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This article investigates, by probabilistic methods, various geometric
questions onB”, the unit ball of¢”. We propose realizations in terms of
independent random variables of several distributiongfnincluding the
normalized volume measure. These representations allow us to unify and
extend the known results of the sub-independence of coordinate slﬂﬁs in
As another application, we compute moments of linear functionalB;gn
which gives sharp constants in Khinchine’s inequalitieangrand determines
the yo-constant of all directions oB”.. We also study the extremal values
of several Gaussian averages on sectionB;p(including mean width and
£-norm), and derive several monotonicity resultpagries. Applications to
balancing vectors i, and to covering numbers of polyhedra complete the
exposition.

1. Introduction. For p > 0 and a sequence of real numbars= (x;)7°;
denote]| x|, = (52, x;|P)Y/P. For p = co we set]x ||« = Sup.y |x:]. The space
of all infinite sequences with x|/, < oo is denoted’,. Similarly, the spac®”
equipped with the quasi-norrh- ||, is denoted¢’,. Finally, the unit balls of
10 and¢, are defined ag, ={x eR"; |Ix]l, =1} andB, ={x e RN; lxll, <1},
respectively.

The geometry oft’) spaces in general, and the geometry of theballs in
particular, has been intensively investigated in the past decades. A particular
topic of interest has been the evaluation of the extremal volumes of sections
and projections ofg). Apart from their intrinsic interest, such questions have
applications in several probabilistic and geometric contexts, some of which will be
described below. The purpose of the present article is to obtain several new results
of this flavor. We represent various geometric parametes;gbrobabilistically,
and apply methods from probability theory to estimate them.

In Section 2 we introduce representations in terms of independent random
variables of some distributions of}, including the volume measure aBY}.
Obtaining concrete realizations of tﬁe (normalized) volume measure on a general
convex bodyK c R" seems to be a hopeless task. For general bodies one is
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therefore reduced to hunting for approximations, and this has been successfully
achieved via Markov chain methods by Kannan, Lovasz and Simonovits [18].
(That paper is actually the last in a long list of articles obtaining similar
approximate representations. We refer to [18] and the references therein for an
accurate historic depiction of the subject.) The simpler structusg @fllows us to

give the following representation of the volume measure, which extends-t@
classical results fop € {1, 2} (see, e.g., Chapter 2 in [15]).

THEOREM1. Letg,..., g, beii.d.random variables with density (2I" (1+
1/p)e~"" (r e R), and letZ be an exponential random variable independent of
g1,...,gn (i.e, the density ofZ ise™’, r > 0). DenoteG = (g1, ..., g,) € R" and
consider the random vector

G

V= .
Q&P+ Z2)lr

Then V generates the normalized volume measure B that is for every
measurableA C R”,

vol(A N B})

P(VeA)=
voI(Bl'g)

Section 2.1 provides a simple probabilistic perspective to the sub-independence
of coordinate slabs orBj. This remarkable fact was originally proved by
Ball and Perissinaki [4] for the volume measure and in [24] for the cone
measure. We establish this property for more general distributions, combining an
extension of Theorem 1 with arguments similar to the proof of the classical FKG
inequality [16].

In Section 2.2, Theorem 1 is applied to the study of the moments of linear
functionals onB), for p > 1. Answering a question posed to us by Giannopoulos,
we estimate the best constants in the Khinchine inequaliti;pand describe the
so-callediyr»-directions of B”.

Section 3 is devoted to the analysis of the extremal values of several geometric
parameters of sections df, for p > 0. A classical result of Meyer and Pajor
[22] states that for every-dimensional subspac& of R”, if p < 2, then
vole(E N B) < voli(BY), and if p > 2, then vol(E N B7}) > voly(BY). More
results on critical sections a8 appear in the papers [2, 3, 20, 22], which rely
on harmonic analysis methods. In Section 3.1 we show that for every & k,
every 0< 8 < p and everyk-dimensional subspade of R", if 0 < p < 2, then

— —
X dx < X dx and x| dx > x||? dx,
[ txlpas [, [ xlfax= [

and if 2< p < oo, then

- —
x|, %dx > x||7%dx and x| dx < x||? dx.
R e N Jo Welfax < [l
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The casexr = k in the above inequalities is just a restatement of the Meyer—Pajor
theorem. The casg = p follows from the following stronger monotonicity result,
proved in Section 3.1, that the mapping

p
fsn—lﬁE ”.x ”]7 dx
p
Jyer IxI5 dx

p>0—

is increasing inp.

Since Gaussian and spherical averages of homogeneous functions are propor-
tional, these facts can be restated in terms of moments of Gaussian vectors. Note
that the above quantities encompass useful classical parameters of the geometry of
Banach spaces, such as mean width &norm (see, e.g., [29], page 35).

The proofs appear in Section 3.1 and consist of finding probabilistic expressions
of various expectations of Gaussian vectors on subspad®s ahd then applying
stochastic orderings to estimate them.

In Section 3.2 we apply the Brascamp-Lieb inequality to obtain estimates in the
other direction.

Section 3.3 deals with the case of the cuBg. We derive the following
distributional inequalities, valid for alk-dimensional subspace8 c R" and
everyr > 0O:

n
v(rBY) < ye(ENrBL) <y (r\/%B’;o),

wherey,, ye denote the standard Gaussian measur®b@and E, respectively.
The right-hand side of the above inequality follows from the Brascamp-Lieb
inequality, and the left-hand side from the following monotonicity result: for every
k-dimensional subspadé c R”, the function

ve(ENrBL)

r>0—
vk (rBX)
is nonincreasing.

Sections 3.4 and 3.5 are devoted to applications of the previous results.
Section 3.4 deals with the Komlds conjecture which asks whether there is a
universal constant > O such that for everys, ..., x, € B3, there are signs
€1,...,&m € {—1,1} for which || 37" ; gixilloc < c. This challenging problem
remains unsolved, and the best upper boundcodue to Banaszczyk [5], is
c = 0(y/logn ). We show that our estimates, together with Banaszczyk’s theorem,
yield an infinite-dimensional version of this result, which implies in particular a
better upper bound when = o(n).

PropPosITION1. There is an absolute constant > 0 such that for every
integerm > 0 and everyx, ..., x, € {~, there are signsy, ..., e, € {—1, 1} for
which

m
D&%
i=1

< C«/logd - max |x;[l2 < C+/logm - max |x;|l2,
00 1<1<m 1<1<m
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whered is the dimension of the linear spanxf, ..., x,,.

Section 3.5 answers a question posed to us by Talagrand, concerning the number
of cubes required to cover a convex hull of a finite number of points.iGiven
two convex setX, L C £, denote byN (K, L) the minimal number of translates
of L required to covek (this number may be infinite). Obtaining sharp bounds
on this parameter is of fundamental importance in several problems in convex
geometry (see, e.g., [29]), probability (see, e.g., [21]) and operator theory (see,
e.g., [28]). GiveMA C £, we denote by abscotw) the convex hull ofA U (—A).
The main result of Section 3.5 is:

PROPOSITION2. There exists an absolute constaht- 0 such that for every
integerm, e > 0and2 < p < oo, forall x1, ..., x, in the unit ball ofé,,

oa N (ab By <C logm
0og (a. SCOH\‘{xl,...,xm},e p)_ W

Such a statement is already known for= 2 by the results of Carl and Pa-
jor [14]. From Schiitt’s results [34] on the entropy of the identity operator between
Eg andz‘f), if the pointsxq, ..., x,, are assumed to be in an ambi@ﬁg, then such
an inequality is valid with the term log replaced by log max:, d). Proposition 2
bounds the covering number of the polyhedron abspanv. ., x,,} C Bg interms
of the number of its vertices, independently of the ambient dimension.

2. Representation of measures on Bj. \We begin by stating a probabilistic
representation of the cone measuredd} which is due to Schechtman and Zinn
[32] and independently to Rachev and Rischendorf [31]. This representation has
applications of probabilistic and geometric nature [9, 24, 25, 33].

Let K be a convex symmetric body i®". Recall that the cone measure &K ,
denotedug, is defined forA C 0K by

Vvol(ta;ae A,0<r<1)
uk (A) = vol(K)
Thus,ux (A) is the volume of the cone with bageand cusp 0, normalized by the
volume of K . Alternately,u g is the uniqgue measure for which the following polar
integration formula holds: for every € L1(R"),

/ f(x)dxzn-VOI(K)/oornfl/ frz)dug(z)dr.
R~ 0 0K

Schechtman and Zinn and Rachev and Rischendorf proved the following.

THEOREM?Z2 ([31, 32]). Letgs,..., g, beii.d. random variables with density
e~ /(2T (14 1/ p)), t € R. Consider the random vect@ = (g1, ..., gn) € R",
and denote

G G

Y = = .
IGl,  (Ciialgilm)¥P
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ThenY is independent of G || ,. Moreover Y generates the measureg: ; that is,
for every measurabld c 9 B%, 1By (A)=P(Y € A).

We propose the following extension:

THEOREM3. LetG =(g1,...,g,) be arandom vector as in TheoreznLet
W be a nonnegative random variable with distributibnand independent of;.
Then the random vector

G
(IGlp +W)tr

generates the measurie({O})u,B;; + \IJABZ, where A By stands for Lebesgue
measure restricted t87, and forx € Bj, W(x) = ¢ (|lx| ), where forr € [0, 1]

1\7" 1
- - - n/p,—rPw/(1-rF)
D [r<1+ p):| ¥(r) i /(O’Oo)w e dh(w).

rp)n/p—i—l

PROOE Note that the density dg;|? is

d 1yp  2ut/Pl 1 L
= P(lgil <u¥h) = . e
du P 2'(1+1/p)
= 1 ul/P=le—u, u>0.
I'd/p)

In other words,|g;|” has agamma(l/p,1) distribution. By the additivity

property of the gamma semigroup, the random varigidlg’ = >"_, |g;|” has

agamma(n/p, 1) distribution, that is, its density is/T"(n/ p)u’/P~Le=" (u > 0).
For anyf € L1(R"), and conditioning orw,

IEf<<||c;||§ i W)l/ﬁ> = Jom Ef((IIGIIZi w)l/l’)dh(w)'

SinceG/ |G|, and| G|, are independent, then for every> 0,
G
= (e o)
(IGIp + w)¥/P

=Ef((||G”|E|Ew>l/p ||c?||p)
. 1
- F(nl/p) /0 un/p—le—uEf(<u -ilf w) ! IIC?IIp) du

_1 _
_ 1 f1< rfw >n/p e w/A=r?) .Ef(r G ) priw dr,
L(n/p)Jo \1—rpP IGllp/ (1—rP)?
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where we have made the change of varia}l% =r?. Hence,

Ef <m) ~hUODES (||GG||p>

__ P w™/'P
['(n/p) J©0,00)
1 rn—l G
—rPw/(1-rP)
x/o A Ef(r”G”p>drdh(w)
n 1 pn—1

TTw/p+1)Jo @—rpyiril

2 D G
X ([ w/ P wﬂl_rl)dh(w))Ef(r )dr.
(0,00) 1Gllp

On the other hand, le¥ be a probability measure oy, with ¢,-radial density
¢(lxllp) (x € By). By the polar coordinate integration formula qurB;;, the

representation from Theorem 2 and the fact that®f)) = % (see, e.g.,
page 11 in [29]),

A;nf(x)dM(x):nvol(Bp)/o . 1¢(r)IEf(r”G”p>dr

_ n[2(1/p+ D" O ( G )
= T Tw/p+l) ./or ATV Ak

from which the result easily follows.[]

Since (1) holds true for

10,19(r)
vol(B%) ’

dh(w) =e¢ “1y=odw and ()=

we have established Theorem 1. We now study more general distributions.
By making the change of variable = 11—’;,, in (1), we obtain the following

representation theorem. We refer to [36] for completely monotone functions and
the Laplace transform.

THEOREM 4. Let v be a probability measure onR” with density
Y (llxll p) Lo,11(llx]l ). Assume that the function

1 s 1/p 0
SH(1+s)"/P+1w<<1+s> ) e
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is completely monoton&hen there is a positive random varial#é such that for
every measurabld c R”,

G
@ = (G <4)

and the density oW is given by

[2r/p+ D1 1 s \/P
win * PH(LHWM”w«1+J )}w% w>0,

whereL is the Laplace transform

Next, we single out an interesting case for which the above theorem may
be applied: whenW is a gammaq, 1) random variable, the density d¥ is
h(w) =1/ T (e)w* te~™, and thus

[zr ( % N 1)} by = — _1rp)n/erl /OOO W/ pre=1,~w/A=rP) ;.
1- rp)n/p+ot
T (@) (1= rpyn/rtl
(A= T (n/p+a)
INCY)

o 1
/ w/Pre=l.mw gy,
0

COROLLARY 3. LetW be a gamméx, 1) random variableThen the random

G . .
vectorW generates the measure @y with density
I'(n/p+a) 1
2 = 1—|x2)* 1 .
2 F® = rpmrap oy ¢ FID T o)

Finally let us give a geometric interpretation of some of our representations.
Fix two integersn, n and consider the orthogonal projection of the cone measure
on aB;’f’" onto the firstn coordinates. By the Schechtman—Zinn theorem, this
measure is generated by the random vector

(gl,---’gn)
(X lgil? + X1 |gilP)Yp

The random variabley_"""" , |g;|? is independent ofgi,...,g, and has a
gammam/ p, 1) distribution. Hence, the above discussion leads to the following
extension of classical observations abdift and B; (for these sets the cone

measure coincides with the better studied normalized surface measure).

COROLLARY 4. Whenp is an integerthe orthogonal projection of the cone
measure on@BZﬂ’ onto the first: coordinates is thénormalized volume measure
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on Bj,. More generallyfor arbitrary p > 0, the orthogonal projection of the cone
measure or&)B;’f’" onto the first: coordinates has density
I'((n+m)/p)

_ _ m/p—1
T = R izt p + pp & IR o).

2.1. An application sub-independence of coordinate slab$he sub-indepen-
dence of coordinate slabs B, is helpful in the study of the central limit problem
[1, 25] and of various deviation inequalities [8, 24]. More precisely, this property
is enjoyed by the normalized volume measureBjj) as proved analytically in
[4] and geometrically in [1]. It was established probabilistically in [24] for the
cone measure of,. In this section we combine our representation results with
an argument of [24] in order to derive sub-independence of coordinate slabs for a
wider class of distributions. We require the following result:

THEOREM 5 ([7]). Let X;,..., X, be independent symmetric random vari-
ables Assume thak; has densitw; = ¢~ "/, whereV; is locally integrable For

=(X4,...,X,),the random vecto“XLHp is independent of the random variable
X, if and only if there areby, ..., b, > —1anda,cy, ..., c, > 0 such that for
everyl <i <n, ¥;(x) = ¢j|x|bie @¥I",

REMARK. As a consequence of this characterization, settingkfer n,
= (X1,..., Xp) (where we write for simplicityX for X"), it follows that the
independence oﬁXL”[ from || X||, guarantees for everyy < n the independence

of wfkn from || X*]) .

The following lemma was essentially proved in [24]. It was stated there for the
cone measure oBB;,, but the proof carries through to the more general setting.
We sketch the argument for the sake of completeness. Our geometric interest led us
to consider symmetric variables, but it is clear that the result concerns nonnegative
variables.

LEMMA 5. Let X3,...,X, be independent symmetric random variables
Fori=1,...,n — 1, assume thaiX; has densityy; = exp(—V;), whereV; is
locally integrable We write u,, for the law of | X,,|. DenoteX = (X1,..., X,,),

n—1 .. _
X" 1=(X4,...,X,_1) and assume thaﬂt)fn_ilnp is independent of X"~ ,. Let
f1, ..., fn:10,00) = [0, c0) be nonnegative nondecreasing functiohisen

[H f’(nxn)} 1_[1 f’<|||§|||p)
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PrROOE The proof is by induction om. Assume that: > 1 and that the
required inequality holds fot — 1. Conditioning onX,|,

[l_[ﬁ<|||§||l,,>} .. {[Hf‘<<||xn 1|||),f|+rp)l/P>]

7
X fn<(||Xn1||§ 4 rp)]_/p) } dpy(r).

Note that by the remark after Theoremﬁf{f—;‘p and ||X”—2||p are independent,
so that we may apply the inductive hypothesis Denotegbthe density of
Ix"=1||,, and by the independence ﬁf—l” and | X"~1||, it follows that for
everyr > 0,

1Xi r
{[Hf’((nX" 7 + rﬂ)”ﬂﬂ'ﬁ1(<||X"—1||Z+rP>1/P>}
00 r n-1 u | X
= [ o (Gt ain) 'E[Elﬁ<<up EPSITN ||X"—1||p)]d“

= o) T (s ;)

w ol ————— | - i . .
“Jo ¥ wr +reyie ) VS G rmyie ey, )
Foru >0leth,(r) =

fn(m) and

() = 1—[1 ( u X
ut i (uP +rp)y/p ||X"—1||p)'

i=1

Thush, is nondecreasing arig is nonincreasing and X/, is an independent copy
of Xy, then[h, (| Xnl) — hu(|1X;, D] - [ku (1 X0 ) — ku(1X;,1)] < O pointwise. Taking
expectation of this inequality,

[ @@ dime = ([ nedino)( [ oo dnn).

implying that

Xl &
[1‘[ ﬁ(||X||p>] < [ ook o) dudpn )
< [Tow ([, ) dia®)( [ k) dua)) au

:ﬁEf"<|||§|i|L)‘ -

i=1
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The main result of this section is contained in the following theorem.

THEOREM 6. Let G = (g1,...,&,) be a random vector with independent
coordinates with distributiom="" /(2" (14 1/ p)), r € R. Let W be a nonnegative
random variablgindependent frong. Letv be the distributior(supported onBy))
of the vector

G
(IG5 + W)’
Then for everys, ..., s, >0,

v(ﬂ{|x,-| Zs,-}) < [Tvdixil = si.
i=1

i=1

PROOF Assume that is a random variable independent@fand W which
takes the values-1, —1 with probability /2. We setX = (g1, ..., gn, eWYP) €
R"+1, By Theorem Z’HGLIIP and| G|, are independent, so we can apply Lemma 5
to X, with fi (x) = 15, 00y (x) fori =1,...,n and f,11 = 1. Hence,

P(ﬂ{ﬁ ZS"}) SEPGW 2”}>- 0

REMARK. By the very same proof, one can see that the conclusion of
Lemma 5 holds for nonnegative, nonincreasing functions. Thus Theorem 6 also
holds for symmetric slabgx;| < s;}.

REMARK. We have obtained sub-independence of coordinate slabs for a
class of measures ofi}), described in Theorem 3. This unifies the previously
known occurrences of such sub-independence, since the cone mesamd the
normalized volume measure df, belong to this class. We obtain new concrete
examples, as the measungswith density

I'(n/p+a) -1
= 1- o= .
Ja(x) M@ 20 (1 p+ 1)]n( llx11) 0,11(1x1»)
Since these measureg are isotropic, an immediate consequence of Theorem 6 is
that they enjoy the central limit property in the sense that Theorem 5 of [25] holds
for them. We refer to that paper for details.

2.2. An application moment inequalities o®” for p > 1. In what follows,
given two sequences of positive real numb@#3;<;, (b;)ics, the notationy; ~ b;
refers to the fact that there are constantand C such that for alli € I,
ca;i < b; < Ca;. We emphasize that suah C are always absolute numerical
constants.



490 BARTHE, GUEDON, MENDELSON AND NAOR

We can relate moments of linear functionals 8f) to moments of linear
functionals of the random vect@r = (g1, ..., g,) With independent coordinates
with distributione="" /(2T (1 + 1/ p)):

LEMMA 6. For every integen > 1, everyp, g > 1 and every: € R", one has

1 / n q\ 1/q
vol(Bp) Jay | i '

q
Zaixi
PrOOF Denotea = (a1, ...,a,). By the probabilistic representation of the
volume measure oBl’; established in Theorem 1,

1/q
dx) (max{n MEL (

q q

1 n
Zaixi

n n
voI(Bp) B

P -
(IGIp + Z2)Y/P

:E[(%ym <||c?||p’“> q}
~[et2) ] e, )

:[]E( IGII5 >°”"}E|<G,a>|q

IGIIp+Z EIGI}

where we have used the independenc?ﬁfg and| G| ,. Applying this identity
toa=(1,0,...,0) yields

1 GI? q/p 1
Q[E( IG1; ) ]:—/ xal? .
ElGI, 1Gllp +Z vol(B))El|g1l? /By

1/p+1
Now, E|g1]? = %, and for everyp, ¢ > 1,

1
[ bl
VOI(B;’)) B

2vol(Bp—h)
voI(Bg)

_ 2Aer@/p+ DI 're/p+y 1 flv(q+l)/p—1(1 _0)n=D/p gy
C((n=1D/p+DI2r(A/p+ DI p Jo

_ F/p+1) Tlg+D/p+ DI ((n-D/p+ 1)
L =1/p+DrA/p+1) (g+Dbr((n+q)/p+1)

]

1
/ ul(1— MP)("—l)/P du
0

’
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where we have used \((Bg) =T @A+1/p)*/T(A+n/p). Therefore,
1 [E( IG5 )W} C(n/p+1)

EIGI5L \IGI,+Z CT(+q9)/p+D)’
and by Stirling’s formula, there are constant€” > 0 such that for alk, ¢, p > 1,
. 1 << F(n/p+1) )1/q< 1
(maxin, ghYP ~\I'((n+¢q)/p+1) (max(n, gH/r- .

For independent symmetric random variable with log-concave cumulated
distribution function, Gluskin and Kwape [17] obtained an almost exact
expression of moments of linear functionals. We apply their result to obtain:

PROPOSITION7. Letn > 1be anintegerLet p,g >1anday>az>--->
a, > 0.Then

(£

n
> aigi
i=1

wherep’ € [1, +o0] is the dual exponent gf, defined byl% + ﬁ =1.

q\ 1/q
) ~qYP@)i<gp + V@) i=gll2,

The proof of Proposition 7 requires some preparation.

LEMMA 8. Foreveryr > 0,

—tP
et

o0 P
f e " du< I
t ptP~

00 e—tp
/ e du >
t 2ptp—1

In addition, the functiory — f,oo e " duis log-concave

and for everyr > 1,

PROOF For everyr > 0,

00 oo ,p—1 —tP
—yP u D e

f e”duf/ 1e”du: I-
t t tP— pﬂ’*

To prove the reverse inequality assume thatl. Integrating by parts,

o © 1 _yp
/e”du:fup-upe”du
t t

—tP

e —1 oo e 00
S / du > 1—/ e du,
ptP— p Jt ub ptP— t
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which implies the assertion.
Finally, setf (r) = [ e~*" du. In order to show thaf is log-concave it suffices
to show thatf” f — (f )2 < 0 point-wise. Now,

o0
FrOf@ - flo2=e (pzf’l [T e’p> <o,
t
by the first assertion we proved

PROOF OFPROPOSITION7. In what followsg denotes a random variable
with density ¥(2I'(1+ 1/p))e~"". Letd, > 0 be such thaP (6,|g| > 1) = 1/e.
DenoteN (1) = —log P(6,1g| > t) and letN*(z) be the Legendre transform of,
that is, N*(t) = supts — N(s); s > 0}. By Lemma 8,N is convex, and a result
of Gluskin and Kwapié [17] states that in this case,

n ay\ 1/q 1/2
(E > aigi ) ~0 |:Infit>0 ZN*( > <q} +\/_(Z“ ) }
i=1 i<q i>q
whereay > a2 > --- > a, > 0. When p = 1, all the above quantities are easily
computed [in particulatv () = ¢] and the proposition follows. Fop > 1, we

shall prove below that there exist universal constants, C, C’ > 0 such that
forall p > 1,

d<6,<C, vi>0 (N*@)P VP <ct and

(3 i
Vi>2  (N*() P D/P > ¢t

First we explain how these inequalities allow us to conclude. Let
. qa;
o= mf{t > 0; ZN*(—) < q}.
i<q !

The above upper bound aW* gives that ifug = Cq*7 (¥, al!P=Vyp=1/p,

then
p/(p=1)
ZN*(Q&)ﬁ(Cé]) Zaip/(p—l)fq’

=4 "o iq

which yields

(p=1)/p
toSqu/p(Zaf/(p_l)> )

i<q
Moreover, ifig is the biggest integer ifl, . .., ¢ + 1} such thaya;,—1/t > 2, then
foralli <ip—1,qa;/to > 2, in which case we can use the lower bounavdéfand
forall i > ip, a; < 2tp/q. By definition of#y, we get

S NG E o

o fo

i<q i<ip—1
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which shows thaty > cq¥/? (¥; ;1 a”’P~P)P=D/7 Itis now clear that

L (p=b/p
ql/p<zalp/(p— ))

i<q

(p—D/p (p—1)/p
< ql/p< Z aip/(p—l)) +q1/p<zaip/(p—l)>

i<ip—1 i>ip
t — 7 1 (P—l)/P 1
< 0 + (w) 2t < <2+ —)to.
c q c

Now we establish inequalities (3). To prove the bound® gmote that since
|g| has uniformly bounded density im, there is an absolute constant- 0 such
that for everys > 0, P(|g| > s) > 1—cs. If s =c (1 — e 1), then P(g| >
s) > P(|g| = 1/6,), which shows thatt,, < s—1 < C.Onthe other hand, Lemma 8
implies that there is an absolute constdrior which P(|g| > ¢) <1/e= P(|g| >
1/6,), and thug, > 1/¢’.

Finally, we address the above mentioned bound®& drLemma 8 states tha¥
is convex. In particularN is bounded from below by its tangent function at zero,
thatis,N(s) > sN’(0). Soifr < 1/6,I'(1+ 1/p) = N’(0), then

0 < N*(t) =supts — N(s)) < sups(r — N'(0)) =0,
s>0

s>0
and the claimed upper bound avi* is obvious. We may restrict attention to
t>1/6,I'(1+1/p). DenotingS =s/6,, Lemma 8 shows that for everyy> 1,
N(s)=N(80,) >S5+ (p—DlogS +log[pI'(L+1/p)] > S”.

Hence, for evens > 1,

ts — N(s) =186, — N(S6,) <156, — S”

p/(p=1
< sup(rS6, — SPy = (p — 1)(@) < (CryP/P=D,
S>0 p

For 0< S <1, that is, O< s < 6, st — N(s) < 0,t < (Ct)?/P=D sincet is
bounded from below, and the upper bound A&t follows.

The lower bound in Lemma 8 shows that there are absolute constants 1
such that if S > ¢, N(s) = N(560,) < (CS)?. ThereforeN*(t) > sugtS6, —
(CS$HP;§ = ¢} and if 16, > cl’—lcl’p, this supremum is attained & =
(t0,/pCPYYP=D > ¢ so that

1\ /16, \ /(=D 1
* N ) - -
N*(1) = (1 p)< C ) S
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and we are done. We may therefore assumerthat pcP~1CP. By our choice of
6,, N(1) = 1, which implies that for alt > 2,

t -
Nzt =Nz 5> (CryP/P=D.
with a new constan€. This completes the proof.C]

The results of this section may be combined to obtain the following exact
expression, up to universal constants:dopr a» > --- > a, > 0,

’

1
qu /4 N Yl @)i<qlly + /g (@)i=qll2
(max{n, g})¥/r

n
ai Xi
i=1

1
) (voI(B") n
p) /By
which virtually allows one to solve any question related to moment estimates

n
on Bp'

2.2.1. Khinchine inequalities. A well-known variant of Khinchine’s inequal-
ity (see [23]) states that for everyd p,q < oo and every integen, there are
A(p,q,n), B(p,q,n) > 0 such that for everyas, ..., a,) € R",

" 1/2 1 q 1/q
A(p,q,n)(Za?) < ( . dx)
= voI(Bp) B

)4

n
E a; xi

i=1

n 1/2
fB(p,q,n)(Zaiz> :

i=1

and we assume that(p, ¢, n), B(p, g, n) are the best constants for which the
above inequality holds for allay, ..., a,) € R". We determineA(p, g,n) and
B(p, q,n), up to absolute multiplicative constants.

THEOREM7. For every integer and for everyl <g <ooandl1 < p <2,
N n : a\"?
A(p,q.,n) ~ —7~min 1, |— and B(p,q,n)~minil, (= ,
nl/p q n
while for2 < p < oo,

1/
A(p,q,n)fvmin{l, (g) P} and B(p,q,n)Nﬁmin{l,\/E}.
n q

n:l-/l7

This is a consequence of (4) and of the following:
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LEMMA 9. Foreverya = (ay,...,a,) € S" 1, if 1< p <2then

1/p—1/2 (p=1/p 1/2
g\ Y 1/ p/(p—1) 2
ﬁmaX{l,(;) }Sq P> 4 +V4| D ai

i<q i>q

If 2 < p < o0, then

L (p=1/p 1/2
ql/p < ql/p<zalp/(p— )) +ﬁ(zai2>

i<q i>q
_ n\1/2-1/p
<2q mln{l, (—) }
q

Furthermore these inequalities are optimalp to universal constants

PROOF Assume that k p < 2. Since/a + b < v2/a + b,

. (p=1)/p 1/2
ql/p<zaip/(p— )) +ﬁ(zai2>

i<q i>q

1/2 1/2
< (Taf) +va(Ted) vz

i<q i>q

Similarly, if ¢ > n, then

. (r=D/p 1/2 . (r=D/p
ql/p<zalp/(p— )) +ﬁ(zai2> =q1/p<zalp/(p— ))

i<q i>q i<n
1
_ 4 /p
— nl/p-1/2°

and ifg <n,

L (r=D/p 12
ql/P(Zaf/(”‘ )> +ﬁ<2a?) > 4.

i<q i>q

The fact that these inequalities are best possible up to universal constants follows
by considering in each case the vectdfisO,...,0), (1//n,...,1//n) or
1/vq.-...1//4q.0,...,0) wheng < n. The proof of the casp > 2 is equally
simple. O
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2.2.2. yro-directions. We start with a few definitions. Let € [1, 2] and setu
to be a probability measure @&i'. For a measurable functiofi: R" — R, define
the following Orlicz norm associated withand . by

T inf{x - 0; [y = 2}.

It is well known that| f 1y, ) ~ SUR,=1g~ (/| f19dw)Y/? (this follows from
the Taylor expansion of the exponential). Given a veétor the unit spheres”—1
of R”, one says thad defines a/,-direction foru with a constanC > 0 if the
function fy(x) = (x, ) satisfies

1/2
Il fo lly (1) SC(/IfeIZdM> :

In other words, the moment gf of orderg is bounded from above by a constant
timesCq/® times the second moment ¢j.

From now on consider a convex body c R”, with the center of mass at the
origin. Such a body is said to be ,-body with constantC if all directions
0 e S"~Larey, with a constant, with respect to the uniform probability measure
on K. It follows from the Brunn—Minkowski inequality that convex bodies are
Y1 with a uniform constant, and any improvement on this estimate would be
very useful. Note that the notion af»-bodies is crucial in Bourgain’s bound
on the isotropy constant [12] of convex bodies. This motivated recent works on
the yro-directions of convex bodies. In fact, it is not even clear that there exists
a universal constant’ such that any convex body (of any dimension) admits at
least oneyr,-direction with constantC. This question of Milman was solved in
special cases such as zonoids [27] and unconditional bodies (Bobkov and Nazarov
[11] show that the main diagonal i%). Thanks to (4) we are able to study these
questions forB;,.

PROPOSITION10. There exist€ > 0 such that
(i) foreveryn >1and everyp > 2, B} is ayr2-body with constanc.

(i) for everyn > 1and everyp € [1, 2], B}, is ay,-body with constan€.

The first point was actually a consequence of results in [8], where sub-
independence was also used.

PROOF. Without loss of generality we consider a directiére $”~1 with
01>062>..->6,>0.Fixg > 1. Equation (4) gives, with obvious notation,

Epsl(X, 0)[1)H4

® Euix oz~

n 1/p 1
(max{n, q}> (@ N@Di<qlly + Va1 O)isqll2),

wherep’ = p/(p — 1).
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The result now follows from obvious estimates. Indeed, sinfa@axn, g} < 1,
for p > 2, Holder's inequality implies thalj(6;)i<4ll y < min{n, ¢}¥/2=%7 x
16:)i<qll2 < ¢¥/*71/P. Hence, the right-hand side in (5) is less thayig2 For
p €1[1,2], it is evident that|[(6;)i <4l ,» < 1(6i)i<4ll2 < 1 and thus the ratio of
moments is bounded by a constant tigés’. O

Next, we describe thé»-constant onB}) of every direction for 1< p < 2.

PROPOSITION11. Letp e[1,2]. Forany integem > 1and6 € "1, 0 isa
y2-direction of B, and the best constant for which it ¥ is, up to an absolute

multiplicative constant:'/7=1/2|]| .

Observe that from the above result, the direction of the main diagotal Sor
p =1 we recover a result of Bobkov and Nazarov [10]. (Let us note that in that
paper, the authors give another moment estimatB8fowhich can be recovered by
our method, and which implies that most directions #ége.. Moreover, Bobkov
and Nazarov show that these moment upper estimates;foan be transferred to
isotropic unconditional convex bodies.)

PROOF Assume, as we may, théd > 0> > -.- > 6, > 0. Forg < n the right-
hand side of (5) is equal to

P16 i<qlly + VTN ODi=gll2 < VT (Y PTV21(6)i<nll  + 1)
<2/gn* P20 <nll

where we used Hélder’s inequality in the form=l|/(6;)i<all2 < n*/P~1? x
1B:)i<nllp

If ¢ > n, the right-hand side of (5) i8Y/7 )10,y < /gn¥?=Y2||@)i<nll -
For g = n, it is easy to see that the estimate cannot be improved by more than
a universal factor. O

3. Extremal geometric parameters of sections of By, p>0. In what
follows we will denote byG a standard Gaussian vector. H Cc R” is a
k-dimensional subspace, the&n will still stand for a standard Gaussian vector
on E (which is well defined due to rotational invariance).

3.1. Bounds via stochastic orderingln this section, we present monotonicity
properties for sections df) asp > 0 varies. We follow the approach of Meyer and
Pajor [22]. They proved that for a fixed vector subspace of dimerisioR”, the
ratio Vol (E N B;‘,)/Volk(Bf,) is nondecreasing ip > 1. This was later extended
to p > 0 and tof,-sums of arbitrary spaces of finite dimension (see [6] and
the reference therein). We are interested in Gaussian averages(gfitioem on
sections. Our results will recover in several ways the latter result on the volume.
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We will use the notion of peaked ordering on measures. Given two absolutely
continuous measurgs andv on R?, one says that is more peaked thap and
writes . < v if for every symmetric bounded convex &

u(C) =v(C).

In the following statement, we put together the properties that we need. They
follow from more general results by Kanter [19].

PrROPOSITION12. Letu, v be probability measures dR, with even densities
which are nonincreasing ofi0, co). If u < v, then for everyn > 1 one has
wemn < pen,

The aim of the next two lemmas is to relate Gaussian averages 6f therm
on subspaces to the values of some product measureg. €dR” be a subspace
with dim(E) = k. We denote byPg the orthogonal projection frofR”* onto £ and
letug,1, ..., u, be an orthonormal basis &. Set

Boo(El)z{erl; sup |<x,ui>ls%}
i=k+1,...,n

and fore > 0,
E(e) = {x € R"; x — Pg(x) € € Boo(E™)).

We denote by, the standard Gaussian measureiRdn and byyg the standard
Gaussian distribution on a vector subspéce

LEMMA 13. Let E be ak-dimensional subspace @&" and seth to be
a continuous function inL1(R", y,), with the following property there exist

K, n > 0such that for every € R” one hash(x)| < Kel*13/2+n_ Then
Com\0/2
[rwdyeeo=lim(S)" [ hano.
E e—~>0\ € E(e)

PrROOF Fix somee > 0. In the following we recall the dimension of the
variable of integration by writing; f(a)d*a when dim(E) =k,

@)/ /E RICEAC
= /R e’”x“%/zlE(e) (x)h(x)dx

= e 1I3/2=108/2 (4 + bY d*a d" b
Ex€eBxo(EL)

="k / e‘”””%/Ze_ez”c”g/zh(a + €c) dad"*ec.
ExBoo(EL)
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By continuity and dominated convergence, the latter integral converges &hen
goes to zero to

vol,,_x (BOO(EL)) [ e‘”“”g/zh(a) dka,
E

which gives the claimed result™]

Fix 0 < p, A < o0, let a(p,r) = 2f(§’°e—“p—f2dt and setu,; to be the
probability measure oR defined by

2.2
dl’l’p,)\(t) — e_)\a(pv)‘)pltlp_a(ps)‘) t d[

LEMMA 14. Let E be ak-dimensional subspace &"* and0 < p, A < oo.
Then

B /221G g -

_ n, Qn

CBIGE, — apE K EE).
P

e
PROOF Bylemma 13,

£ 12 GI

(n—=k)/2
= lim (2—”) / e CHIIR/2P2)=(Ix13/2) g
E(e)

_ 27\ (#=k)/2
= lim (—Z) 224 (p, )"

y / (P Ixlp—a(p2Ix15 g,
E(e/(v2a(p.1))
. 277\ (7=H)/2

= €|[>n02k/2a(p, A)k(?) K. &1 (E(e)).

Thus, applied taE = {x € R"; x41 = --- = x, = 0} with u; = ¢; for i > k, this
identity yields
/26T,

P

(n—k)/2 2
= lim 2/%a(p, »)* (2”) ' ( / K e-Mﬂv“”'l"’—a(Mz*dz)"
—€/2

e
—k

— 224 (p, W)k (2m)n=R12,
from which the required result follows.[d
In the forthcoming lemmas and propositions, we look for comparison results in

the sense of the peaked ordering, between measures of tha fornWe start with
useful facts about the constant§p, 1) which appear in the definition of , ;.
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LEMMA 15. Let A >0 and 0 < p < ¢ < oo. Then a(p,m) <

A
*(4> rG+D72)"

PROOF By its definition,

x
_ —MP—1? 5 _)‘|g|p
a(p,k)_2/0 e dt_ﬁ-EeXp< o072 )

whereg is a standard Gaussian random variable. Recall that

202 _p+1
Ele|? = —T( &Y—=
8] T ( 2 )
and thus
A Algl? )
afl p,—— ) =7 -Eexp[ ——=22 ).
(” r((p+1>/2)> v J7 - Elgl? O

Therefore, Lemma 15 follows from the following result:

LEMMA 16. Fix0< p < ¢ < oo and letX be a nonnegative random variable
with EX? < oo. Then for every convex functigh: [0, co] — [0, 00),

X7 X1
Efl — Efl —).
f(EXP)E f(Exq)
PROOF Let g be defined byé/p(EXP)l/P = té/q (EX9)Y4. Clearly,

© E[(55) 1 (5x0) |~ [ romoars [~ ronoa,

whereh(t) = P(XP > tEXP) — P(X? > tEX?). Sinceh > 0 on|[0, 1] andh <0
on [to, co) and [~ k(1) dt = 0, then

110) o0
/ f(h(t)dt +f f(h(t)dt
0 )

1 o0
- /0 L) — £lo)h(t) di + ft Lf'(t) — f/(to)]h() dt <O,
0

where we have used the fact that is nondecreasing. Combined with (6), this
completes the proof.]

PrROPOSITION17. LetO< p <g andii, A2 > 0.Then

(@) If g >2anda(p, A1) > a(g, r2), theniw, , < g a,-

(b) If g <2anda(p, 11) <al(g, r2),then, , < fig ;-

() If p <2 and g > 2, then without any restriction om; and i,
/"Lp,)\,l < qu)‘z'
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(d) If0<p<2andiis <o, thenmp , < ipa-
(e) If p>2andiy < iz, thenu, ,, < wpi,-

PrRooF Defineh:[0, o0) — R by

h(a) = / a[e*)»la(lhM)pl‘p*a([?s)tl)zlz — e hee(@ 11 —alg 22 gy

In order to prove thati,, ;, < 14,5, ONe has to show that(a) <0 for all a > 0.
Note thath(0) = lim,_. 2 (x) =0, and if

Y (t) = —ra(p, AP 1772 — a(p, r1)% + roa(q, 1291972 + a(q, A2)?,

then signia’) = sign(y).

In case (a), limso¥(a) <0 and lim,_.» ¥ (a) > 0. Henceh’ < 0 in a
neighborhood of 0 and’(a) > 0 for a large enough. If there were somg > 0
such thatz(ag) > 0, then it would follow that:” must have at least three zeros.
Thusy would also have three zeros, implying thathas at least two zeros. This
is impossible since

Y/ (1) = —r1(p — a(p, M) 1P 3 4 2(g — (g, )71 73

clearly has at most one zero.
Cases (b) and (c) are just as simple. To prove case (d) one must show that the
function

Y (1) = (A2a(p, 22)” — haa(p, A)P)tP 2 + a(p, A2)® — a(p, k1)
is first positive and then negative. Since it changes signs only once, it is enough to
check this at zero and infinity. Observe that

(0,0 o0
a(p,k):Z/ " 4t and xl/l’a(p,x)zzf eI gy
0 0

so thata(p, A) is decreasing in. andla(p, A)? is increasing im. Sincep < 2,
then lim,_ oy (x) = 400 and lim._.» ¥ (x) < 0. The proof of the last case is
almost identical. O

PROPOSITION18. Let E be ak-dimensional subspace &* and set\ > 0.
For p > 0, let

Eext—( G lgng)/ (27T ((p +1/2))]

F = .
)= Eexa -G /@ (p + 1)/2)

ThenF is nondecreasing o0, 2]. Moreover for p > 2one hasF (p) > F(2) = 1.
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PROOE Letr <2, fix somei > 0, let p > r and define

B e S

L'(r+1/2 I'((p+1/2)

By Lemma 15 and cases (b) and (c) of Proposmon/u]r?),1 < I p.a,- TENSOrizing

and applying Proposition 12, it follows thaﬁ < M,, 5+ IN particular, for every
€ >0,

A=

uS (E(€) < u% (E(e)).
By Lemma 14,
Eexpl— MG llgnp)/(272T ((r +1)/2))]
Eexpl— (|G I)/ (72T ((r +1)/2))]

(7 » 5
IEE?XICJ[—(KIIGIIEM_;;;)/(ZP/ F((p+1)/2)]

<
~ Eexp—(HGlig)/ 20 ((p+ 1)/2))]

henceF (r) < F(p) holds wherr <2 andr < p. O

THEOREMS8. LetE be ak-dimensional subspace &'. Then the function
EIG 5y

P
EIIGHZg

is nonincreasing irp > 0.

PROOF Assume thalp < g < 2. Both sides of (7) equal 1 far =0, so the
same inequality must hold between the derivatives at 0 of both sides; that is,

EIIGllEmBn EIIGII’;;;
2020 ((p+1)/2) 21’/2F((p +1)/2)
EIIGllEan EIIGII‘,{;g
2420 ((q +1)/2) 2”1/2F((61 +1)/2)
Note that
E|G|| k—EZIgl jk_ Ooxpe_xz/zdx=2ifr_+lkl‘<p—2|_1>.

Hence, the above mequallty translates to

2% ElGlgrs 2 2 ElGNEng 2%

+ =< + )
VT EIIGH’;; NZE EIIGllqgg VT
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so that
ElGIEnp;  EIGIEng
>
E|Gly ~ EIGIy,

It remains to deal with the case<2p < ¢, which is slightly more complicated
because the last proposition does not give much in this case for a fixed value of the
parametei. However, something remains true whetends to zero, and thus one
can pass to the limit.

Indeed, fix two numbers,, ¢, > 0 such that

1 1
Cp < —————————— and Cog > ——————————»
" T(p+D/2) T TWg+D/2)
and for everyx > 0 define

o —cpatP =12 o —cght1—12
f()\)=a(P,Cp)\)—Ol(q,Cq)u)=2/ e "’ dt—Z/ e 1 dt.
0 0

Then

—2

"0) — — > b2 > 4
0 =-2c, tPe™ dt +2c, tle™" dt
0

0

“2 (S5 -er(25Y)] -0

Since f(0) = 0, it follows that there is somé& = §, , > 0 such that for every
O0<x<$d, f(A) >0, that is,a(p, cpr) > a(g, cyr). Part (a) of Proposition 17
now implies thati, ¢,» < 14.c,.- AS before, tensorization and an application of
Lemma 14 give that for every < 4,

Eexp(—ic,|GllLn B /2P/2)  Eexp(—rcglIGIlLn By /24/2)
< 9
Eexp(—ic, |Gl /2P/2) — Eexp(—iey|G|%,/29/2)
P q

and the required inequality follows by taking derivatives at 0 and lettjngndc,
tendto YVI'((p+1)/2) and ¥ T'((¢ + 1)/2), respectively. O

REMARK. Assume that O< p < 2. By Proposition 17, for every. > 0,

WUp.a < M2 =Y, wherey has densit;e"”z onR. Hence, by rotation invariance
of this Gaussian density, one has that for every 0,

~AIGIP -AGIP,
Ee 16T Eny <Ee Bp

Thus, for any (reasonable) meastren [0, c0),

0 _GIP 00 —AIG|”
IE/ e ”E“dez(x)gEf e 55 dr (M),
0 0
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which by Bernstein’s theorem (see, e.g., [36]) implies that for eyef, co) — R
which is completely monotonic,

Ef(IIGIIZmBZ) =< Ef(IIGIIZf,),

provided these expectations are finite.

Two particular cases which should be singled outjaig = e for0<6 <1
andi > 0, andf () =t~ " for n > 0. The first case implies that for evexy- 0,

6p _ op
=M Gl grgn MG i
Ee ENPp < e B,

which by differentiation at 0 yields
0 0
ElGl¢ng: = EIGI -
p P
From the second case it is evident that for @ < k,
EIIGIIE%B; < EIIGllgg.

The conditionx < k is imposed to ensure that these expectations would be finite.
When 2< p < 00, ¥ < up,x, and all the above inequalities are reversed.
Summarizing, we obtain

COROLLARY 19. Let E be ak-dimensional subspace &". Then for0 <
p<2andeven0<uo <kand0< g < p,

E|GIz%s <EIGI¢ and E[Gl,g > EIG|,.
P p p 4
If 2< p<oo,thenforevernD <o <kand0< g < p,

EIGIzhg > BIGI{ and EIG|zqz <EIGI;.

The following proposition is a corollary of parts (d) and (e) in Proposition 17.

PrROPOSITION 20. Let E be ak-dimensional subspace d@&”. Then the
function

MG g

)\.ZO’—)FP()\.):W
Ee B

is nonincreasing whep < 2 and nondecreasing when> 2.
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REMARK. Sincer,(0) =1, we have an alternative proof to Corollary 19.
Additionally, the limit ofr,(1) whena tends to infinity is

~ [l g
[ge BB gy _ VO(E N BY)
_ - k
(B I volk(Bp)

Jree 7

The above equality can be proved by polar integration. The comparison between
rp(0) andr,(+o0) yields an alternative proof of the Meyer—Pajor theorem [22]
which uses a different interpolation between exp?) and exg—|¢|?).

3.2. Bounds via convolution inequalitiesIn this section we derive upper
bounds on the Laplace transform |p$||§ﬂB,, for p > 2. The main tool is Ball’s
p

version of the Brascamp-Lieb inequality [3, 13]. We follow the method of [3]
where the main focus was on the volume of sections.

Let E be ak-dimensional subspace Bff and letP be the orthogonal projection
onto E. The canonical basis ®&" provides a decomposition of the identity map
as) ! e ®e; =1d,, where(v ® v)(x) = (x, v)v. Projecting this relation onté
yields a decomposition of the identity dn

n
Zpei ® Pe; =Idg .
i=1

Settingc; = | Pe;|? andu; = Pe; /| Pe;| (or any unit vector if the norm oPe;
is 0), this rewrites a3 _; c;u; ® u; =Idg. Letd > 0, and note that for any € E
the ith coordinate in the canonical basisxis= (x, ¢;) = (Px,¢;) = (x, Pe;) =
Jci{x,u;). Hence,

n
fe—xnxuﬁ—nxn%/zdxzf [Tl =2 4y
E Ei:l

_[ne—klfxu [P —ci{x,u;) /de

i=1

" 17/2 l p 2 .
f ]—[ )P =)y g
n o
H(/ e /“fl"—tz/Zdt>
= S\JR
i=1

=exp[ic,- Ioggb(\/lc_i)}

where we have sek (s) = 2 [$° e=*s* "1"~1*/2 4 First, observe that fop > 2 the
function defined on(0, co) x [0, 00) by (s, ) — Cas2PeP — t2/2 is concave.

IA
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[Indeed, on this set the functio@, t) — s2=PtP is convex, as follows from a
direct calculation of its Hessian matrix.] Therefore, by a well-known result of
Borell, Prékopa and Rinott (see, e.g., [30]), ib¢) is a concave function of > 0
[because it is the integral inof a log-concave function df, #)]. Lemma 22 below
ensures that the map

1

s >0 slogw($>

is concave. This property can be combined with the relaityn, ¢; = k (which
follows by taking traces in the decomposition of the identity). It yields that

for p > 2,
k
/ o~ HIAIE=1x13/2 g < (/ e‘*(*/_k/n)”2|’|”—f2/2dt) .
E R
Returning to our previous setting, it implies that for eviry 0,

“AIGIP —A(JE/m)P2|GIIP,
Ee 16 sy < Ee Bp.

Integrating this inequality against positive measures[@rpo) and applying
Bernstein’s theorem [36], it follows that for every completely monotonic function
/110, 00) — [0, 00),

EF (MG ngy) <EFO-WEM) G

In particular, the following corollary is evident.

COROLLARY 21. Foranyp > 2,every0 <6 < 1and everya >0,

Op _ 6(p=2) op
_alG Ak/n) Gl
Ee 1Nensy < g, B

In particular, by differentiation a0 it follows that for everyd < 8 < p,

k\B1/2=1/p)
EIG 105 = ;)

Alsog, for every0 <« < k,

B
EIIG ;.

" >a(1/2—1/p)

—a "~ —a
BIG Iz, < ( EIGI .
REMARK. Assume thak dividesn, and writen = mk. Consider the subspace
F c R™ which is the “main diagonal” with respect to the decomposititth=
Rf x ... x RF[i.e., F ={(x1,...,xm); xi € R¥ xy =-.. =x,}]. Then

2—1
BIG gy =m (=) EIGI}, = (f)” EIG|”,.
P \/E By n By,

which shows that wheh dividesn, the caseg8 = p in Corollary 21 is optimal.
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LEMMA 22. Letc:[0,00) — [0, o0) be a nondecreasing concave function
Then the functiory (¢) := tc(%), defined forr > 0, is concave

PrROOF We may assume thatis twice continuously differentiable. Clearly,

ro=«Z)-57(%)
=c|\l—%=)—7=c|—),

ViJoo2yt \Vi
which is nonincreasing provided the functigw) = c(u) — 5¢’(u) is nondecreas-

ing on [DO, 00). Now, g’'(u) = &2") — 5¢”(u) is nonnegative by our assumptions
onc.

3.3. Gaussian measures of sections of the culbe.view of the previous
results, one is tempted to conjecture that the following distributional inequality
holds for Gaussian measures of sections of dilates ofeyaball, that is, for

every k-dimensional subspacg and everyr > 0, yk(rB[’;) < ye(ENrB)) if
p > 2 and the reverse inequality fer < 2. If such a statement were true, some
of the previous results would follow by integration. Unfortunately, it seems that
the known technigues are insufficient for this purpose. The product structure of the
cube will, however, allow us to prove this conjecture fot oco.

By Lemma 13, for everyc-dimensional subspade c R" andr > 0,

(n—k)/2
T
ENrB" —I|m f ||‘x/1,, d
ve(ENrBs) <2e) <2n)"/2 S M

Letd(r) =6 be such that

r/0
/ e_eztz/zdt =1,
—r/0

.
0(r) = / e 12 41,
—r

Clearly8 is increasing and the function— 9(” is decreasing.
Denote byp, the probability measure dR defined by

dpy(t) = e 0% /21[—r/9(r),r/9(r)](t) dr.

that is,

Thus,
ye(EN rB" )

e ooy —00)2?/2
= (26 ) (277)11/2/ l_[ L (0(r)yi) dy

=0 E(/6(n) j_1

k)2 k
— lim <3) IO en (e,

e—0\ nen—k
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Observe that
1 T2 N\ 00k
ky_ —12/2 _
7 Boo) = rpre (fe ‘”) ~ @)
hence
ENnrB?

)/k(rBlgo) - e—0 (26)”_k
LEMMA 23. Foreveryr >s >0, p, < ps.
PROOF As usual, definé : [0, co) — R by
22 —0(s)212)2
h(a) =./o [e Y /00,000 @) — e 1—s/0(s),5/0()1(1)] dt,

and our goal is to show thata) < O for alla > 0. The above mentioned properties
of 6 yield ;== > 2=, so thath(a) =0 fora > -+ . Moreover, for;2~ <a < ﬁ

o) = 80! . =50 a(s)
h(a) = p,([0,a]) — 1 < 0. Finally, for 0< a < 555,

ha) = /“[e—e(r)zzz/z _ e 92 g < 0
0 f— ’
sinced(r) > 6(s). O
By (8), tensorizing the above lemma yields:

THEOREM9. For everyk-dimensional subspacg c R” the function
ENnrB.

. VE( Fk 50)
vk (r B5,)

is nonincreasingln particular, by passing to the limit — oo it follows that for
everyr > 0,

r >0,

ve(ENrBL) > y(rBX).

By arguments analogous to those in Section 3.2 one can also obtain the
following upper bound on the Gaussian measure of sections of dilates of the cube,
which is a Gaussian analog of Ball’s slicing theorem in [3]. As noted in Section 3.2,
these bounds are optimal wherlividesn.

THEOREM10. For everyk-dimensional subspace c R" and every > 0,

yE(ENrBL) < Bk
E o0o) =Y\ T K o®)
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3.4. An application a remark on the Komlds conjectureln this section we
apply the results of the previous section to prove the following proposition, which
was stated in the Introduction:

PROPOSITION24. There is an absolute constaat > 0 such that for every

integerm > 0 and everyxy, ..., x, € £, if we denote by/ the dimension of the
linear span ofxy, ..., x;,, then there are signsy, ..., &, € {—1, 1} such that

m
Zsixi
i=1

< C+/logd - max |x;l|2 < C+/logm - max |x;||2.
o 1<l<m 1<l<m

PROOF We may assume that, ..., x, € €2, in which case we may write
xi = yi + zi, wherey; € £Y for some (large)N, and ||z;|lcc < 1/m. Denote

E =spariy1, ..., yn} and letd’ be the dimension of. There is a constant> 0
such that forr = ¢,/logd’ < c/logd, ydf(ng’;) > % By Theorem 9, if we set
K =EnNrBY, thenyg(K) > % By Banaszczyk’s theorem [5], there are signs
€1,...,&m € {—1,1} such that)_/" ; &;y; € cK, wherec is an absolute constant.

Hence

=<

m m m
> eixi Y evi| + Y llzillo < (c + 1)/logd.
i=1 i=1 o0 i=1

O

o0

Itis equally simple to deduce the followirfg -version of this result fop > 2:

PRoOPOSITION25. There is an absolute constaat > 0 such that for every
2 < p < oo, every integem > 0 and everyxy, ..., x, € £,, if we denote by/
the dimension of the linear span #f, ..., x,;, then there are signs, ..., &, €
{—1, 1} such that

m
D eii
i=1

1/p . 1/p .
<C -d - max ||x <C.p-m - max ||x;i||2.
p Bl ﬁ 1<l<m H 1”2 - \/_ 1<l<m ” ZHZ

PROOF As before, we may assume that ..., x,, € EQ’O for some largen.
By Corollary 19, if we sef£ = spanjxi, ..., x,}, then

EGlizngy < EIGI 5 =dElgil” = O@p"’?).

Hence, for every > 0,
EIGIIY g p/2
ENBY 1 O(dp )
rpP - rpP

ye(ENrBY)=1— P(||G||‘;ﬂBpN >rP)=1-

SettingKk = E N rBl’)’, then for somer = O(\/p - dl/!’), ve(K) > % which
concludes the proof by Banaszczyk’s theorem [3]]
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REMARK. The above estimate can actually be improved to give tail estimates
as follows. LetE be anm-dimensional subspace &". For p > 2 the function
x — |lx||, is Lipschitz with constant 1 ofR” and the Gaussian isoperimetric
inequality shows that for every> 0,

ve(E N (EIGpnpy +€)B) = 1—e~</2

SinceE||Gllensy < ElGl px < cy/P- mY/P for some absolute constantthen
ve(E N (cy/p-mYP + €)Bj)>1~ <12,

3.5. An application covering numbers of convex hulls of pointstinby B),
balls. In this section, which is similar in spirit to the previous one, we use our
results to give an infinite-dimensional extension of a classical inequality which
bounds the minimal number of cube8?, required to cover a convex hull of a
finite number of points iri‘2’ (this classical result depends on the maximund of
and the number of points). Here, we are interested in finding upper bounds of the
minimal number of cubesB, required to cover a convex hull of a finite number
of points in ¢, depending only orz and the number of taken points. Since the
structure oft,, depends deeply on the chosen basi&ima simple approximation
argument is not enough to obtain our result.

The main result of this section, as described in the Introduction, is restated
below:

PROPOSITION26. There exists an absolute constdht- 0 such that for every
integerm, e > 0and2 < p < oo, forall x4, ..., x;, in the unit ball ofé,,

logm

log N (absconyxy, ..., x,}, eBp) < Cgp/(p—l) .

PROOF  We first prove the proposition in the case whes co. Since allx;’s
are in B2 we can find an integef so that we can write; = y; + z; with y; B;’
and||zillco <€ foralli =1,...,m. If the absolute convex hull of4, ..., y, can
be covered byV translates o%Bg’O, then the absolute convex hull 8f, ..., x,,
can be covered by translates of 2B.,. So, it is enough to prove the result for
they;’s.

Let T : ¢ — ¢4 defined byl'e; = y; foralli =1,...,m, E = sparfy1, ..., yu}
and G be a Gaussian vector itE. Since ||x;]l2 < 1, then by Sudakov’s
inequality [35],

supevIog N (T (B!, e(BSNE)) <E sup |(G,y;)| < Cv/logm.

e>0 i=1,....m

Moreover, by the dual Sudakov inequality due to [26],

supeVlog N (B§ NE.eBL) <EIG| -

e>0
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and by Corollary 19E(G|ly4 ~g < E[G|lgime < Cy/Togm. Therefore,

supeVIogN (B¢ N E, ¢B2) < C/logm.

>0
Since the covering numbers are sub-additive,
log N (T (B}"), e B,)

<logN(T(B}"), Ve(BS N E)) +logN(Ve(B§ NE),eBL)

<C. IOgm.
B e

For a generap > 2, the proof follows by interpolation. Recall that for Banach
spacesX, Y and a compact operatar: X — Y, the entropy numbers af are
defined for every integer by

ex(u:X — Y) =inf{e; N(u(Bx), e By) < 2¢}.

Let T be defined as before dif by T'e; = x; foralli =1, ..., m. Itis well known
(see Lemma 12.1.11 in [28]) that for every integer

eok—1(T 03— £,) < ep(T 00 — 02)2 Pe (T 00 — £og)12/P.
The above result fop = oo, stated in terms of entropy numbers, is

lo
e (T = o) §C-%,

and Sudakov’s inequality [35] is just

lo
ek(T:ET—>Zz)§C~,/%.

logm > 1=1/p

Therefore,

eo—1(T 47 = £y) <C- < P

as claimed. O
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