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MODERATE DEVIATIONS AND LAW OF THE ITERATED
LOGARITHM FOR INTERSECTIONS OF THE
RANGES OF RANDOM WALKS?

By XIA CHEN
University of Tennessee

Let S1(n), ..., Sp(n) be independent symmetric random walksZfh.
We establish moderate deviations and law of the iterated logarithm for the
intersection of the ranges

#8510, n]N---N Sp[0, n]}
inthe casel =2, p>2andthecasé=3, p=2.

1. Introduction. Let p > 2 be an integer and lefSi(n)}, ..., {S,(n)} be
symmetric independemt-dimensional lattice valued random walks with the same
distribution. Throughout we assume thHat(n)}, ..., {S,(n)} have finite second
moment and that the smallest group that supports these random walis is
Write T" for their covariance matrix. Unless claiming otherwise, we assume that
the random walks start at the origin, that is,

S;0=0, j=1....p.

To simplify the notation, we usgS(n)} for a random walk of the same distribution
as {S1(m)}, ..., {Sp(n)}, in the context where only a single random walk is
involved. For anyA e R™, we set

S(A)={Sk); ke A).
In the transient casé > 3, we write
y(S) =P{S(n) #0, n > 1}.

It is known [Dvoretzky, Erdés and Kakutani (1950, 1954)] that the trajectories
of the random walkgS1(n)}, ..., {S,(n)} intersect infinitely often if and only if
p(d — 2) <d. There are two ways to measure the intensity of such intersection.
One is to count the times of intersection by introducing the intersection local time

(1.1) I =#{(k1, ..., kp) €[0,n]7; Si(ky)=---=S,(kp)}.
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INTERSECTION OF RANGES 1015

Another is to count the sites of intersection by considering the intersection of the
ranges

(1.2) Jo =#(S81[0,n] N --- N S,[0, n]}.

In the critical cases defined py(d — 2) = d, a weak law obtained by Le Gall
(1986b) shows thaf,, and J, are attracted by -distributions. The law of the
iterated logarithm (LIL) forl, and J, has been obtained in Marcus and Rosen
(1997) and Rosen (1997). See (1.19) and (1.20) below for the LILLfor

In Chen and Li (2004) and Chen (2004), the moderate deviations and the law of
the iterated logarithm fof,, have been established in the noncritical cases defined
by p(d — 2) < d. See also Chen, Li and Rosen (2005) and Chen and Rosen (2005)
for the extensions of such results to the stable random walks.

In this paper, we study the moderate deviations and the law of the iterated
logarithm for J,, under the condition

(2.3) pd—2)<d and d=>2

which consists of the casé= 2, p > 2 and the casé = 3, p = 2. Our work is
partially inspired by two papers. One is Le Gall (1986a) in which it is pointed out
[Theorem 5.1, Le Gall (1986b)] thatds=2,p>2,m=1,2,...,

(Iogn) pm

(1.4) EJ" —s (27)P" det(I)"/?Ea ([0, 1)) (n — 00)

and [Theorem 5.3, Le Gall (1986a)] thatds=3 andp=2,m=1,2, ...,
(1.5) n "PEJ™ — y(S)?" detI") ™?Ea([0, 115"  (n — o0)
where« ([0, 1]7) is the Brownian intersection local time

(1.6) a ([0, 11’)—/ []‘[/ (W;(s) ds:| dx

generated by the independehtimensional Brownian motiond/1(¢), ..., W, ().
Here we make the following remarks: First, Le Gall only discussed the case where
the covariance matriX' is a multiple of the identical matrix. By examining his
argument, we made a slight extension without repeating his proof. Second, it is
very likely that (1.4) and (1.5) can be developed into the laws of weak convergence.
To our best knowledge, this was confirmed [see, e.g., Le Gall (1986a) and Le Gall
and Rosen (1991)] in the cage= 2, p =2, 3 and the casé = 3 andp = 2.

Another is the recent large deviation result [Theorem 2.1, Chen (2004); see also
Chen and Rosen (2005) for its stable extension]

(L.7)  lim 1~tlogP{w(0, 1]7) = 1/ ~/) :—%K(d, p)4p/@p=1)
— 00

under the condition (1.3), whekgd, p) > 0 is the Gagliardo—Nirenberg constant
given below. In view of (1.4) and (1.5), it is natural to expect that the tail behavior
given in (1.7) passes t, in certain ways.
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For eachd, p satisfying (1.3), we introduce the positive numkéd, p) as the
best constant of the Gagliardo—Nirenberg inequality

1 fllzp < CIUV I~/ p1 7Y@ p e wh2®Y,
whereWw1-2(R) denotes the Sobolev space
WHRY) = (f € L2RY); Vf e LARY)}.
That is,
k(d, p) =inf{C > 0; | fllzp < CIV flI5" V@ g5 @D/
(18) for f € WH2(RY)).

The Gagliardo—Nirenberg inequality can be obtained from the Sobolev inequality
by a simple substitution. We refer the interested reader to Levine (1980), Weinstein
(1983), Carlen and Loss (1993), Del Pino and Dolbeault (2003) and Cordero-
Erausquin, Nazaret and Villani (2004) for an overview of the latest state in finding
the value of Gagliardo—Nirenberg constants.

THEOREM1. Asd=2andp > 2,

. 1
lim — IogIP’{Jn > A
by

n bp_l}
n
n—0o0 (logn)?
(1.9) = _g(zﬂ)—P/(P—l)
x de(r)—l/(z(ll—l)),{(z’ p)—2p/(P—1)kl/(P—1) (> 0)

for each positive sequence {b,,} satisfying
(1.10) by — oo and b, =o((logn)?3)  (n— o).

THEOREM?2. Asd=3and p=2,

1
lim . logP{J, > AVnb3}
n

n—oo

1.11
(1.11) = —detT) Y3y (S)" 3% 3,2732° (>0

for each positive sequence {b,} satisfying

(1.12) b, — oo and b, =on%° (n — 00).

REMARK. We point out the fact that as> 3,

-1

00 1 1 1
113) () =| L PS®)=0) =(-—3 @
(1.13) ¥(S) (,;, {S(k) }) ((Zn)d /[—n,n]dl—w(k) )
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whereg (1) is the characteristic function of the i.i.d. increment$$f:)}. To prove
the first equality in (1.13), letp be the last time that the random walk:) visits O.
By transience and the Markov property,

1=) Plro=k} =) P{S(k)=0}y(S).

k=0 k=0
The second equality in (1.13) follows from the fact that

P{S(k) =0} = eM)kdx, k=0,1,....

=
27)¢ Ji—n.mpd

We now compare/, with I,,. A trivial observation gives thaf,, < I,, with the
difference caused by the possibility that the multiple intersection may happen at
the same site. By Theorem 2.2 in Chen (2004),

1 )
(L14) lim_ -~ logP(l, = b1} = —gx/det(F)K(Z, p)~20/(P=D; (=7
n
asd =2,p=>2;and
1
(1.15)  lim_ o logP{1, > AWnb3} = — detI") Y3 (3,2)78/3,2/3

asd = 3, p =2, where{b,,} can be any positive sequence satisfying
(1.16) b, — oo and b, =o0(n) (n — 00).

Comparing (1.9) with (1.14), we see a substantial difference in asymptotic
behaviors between, and J,, asd = 2.

Another difference is in the range @4, }. By comparison it is natural to ask if
we can extend Theorems 1 and 2 so that any sequén¢eatisfying (1.16) can
be included. The answer is “No.” Indeed, if we take> §(logn)?/?~D in (1.9),
or b, > 8n*/3in (1.11), then the involved probability is bounded by

P{Jn = 6An}

which is eventually zero fok > §~1. So our results do not hold in this case.
It seems that in Theorem 2, the right condition{ép} is

by — o0 and b,=o0nY?  (n— ).

As for Theorem 1, we can push a little further: If (1.9) were truetipe logn,
we would have

) 1 n
lim —— IogP{J,, > k—}
n—oo logn logn

— g (27)~P/P=D ey )~V P=D) (2, p)=27/(P=DL/(p=D)
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This is implausible since, in the sense of moderate deviation at thelgcaltogn,
J, would have the rate:(logn)~* independent ofp, which sharply contrasts
with (1.4). We believe that in Theorem 1, the right condition{bg} is

b, — oo and b, =o(logn) (n — 00).
We are not able to prove our results under these conditions. So we leave this
problem to future study.

THEOREM3. Asd=2and p > 2,

2.17) Ilmsup% (Zn)l’(z)plx/det(l‘)x(z )2r a.s.
' n—oo n(loglogn)?— 1 In p P i

Asd=3and p =2,

1
(1.18) limsup————J, = y(S)°detI") Y% (3,2* as
n—oo +/n(loglogn)3
Recall that the trajectories ¢51(n)}, ..., {S,(n)} intersect infinitely often if

and only if p(d — 2) < d. In the critical cases defined a%d — 2) = d—the case

“d =4, p=2"and the cased = p = 3,” the law of the iterated logarithm fak,

has been obtained in Marcus and Rosen (1997) and in Rosen (1997), respectively.
Under the assumption of finite third moment, it has been proved [Marcus and
Rosen (1997)] that

In y (8)?
1.19 li
(1.19) Izlooplogn log log logn anx/det(l“)

asd =4 andp = 2, and [Rosen (1997)] that

In y(5)°
1.20 li = .S.
( ) Irrln_moplogn logloglogn  m det(T") a-s
asd =p=3.
Asd =1, we have
(1.22) Ju < _min maxs; (k) — max mmS k).

<J<p k<n <j<p k<n

Since the equality holds in the special case of simple random walks, it is natural
to believe that even in the general case, both sides of (1.21) are asymptotically
equivalent in a suitable sense. By the classical results on the tail estimate of the
random walks, therefore, we conjecture that

pA?
202

for any positive sequend@,} satisfying (1.16), where? > 0 is the variance of
the random walks. The rigorous proof of (1.22) [more precisely, the lower bound

. 1
(1.22) Jim b logP{J, > Avnb, } = —



INTERSECTION OF RANGES 1019

of (1.22)] for the general random walks can be difficult. By comparing (1.22)
with Theorems 1, 2, (1.19) and (1.20), it is interesting to note that the asymptotic
magnitude ofJ,, is not monotonic in dimensiod and that asymptoticallyf, is
maximized byd = 2.

Another interesting problem is the study dt$40, n1} (i.e., J, with p = 1). In
the casel =1, it is expected that{#[0, n]} behaves like

maxsS (k) — minS(k)
k<n k<n

in terms of the upper and lower tail behaviors.

In the multidimensional case, the behaviors of the rafi§€d#»]} are generally
different from what we observe in the present paper. In the £€as8, it has been
shown [Jain and Pruitt (1972) and Bass and Kumagai (2002)] that the centered
sequence

(1.23) #S[0,n]) — E#S[0,n]}, n=12...,

has Gaussian tails and behaves essentially like a partial sum of independent
random variables.

The caseal = 2 is the most interesting case in which the tail of the sequence
in (1.23) is no longer Gaussian, not even symmetric. Bass and Kumagai (2002)
obtain

2
(1.24)  limsup—129")

M SUp ogloglogn 710l —EASIO.nlh =C - as.

with the unidentified constar > 0. In a forthcoming paper, we [Bass, Chen and
Rosen (2004)] shall identify the constantand we shall show that it is the lim inf
behavior of the sequence in (1.23) (i.£,,— EJ, with p = 1) that is relevant to
the lim sup behavior of, (with p = 2) given in Theorem 3.

Finally, we point out some interesting problems in the case

(1.25) pd—2)>d.

According to Dvoretzky, Erdés and Kakutani (1950, 1954), we have
Ioo =#{(k1, ..., kp) €[0,00)P; S1(kp) =---=S,(kp)} <00 a.s.,
Joo =#{51[0,00) N ---N §,[0, 00)} < 00 a.s;

a natural problem is to study the tails of the random varialflesand J.. In
Khanin, Mazel, Shlosman and Sinai (1994), this problem is linked to the study of
the random walk in the random potential. In the special eAse5 andp = 2,
Khanin, Mazel, Shlosman and Sinai (1994) prove that therear® > 0, such

that

(1.26) exp(—c1tY?} < P{ls > 1} < exp{—cotY/?)
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and that givers > 0,
(1.27) exp(—t" ") < P(Joo > 1) < exp—11774 )

holds for larges. From (1.26) and (1.27) we observe again a fundamental
difference between the intersection local time and the intersection of independent
ranges. In particular, this observation breaks the stereotypd.thltays behaves

like y (S)? 1. in the transient case. Itis certainly of great interest in studying precise
large deviations foi, andJ, under (1.25).

The paper is organized as follows. In Section 2, we formulate a nonstandard
version (Theorem 4) of the Gartner-Ellis theorem with nearly standard proof.
From the viewpoint of large deviation theory, our work contributes an important
example which is not quite suitable for the classic Gartner—Ellis theorem but can
be solved in a nonstandard way.

In Section 3, we prove the upper bounds given in Theorems 1 and 2. The key
tool is a moment inequality (Theorem 6) f@y which is parallel to the one given
in Theorem 5.1 in Chen (2004) fay,.

In Section 4, we prove the lower bounds given in Theorems 1 and 2. This is
the most delicate part of the whole paper and some substantially new ideas are
needed. First we establish a weak law (Theorem 7) for certain functionals related
to J,, which seems new and has independent interest for its own sake. Second,
we partition the time intervdl0, n] properly and conduct some sharp estimate to
eliminate the influence from intersection of trajectories between any two different
time periods. Finally, we establish some Feynman—Kac type large deviation lower
bounds (Theorem 8) in a way close to Theorem 4.1 in Chen and Li (2004).

In Section 5, we prove the laws of the iterated logarithm given in Theorem 3.
The nontrivial part is the lower bound, for which some uniform lower bounds of
the moderate deviations are needed.

In spite of some technical connections to the recent works Chen and Li (2004),
Bass and Chen (2004), Chen (2004), Chen, Li and Rosen (2005), Chen and Rosen
(2005) and Bass, Chen and Rosen (2005) on the exponential asymptotics for
intersection local times, the main approach used here is fundamentally different.

2. A Gartner—Ellis type theorem. Let {Z.} be a family of nonnegative
random variables and lgt > 1 be an integer. Assume that for afly> 0, the
following limit exists:

X (Pe~ym

— (EZ™YP = w(@).

(2.1) gll)rra+ € Iogm:0
It is easy to see thab (9) is nondecreasing and convex [ co) with ¥ (0) = 0.

By the Gartner-Ellis theoreny,, satisfies the large deviation principlejf= 1

and if ¥(9) and its convex conjugaté* (1) satisfy some regularity conditions
[see, e.g., Theorem 2.3.6 in Dembo and Zeitouni (1998) for details]. What we
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intend to establish in this section is a large deviation principle under (2.1) and
some additional regularity assumptions in the casel.
Write

(2.2) 1(A) = psupAYPo — w()).
6>0

By Lemma 2.3.9 in Dembo and Zeitouni (1998)js a good rate function! is
lower semicontinuous ofD, co] and for each > 0, the level sefi; I (A) <l} is
compact. In addition, one can easily see thd) = 0 and that/ (] - |?) is convex
on (—oo, ©0).

DEFINITION. A € [0, 00) is called ap-distinguishable point of if there is
6o € [0, 0o) such that

1
AYPoo— ZI(A) < W(Bg) VA >O0with A = Ao.
p

REMARK. By an argument of duality [see the proof of Lemma 5.3 in Chen
(2004)] we have that for argy > 0,

1
sup{kl/peo - —I(k)} =W (hp).
A>0 p

Therefore Ag is p-distinguishable if.g is the unique maximizer of the function
1
o) =170 — =1(0)
p

for somefy > 0.
An important ingredient of our idea is the following generalization of the
Gartner—Ellis theorem on large deviations.

THEOREM 4. Let {Z.} be a family of nonnegative random variables and let
p > 1 beaninteger. Assume that for any 6 > 0, (2.1)holds. Then for any A > 0,
(2.3) limsupelogP{Z, > A} < —I(}).

e—0t

Further, if the set of p-distinguishable points of 7 isdensein [0, co), then
(2.4) Iirg+e logP{Z, > A} = —1(A), A>0.
£—
PROOF The proof of the upper bound is just a routine application of the
Chebyshev inequality: For argy> 0,
WP OH (PZe = ADYP < (0 HBZIHYP
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for any integern > 0. Summing up gives

B o] 0 —1\m
APz =AY < S %(EZ%”P.
m=0 :

Hence

limsupe logP{Z, > A} < —p{AYP6 — W (6)}.

e—0t

Taking the supremum ovérgives the desired upper bound.
To accomplish the second part, we need only to prove that for any
p-distinguishable pointg and anys > 0,

(2.5) liminf elogP{Z, € g — 68, 0+ 68)} = —1(1o).
e—0t
We may assume that€© 3§ < Ag. Notice that
1 1
(ho+8)"/P(P(Zs € (ho— 8. 20+ DN’ = (BZI" Lz, e00-5.50+50) "
Summing up we have
¢ 0t (B(Z, € (1o — 8. 00+ )7

m=0

(Boe~ Ly
|

1/p

(EZ{' 1z, e(ro—8.00+8))

wherefg is given as in the definition of the-distinguishable point.
If we can prove that for an§ > 0,

o] —1\m
(Boe™) m 1
> —  (EZ L z.c00-5.00+5)) v
m=0 :
(2.6)
o] (2} —1\m
~ Z M(Ezg)lm C=S o+)
o m!

then we will have

limint ¢ logP(Z, € (o — 8. k0 +8)) = —plfo( + HYP —w(hp)).
E—>

For any O< §’ < §, replacings by 8’ and noticing that
P{Zc € (Mo — 8,20+ 8)} = P{Z: € (ho— 6, 2o+ 8},
we obtain

liminf ¢ logP{Z, € (ho — 8. 30 +8)) = — plfo(h + §HYP — W(bg)).
e—
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Letting 8’ — O™ gives

lim iorlfelogIF’{Zg € (ho— 8,20+ 8)) > —plOorAY? — W(B)} = —1 (Ao).
£E—>

That is (2.5).
To prove (2.6), notice that

Z (Boe™ )m (Ezm)l/p
m=0 m.
[e'e) —1\m
908 ) 1
Z (EZ"LZ,c00-50+81)

(o 8_1)m 1
(EZ"1(7,¢0-5.00+8))

+Z

In view of (2.1), we will have (2.6) if

(Boe™H)"
(2 7) I|m|nfslog Z T(EZ ]l {Zo2(Mo—5 A0+8)}) /p < W (0p).
m=0 '

Write Bo = (Ao — 6, Ao+ 8). Sincel (1) is a good rate function, by distinguisha-
bility

1
n=Wo) — sup{xl/l’eo — —I(A)} >0
Aé¢Bo p

From the Holder inequalityEZ™)Y? > EZ/? and the assumption (2.1) we have

limsupe IogEexp{@e‘lze} < 00, 6 > 0.

e—>0
According to Lemma 5.3(iii) in Chen (2004) (or Theorem 5 below), therefore,

—l)m

lim limsupe log Z (Ezg"]l{zgzN})l/” = —o00.

N—o00 8—>O+ m= 0
Let N > A + 8 be fixed for a moment and let
Bi=[ai9bi]’ i=1,...,l,

be intervals such that

1
[0, N]\ Bo= Bi

i=1
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and that(b; — a;)Y/? <n/2fori =1,...,1. Then

00 —1\m
(Boe™) 1
> [EZ z¢8) v
m=0 !
00 —1\m —1\m
(Bpe™H)™ (00 ) 1
=Y ——(EZ' 1z =) +Z Z ———(EZ"z,en) "
m=0 m: i=1m=0
X (Goe~Hm -1
<> OBz ) by, za)
m=0 ' i=1

By the proved upper bound,

i I (Boe —l)m m 1/p
im supe log Z —(EZ L(z.¢Bo) "
e—0t m=0 !
] o0 9 —1\m
< maxl limsupe > %(EZQ"E{Z@N})UP,

e—>0t .0

max{@obl/p — EI(a,)”
p

1<i<l

—1ym
< maxl lim supe Z u(IEZ'" =),
m!

e—>0t .0

1
sup{eokl/P — —I(A)} LI
¢ Bo P 2

Letting N — oo gives

(Ooe™™" o m 1p
limsupe log Z 7(EZS 1{z.¢Bo)

e—0t m=0

< sup{@okl/p - —1(,\)} 5> < Y(0).

A¢Bo O

Like Varadhan’s integral lemma [Theorem 4.3.1 in Dembo and Zeitouni (1998)]
to the well-known Gartner—Ellis theorem, the following theorem is a converse of
Theorem 4. We give it without proof, as it is essentially given in the proof for
Lemma 5.3 in Chen (2004) (only some obvious modification is needed).

THEOREM 5. Let {Z.} be a family of nonnegative random variables and let
p > 1 be an integer. Let 7(A) be a nondecreasing good rate function on [0, co)
suchthat 7(0) =0, I(|-|?) isconvex on (—oo, 0o). Assume that

lim clogP{Z, > A} =—1(A) (A>0)
e—0F
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and that & > 0 satisfies

—lm
(2.8) lim Ilmsupslogz ) (BZ"1(z,=n)) "7 = —o0;
00 e—0F m=1
then
i (98_1) my1/p Yp_ -1
(2.9) €||rg+g|og Z (EZ™) =f”§“ —p (V).
e m=0 >

In particular, the condition (2.8)is satisfied if thereisa 6’ > 2p6 such that
(2.10) lim supe logE exple 16’ ZY/7} < cc.

e—0t

Theorem 4 applies to the proof of Theorems 1 and 2 as follows.

CLAaiM 1. Wewill have Theorem 1 if

0 am V4 m/p
lim —Iogze (b nlog”n ) (EJmMYP

n—>oo p,

(2.11)

_ 1<2(p - 1)>,,_ 2r0)? JdetDk (2, )2 (6> 0)
P\ p
inthecased =2, p > 2.

CLAaIM 2. Wewill have Theorem 2 if

X gm m/4 -
n||—>moob—logz ( > EJ/
(2.12) 3
_2( ) y($)9)*detI) (3,28 (>0

inthecased =3, p = 2.

Due to similarity we only show how Claim 1 follows from Theorem 4. First, the
condition (2.1) is satisfied with

B 1
\y(e):%(z(pp 1)),, (276)P /detD) (2, p)2”.

A simple calculus gives that

[(A) = psupAtPe — w(o))
6>0

g(zﬂ)—p/(p—l) det) "V Er=D) 2, p)—zp/(p—l))\‘]_/(p_l)‘
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Second, everyg > 0 is p-distinguishable. Indeed, doing simple calculus again
one can directly verify that for

0o = P2y P/0-D (2, )20/ (0-D; P (P-D),
2p-—1

Ao is the uniqgue maximizer of the function

1
o) =AYPoo— =1 (0.
p

3. Upper bounds. The main goal of this section is to prove that in the case
d=2,p=2,

00 m 4
Ilmsup Iogzg (b nlog”n ) (EJmMYP

n—o0 n

3.1) 4
< %<¥>,’ (276)"/detD)c(2, p)* (0> 0)

for any{b,} satisfying (1.10)' and that in the cagde=3, p = 2,

0 gm m/4
Ilmsup IogZ < ) EJ"

n—oo n

(3.2) 5
<2( > (y($)O)*detIN (3,28  (0>0)

for any{b,} satisfying (1.12).

To begin, we first conside{Si(n)},...,{S,(n)} as any independent and
|dent|cally distributedZ?-random walks. Let the integer > 2 be fixed and let
ni, ..., n, be positive integers;o = 0. Write

Aj=[no+--+nj-1,no+---+nl, i=1...,aq,
P a
A=) 112 Tiwes;an-
X j=1i=1
Notice that

n1+ A+ng = anxeS [0,14-- +na}<A
X J 1

For the needs of the upper bound, it is enough to confjgl....,,. In the
proof of the lower bound, however, it is required to control the self-intersection
between two different parts of a single trajectory, which is associatedAn(ttith
a,n1,...,n, being suitably chosen) in law. In addition, the hardest part of this
work is to essentially show that and J,,, ..., are asymptotically equivalent as
a,ni,...,n, (al depend om) are suitably chosen.
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THEOREMG6. For anyinteger m > 1,

1 m! k\1/p ka\L/P

(3.3) (EA™) /p = - ; W(E‘lni) e (E‘Ina) :
R —
Jiq ..... k>0

Consequently, for any A > 0,

. mo ™! Timimomt
PrROOF
m a r\ 1/p
(EA™)YP = ( > [E [1 Zﬂ{xkesmn}} )
X1seesXm k=1i=1

a p\ Y/p
=( Z [ Z E(ﬂ{neS(Ail)}“‘]l{xmeS(Aim)})} )
X1 '1

seesXm Liq, . 0n=1
a 1/p
< X ( > [E(ﬂ{xlem,«l)}“'Jl{xmeS<A,«m>})]p) :
| P o P Xm

Given integersis, ..., i, between 1 and:, let k1, ..., %k, be the number of
occurrences of. = 1,...,i. = a, respectively. Therky + --- + k, = m. To
prove (3.3), it suffices to show

(3.5) Y [E(pmesan) - Tamesa)]” <ELE-- Rl

X1 Xm

Without losing generality we may only consider the case whgn. ., k, > 1.
Under the notatiotf; = (x{, ..., x;.) € (Z)", we set

ki
di(x;) = E( l_[ ]l{xliES[O,ni]})'
=1
It is easy to see that
Y olGy=EJS, i=1.. a
Xi
Define

_ f_']fl\% _ f_'lfl\_‘\
S'(ky=(S(k),...,Sk)) and S}(k):(Sj(k),...,Sj(k)), k=12,...
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where 1<i <a and 1< j < p. Then

Y [E(mesam - Tomesa,on]”

X1 Xm

“ p
=> > [E [1 Liiescam 1{x£i€5(Ai>}} ’
%1 Xa i=1
Notice that

a 14
> [E [T 0esan 2 eS(A»}}
Xa i=1 '

a—1 p
= Z [EK 1—[1 Liesany ﬂ{x,iieS(Ai)}>¢a (¥g — S%(n — ”a))”
Xa i=

p a—1
= ZE{ 1_[ ( l_[ ]l{xieS,(A,-)} o 'jl{x,iieSj(Ai)}>¢a ()Ea - S;l(n — I’la))}

Xq j=1\i=1
p a1 B
= l( [T1I Liesicany {xk €S (A; )}) > H Ga(Xq — SF(n — na))}
j:ll:]. xa _/ =1
p a1
5E{<n ]l{xiesj(A,-)}"'l{x,iieSj(Ai)}>
j=1li=1

Xa

x ]£[ (Zcpg(;za — 84 (n —na))>1/p}

j=1

p a-1
= E{( [T {xieS; (A} {x,iiesj(Ai)}> Zfﬁg(fa)}
Xa

j=li=1
a—1 p
— . . kg
- {E l_[1 ]l{xlleS(Ai)} T ]l{x,’(l_ eS(Ai)}} E‘Ina
=
So we have

p
Z Z [Eﬂ Lixiesany {xil.esmi)}}
p
<EJ Z 2 [Enl{xlesm N 1{x;;,.eS<Ai)}} :

Xa—1 i=1

Repeating this procedure gives (3.5)]
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Immediately, we have:

COROLLARY 1. For anyinteger m > 1,

m!

1/ k1\1/ ka\1/
BT togn,) " = . ; W(E‘Inll) P (BT
R —
Jiq ..... k>0
Consequently, for any A > 0,
[e.e] )\'m ]_/ a 1/
Z el Ly "=T1 Z Ejm "
m= 0 i=1lm= 0

As application, we have the following sharp moment estimate.

LEMMA 1. Thereisa constant C > 0 depending only on d and p such that:
(i) Whend =2and p > 2,

1 m
m p—1l-~m_m : _
(3.6) EJ" <(m)P~=C"n (mm{4(|og(n/m))l’ , 1}) Vm,n=12,....

(i) Whend =3, p=2,
(3.7) EJ™ < mH¥2C™n™2  VYm,n=12,....

PrROOF Due to similarity we only prove (3.6) in the case {agm) > 1. Write
Im,n) =[n/m]+ 1. Then

1 m! ki \1/p 1/p
(Ethln) /p = ) 2]; kl! . km! (E‘Il(}n,n)) (E‘]l(m n))
+- k=
1k1 ..... kaOm

m!
= Y Rkl k! Binn) Y B i)™

= (Y men (B )'"/P
m (log(n/m))»

< (2 ) ayorviren( )m/p
=\m (log(n/m))?

where the second inequality follows from the fact [Remarks, page 664 in Le Gall
and Rosen (1991)] that

EJF < k)P E)*, k=0,1,....
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Hence
m
EJ" < (2’” >,, ch(m!)P—l(#) .
" m (log(n/m))r
Finally, the desired conclusion follows from the fact

2m m
(7)e :

We are ready to prove the upper bounds for Theorems 1 and 2. Due to similarity
we only prove (3.1). Let > 0 be fixed and let, = [tn/b,]. Applying Corollary 1,

we have
i i@m(bn |ngl’l)m/p(EJm)l/p
— m! n "

[l’l/ln]-f—l
© 1 /b log?n\"P
< (Z Logm <"79’1> (Eﬂf)”") .
n

(3.8)
= m!
By (1.4), Lemma 1 and the dominated convergence theorem,

*01 b, log? n\"/? 1
_em( n ) (EJtT) /p

2

m=0

m! n

(3.9)
N Z —(2710) /P det() Y @Pm (Fo ([0, 117)™) P
m= 0
asn — oo. Hence,

© 1 . log? n\"™/P
Ilmsup Iog(Zm_ (b C;g n) (EJ;")l/p)

n—oo

(3.10)

1 1
== log ( > %(Zne)mz’"/lﬂ det(I") Y/ @P™ (Ea ([0, 1]p)m)1/p)'
m=0"""

In view of (1.7) (withd = 2), applying Theorem 5to =¢~1
Z.=t""Da(0,1]") and I() = gx(z, p) 2P/ (=3 /(=D

gives

lim }log( 3 mi 270)™1™/P det(T) Y @P™ (Ea ([0, 117)™ )1/1’)

t—00 t

—Sup{(ZTrO) det(T)V/@»)/p _ —K(Z )~ 2p/(p=1) Y/ (p— 1)}
A>0

_ -1
o G BCEOUNCE RN
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Lettingr — oo in (3.10) gives (3.1).

4. Lower bounds. The main goal of this section is to prove that in the case
d=2,p>2,

o0 pm m/
limjinf = Iog Z ’ (bn Ingn) p(EJ,’l")l/p
@y 1/2(p -1\
> ;( > ) (270)?/detD)x (2, p)?? (6 > 0)

for any {b,} satisfying (1.10); and that in the cage= 3, p = 2,

o0 am m/4
liminf —Iog Z o (b ) EJ™
b, n
4.2) ,
> 2(21) ()0 detT) % (3,28 (0> 0)

for any{b,} satisfying (1.12).

We proceed in two steps. The main result in the first step is a weak law given in
Theorem 7 and the essential tool is the second moment estimate. The second step
starts after the proof of Theorem 7 and the goal is to establish Theorem 8 which
leads to (4.1) and (4.2) through a simple argument. To this end we first establish
a Feynman—Kac lower bound in Lemma 5, using an argument similar to the one
given in the proof of Theorem 4.1 of Chen and Li (2004). The accomplishment
of Theorem 8 relies on eliminating the contribution from self-intersection between
different time periods. This part is carried out in Lemma 6.

For anyx = (x1, ..., xq) € R4, we adopt the notatiofx] € Z¢ throughout this
section for the lattice part of, that is,

[x]= ([x1], ..., [xaD).

Recall that aZ¢ random walk{S(n)} is said to be aperiodic if the greatest
common factor of the set

{n > 1, P{S(n) =0} > 0}

is 1. According to a remark made in page 661 of Le Gall and Rosen (1991), the
aperiodicity implies

1 1
dj2 o _ -1
(4.3) xsEuZB n“’“P{S(n) = x} 202 det Ty 12 exp{ (x,T x)H -0

asn — o0.
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LEMMA 2. Let{S(n)} beamean zero, square integrable randomwalk in Z¢.
For any x € Z4, write

T, =inf{n > 0; S(n) = x}.
Then

(4.4) P(Tc <n}>> P(S(k) :x}/ZIP’{S(k) =0}, n=12,....
k=0 k=0

ProOOF By the Markov property,

k
P{S(k) =x} =) P(T: = j, S(k) = x}

j=0

(4.5) ‘

=Y P{T = j}P{S(k — j) =0}
j=0

Summing up on both sides,

n n k
D P{S(k)y=x}=) > P{T, = jiP{Sk — j) =0}
k=0

k=0 ;=0

=Y P{Tc=j} ) P{SKk —j)=0)

j=0 k=j

<P{T, <n} ) P{S(k) =0}.
k=0 O

LEMMA 3. Let{S(n)} beamean zero, squareintegrable randomwalk in Z<.
() Asd =2,

(4.6) supEexp{Gloﬂ#{S[O, n]}} <00 6 > 0).
n n
(i) Asd=>3,
4.7 SupkE exp{ei#{S[O, n]}} <00 © > 0).
n n

PROOF  Since #S[0, n]} <n+1, (4.7) is trivial. To prove (4.6), we first show
that for anya, b > 0 and any integet > 1,

(4.8)  P{#S[0,n]} > a+ b} <P{#S[O0, n]} > a)P{#{S[0, n]} > b}.
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Notice that #S5[0, n]} takes integer values. So we may assumedbetdb are
integers, for otherwise we can ugd, [b] and[a + b] instead ofa, b anda + b,
respectively, in the following argument. Define the stopping time

t =inf {k; #{S[0, n]} > a}.
Then
P{#SI[0,n]} > a + b}
=P{#S[0,n]} >a+b, 7 <n}

= 3" P{r =k, #S[0, n]} — #S[0, 1} = b}
k=0

< > Pt =k, #{Slk, n]} = b}
k=0

= > P{t =kP{#{S[0.n —k]} = b}
k=0

< P{t <n}P{#S[0,n]} > b}
=P{#SI[0, n]} > a}P{#S[0, n]} > b}.
We now prove (4.6) in the cage= 2. LetC > 0 be fixed. By (4.8) we have

IP’{#{S[O, nl} > CmL} < (IP’{#{S[O, nl} = CLD .
logn logn
By the fact thatE#{S[0, n]} = O (n(logn)~1) one can tak& > 0 large enough so
n -2
Srl;JpP{#{S[O, n]}zClogn} <e “.

Therefore, (4.6) holds fof = C—1. We now show that it holds for a#t > 0.
Indeed, takes > 0 such thatt < C~1[s~1] and writek, = [én]. The desired
conclusion follows from the following estimate:

[6~1+1
Eexp{eloﬂ#{S[o, n]}} < (Eexp{@'oﬂ#{sm, k,,]}})
n n

[B1+1
< <Eexp{C‘l|O§—k"#{S[O, kn”}) 0O

n

THEOREM7. Let{S(n)} beamean zero, squareintegrable randomwalkin Z4
and let X, be the symmetric Lévy Gaussian process such that S(1) and X1 havethe
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same covariance matrix I'. Let f(x) be a bounded, continuous function on R<.

() Asd =2,

09 (s 5 1)) ([ )

xeS[0,n]

(i) Asd >3,

0 (s 5 ) ([ o)

ProOF We only consider the cagke= 2, as the proof fod > 3 is similar. By
the invariance principle,

LA D) = ([ room)

Let

n
I(n,x)= Z Lis(k)=x)> xeZ? n>1,
k=1

be the local time ofS(n)}. By the fact
S(k)

Zf(f) > i( g oo

xeZ?

we need only to prove
1 X
—E f<—>l(n, X)

Iogn

2
X
@1y " or e 2, <ﬁ)1”x<’”] -0
(n — 00)

whereT, =inf{n >0, S(n) = x}.
We may assume thaf > 0, for otherwise we consider the decomposition
f=fT— f~.We only need to prove

(4.12) i [Zf( )l(n x)r—wz[/ f(X,)dt]z (n = 00),
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log?n 2
472n2 detT") [Zf< ) T"”}}

<72
(4.13)
—>E[/O f(Xt)dt}2 (n — 00),
%E[(xng(%)l{nq )(xng(\/—)l(n X)):|
(4.14)

1 2
—>IE[/O f(X,)dt] (n — 00).

Clearly, (4.12) is a direct consequence of the invariance principle and the
dominated convergence theorem. Notice that

Z f( ) {Te<n) Z/H;Zf(%)ﬂ{nx]sn}dx

[v/nx]
zn/wf( NG )]l{T[fx]<"}dx

=o0(1)-#S[0,n]}+n /IZ&Z f(x)]l{TlﬁxJS,,}dx (n — 00).

By Lemma 3, (4.13) is equivalent to

2

]E[A;Z f(x)]l{T[ﬁx]fn}dx]z — E[/Olf(X,)dt} (n — 00).

log?n
42detI")
Notice that

2
SR

ZZ./RZ f(x)f(y)]P’{T[\/—x] T\ Jmy) <njdxdy.
By (5.d) and (5.e) in Le Gall (1986a), respectively,
lim (logn) IP’{TN—X] Tt Jiy) <1}

— (27)2det(T) f /{ sy PP =) ds

(10gm)?P{T; ey < T} iy < 1} < C2h(IxDA(ly — x)),
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where p;(x) is the density ofX, andi(r) = (log(1/r))+ + r—zjl{,>1/2}. By the
dominated convergence theorem,

lim_ %E[/}sz(xmg{min}dxr
=2, rwro| [ p@peo-odsdr]xdy
=2f[ _ dsar [ axf@p [ F0pest—vdy
=2ff L ASAE Xy F(Xi)

1 2
:2/ /{055351}E{f(Xs)f(Xz)}dsdt:E[ fo f(Xt)dt} .

We now come to the proof of (4.14). Since

E[(xgzjzf(%)ﬂmfn}) (gzjzf(%)zm,x)ﬂ
TP PV

xez? xeZ?

by (4.12) and (4.13)
logn X
",Elsoﬂpm—damE[<x§2f (ﬁ)ﬂ{w )(%f (f)’(”’”ﬂ

51[41[/01 f(X,)dt]z.

To obtain the lower bound for (4.14), notice that

E[( sz<%>]lm§n}> (xng(%)l(n,m)]

-y f( )5 (%) > BT =Sk =y)

x,y€eZ? O<j<k<n

n Z f(%) (%) S P{S(j) =x, Ty =k},

yeZ2 0<j<k=<n
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By the Markov property,

Y. P{T.=j,Sk) =y}

O0<j<k=<n

= Y PLi=jIP{Stk—j)=y—x}

O<j<k<n

=Y P{S(k)=y —x}P{Ty <n —k}
k=1

n n—k
> Y P(S() =y —x}(Gn — k) " Y P(S(j) = x)

k=1 Jj=1
n n—k

> (Gm) Y PSk) =y —x} Y P(S(j) =x}
k=1 j=1

=G Y PSG)=xIPSKk—j)=y—x},

O<j<k=n

where, by Proposition 2.4 in Le Gall and Rosen (1991),

logn (n — o0)

1
A/detT’)

and where the third step follows from Lemma 2.
Using the Markov property again,

G(n) = kgp{S(k) =0} ~ -

> PS()=x,Ty =k}

0<j<k<n

= > PSW=xTy=j. S #y,....Stk =1 #y, Sk =y)

O<j<k<n

= Y PSG)=xTy=j{P{Ty—x =k — j}

O0<j<k=n

= Y PG =xIP(Ty_x=k—j}

O<j<k=n

— Y PG =x.Ty < JIP(Ty_y =k — j).

0<j<k=n
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For the first term on the right-hand side,

Y PISG) =xIP{Ty—y =k — j}

O<j<k=n

=Y P{S(j) =x}P{Ty_x <n—j}
j=0

> ZP{S(J)—x}(G(n—J) ZP{S(k) y—x}

j=0
> (G(n)™t > PS() =x)P{S(k — j) =y —x}.
0<j<k=n
For the second term,
Y. PSG)=x.Ty < jIP{Ty_ =k — j}

O<j<k=n

<P{Ty_x <n} )Y P{S(j)=x,Ty < j}
j=0

noJ
=P(Ty—x <n} ) > P(Ty=i,S(j)=x}

j=0i=0

noJj
=P{Ty—x =n} ) ) P(Ty=i}P(S(j —i) =x — )

j=0i=0
<P{Ty <n}P{Ty—y <n} Y _P{S(j)=x—y}
j=0
Summarizing what we have,

logn
I ez et [( > (G )me)(

>I|nnl|or23fn2 [Zf( )l(n,x):|2

xeZ?2

—”,?Lsoﬂpznnl% )Z f(f) (jﬁ)

7.2

% (o ")ﬂ

xez?

x P{T <n}P(Ty_, <n} ) P{S(j) =x —y}.
j=0
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In view of (4.12), it remains to prove

s ()

,yeZ?

(4.15)

x P{T <n}P{Ty_, <n} Y P{S(j)=x—y}=
j=0
Indeed,

Z f(f) (ﬁ)P{TXSn}P{Ty n}él@wﬁ:x—y}

<Ifllos ) f<f>P{Tx <n)P{Ty_y <n} Y P{S(j) =x—y}

x,yeZ? j=0
< IIfIIOO{E f {Te<n} ]{ P{T, <n} ) P{S(j)=—x}¢.
Z <f>T Tritny,
From (4.13),
e < ) (T <n} < Q.
Notice that

> P{Te <n} Y _P(S(j) = —x}

xeZ? j=0

1/2 n 2,1/2
s{Z(P{TXSn}F} {Z[ZP{SU):x}“ :

xeZ? xez? L j=0
Finally, (4.15) follows from the fact that gs= 2,
n
E.In = ]P) T_x S )
2 BT =n) = ((Iogn)z)

xeZ?

n 2
El, = [ZP{S<j>=x}] = 0m).

xez2 L j=0 U

Fix integers > 1 and the bounded measurable functipron R¢. Define the
linear operatof” on .£2(Z%) by

(TE)(x) = Ex[exp{ > f(y)}S(S(t))}

yeS[0,1]

:E[expi Z fx +y)}§(x + S(t))].

yeS[0,¢]
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LEMMA 4. Givenany symmetric randomwalk {S(n)} on Z¢, T is self-adjoint:
For any &, n € L2(Z%), (n, TE) = (T, §).

ProoOFR

(n.T&E) =Y n(x)E[expi > f(x+y)}$(X+S(t))}

xezZd y€S[0,1]

—E an—S(t) exp{ Z flx+y-— S(t))}é(x)}

L xezd yeS[0,7]

=E| Y n(x+S®) eXp{ > f(ery)}%‘(x)}

Lxezd yeS’[0,1]

=E| > nlx+50) exp{ ) f(x+y>}$(x)}

L xezd yeS[0,¢]
=(Tn,§),

whereS’(k) = —S@) + S(t — k), k=0,1,...,r and the fourth equality follows
from the fact that

(500), ..., S (O} L (500), ..., S()). 0

In the rest of the paper, we adopt the notation
(4.16) th =[n/b,] and A; =[@ — Dy, it,], i=12....
Write

Fa=1{g € L2R?); llgl2=1and||Vg|2 < oo}.

LEMMA 5. Let {S(n)} be a symmetric, square integrable and aperiodic
random walk on Z¢ and let f be bounded and continuous on R?. Assume that
{b,} satisfies (1.16).

() Asd =2,

1 b, log(n/by) ! \f
ILrglor!)f ElogEexp{zﬂ M;ﬁ% )f(

> sup] [, reogwax — 5 [ (vewo.rvgeax)

geF2

(4.17)
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im0

2(c)dx — d
> sup{/RSﬂx)g (x) x—éfRSWg(x),FVg(x» .

8EF3

(i) Asd >3,

liminf ! logE ex
n—>oo b, 9 P

(4.18)

PROOF We only consider the cage= 2, as the proof fol > 3 is similar. For
eachn, define the continuous, self-adjoint linear operdtpon £2(ZZ) as

- b l0Q(1 /by)
R C e Ll o (N R

wherex € Z2 and¢ € £2(Z2).
Let ¢ be a bounded function dk? and assume thatis infinitely differentiable,
supported by a finite box-M, M]? and

f 800 2dx =1
RZ

Sn(x):g<\/zx>/ Zg <\/7 ), x € Z2.
yeZ2
Let P, (x) (x € Z2) be the probability density af,,. Then
bu log(n/by) 2! ( /’ )}
ex
p{ 2w n+/detl’) IX;xeSX(:A )f

_ bulog(n/by) "<t f
=Y P, (0)E,ex ! T Zl xe%)f

xeZ?

= sup |g<y>|2{ 2.f (\f )} 2 Pn @8 @)

yeZ2 xeZ?

by log(n/b,) Pt ( )} )
E, _— = - b, — D¢,
. (exp{zm o T L2 (st — i)

Py n T[b ln
Y

yeZ2 xezZ?

and write
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where the last step follows from the Markov property. Notice that

n 2 _n
>8P (F )rvEngg(xn dr =

yeZ2

asn — oo. In view of (4.3), by aperiodicity

sup
xeZ?

tnPt,, (x) —

1 1 .
Wexp{—g(m[‘ x)”—>0 (n — 00).

Since&, (x) = 0 outside[—M~nb; 1, MvVnb;11?, there is a > 0 independent
of n, such that

by log(n/by) & \/17
EeXp!ZHn«/dei(F ;XeSX(:A )f n
>8> £ TP g, (x) = 8(8,, TP g,).

xeZ?

Consider the spectral representatiorpf

(s Tubn) = /O hite, (d2)

wherep, is a probability measure d*. By the mapping theorem,

o0
(60 T ) = [0 (@)

00 [bn]—1 b1
> ( |, (dm) — (. Ty o)~

where the second step follows from the Jensen inequality. Hence,

o1 by log(n/by) Ln)
liminf — logE exp{ f
n—>0oo p, n/detI") ;xeSX(:A )
> liminflog(&,, Tnéx)-
Let the Lévy Gaussian proce&s be given in Theorem 7. Then

e (elf5) 5

yeZ2 xeZ?

by log(n/by) by
G Bt | R
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=(1+0(1) ( ) > g(\/7 )

xeZ?

bu log(n/by) /[
x E<eXp{2nn«/det(F) ye?(),tn]f( & +y))}

)

— [ e e / X dsexn |dx - o0)

ﬁ

where the last step follows from Theorem 7, Lemma 3 and the dominated
convergence theorem.
Summarizing what we have so far, we obtain

o1 by Iog(n/b)[h]
liminf — IogIEexp{ f
1
=tog [ , e, | expf [ f(Xs>ds}g<X1>} dx.
R 0
What follows next is a standard treatment [see, e.g., Remillard (2000)] which is

briefly described here: Let the semigroup of linear operafthrg on L£2(R?) be
defined as

(4.19)

,h(x) :Ex[exp{ /Ot f(Xs)ds}h(X,)], he L2R?), > 0.

The infinitesimal generator 4f1,} is

1 ¢ 32h
Ah(X)=§.Zl ”a ox, -(x) + f(x)h(x)
2%

wherea;; (1 <i, j <d) are entries of the matrik. Clearly, 4 is self-adjoint. Let

(g, Ag) = f_ hitg(d2)

be the spectral representation of the quadratic feggmag), where g is a
probability measure of+o0, c0). By the Jensen inequality,

1
[ ez exef [ roxds|ecn |ax

= (g, 1)
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= [~ Puan z el [~ apan)]
—00 —00
= expl(g, Ag)}
=exp| [ rgdn— 1 [ (V. Vg dx),
R2 R2
In view of (4.19), taking the supremum ovegiends the proof. O
Recall that,, andA; are defined by (4.16).
LEMMA 6. Let {S(n)} be a mean zero and square integrable random walk on
7% and let ¢ > 0 be fixed but arbitrary.
(i) Asd =2and {b,} satisfies (1.10),
(4.20) limsup.~logP} 3 #(S(A)NS(AY) 2 L QRN
' pb g - J I="logn [ ~
<j<k=[bx]
(i) Asd =3and {b,} satisfies (1.12),

(4.21) Iimsupi logP Z #HS(A)NS(AR)} > en =—o0.
n—oo by 1<j<k=[bn]

PrROOFE Due to similarity we only prove (4.20). To be consistent with the
notation used in this papefS1(n)} and {S»(n)} are two independent copies of
{S(n)} andJ, = #{S51[0, n] N S>[0, n]}. Notice that

[bn]—1 [by]
Z #HS(A)NS(AY} = Z Z HS(A;)NS(A)D}
1<j<k=<[bn] Jj=1 i=j+1
and that for any fixed ¥ j < [b,] —
[bn] d [bn]_j
DO HSAHNSADYE D #H(—S1(AD) N S2(A))}
i=j+1 i=1

[bn]
<> #{(-=S1(AD) N S2(A)}.
i=1
By the triangular inequality, we need only to prove

[bn]

n
(4.22) Ilmsup Iog]P’ Z# —851(A1)) N S2(A)} > bnlogn = —00.
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Indeed,
[bn] [bn]
Z# —S1(AD) N S2(A))} = Z Li—xesi(ap) Zﬂ{xeSZ(Ai)}-

xeZ? i=1

So for any integem > 1,

[Z# —S1(A1)) nSz(A)}]

m m [by]
= Z |:E l_[ ]].{—xkES(Al) :| |:]E 1_[ Z ]l{xkeS(A )}:|

X1seeesXm k=1 k=1i=1
m 2,1/2 m [bul 2,1/2
= [ Z |:E 1_[ 1{xk€S(Al)}i| } [ Z |:E l_[ Z Tixees(a; )}} }
X1, Xm k=1 X1, Xm k=1i=

U 2 [bnl my 1/2
EJm /{ [ZHZHXGS(A)}} } .

xez? j=1i=1
Hence, for any > 0,
> 2

|
m=0 m:

3/2| m/2 [bn] my 1/2
M) { [Z# _S1(A1) mSz(A)}} }

n

® 9 bZ(IO ) m/2 , 1/2
<[ (P e

= 0 b logn)2\™/? 2 [ba] my1/2\ 1/2
(Zm_ ( gn)) { [Z Hzﬂ{xesjmi)}} } ) :

xez? j=1li=1
Applying (3.1) with p = 2 and withn being replaced by,, we have
_ 1 X gm b2 [ 2\ m/2
limsup— Iog[ > —(M> (IEJ,"’f)l/2 < (162

n—o0o n m=0 m! n

By (3.4) withp = 2,

£ g ]|

xez? j=1li=1

52 1) ]

by

[A
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Using (3.9) there i€'> > 0 such that

o0 2\ m/2
Ilmsup— IogZ ! <bn(lo—gn))
n

n—oo n

2 (bl my 12
X{E{Z HZ]]'{XESJ'(AI‘)}:| } <Cy.

rez? j=1i=1
Replacingp, by 02b, gives
0 am by(l m/2
Ilmsup Iogze <M>

n—odo n

(4.23)

2 [bnl my 1/2
{ [Z Hzﬂxes (A)}j| } < 262,

xez? j=li=1
Combining the above observations ther€is> 0 such that for any > 0,

0 (logn)? >
li —I _
msupy 1092 1 (™

n

[b,] m~y 1/2
{ [Z# —51(Ap)) ﬁSz(A)}} } < (362

Applying (2.3) in Theorem 4 we can fintdd> 0 such that

1 [n] nbY/?
li — logP # —S1(A1)) N S2(A;
imsup; ~log {; 1(A1) N S2(A)} = 2 (|Ogn)2}
Therefore, (4.22) follows from (1.10).0J

Let p > 2 be the integer given in Theorem 1 anddet 1 be the conjugate gf
defined by the relatiop=! +¢~1=1.

THEOREM 8. Let {S(n)} be a symmetric, square integrable random walk
on Z¢. Let f be a nonnegative, bounded and uniformly continuous function
onR?,

(i) Asd =2, f € £9(R?) and {b,} satisfies (1.10),

o1 b, logn by,
Ilnnl)loréfalogEexp{ " /sz<‘/;x L{[x]esio,n]) dX

(4.24)

> Sup{Zn\/dei[F)/sz(x)g (x)dx — —/ (Vg(x), FVg(x))dx}

geF2
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(i) Asd =3, f € L£L2(R®) and {b,} satisfies (1.12),

1 bn [bn
lim inf ElogEexp{;/]R@f( zx)ﬂ{[x]eS[O,n]}dx}

(4.25)
> sup{y () [, regwdx =5 [ (Ve rvge) s

8EF3

PrROOF Due to similarity we only prove (4.24). We first assume t#ah)} is
aperiodic. By uniform continuity

(4.26) '/ <\/ix>]l{[x]eS[0n] dx — Z f(\/z )
xeS[0,n]

where{6,} is a deterministic positive sequence with— 0 asn — oo. Recall that
t, andA; are defined by (4.16). Notice that

Eexp{ bn Iog”#{s }}f(Eexp{Qb

By Lemma 3,

=< 6,#S[0, nl},

b,+1
9" w510, z,,]}}) .

n—oQ

(@27) limsup, IogEexp{ 9" ws10, n]}} <A©®) (0>0)

where A(0) — 0 asé — O'. By (4.26), (4.27) and a standard argument of
exponential approximation, (4.24) is equivalent to

|iminfilogEex{b'°g” ) f(\/7 )}
"o b " xesion]

(4.28)

1
> SUp{ZJT\/del(F) ./]RZ f(x)gz(x)dx — Eij(Vg(x),FVg(x))dx}.

8EF2

To prove (4.28), notice that

> f<‘/ )

x€S[0,n]
[bn] bn
23 ¥ (- 2w ()
i—1reS(A;) 1<j<k<[by] x€S(ANNS(AL) n
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Therefore, for any given > 0,

ol 5 ()
T esion]
bn
e 5 A
i=1xeS(A))
by
X (%))
1<J<k<[b,,]xeS(A NS(A)
(4.29) > eI Eexp {b 'Og”Z ) f(\/j )}
i=1lxeS(A))
—E[ {b IognZ 5 f(\/; )}
i—1xeS(A})

2 () =
1<J</<<[bn]xeS(A YNS(Ag) n |09”
=()— () (say)

By Lemma 5,

liminf -— Iog(I) > g+ sup{zn,/dettr / F(x)g%(x)dx
> by gEF2 2
(4.30) 1
-5 [, (Vew@. Vgt dx).
RZ

By the Cauchy—Schwarz inequality,

logn (bn] 12
el (5]
i=1xeS(A))

1/2
by n
x | P — >¢ .
|: {1<'Z Z f( nx>_ |Ogn}:|
<j<k=[bu]xeS(A;HNS(Af)
Notice that

by
> > f(/;x>5||f||oo > H#HSAHNSAL

1<j<k<[by] x€S(A;NS(A) 1<j<k=[by]

(4.31)
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By Lemma 6,

b
(4.32) Ilmsup IogIP: > > f( —"x) > e " ]:—oo
1<j<k=lblxeS(ApNS(AY  \) " ogn

In view of (4.29)—(4.32), it remains to prove

[bn]
Ilmsup—logEexp{Zb nlogn >y f(,/ )} < 00.
n—oo n

i=1xeS(A;)

By the exponential approximation used earlier, this is equivalent to

2b, logn [b, Ln]
(4.33) II,I;TLSng IogEexp[T/sz< 7x>zﬂ{[x]eS(Ai)}dx < 00.

i=1

For any integem > 1,

by \ ] m
E / —X 1 wdx
< R2f<\/ " ); {[x]eS(AN) )

( ) (/ f(x)%ﬂ{[mx]eﬂmd)m

m [bn]
n m
=<b—> /2 dxy dxm(Hf(xk)>EHZ]l [ATBrxi]€S(A))
n (REy™ k=1i=1

N m [bn] pyYp
(439) <111y b_) U( dxl'“dxm(EHZﬂ{[«/n/b?xk]esm,-)}) }
n

k=1li=1

n \ (P=D/pm m_(bi] P\ r
= IIfIIZ‘(b— f(Rz)m dxy -+ dxp (EH Zﬂ{[xk]esm,-)}) }

k=1i=1

)
RN 1
)

X15ee0sXm k=1i=1

n \ P—D/pm p [bnl my1/p
™ E( > HZ%e&(A»}) ] :

xez? j=li=1
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Similar to (4.23),

m m/
Ilmsupb |ng (2||f|| ) (bn(|09n)‘”) P

n—oo n

P 1bal myi/p
X :E( Z 1_[ Zﬂ{xeSj(Ai)}) } < OoQ.

xez? j=1i=1

So (4.33) follows from (4.34).
We now prove (4.24) without assuming aperiodicity. Let @ < 1 be fixed and
let {8,},>1 be i.i.d. Bernoulli random variables with the common law:

P81 =0} =1—P{s1 =1} = 1.

We assume independence betwég)} and{s,}.
Define the renewal sequenge };>o0 by

oo=0 and o1 =inf{n > oy; 8, =1}.
Then{ox — ox—1}k>1 IS an i.i.d. sequence with common distribution
]P){Glzn}:(l—n)nnfl, n=12....
Consider the random walk(n) = S(o,,). {S(n)} is symmetric with covariance
Cov(S(o1), S(o1)) = (Bon)T" = (L —n)~'T.
By the fact that
o
P{S(o1) =0} = (1—n) y_ 0" 'P{S(k) =0} >0,
k=1

{S(n)} is aperiodic. Applying what we have proved{t§n)},

iminf 1I b, logn by
imin b ogEexp p /sz P Liesony 4%

Jd
> sup{ eth) / Fg200) dx
geF2
- 2(1_ > [ 2<Vg<x>,FVg<x>>dx}
> sup{ZWdet(F) f F)g20r) dx — + / <Vg<x>,FVg<x>>dx}.
g2eF> R2 2 R2
Notice that

S[0,n] = {S(00), ..., S(on)} C S[O, o).
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Givene > 0,

b, logn b
EeXp{ : ng /sz(\/;"X)ﬂ{[xJeS[o,[amnmdX]
b, logn by,
zEexp! " /sz< X Ly 1e8i0.7) 4%

b, logn by,
_Eexp{ . /sz 7)6 1{[x]e§[0,n]}dx 1{6,>(1ten)-

By Cramér large deviation [Theorem 2.2.3 of Dembo and Zeitouni (1998)] as
(1—1n)~1 <1+ ¢ thereisu > 0 such that

Plo, > A+¢&)n)<e ™!

for sufficiently largen. By (4.33) [with S(n) being replaced bys(n)] and the
Cauchy—-Schwarz inequality, therefore,

] 1 b, logn by,
Ilmsupb—logEexp[ n /sz< - ]l{[x]eS[o,n]}dx Lo, > (1+6)n} = —O0.

n—oo by n

Hence,

i 'fll 5 b, logn by 1 4
Inrn)lgo E Og L exp " /sz 7)( {[x]1€S[0,[(1+¢&)n]]} X

1
> Sup{Zn\/del(F) /]R? f(x)gz(x)dx — E/Rz(Vg(x),FVg(x))dx}.

8EF2

Replacing[(1+ ¢)n] by n and £ (x) by (1+ &)1 £((1 + &)~2x), we have

.1 b, logn b,
|Innl>lglof b IogEexp{ " 2 f(,/ ;x) 11{[x]es[o,n]}dX}

> sup {Zn\/det(l“)(l +e)7 1 fRz F(x)g%(x)dx

geF2

1
-3 [ Vs, FVg<x)>dx}.
RZ

Lettinge — O gives (4.21). [

We are finally ready to prove (4.1) and (4.2). Due to similarity we only
prove (4.1). Notice that

p
Jn=Y_ [ Lixes;t0m-

xez2 j=1
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For any nonnegative, bounded and uniformly continuous funcfiam R? with
I flly =1, a procedure similar to (4.34) gives

(p—1)/pm n "
n
(b—) EJMYP EE(fsz( fX)ﬂ{[x]eS[O.nJ} dX> ;

m=0,1,....

Therefore,

2 9™ (b, log? n\"/?
X () e

|
m—0 m'

b, logn |b
ZEexp{Q"Tfsz( an>]l{[x]65[0,n]}dx}'

o1 X 0™ (b, log? n\"'P
liminf —lo - EJ™MYr
n—>oo b, ng::Om'< n ) ( " )

By Theorem 8,

1
> Sup{ZnQ\/det(F) A&Z f(x)gz(x)dx — E/RZ(Vg(x),FVg(x))dx}.

geF2

Taking the supremum over all nonnegative, bounded and uniformly continuous
functions f onR? with Il flly =1, the right-hand side becomes

sup {znwm ( [ tecorr dx)l/p I vew, FVg<x>>dx}

geF> 2 Jr2
2 Yro1 2
(4.35) = (276)"/detT) SUp{(/RZIh(x)l de) =5 |, 1vh@) dx}
geF2
_ p-1
=i(2(p 1)) (276)7/detT)e (2, p)??,
P P

where the first equality follows from the substitutigtx) = /| detA|h(Ax) with
the 2x 2 matrix A satisfying

A'T A = (270)?/detI")l 2

with 1, being the 2x 2 identity matrix, and the second equality follows from
Lemma A.2 in Chen (2004).

5. Law of theiterated logarithm. We prove Theorem 3 in this section. With
the moderate deviations given in Theorems 1 and 2, the proof of the upper bound
is just a standard practice of the Borel-Cantelli lemma. So we only give proof to
the lower bounds. That is, we prove:
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Asd=2andp > 2,

(5.1) Ilmsupi > (Zﬂ)p<g>p1\/mw2 % as
. n—soo n(loglogn)r—1 In = p ) -S.

Asd =3 andp = 2,

(5.2) lim sup; Jo > v(9)%detI) Y%(3,2*  as.

n—oo +/n(loglogn)3
By the technology used in the proof of Theorem 8, which extends the lower bound
established under aperiodicity to the general case, we may assume aperiodicity in
the proof given below.

For givenx = (x1,...,xp) € (Z4)P, we introduce the notatio®* for the
probability induced by the random walk$(n), ..., S,(n) in the case when
S1(n), ..., Sp(n) start atxy,...,x,, respectively. The notatiofi* denotes the
expectation correspondentltd. To be consistent with the notation we used before,
we haveP© -0 =P andE©0 = E. Write

%]l = max |x;|,  ¥=(x1,...,x,) € (R)P.
1<j<p

LEMMA 7. Under the conditionsin Theorem 1,

1 . -
liminf —log inf ]P”{J,, > A
n=>00 by T |F|<y/n/bn

(5.3) > 2@/

n bp_l}
(logn)? "

% de(r)—l/(Z(P—l))K(Z, p)—zp/(P—l)kl/(P—l) (> 0).
Under the conditionsin Theorem 2,

1 -
liminf —log inf  P*{J, > AVnb3)
n=00 by T RI</n/By

5.4
4 > —detT)Y3) () 33,2822 (> 0.

;ROOF. Due to similarity we only prove (5.3). For giveh= (y1,...,yp) €
(Z5)? andm,n > 1,

EYJ" = Z ]_[ E ]_[ Ly +xeeS[0n)

wokm j=1 k=1
)4 m r\ 1/p
= l_[ ( Z |:E l_[ Il{y_erxkeS[O,n]}i| )
j=1 \X1,..., Xm k=1
m p
= 2 [Enﬂ{xkesm,n]}} =EJ;".
X1y Xm k=1
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By (3.1) we have

b, log? n\"/? i} 1/p
li —| _— B g
imsup.~ log Z ( ) <Sly_.lp J! >

n—00 n n

_ p-1
< %(2(”]] D) (276)"/detDyc (2, p)2 (6 > 0).

It is easy to see from Theorem 4 that we will have (5.3) if we can prove

00 gm log? n\"™/P _ p
liminf —Iog Z o (W) < inf E”J,{”)
b n IyI=+/n/by
(5.5)

—1\P1L
z%(%) (276)"/det)k (2. p)*

for every6 > 0.

Let ¢ > 0 be fixed for a moment. For any sets B C Z2, A + B is defined as
the set{x + y; x € A andy € B}. In particular,x + B = {x} + B for anyx € Z2,
Write

B,(x)=|y;ly —x|<eyn/b,},  xeZ?

and setB,, = B, (0).
For any functionf onR?, write

1
= [ e

whenever the integral on the right-hand side makes sense.
Define

Jn(g) Z 1_[ (#(B ) )CGSj[OJﬂ‘f‘Bn})‘

xeZ? j=1
Let f be a nonnegative, bounded and uniformly continuous functioR%with

Ifllg=1:
/ f \/Ex i]l 0 dx
o T\ ) Hwesion+5,)
b, 1
- sz<\/;x) #By) S
by
_/ ]].{[x]eS[O n]}<#(B ) <\/;(x+y)>>dx
(1+0(1))/ s[o.n]) \/Ex dx
{[x]eS[0,n]} Je n
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whereo(1) is bounded by a deterministic sequence that approaches to zero as
n — oQ.
Similar to (4.34), for any integen > 1,

(p—=1/pm
(i) (E]n(g)m)l/P
bn

[ba 1 "
ZE(/RZf< )#(B ) x]GSOn]—i-Bn}d )
b m
(1+0(1) (/ L{[x1es10,n]) fe (ﬁ 736) dX> .

Therefore,
X g9m /b logP n\"/P
> S (M) @ em
m:Om‘ n

b, logn [by
EEGXD{(].—FO(J.))@ " ./]RZ f8< ;x)ll{[x]eg[oyn]}dx}.

By Theorem 8,

o0 m V4
liminf —Iog Z o (b" log” n

m/
) C®d MY

> Sup{ZnGN/del(F) A;Z fg(x)g (x)dx — —f (Vg(x), FVg(x))dx}

8EF2
- sup{Zanet(r) / F(EDe()dx — = / (Vg@), FVg<x>>dx}
geF2 R2

Taking the supremum over all nonnegative, bounded and uniformly continuous
functions f onR? with || f ||, = 1 gives

X0 gm m/
I|m|nfilogz f <b" IOan) p(IEJ,,(e)’")l/”
1/p
(5.6) > Sup{ZnG\/del(F < |(g2)8(x)|pdx>
8eF2

/ (Vg(x), FVg<x>>dx}
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Taket, = [n/b,]. To prove (5.5), notice that

— p m
EYJ" > E(Z n ]1{yj+xeSj[tn,n]})

x j=1

Z 1_[ E( 1_[ ]l{y/+xk65[tn ”]})

X1yeees Xm]l k=1

= Z HE<H Z L(S(n)=2} - ]l{y,—z+xkeS/[On zn]}>

X1yeesXm j=1 k=1zeB,(y;)

whereS’ (k) =Sk +1t,) — S(t,) (k=1,2,...). By the identity,

m
[T X2 Lisen=aLiy—y+ues0n—n
k=1zeB, (yj)

m

Y Lsao=a [ [ Ly z4xees0m—il)
veBn(r)) k=1

and therefore by independence,

m
E(H > 1{S<zn>=z}'1{y,-—z+xkeS/[o,n—zn]})

k=1Z€Bn(yj)

m
= Y P{S(tl’l):Z}'E|:l_[]l{yj—Z+)Ck€S[oan_ln]}:|

Z€B,y () k=1

> min inf {P{S(,) =z}} ZE[Hﬂ-xk zeS[0,n— zn]}}

1=j=pzeBu(yp) zeB, Li=1
m
=) E[ I1 ]l{xk_ZGS[OJ’l_tn]}:| (say)
z€EB, k=1
Hence
- n p
E' T =y Z ( Z E|: H 1{xkzeS[0,ntn]}i|>
X1, Xm \z€By, k=1

m P
= y”p Z Z ]E|: 1_[ 1_[ ]]'{Xk—ZJ‘ESj[O,n—l‘”]}:|
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p m
=y! Z ]E(Z H ]]-{X—ZjESj[O»n_tn]}>

Zlv---,ZPEBn X j=1

1 m
>y’{7#{B"}pE<#{Bn}P > Znﬂx —z;€S;[0,n— t,,]})

----- ZpEBn X j= =1

= yP#{B, }pE<Z H #{B ) {xesj[o,n—tn]Jan}) )

x j=1
where the fifth step follows from Jensen’s inequality. By (4.3) (with- 2 andn
replaced by,),

L omin int inf [exp{ 1 (y,r71 )}—i— (1)} > et
= - ——\), o S o
i’ In 1=J=<p|yj|<\/n/by 2€Bn(y;) 2ty Y Y

We have proved that there isSa= 6(¢) > 0, such that for any integext > 0 and
n>1,

I¥11</n/bn
By (5.6) (withn replaced by: — t,),

X, 0™ (bylogP n\"™/'P , AN ¥
I|m|nf—IogZ ( - . ) <“y<|nfn/b EW”)

i Poo1 "
inf_ EYJ" > SE(Z I1 Wﬂ{xeSj[O,n—thBn}) :
X ]:l { n}

1/
> sup{andet(r)( [, |(g2>g<x>|f’dx) ’

geF2

1
-5 [ vs, FVg<x>>dx}.
RZ

Finally, we lete — O on the right-hand side. Then (5.5) follows from (4.35[]

We only prove (5.1) as the proof of (5.2) is analogous. ket k*. We first
show that for any. < (Zn)l’(%)l"la/del(r‘)/c(z, DES

p
(5.7) limsup (logni+y)

#S1lne, gl N - N Splng, nggal} > A a.s.
k—o0o Nk+1l0glogng 1 b

We consider the 2-dimensional random walk(n) = (S1(n), . .., Sp(n)). By the
Markov property and Lévy’s Borel-Cantelli lemma [see Corollary 5.29 in Breiman
(2992)], (5.7) holds if we have

g loglognj+1
5.8 IPS(”k){Jn > ket } —o0  as.
&8 Xk: S (logny4+1)?
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Indeed, it is easy to see thatn, loglogny = o(/nr+1/Toglogni.1) ask — oo.
By the classic Hartman—Wintner law of the iterated logarithm, with probability 1
the events

{ISmoll < vVnera/loglogniia ), k=1,2,...,
eventually hold. Therefore, (5.8) holds if we have

n+1log |09nk+1}
(logng+1)?

Z Inf IP))E { Jnk_,_lfnk Z )h
k IxXI<+/nk+1/loglognyi1

which follows from Lemma 7 wittb,, = loglogn.
Since

I = #Salng, ngal N -+ -0 Splng, ngsall,
letting
p—1

A —> (2n)p<§> JdetT)k (2, p)??
in (5.7) proves (5.1).
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