poisson equation is formulated in a compact set, and the corresponding theory
is well known; the result can be proved under quite explicit conditions on the
coefficients (see [2], Chapter 12, Section 2). When, however, the disturbance of
the diffusion takes values in all ofRd , there was until recently no way of deriving
estimates for the solution of the Poisson equation in terms of explicit conditions
on the data; see Chapter 12, Section 3 in [2].

This was the starting point for our work. We focused on the case where
the disturbance is an ergodicRd -valued diffusion process, and the ergodicity
follows from explicit conditions on the coefficients. In the first paper [13], using
mainly probabilistic arguments (together with some estimates from the theory
of partial differential equations), we solved the Poisson equation inR

d for the
generator of an elliptic and ergodic diffusion, and obtained estimates (which we
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believe are rather sharp) of the solution. We then used that result to establish
a diffusion approximation result under very explicit conditions on the coefficients.
In the second paper [14], we considered the case where the coefficients of the
equation (18) depend on theY ε process. This forced us to study a Poisson equation
where both the PDE operator and the right-hand side depend on a parameter, and
establish regularity results of the solution in terms of that parameter. We were
forced for that purpose to use essentially results from the PDE theory.

The aim of this third paper is to consider the situation of the first paper, where we
now relax the ellipticity assumption. While a condition on the behavior of the drift
at infinity [condition (Ab)] implies the positive recurrence, irreducibility, which
was in our previous works a consequence of ellipticity, is now a consequence from
a type of “local Doeblin condition” [condition (D�)]. While those conditions are
not explicit conditions on the coefficients of the diffusion, they are implied both
by the ellipticity assumption and by the “restricted Hörmander condition” (i.e.,
the assumptions that the diffusion vector fields, together with their brackets of
arbitrary order, span the whole space at each point). We further give one example
where none of these conditions holds, while our condition (D�) is satisfied,
together with the additional “regularity” condition (AT ).

We then consider a weak formulation of the Poisson equation, which is solved
by the same probabilistic formula as in the elliptic case. We finally apply those
results to the diffusion approximation problem. We prove weak convergence in the
sense of theS-topology of Jakubowski [4]. The difficulty in proving convergence
in a stronger sense is related to the lack of smoothness of the solution of the Poisson
equation. Let us also mention that our diffusion approximation is “less general”
than the one considered in [13] (except that we relax the ellipticity condition, as
explained above), in that the approximating differential system does not contain
a stochastic integral (i.e., the coefficientH in [13] does not appear here).

Let us point out that precise regularity of the solution of the Poisson equation
under the Hörmander condition follows from Theorem 18 in [16].

The paper is organized as follows. Section 2 contains our assumptions, as well
as some essential ergodicity results from Veretennikov [23]. Section 3 is devoted to
the study of one example of degenerate coefficients, which satisfy our assumptions.
The Poisson equation is studied in Section 4, while the diffusion approximation
result is derived in Section 5.

2. Moment bounds and convergence to the invariant measure. Consider
the stochastic Itô equation

dXt = b(Xt) dt + σ(Xt) dBt , X0 = x ∈ R
d,(1)

where{Bt, t ≥ 0} is a k-dimensional Brownian motion,b is a locally Lipschitz
vector-function of dimensiond andσ is a d × k matrix-valued locally Lipschitz
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function. We assume thatσσ ∗ is bounded and possibly degenerate, and that the
unique solution of (1) satisfies

∀R > 0 sup
|x|≤R

Ex inf{t ≥ 0 :|Xt | ≥ R + 1} < ∞.(AT )

Let us introduce the following recurrence condition:

lim|x|→∞(b(x), x) = −∞.(Ab)

Note that this condition prevents the solution of the SDE (1) from explod-
ing, so that the process{Xt } is well defined for all t > 0. Let R > 0 and
τ = τR = inf(t ≥ 0 :|Xt | ≤ R).

Finally, we assume the following “local Doeblin” type condition.
Let B ⊂ R

d and

τB
0 := inf{t ≥ 0 :Xt ∈ B},

and (in the following formula,tB > 0 depends only onB)

τB
�+1 := inf{t ≥ τB

� + tB :Xt ∈ B}.
Define the “process inB” in discrete time asXB

n := XτB
n

. Denote byP B(n, x, dx′)
then-step transition probability of(XB

n ). We say that thelocal Doeblin condition
holds true for the process{Xt } if for any R′ > 0 there existsR > R′ such that the
process inB = BR := {x ∈ R

d : |x| ≤ R} satisfies the following: there exists an
integern0 = n0(R) > 0 such that

inf|x|,|x′|≤R

∫
B

min
{

P B(n0, x, dx′′)
P B(n0, x′, dx′′)

,1
}
P B(n0, x

′, dx′′) =: q(R,n0) > 0,(D�)

where P B(n0,x,dx′′)
P B(n0,x

′,dx′′) is defined as follows. Let

P B(n0, x, dx′′) = ϕx,x′(x′′)P B(n0, x
′, dx′′) + νx,x′(dx′′)

be the decomposition ofP B(n0, x, dx′′) into its absolutely continuous part w.r.t.
P B(n0, x

′, dx′′), and the partνx,x′(dx′′) which is singular w.r.t.P B(n0, x
′, dx′′).

Then

P B(n0, x, dx′′)
P B(n0, x′, dx′′)

:= ϕx,x′(x′′).

The assumption (D�) requires, in particular, that the mass of the singular part
is not close to 1, and moreover, it imposes a certain quantitative estimate on
the total variation norm for the difference of two measures uniformly on the
compactB. We assume throughout the paper that the process{Xt } satisfies this
assumption. We shall give in the next section one example with a nonelliptic
diffusion coefficient, for which conditions (AT ) and (D�) hold. The proof that
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example satisfies our conditions will use stronger conditions, which are easier to
verify.

We note that the two assumptions (Ab) and (D�) imply the existence and
uniqueness of an invariant probability measure. For this and the proof of the next
proposition, see [23]. Note that in [23] the “process inB” is defined in a slightly
different manner, since it is extracted from the sequence{Xn,n ∈ N} rather than
from {Xt, t ≥ 0} as defined here. However, the adaptation of those proofs is rather
obvious.

PROPOSITION 1. Under the assumptions(AT ), (Ab) and (D�), for all
m′ > m + 2> 2, there existsC such that for allx ∈ R

d , t > 0,

Ex |Xt |m ≤ C
(
1+ |x|m′)

.(2)

Moreover,

Eµ|Xt |m < ∞ ∀m > 0,(3)

and for anyk > 0, 2k + 2< m,

var(µx
t − µ) ≤ C(1+ |x|m)(1+ t)−(k+1),(4)

where“var” denotes the total variation norm of a signed measure over the Borel
σ -field, µx

t is the law ofXt whenX0 = x, µ is the unique invariant measure ofX

andEµ means the expectation w.r.t. µ.

PROPOSITION2. Let the assumptions(AT ), (Ab) and (D�) be satisfied. Then
for anyp > 0,

Ex

(
sup

0≤t ′≤t

|Xt ′ |p
)

= o
(√

t
)

as t → ∞.

The proof of Proposition 2 is similar to that in [13]; hence, we drop it. The
following corollary will be used in Section 4, for the proof of tightness.

COROLLARY 1. Under the same assumptions, for anyT > 0, p > 0,

εEx

(
sup

0≤t≤T

∣∣Xt/ε2
∣∣p)

→ 0 asε → 0.

3. Sufficient conditions and one example. In this section, we first state two
conditions, which we prove to be, respectively, stronger than (AT ), and stronger
than (D�). Then we give one example with a degenerate diffusion coefficient,
which satisfies those stronger conditions.
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PROPOSITION3. A sufficient condition for condition(AT ) to hold is that for
eachR > 0, there existsf ∈ C(Rd, [0,1]) with supp(f ) ⊂ {x; |x| ≥ R + 1} andt0
such that

inf|x|≤R
Exf

(
Xt0

)
> 0.

PROOF. Let R > 0. It follows from our condition that there existsc, t0 > 0
such that for allx ∈ R

d , |x| ≤ R, Px(|Xt0| ≥ R + 1) ≥ c; this impliesPx(|X{t0} ≥
R|) ≥ c, and the same is true forR + 1 instead ofR, with newc andt0. Let

SR+1 = inf{t; |Xt | ≥ R + 1}.
It follows from the Markov property of{Xt, t ≥ 0} and the previous estimate that
for all x ∈ R

d ,

Px(SR+1 > nt0) ≤ (1− c)n.

The result follows. �

We now formulate what we call the condition (Ds�) (“strong local Doeblin
condition”).

For eachR > 0, there existsAR ⊂ BR , tR > 0, c(R) ≥ 1 such that for all
x ∈ BR , the transition probability of our diffusion process{Xt, t ≥ 0} satisfies

p(tR, x;dy) = q(tR, x, y)µ(dy) + ν(tR, x;dy),
(Ds�)

1

c(R)
≤ q(t, x, y) ≤ c(R), y ∈ AR,

whereµ is a probability measure onRd such thatµ(AR) > 0.
Note that the upper bound here is not actually necessary for our aims; however,

it holds along the lower bound in all cases known to the authors.

PROPOSITION4. The strong local Doeblin condition(Ds�) implies the local
Doeblin condition(D�).

PROOF. We choose an arbitraryR > 0, and denoteB = BR . We decompose
the transition probability of the process inB (defined withtB = tR) as follows. For
x ∈ B,

P B(1, x, dx′) = Px

(
XtR ∈ dx′,XtR ∈ B

) + ν′(x, dx′).
It follows from (Ds�) that

Px

(
XtR ∈ dx′,XtR ∈ B

) ≥ 1

c(R)
1AR

(x′)µ(dx′).

Hence (D�) holds withn0 = 1 andq(R,1) = µ(AR)
c(R)

. �
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EXAMPLE 1. Let b and σ0 satisfy the above conditions (AT ) and (Ab),
b ∈ C1(Rd,R

d), σ0 ∈ C2(Rd,R
d×d), and letσ0 be uniformly nondegenerate. Let

α :Rd → [0,1] be aC1 mapping, such that the set{α = 0} is the union of countably
many disjoint connected closed subsets ofR

d , such that each bounded subset ofR
d

intersects at most finitely many of those, and the set{α > 0} is connected. We now
assume that for someδ > 0 such that{α > δ} is connected and for eachR′ > 0
there existsR > R′ such that the set{|x| = R} does not intersect the set{α ≤ δ},
and moreover that for anyR > 0, there existsM such that the solution of

dx

dt
(t) = b(x(t))

exits in time less thanM from {α ≤ δ}, wheneverx(0) ∈ {α < δ} ∩ BR . Let
σ(x) = α(x)σ0(x). Then the pair(b, σ ) satisfies the assumptions (AT ) and (D�).

We first prove the following.

LEMMA 1. The condition of Proposition3 is satisfied in Example1.

PROOF. We consider the stochastic equation for the process{Xt, t ≥ 0},
written in Stratonovich form (the reason for this is that we shall soon use Stroock
and Varadhan’s support theorem), that is,

dXt = b̃(Xt ) dt + σ(Xt) ◦ dBt ,

where

b̃i(x) = bi(x) − 1

2

(∑
j,k

∂σij

∂xk

σkj

)
(x).

We will use below the notation(∇σ)σ0 for the vector 2α−1(b − b̃). We now
consider the controlled ODE

dy

dt
(t) = b̃(y(t)) + σ(y(t))u(t),

y(0) = X0,

where we choose the feedback controlu(t) = 
(y(t)), with


(x) =
{

1
2σ−1

0 (∇σ)σ0(x), if α(x) > 0,

0, if α(x) = 0.

It is easy to check that{y(t), t ≥ 0} coincides with the solution of the ODE

dx

dt
(t) = b(x(t)), x(0) = X(0).

Let

τ = τ(x(0)) = inf{t > 0;α(x(t)) ≥ δ}.
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Chooseρ = (2‖∇α‖∞,R)−1δ, g ∈ C(Rd; [0,1]) with supp(g) ⊂ {x, |x| ≤ ρ} and
g ≡ 1 on a neighborhood of 0. We have used the notation

‖∇α‖∞,R = sup
|x|≤R

‖∇α(x)‖.

The above considerations and Stroock and Varadhan’s support theorem (cf. [17])
imply that

Ex(0)g
(
Xτ − x(τ)

)
> 0.

Moreover, that last quantity depends continuously onx(0), hence it is bounded
away from zero forx(0) ∈ {α ≤ δ} ∩ BR . Hence our construction yields that with
a probability which is bounded away from zero,α(Xτ ) ≥ δ/2, whereτ ≤ M is a
deterministic time which depends only onx(0). τ = 0 wheneverα(x(0)) ≥ δ.

Let f ∈ C(Rd, [0,1]) satisfy supp(f ) ⊂ {x; |x| ≥ R + 1} and f (x) = 1,
whenever|x| ≥ R + 2. Using again Stroock and Varadhan’s support theorem, we
have that

inf
x∈BR

inf
x′∈BR∩{α≥δ/2} Ex′f

(
X2M−τ(x)

)
> 0.

Proposition 3 witht0 = 2M and the abovef now follows from the Markov
property. �

LEMMA 2. The pair(b, σ ) from Example1 satisfies the condition(Ds�).

PROOF. It follows from the proof of Lemma 1 that there existsξ > 0 and a
mappingτ ∈ C(BR, [0,M]) such that for allx ∈ BR ,

Px

(
α

(
Xτ(x)

) ≥ δ/2
) ≥ ξ.

Next, we choose a closed ballA ⊂ intBR ∩ {α > 0}. Using again Stroock and
Varadhan’s support theorem, we deduce that there existsN > M such that

inf
x∈BR

inf
x′∈BR∩{α≥δ/2} Px′

(
XN−τ(x) ∈ A

)
> 0.

Combining the above two statements with the help of the Markov property, we
obtain that

inf
x∈BR

Px(XN ∈ A) > 0.(5)

Next we choose another closed ballA′ such thatA ⊂ intA′ ⊂ A′ ⊂ BR ∩
{α > 0}.

For any functionϕ ∈ C(A′,R+), with supp(ϕ) ⊂ A, we consider the solu-
tion {u(t, x),0 ≤ t ≤ 1, x ∈ A′} of the backward linear parabolic PDE [here
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a(x) = σσ ∗(x)]

∂u

∂t
(t, x) + 1

2

∑
ij

aij (x)
∂2u

∂xi ∂xj

(t, x) + ∑
i

bi(x)
∂u

∂xi

(t, x) = 0,

0< t < 1, x ∈ A′,
u(1, x) = ϕ(x), u(t, x) = 0, x ∈ ∂A′.

We have that for allx ∈ A′, u(0, x) = Exϕ(Y1), where the process{Yt ,0 ≤ t ≤ 1}
is the solution of the SDE (1), which is killed when it reaches the boundary of the
setA′. It follows from the parabolic Harnack inequality (see, e.g., [7], page 131)
that there existsN > 0 such that

sup
x,x′∈A

u(0, x)

u(0, x′)
≤ N,

that is,

sup
x,x′∈A

Exϕ(Y1)

Ex′ϕ(Y1)
≤ N,

for all ϕ ∈ C(A′,R+), with supp(ϕ) ⊂ A. We choose one particular pointx0 ∈ A,
and defineµ(dy) = Px0(Y1 ∈ dy). It follows from the above that for eachx ∈ A,
Px(Y1 ∈ dy) is absolutely continuous with respect toµ, and moreover the Radon–
Nikodym derivativeq(x, y) satisfies

N−1 ≤ q(x, y) ≤ N,(6)

for all x, y ∈ A.
Condition (Ds�) now follows from (5), (6) and the Markov property.�

REMARK 1. It is rather clear that one can verify our assumptions in many
other situations, where det(a(x)) may vanish in a similar fashion asα(x) does in
Example 1. All that is to be verified is a condition like (5), both for a set of the
same type asA and forBc

R+1.

REMARK 2. In the strictly elliptic case the same arguments based on
Harnack’s inequality establish the condition (Ds�), provided a = σσ ∗/2 is
continuous, andb locally bounded. The same is true, withµ = Lebesgue measure,
whenever the coefficients are smooth, and the Lie algebra of vectors fields
generated by the columns of the matrixσ has full rank at any point ofRd .

4. The Poisson equation in R
d . We consider the Poisson equation inR

d

Lu(x) = −f (x),(7)
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where

L = ∑
aij (x)∂xi

∂xj
+ ∑

bi(x)∂xi
,

with

a(x) = σσ ∗(x)/2,

andf ∈ C(Rd) satisfies

|f (x)| ≤ C(1+ |x|)β for someβ ∈ R,

so that due to Proposition 1,f is integrable with respect to the invariant measureµ,
and ∫

f (x)µ(dx) = 0.(Af )

In the nondegenerate case, the solution of (7) has the representation

u(x) =
∫ ∞

0
Exf (Xs) ds.(8)

In the degenerate case it is useful to extend the notion of equation (or solution; we
prefer the former): we say thatu solvesthe integral Poisson equationif for any
t > 0, x ∈ R

d , u(Xt) is Px-integrable and

u(x) = Exu(Xt) +
∫ t

0
Exf (Xs) ds.(9)

This notion is similar to probabilistic or martingale solution of a parabolic equation
in [18], also for the degenerate case; in this respect it is worth remembering that
a classicalsolution to the degenerate parabolic equation was first constructed by
Gikhman [3]. It is also easy to show that a continuous function solution of the
integral Poisson equation is a viscosity solution of the Poisson equation, in the
sense of [1].

Notice that (9) may be reformulated in the following form: for allx ∈ R
d ,

u(Xt) − u(x) +
∫ t

0
f (Xs) ds is a martingale underPx.(10)

Indeed, (10) implies (9) by taking expectation. Vice versa, if we substitute zero
by t ′, andx by Xt ′ in (9) (t ′ < t), then by virtue of the Markov property we get

u(Xt ′) = EXt ′ u(Xt) + EXt ′

∫ t

t ′
f (Xs) ds,

or

E

[
−u(Xt ′) + u(Xt) +

∫ t

t ′
f (Xs) ds

∣∣∣Ft ′
]

= 0.
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Hence, it follows that

E

[
−u(x) + u(Xt) +

∫ t

0
f (Xs) ds

∣∣∣Ft ′
]

= u(Xt ′) − u(x) +
∫ t ′

0
f (Xs) ds,

which means exactly the desired martingale property.
Define

ũ(x) =
∫ ∞

0
|Exf (Xt)|dt.

THEOREM 1. Let the assumptions(AT ), (Ab) and (D�) be satisfied. We
assume that there exists0 ≤ β such that|f (x)| ≤ C(1 + |x|β) with C ≥ 1 and
that (Af ) holds true. Then(8) defines a continuous functionu, which is a solution
of (9) and satisfies the following properties. For anym > β + 4, there existsCm

which depends only onm,β, the valuesupi,x |bi(x)| and on the constantsC in (2),
such that

|u(x)| ≤ ũ(x) ≤ Cm(1+ |x|m), x ∈ R
d,(11)

so that in particularu is µ-integrable. Moreover, again for anym > β + 4,

sup
x

(1+ |x|m)−1
∣∣∣∣u(x) −

∫ N

0
Exf (Xt) dt

∣∣∣∣ → 0 asN → ∞.(12)

In addition, u is centered in the sense that

∫
u(x)µ(dx) = 0.(13)

The solution is unique in the class of solutions of(9) which satisfy properties
(11)and (13).

THEOREM 2. Let the assumptions of Theorem1 be in force.

(i) If there existsC such that

|f (x)| ≤ C(1+ |x|)β−2(14)

for someβ < 0, thenu is bounded. Moreover,

sup
x

|u(x)| ≤ C sup
x

[|f (x)|(1+ |x|)−β+2],(15)

where the constantC depends only on the constantsC, m, k from (2)–(4) in
Proposition1.

(ii) If there existC, β > 0 with

|f (x)| ≤ C(1+ |x|)β−2,(16)
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then there existsC′ such that

|u(x)| ≤ C′(1+ |x|)β.

Moreover,

sup
x

|u(x)|
1+ |x|β ≤ C′′ sup

x

|f (x)|
1+ |x|β−2 ,(17)

where the constantC′′ depends only on the constantsC, m, k from (2)–(4) in
Proposition1.

The assertion of Theorem 1 is used in Theorem 2, which means that the last
theorem gives additional information under additional assumptions. Theorem 2
gives in particular a criterion foru to be bounded.

PROOF OF THEOREM 1. The calculations are similar to those in [14];
however, they are not identical. Therefore we present the proof for the reader’s
convenience.

A. u is well defined and satisfies (11). This follows from [22]; see Proposi-
tion 1. Indeed,

ũ(x) =
∫ ∞

0
|Exf (Xt)|dt

=
∫ ∞

0

∣∣∣∣
∫

f (y)µx
t (dy)

∣∣∣∣dt

=
∫ ∞

0

∣∣∣∣
∫

f (y)[µx
t (dy) − µ(dy)]

∣∣∣∣dt.

Without loss of generality, we assume thatβ + 2 < m. Due to the inequalities in
Proposition 1, one can choosep > 1,q > 1 with p−1+q−1 = 1, such thatpβ ≤ m

andq < k + 1.
Indeed, ifβ = 0, then it is evident. Consider the caseβ > 0. Let p = m/β.

Thenq−1 = 1− β/m, and(k + 1)/q > 1 is equivalent to(k + 1)(1 − β/m) > 1.
Sincek + 1 is an arbitrary number less thanm/2, then the last inequality can be
satisfied if(m/2)(1− β/m) > 1, which is equivalent tom > β + 2, and this is our
assumption. Now, using Hölder’s inequality, and denoting all new constants byC

(they may be different on each line), one has∫ ∞
0

∣∣∣∣
∫

f (y)[µx
t (dy) − µ(dy)]

∣∣∣∣dt

≤
∫ ∞

0

(∫
|f (y)|p[µx

t (dy) + µ(dy)]
)1/p(∫

|µx
t − µ|(dy)

)1/q

dt

≤ C

∫ ∞
0

(∫
(1+ |y|m)[µx

t (dy) + µ(dy)]
)1/p(

var(µx
t − µ)

)1/q
dt
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≤ C

∫ ∞
0

(1+ Ex |Xt |m + Eµ|Xt |m)1/p(
(1+ |x|m)(1+ t)−(k+1))1/q

dt

≤ C
(
1+ |x|m′)1/q

∫ ∞
0

(Ex |Xt |m + 1)1/p(1+ t)−(k+1)/q dt

≤ C
(
1+ |x|m′)1/q

∫ ∞
0

(Ex |Xt |m)1/p(1+ t)−(k+1)/q dt + C
(
1+ |x|m′)1/q

≤ C
(
1+ |x|m′)

.

Thus,u is locally bounded and, moreover, (11) holds true with anym′ > β + 4.
The assertion (12) follows from the same calculations with

∫ ∞
N instead of

∫ ∞
0 .

B. u satisfies (13). Notice that if some functiong is integrable w.r.t. the
invariant measureµ, then for anys > 0∫

Ex[g(Xs)]µ(dx) =
∫

g(x)µ(dx).

Due to(11), the functionũ is µ-integrable. So, by virtue of Fubini’s theorem,∫ ∫ ∞
0

Exf (Xs) dsµ(dx) =
∫ ∞

0

∫
Exf (Xs)µ(dx)ds.

But clearly ∫
Exf (Xs)µ(dx) =

∫
f (x)µ(dx) = 0.

C. u is continuous. It follows from the locally uniform convergence (12).
D. u solves the integral Poisson equation (9). Lett > 0 be a nonrandom value.

First note that

u(x) =
∫ t

0
Exf (Xs) ds +

∫ ∞
t

Exf (Xs) ds,

where both integrals are well defined. On the other hand, from the Markov property
of X, ∫ ∞

t
Exf (Xs) ds =

∫ ∞
0

ExEXt f (Xs) ds

= lim
N→∞

∫ N

0
ExEXt f (Xs) ds

= lim
N→∞ Ex

∫ N

0
EXt f (Xs) ds

≡ lim
N→∞ Exu

N(Xt)

= Exu(Xt),



POISSON EQUATION AND DIFFUSION APPROXIMATION 1123

whereuN(x) := ∫ N
0 Exf (Xt) dt . Hence,

u(x) − Exu(Xt) =
∫ t

0
Exf (Xs) ds.

This is exactly (9).
E. Uniqueness. For the difference of two solutions,v = u − u′, we have due

to (9),v(x) = Exv(Xt ). So

v(x) = Exv(Xt ) →
∫

Rd
v(x)µ(dx) = 0, t → ∞.

Hence,v(x) ≡ 0. �

PROOF OFTHEOREM2. The proof is identical to that in [14]; in particular, the
strong Markov property of the processXt makes possible the use of the formula

u(x) = Exu(XτR) + Ex

∫ τR

0
f (Xt) dt,

which leads to boundedness condition for the functionu in the first assertion.
We refer to the calculations in [14].�

5. Diffusion approximation. Let {Xt, t ≥ 0} denote the solution of the SDE

dXt = b(Xt) dt + σ(Xt) dBt , X0 = x,

and defineXε
t := Xt/ε2, t ≥ 0. Note that for some Brownian motion{Bε

t }
depending onε, Xε

t solves the SDE

dXε
t = ε−2b(Xε

t ) dt + ε−1σ(Xε
t ) dBε

t , Xε
0 = x.(18)

In this section, we are going to apply Theorem 1 to the singularly perturbed ODE

dY ε
t

dt
= F(Xε

t , Y
ε
t ) + ε−1G(Xε

t , Y
ε
t ), 0≤ t ≤ T ,Y ε

0 = y.(19)

Here ε is a small parameter. The processX is the same as that of the previous
sections, and we will again assume the same conditions (Ab), (AT ) and (D�).
F andG are Borel vector-functions. The dimension ofX is againd, the dimension
of Y is �. We denote again byL the generator of the processX. The problem we
are interested in is the weak convergence of the slow componentY ε as ε → 0.
Concerning (19), we require the Lipschitz condition with respect to the variabley,
with a constant which may depend onx:

|F(x, y) − F(x, y′)| + |G(x,y) − G(x,y′)| ≤ C(x)|y − y′|,(AL)

wherex → C(x) is locally bounded. We now assume that for allx ∈ R
d , G(x, ·) ∈

C1(R�;R
�), that∂yG ∈ C(Rd+�;R

�2
) and the functionsF , G satisfy the following
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polynomial growth conditions:

|F(x, y)| ≤ K(1+ |y|)(1+ |x|q1),

|G(x,y)| ≤ K(1+ |y|)(1+ |x|q2),(AP )

‖∇yG(x, y)‖ ≤ K(1+ |x|q3).

We assume moreover that for ally ∈ R
� andj = 1,2, . . . , �,∫

Gj(x, y)µ(dx) = 0,(AG)

whereµ(dx) again denotes the (unique) invariant measure ofX. It then follows
from Theorem 1 that the Poisson equations

LḠj (x, y) = −Gj(x, y), j = 1, . . . , �,

which we in fact interpret as integral Poisson equations, see (9), have unique
centered solutions

Ḡj (x, y) =
∫ ∞

0
ExGj(X

1
t , y) dt.

Moreover, for someK andq ′
2, q ′

3, the following holds:

|Ḡ(x, y)| ≤ K(1+ |y|)(1+ |x|q ′
2
)
,

(20)
‖∇yḠ(x, y)‖ ≤ K

(
1+ |x|q ′

3
)
.

The values ofq ′
2 and q ′

3 can be deduced from those ofq2 and q3 by using
Theorem 1 or Theorem 2, and the fact that∇yḠ = ∇yG.

In the next theorem, we make use of theS topology of Jakubowski on the space
D([0, T ];R

�) of “càdlàg” R
�-valued functions defined on[0, T ]. We refer to [4]

for a definition of that topology and the presentation of its properties.

THEOREM 3. Let the assumptions(Ab), (D�), (AT ) and (AL), (AP ), (AG)
be satisfied. Then for anyT > 0, the family of processes{Y ε

t ,0 ≤ t ≤ T }0<ε≤1 is
uniformly S-tight in D([0, T ];R

�). If Y is an accumulation point of the family
{Y ε, ε → 0}, then it is a.s. continuous, and it is a solution of the martingale
problem associated to the operator

L = 1
2āij (y)∂yi

∂yj
+ b̄i(y)∂yi

,

where

b̄(y) = F̄ (y) + ∑
i

∫
Gi(x, y)∂yi

Ḡ(x, y)µ(dx)

with

F̄ (y) =
∫

F(x, y)µ(dx)
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and

ā(y) =
∫

[G(x,y)Ḡ∗(x, y) + Ḡ(x, y)G∗(x, y)]µ(dx).

If, moreover, the martingale problem associated toL is well posed(it is easy to
state sufficient conditions for that), thenY ε ⇒ Y in the sense of theS-topology,
andY is the unique(in law) diffusion process with generatorL.

Notice that all integrals in the definition ofL are well defined, as follows from
Proposition 1.

PROOF OFTHEOREM 3.

Step1. Preliminary computation. Letf ∈ C3
p(R�) (the set of functions of

classC3 which, together with their partial derivatives of order 1, 2 and 3, have
at most polynomial growth of some order) and define

f ε(x, y) = f (y) + εu(x, y),

whereεu(x, y) is a corrector tof , defined as follows.u is the solution of the
Poisson equation

Lu(x, y) = −〈∇yf (y),G(x, y)〉,
or in other words

u(x, y) = 〈∇yf (y), Ḡ(x, y)〉,(21)

whereḠ :Rd × R
� → R

� solves

LḠ(x, y) = −G(x,y)

in the integral form (9). Note that∫
∂yG(x, y)µ(dx) = 0, y ∈ R

�,

and

∂yḠ(x, y) = ∂yG(x, y).

For eachδ > 0, we associate a mesh 0= t0 < t1 < · · · < tn < · · · , such that
ti − ti−1 ≤ δ, i ≥ 0, andti → ∞, asi → ∞. For eacht > 0, let N(t) denote that
smallest integer such thatt ≤ tN(t). It follows from our definition of the Poisson
equation solved byḠ(x, y) that for all ε > 0, δ > 0, the following is a local
martingale:

M
ε,δ
t = ∑

i≤N(t)−1

[
εu

(
Xε

ti+1∧t , Y
ε
ti

) − εu
(
Xε

ti
, Y ε

ti

)

+ 1

ε

∫ ti+1∧t

ti

〈∇f
(
Y ε

ti

)
,G

(
Xε

s , Y
ε
ti

)〉
ds

]
.
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Moreover,∑
i≤N(t)−1

[
u
(
Xε

ti+1∧t , Y
ε
ti

) − u
(
Xε

ti
, Y ε

ti

)]

= u
(
Xε

t , Y
ε
tN(t)−1

) − u(Xε
0, Y

ε
0 ) − ∑

i≤N(t)−2

[
u
(
Xε

ti+1
, Y ε

ti+1

) − u
(
Xε

ti+1
, Y ε

ti

)]
,

and fori ≤ N(t) − 2,

εu
(
Xε

ti+1
, Y ε

ti+1

) − εu
(
Xε

ti+1
, Y ε

ti

)
= ε

∫ ti+1

ti

〈∇yu
(
Xε

ti+1
, Y ε

s

)
,F (Xε

s , Y
ε
s )

〉
ds

+
∫ ti+1

ti

〈∇yu
(
Xε

ti+1
, Y ε

s

)
,G(Xε

s , Y
ε
s )

〉
ds.

Finally,

M
ε,δ
t = εu

(
Xε

t , Y
ε
tN(t)−1

) − εu(Xε
0, Y

ε
0 )

− ε
∑

i≤N(t)−2

∫ ti+1

ti

〈∇yu
(
Xε

ti+1
, Y ε

s

)
,F (Xε

s , Y
ε
s )

〉
ds

− ∑
i≤N(t)−2

∫ ti+1

ti

〈∇yu
(
Xε

ti+1
, Y ε

s

)
,G(Xε

s , Y
ε
s )

〉
ds

+ 1

ε

∑
i≤N(t)−1

∫ ti+1∧t

ti

〈∇yf
(
Y ε

ti

)
,G

(
Xε

s , Y
ε
ti

)〉
ds.

We now letδ → 0 in the last identity, from which we deduce that the following is
a local martingale:

Mε
t = εu(Xε

t , Y
ε
t ) − εu(Xε

0, Y
ε
0 )

− ε

∫ t

0
〈∇yu(Xε

s , Y
ε
s ),F (Xε

s , Y
ε
s )〉ds

−
∫ t

0
〈∇yu(Xε

s , Y
ε
s ),G(Xε

s , Y
ε
s )〉ds

+ 1

ε

∫ t

0
〈∇yf (Y ε

s ),G(Xε
s , Y

ε
s )〉ds.

Moreover, we have that

f (Y ε
t ) = f (Y ε

0 ) +
∫ t

0

〈
∇f (Y ε

s ),F (Xε
s , Y

ε
s ) + 1

ε
G(Xε

s , Y
ε
s )

〉
ds,
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hence

f (Y ε
t ) = f (Y ε

0 ) +
∫ t

0
〈∇f (Y ε

s ),F (Xε
s , Y

ε
s ) + ∇yḠ(Xε

s , Y
ε
s )G(Xε

s , Y
ε
s )〉ds

+
∫ t

0
〈∂2f (Y ε

s )Ḡ(Xε
s , Y

ε
s ),G(Xε

s , Y
ε
s )〉ds

+ M
ε,f
t

(22)
+ ε〈∇yf (Y ε

0 ), Ḡ(Xε
0, Y

ε
0 )〉 − ε〈∇yf (Y ε

t ), Ḡ(Xε
t , Y

ε
t )〉

+ ε

∫ t

0
[〈∇f (Y ε

s ),∇yḠ(Xε
s , Y

ε
s )F (Xε

s , Y
ε
s )〉

+ 〈∂2f (Y ε
s )Ḡ(Xε

s , Y
ε
s ),F (Xε

s , Y
ε
s )〉]ds,

where{Mε,f
t , t ≥ 0} is a continuous local martingale which is localized by the

sequence of stopping times

Sε
n := inf{t; |Y ε

t | > n}, n = 1,2, . . . .

Step2. S-tightness. We shall make use of theS-topology onD([0, T ];R
�),

introduced by Jakubowski. The following result is a consequence of the results
in [4] and [9]:

PROPOSITION5. The collection{Y ε
t ,0 ≤ t ≤ T }{0<ε≤1} is uniformlyS-tight

if it satisfies the two conditions:

(i) For all δ > 0, there existsM > 0 s.t.

P

(
sup

0≤t≤T

|Y ε
t | > M

)
≤ δ, 0< ε ≤ 1.

(ii) Y ε
t − Y ε

0 = Eε
t + V ε

t + Mε
t , with

Eε
t → 0 in probability, uniformly for t ∈ [0, T ],(23)

and for eachn ∈ N,

sup
0<ε≤1

E
(‖V ε‖T ∧Sε

n
+ 〈Mε〉T ∧Sε

n

)
< ∞,(24)

where‖V ε‖t denotes the total variation ofV ε between0 and t , and〈Mε〉 denotes
the quadratic variation of the continuous local martingaleMε.

We first prove that the sequence(Y ε· ) satisfies (i). For that sake, we will use (22),
with the functionf (y) = log(1 + |y|2). Recall that the functionu depends onf .
Notice that for this choice off one has

(1+ |y|)|∂yf (y)| + (1+ |y|)2‖∂2
yf (y)‖ + (1+ |y|)3‖∂3

yf (y)‖ ≤ C,
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and then in particular [see (20)]

|u(x, y)| ≤ K
(
1+ |x|q ′

3
)
.

Consequently, the absolute values of the integrands in the right-hand side of (22)
do not exceedC(1+ |Xε

s |q) with someq < ∞. So{Mf,ε
t } is in fact a martingale,

and there exist two constantsC andq such that for 0< ε ≤ 1,

E

[
sup

0≤t≤T

log(1+ |Y ε
t |2)

]
≤ C sup

0≤t≤T

E(1+ |Xε
t |q) < ∞.

This implies that the condition (i) in Proposition 5 is satisfied.
It remains to prove that (ii) is satisfied. For that sake, we choosef (y) = y

in (22), yielding

Y ε
t = Y ε

0 + Eε
t + V ε

t + Mε
t ,(25)

where

Eε
t = εḠ(Xε

0, Y
ε
0 ) − εḠ(Xε

t , Y
ε
t ),

V ε
t =

∫ t

0

(
I + ε∇yḠ(Xε

s , Y
ε
s )

)
F(Xε

s , Y
ε
s ) ds +

∫ t

0
∇yḠ(Xε

s , Y
ε
s )G(Xε

s , Y
ε
s ) ds,

and{Mε
t , t ≥ 0} is a continuous local martingale.

Now (23) follows from Corollary 1, (20) and (i), and the first half of (24) follows
from (AP ) and (20), and we finally compute〈Mε〉.

From (22) withf (y) = |y|2,

|Y ε
t |2 = |Y ε

0 |2 + 2
∫ t

0
〈Y ε

s ,F (Xε
s , Y

ε
s ) + ∇yḠ(Xε

s , Y
ε
s )G(Xε

s , Y
ε
s )〉ds

+ 2
∫ t

0
〈Ḡ(Xε

s , Y
ε
s ),G(Xε

s , Y
ε
s )〉ds

+ M
ε,2
t

+ 2ε〈Y ε
0 Ḡ(Xε

0, Y
ε
0 )〉 − 2ε〈Y ε

t Ḡ(Xε
t , Y

ε
t )〉

+ 2ε

∫ t

0
[〈Y ε

s ,∇yḠ(Xε
s , Y

ε
s )G(Xε

s , Y
ε
s )〉 + 〈Ḡ(Xε

s , Y
ε
s ),G(Xε

s , Y
ε
s )〉]ds,

where{Mε,2
t , t ≥ 0} is a continuous local martingale.

Now from Itô’s formula for continuous semimartingales and (25), we deduce
that

|Y ε
t + εḠ(Xε

t , Y
ε
t )|2

= |Y ε
0 + εḠ(Xε

0, Y
ε
0 )|2

+ 2
∫ t

0
〈Y ε

s ,F (Xε
s , Y

ε
s ) + ∇yḠ(Xε

s , Y
ε
s )G(Xε

s , Y
ε
s )〉ds
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+ 2ε

∫ t

0
〈Y ε

s ,∇yḠ(Xε
s , Y

ε
s )F (Xε

s , Y
ε
s )〉ds

+ 2ε

∫ t

0

〈
Ḡ(Xε

s , Y
ε
s ),

(
I + ε∇yḠ(Xε

s , Y
ε
s )

)
F(Xε

s , Y
ε
s ) + ∇yḠ(Xε

s , Y
ε
s )G(Xε

s , Y
ε
s )

〉
ds

+ 2
∫ t

0
Ỹ ε

s dMε
s + 〈Mε〉t ,

whereỸ ε
s = Y ε

s + εḠ(Xε
s , Y

ε
s ). Comparing the last two identities, we deduce that

〈Mε〉t = 2
∫ t

0
〈Ḡ(Xε

s , Y
ε
s ),G(Xε

s , Y
ε
s )〉ds

+ ε2|Ḡ(Xε
t , Y

ε
t )|2 − ε2|Ḡ(Xε

0, Y
ε
0 )|2

+ ε

∫ t

0
ψε(X

ε
s , Y

ε
s ) ds + M

ε,2
t − 2

∫ t

0
Ỹ ε

s dMε
s ,

where

|ψε(x, y)| ≤ C(1+ ε)(1+ |y|2)(1+ |x|3q).

The second half of (24) now follows from (20) and the assumptions on the growth
of G.

Step3. Identification of the limit. Let 0≤ s < t ≤ T , and let
s be a bounded
andS-continuous functional defined onD([0, T ];R

�), which is measurable with
respect to theσ -algebraσ(x(r), x ∈ D([0, T ];R

�) 0 ≤ r ≤ s). Let f ∈ C∞
c (R�)

be a smooth function with compact support. It follows from (22) that for alla > 0,
such thatt + a < T ,

E
([f (Y ε

t+a) − f (Y ε
s+a)]
s(Y )

)
= E

(

s(Y )

∫ t+a

s+a
〈∇f (Y ε

r ),F (Xε
r , Y

ε
r ) + ∇yḠ(Xε

r , Y
ε
r )G(Xε

r , Y
ε
r )〉dr

)

+ E

(

s(Y )

∫ t+a

s+a
〈∂2f (Y ε

r )Ḡ(Xε
r , Y

ε
r ),G(Xε

r , Y
ε
r )〉dr

)

+ εE(
s(Y )
[〈∇yf (Y ε

s+a), Ḡ(Xε
s+a, Y

ε
s+a)〉

− 〈∇yf (Y ε
t+a), Ḡ(Xε

t+a, Y
ε
t+a)〉]

)
+ εE

(

s(Y )

∫ t+a

s+a
〈∇f (Y ε

r ),∇yḠ(Xε
r , Y

ε
r )G(Xε

r , Y
ε
r )〉dr

)

+ εE

(

s(Y )

∫ t+a

s+a
〈∂2f (Y ε

r )Ḡ(Xε
r , Y

ε
r ),G(Xε

r , Y
ε
r )〉dr

)
.
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We chooseδ > 0 small enough, such thatt + δ < T , and deduce from the last
identity that

E

(

s(Y )

∫ δ

0
[f (Y ε

t+a) − f (Y ε
s+a)]da

)

= E

(

s(Y )

∫ δ

0
da

∫ t+a

s+a
〈∇f (Y ε

r ),

F (Xε
r , Y

ε
r ) + ∇yḠ(Xε

r , Y
ε
r )G(Xε

r , Y
ε
r )〉dr

)

+ E

(

s(Y )

∫ δ

0
da

∫ t+a

s+a
〈∂2f (Y ε

r )Ḡ(Xε
r , Y

ε
r ),G(Xε

r , Y
ε
r )〉dr

)
(26)

+ εE

(

s(Y )

∫ δ

0
da[〈∇yf (Y ε

s+a), Ḡ(Xε
s+a, Y

ε
s+a)〉

− 〈∇yf (Y ε
t+a), Ḡ(Xε

t+a, Y
ε
t+a)〉]

)

+ εE

(

s(Y )

∫ δ

0
da

∫ t+a

s+a
〈∇f (Y ε

r ),∇yḠ(Xε
r , Y

ε
r )G(Xε

r , Y
ε
r )〉dr

)

+ εE

(

s(Y )

∫ δ

0
da

∫ t+a

s+a
〈∂2f (Y ε

r )Ḡ(Xε
r , Y

ε
r ),G(Xε

r , Y
ε
r )〉dr

)
.

It follows from Lemma 5 in [11] that for any 0≤ s < t ≤ T ,∫ t

s
〈∇f (Y ε

r ),F (Xε
r , Y

ε
r ) + ∇yḠ(Xε

r , Y
ε
r )G(Xε

r , Y
ε
r ) − b̄(Y ε

r )〉dr → 0

and ∫ t

s
Tr ∂2f (Y ε

r )
[
Ḡ(Xε

r , Y
ε
r ) ⊗ G(Xε

r , Y
ε
r ) − 1

2ā(Y ε
r )

]
dr → 0

in probability, asε → 0.
We can then take the limit in (26) asε → 0, divide byδ > 0, and letδ → 0 since

the processY is right-continuous, yielding that for allf ∈ C∞
c (R�), all 0 ≤ s <

t ≤ T and all
s bounded andS-continuous functional defined onD([0, T ];R
�),

E
([f (Yt ) − f (Ys)]
s(Y )

)
(27)

= E

(

s(Y )

∫ t

s

[〈∇f (Yr), b̄(Yr)〉 + 1
2 Tr ∂2f (Yr)ā(Yr)

]
dr

)
,

or in other words that

M
f
t := f (Yt ) − f (Ys) −

∫ t

s

[〈∇f (Yr), b̄(Yr)〉 + 1
2 Tr ∂2f (Yr)ā(Yr)

]
dr

is a martingale.
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It remains to show thatt → Yt is a.s. continuous from[0, T ] into R
�, which is

done in the following.

PROPOSITION 6. Let {Yt ,0 ≤ t ≤ T } be an�-dimensional semimartingale
such that for all1≤ i ≤ �, all f ∈ C∞

c (R),

M
i,f
t := f (Y i

t ) − f (Y i
0) −

∫ t

0

[
f ′(Y i

s )b̄i(Ys) + 1
2f ′′(Y i

s )āii(Ys)
]
ds

is a martingale. Then{Yt ,0≤ t ≤ T } is continuous.

PROOF. We note that the assumption implies that∀f ∈ C∞(R), M
i,f
t is a

local martingale. Hence in particular, for each 1≤ i ≤ �,

Mi
t = Y i

t − Y i
0 −

∫ t

0
b̄(Y i

s ) ds

is a local martingale, whereY i
t denotes theith component ofYt , and it follows

from Itô’s formula for (possibly discontinuous) semimartingales (see, e.g., [15],
page 72) that∀f ∈ C∞(R),

f (Y i
t ) = f (Y i

0) +
∫ t

0
f ′(Y i

s )b̄i(Ys) ds +
∫ t

0
f ′(Y i

s−) dMi
s + 1

2

∫ t

0
f ′′(Y i

s−) d[Mi]s
+ ∑

0<s≤t

(
f (Y i

s ) − f (Y i
s−) − f ′(Y i

s−)�Y i
s − 1

2f ′′(Y i
s−)(�Y i

s )
2),

where{[Mi]t , t ≥ 0} denotes the quadratic variation process of the martingaleMi .
In the particular casef (y) = (yi)2, this identity reads

(Y i
t )

2 = (Y i
0)

2 + 2
∫ t

0
Y i

s b̄i(Ys) ds + 2
∫ t

0
Y i

s− dMi
s + [Mi]t .

Writing the assumption in the casef (y) = (yi)2, we obtain that

M
i,2
t := (Y i

t )
2 − (Y i

0)
2 −

∫ t

0
[2Y i

s b̄i(Ys) + āii(Ys)]ds

is a local martingale. Comparing the last two identities, we deduce that[Mi]t −∫ t
0 āii(Ys) ds is a local martingale. Next, comparing the two different ways of

writing (Y i
t )

3 and using the identity

(Y i
s )

3 = (Y i
s−)3 + 3(Y i

s−)2�Y i
s + 3Y i

s−(�Y i
s )

2 + (�Y i
s )

3,

we deduce that
∑

0<s≤t (�Y i
s )

3 is a local martingale, from which we deduce, by
comparing the two different ways of writing(Y i

t )
4 and using the identity

(Y i
s )

4 = (Y i
s−)4 + 4(Y i

s−)3�Y i
s + 6(Y i

s−)2(�Y i
s )

2 + 4Y i
s−(�Y i

s )
3 + (�Y i

s )
4,
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that
∑

0<s≤t (�Y i
s )

4 is a local martingale, which is impossible, unless it is
identically zero. Since this result holds for any 1≤ i ≤ �, the proposition is
established. �
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