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This article investigates, by probabilistic methods, various geometric
questions onBn

p, the unit ball of�n
p. We propose realizations in terms of

independent random variables of several distributions onBn
p, including the

normalized volume measure. These representations allow us to unify and
extend the known results of the sub-independence of coordinate slabs inBn

p.
As another application, we compute moments of linear functionals onBn

p,
which gives sharp constants in Khinchine’s inequalities onBn

p and determines
the ψ2-constant of all directions onBn

p. We also study the extremal values
of several Gaussian averages on sections ofBn

p (including mean width and
�-norm), and derive several monotonicity results asp varies. Applications to
balancing vectors in�2 and to covering numbers of polyhedra complete the
exposition.

1. Introduction. For p > 0 and a sequence of real numbersx = (xi)
∞
i=1

denote‖x‖p = (
∑∞

i=1 |xi |p)1/p. Forp = ∞ we set‖x‖∞ = supi∈N |xi |. The space
of all infinite sequencesx with ‖x‖p < ∞ is denoted�p. Similarly, the spaceRn

equipped with the quasi-norm‖ · ‖p is denoted�n
p. Finally, the unit balls of

�n
p and�p are defined asBn

p = {x ∈ R
n; ‖x‖p ≤ 1} andBp = {x ∈ R

N; ‖x‖p ≤ 1},
respectively.

The geometry of�n
p spaces in general, and the geometry of the�n

p-balls in
particular, has been intensively investigated in the past decades. A particular
topic of interest has been the evaluation of the extremal volumes of sections
and projections ofBn

p. Apart from their intrinsic interest, such questions have
applications in several probabilistic and geometric contexts, some of which will be
described below. The purpose of the present article is to obtain several new results
of this flavor. We represent various geometric parameters ofBn

p probabilistically,
and apply methods from probability theory to estimate them.

In Section 2 we introduce representations in terms of independent random
variables of some distributions onBn

p, including the volume measure onBn
p.

Obtaining concrete realizations of the (normalized) volume measure on a general
convex bodyK ⊂ R

n seems to be a hopeless task. For general bodies one is
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therefore reduced to hunting for approximations, and this has been successfully
achieved via Markov chain methods by Kannan, Lovasz and Simonovits [18].
(That paper is actually the last in a long list of articles obtaining similar
approximate representations. We refer to [18] and the references therein for an
accurate historic depiction of the subject.) The simpler structure ofBn

p allows us to
give the following representation of the volume measure, which extends top > 0
classical results forp ∈ {1,2} (see, e.g., Chapter 2 in [15]).

THEOREM1. Letg1, . . . , gn be i.i.d. random variables with density1/(2�(1+
1/p))e−|t |p (t ∈ R), and letZ be an exponential random variable independent of
g1, . . . , gn (i.e., the density ofZ is e−t , t ≥ 0). DenoteG = (g1, . . . , gn) ∈ R

n and
consider the random vector

V = G

(
∑n

i=1 |gi |p + Z)1/p
.

Then V generates the normalized volume measure onBn
p, that is, for every

measurableA ⊂ R
n,

P(V ∈ A) = vol(A ∩ Bn
p)

vol(Bn
p)

.

Section 2.1 provides a simple probabilistic perspective to the sub-independence
of coordinate slabs onBn

p. This remarkable fact was originally proved by
Ball and Perissinaki [4] for the volume measure and in [24] for the cone
measure. We establish this property for more general distributions, combining an
extension of Theorem 1 with arguments similar to the proof of the classical FKG
inequality [16].

In Section 2.2, Theorem 1 is applied to the study of the moments of linear
functionals onBn

p for p ≥ 1. Answering a question posed to us by Giannopoulos,
we estimate the best constants in the Khinchine inequality onBn

p and describe the
so-calledψ2-directions ofBn

p.
Section 3 is devoted to the analysis of the extremal values of several geometric

parameters of sections ofBn
p for p > 0. A classical result of Meyer and Pajor

[22] states that for everyk-dimensional subspaceE of R
n, if p ≤ 2, then

volk(E ∩ Bn
p) ≤ volk(Bk

p), and if p ≥ 2, then volk(E ∩ Bn
p) ≥ volk(Bk

p). More
results on critical sections ofBn

p appear in the papers [2, 3, 20, 22], which rely
on harmonic analysis methods. In Section 3.1 we show that for every 0≤ α ≤ k,
every 0≤ β ≤ p and everyk-dimensional subspaceE of R

n, if 0 < p ≤ 2, then∫
Sn−1∩E

‖x‖−α
p dx ≤

∫
Sk−1

‖x‖−α
p dx and

∫
Sn−1∩E

‖x‖β
p dx ≥

∫
Sk−1

‖x‖β
p dx,

and if 2< p ≤ ∞, then∫
Sn−1∩E

‖x‖−α
p dx ≥

∫
Sk−1

‖x‖−α
p dx and

∫
Sn−1∩E

‖x‖β
p dx ≤

∫
Sk−1

‖x‖β
p dx.
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The caseα = k in the above inequalities is just a restatement of the Meyer–Pajor
theorem. The caseβ = p follows from the following stronger monotonicity result,
proved in Section 3.1, that the mapping

p > 0 �→
∫
Sn−1∩E ‖x‖p

p dx∫
Sk−1 ‖x‖p

p dx

is increasing inp.
Since Gaussian and spherical averages of homogeneous functions are propor-

tional, these facts can be restated in terms of moments of Gaussian vectors. Note
that the above quantities encompass useful classical parameters of the geometry of
Banach spaces, such as mean width and�-norm (see, e.g., [29], page 35).

The proofs appear in Section 3.1 and consist of finding probabilistic expressions
of various expectations of Gaussian vectors on subspaces ofR

n, and then applying
stochastic orderings to estimate them.

In Section 3.2 we apply the Brascamp–Lieb inequality to obtain estimates in the
other direction.

Section 3.3 deals with the case of the cubeBn∞. We derive the following
distributional inequalities, valid for allk-dimensional subspacesE ⊂ R

n and
everyr > 0:

γk(rB
k∞) ≤ γE(E ∩ rBn∞) ≤ γk

(
r

√
n

k
Bk∞

)
,

whereγk, γE denote the standard Gaussian measure onR
k andE, respectively.

The right-hand side of the above inequality follows from the Brascamp–Lieb
inequality, and the left-hand side from the following monotonicity result: for every
k-dimensional subspaceE ⊂ R

n, the function

r > 0 �→ γE(E ∩ rBn∞)

γk(rBk∞)

is nonincreasing.
Sections 3.4 and 3.5 are devoted to applications of the previous results.

Section 3.4 deals with the Komlós conjecture which asks whether there is a
universal constantc > 0 such that for everyx1, . . . , xm ∈ Bn

2 , there are signs
ε1, . . . , εm ∈ {−1,1} for which ‖∑m

i=1 εixi‖∞ ≤ c. This challenging problem
remains unsolved, and the best upper bound onc, due to Banaszczyk [5], is
c = O(

√
logn ). We show that our estimates, together with Banaszczyk’s theorem,

yield an infinite-dimensional version of this result, which implies in particular a
better upper bound whenm = o(n).

PROPOSITION 1. There is an absolute constantC > 0 such that for every
integerm > 0 and everyx1, . . . , xm ∈ �∞, there are signsε1, . . . , εm ∈ {−1,1} for
which ∥∥∥∥∥

m∑
i=1

εixi

∥∥∥∥∥∞
≤ C

√
logd · max

1≤1≤m
‖xi‖2 ≤ C

√
logm · max

1≤1≤m
‖xi‖2,
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whered is the dimension of the linear span ofx1, . . . , xm.

Section 3.5 answers a question posed to us by Talagrand, concerning the number
of cubes required to cover a convex hull of a finite number of points in�2. Given
two convex setsK,L ⊂ �∞, denote byN(K,L) the minimal number of translates
of L required to coverK (this number may be infinite). Obtaining sharp bounds
on this parameter is of fundamental importance in several problems in convex
geometry (see, e.g., [29]), probability (see, e.g., [21]) and operator theory (see,
e.g., [28]). GivenA ⊂ �∞, we denote by absconv(A) the convex hull ofA∪ (−A).
The main result of Section 3.5 is:

PROPOSITION2. There exists an absolute constantC > 0 such that for every
integerm, ε > 0 and2≤ p ≤ ∞, for all x1, . . . , xm in the unit ball of�2,

logN(absconv{x1, . . . , xm}, εBp) ≤ C
logm

εp/(p−1)
.

Such a statement is already known forp = 2 by the results of Carl and Pa-
jor [14]. From Schütt’s results [34] on the entropy of the identity operator between
�d

2 and�d
p, if the pointsx1, . . . , xm are assumed to be in an ambient�d∞, then such

an inequality is valid with the term logm replaced by log max(m,d). Proposition 2
bounds the covering number of the polyhedron absconv{x1, . . . , xm} ⊂ Bd

2 in terms
of the number of its vertices, independently of the ambient dimension.

2. Representation of measures on Bn
p . We begin by stating a probabilistic

representation of the cone measure on∂Bn
p which is due to Schechtman and Zinn

[32] and independently to Rachev and Rüschendorf [31]. This representation has
applications of probabilistic and geometric nature [9, 24, 25, 33].

Let K be a convex symmetric body inRn. Recall that the cone measure on∂K ,
denotedµK , is defined forA ⊂ ∂K by

µK(A) = vol(ta;a ∈ A,0≤ t ≤ 1)

vol(K)
.

Thus,µK(A) is the volume of the cone with baseA and cusp 0, normalized by the
volume ofK . Alternately,µK is the unique measure for which the following polar
integration formula holds: for everyf ∈ L1(R

n),∫
Rn

f (x) dx = n · vol(K)

∫ ∞
0

rn−1
∫
∂K

f (rz) dµK(z) dr.

Schechtman and Zinn and Rachev and Rüschendorf proved the following.

THEOREM 2 ([31, 32]). Letg1, . . . , gn be i.i.d. random variables with density
e−|t |p/(2�(1+ 1/p)), t ∈ R. Consider the random vectorG = (g1, . . . , gn) ∈ R

n,
and denote

Y = G

‖G‖p

= G

(
∑n

i=1 |gi |p)1/p
.
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ThenY is independent of‖G‖p. Moreover, Y generates the measureµBn
p
; that is,

for every measurableA ⊂ ∂Bn
p, µBn

p
(A) = P(Y ∈ A).

We propose the following extension:

THEOREM 3. Let G = (g1, . . . , gn) be a random vector as in Theorem2. Let
W be a nonnegative random variable with distributionh, and independent ofG.
Then the random vector

G

(‖G‖p
p + W)1/p

generates the measureh({0})µBn
p

+ 	λBn
p
, where λBn

p
stands for Lebesgue’s

measure restricted toBn
p, and forx ∈ Bn

p, 	(x) = ψ(‖x‖p), where forr ∈ [0,1][
�

(
1+ 1

p

)]n

ψ(r) = 1

(1− rp)n/p+1

∫
(0,∞)

wn/pe−rpw/(1−rp) dh(w).(1)

PROOF. Note that the density of|gi |p is

d

du
P (|gi | ≤ u1/p) = 2u1/p−1

p
· 1

2�(1+ 1/p)
e−u

= 1

�(1/p)
u1/p−1e−u, u > 0.

In other words, |gi |p has a gamma(1/p,1) distribution. By the additivity
property of the gamma semigroup, the random variable‖G‖p

p = ∑n
i=1 |gi |p has

agamma(n/p,1) distribution, that is, its density is 1/�(n/p)un/p−1e−u (u ≥ 0).
For anyf ∈ L1(R

n), and conditioning onW ,

Ef

(
G

(‖G‖p
p + W)1/p

)
=

∫
[0,∞)

Ef

(
G

(‖G‖p
p + w)1/p

)
dh(w).

SinceG/‖G‖p and‖G‖p are independent, then for everyw > 0,

Ef

(
G

(‖G‖p
p + w)1/p

)

= Ef

(( ‖G‖p
p

‖G‖p
p + w

)1/p G

‖G‖p

)

= 1

�(n/p)

∫ ∞
0

un/p−1e−u
Ef

((
u

u + w

)1/p G

‖G‖p

)
du

= 1

�(n/p)

∫ 1

0

(
rpw

1− rp

)n/p−1

e−rpw/(1−rp) · Ef

(
r

G

‖G‖p

)
prp−1w

(1− rp)2 dr,
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where we have made the change of variableu
u+w

= rp. Hence,

Ef

(
G

(‖G‖p
p + W)1/p

)
− h({0})Ef

(
G

‖G‖p

)

= p

�(n/p)

∫
(0,∞)

wn/p

×
∫ 1

0

rn−1

(1− rp)n/p+1e−rpw/(1−rp) · Ef

(
r

G

‖G‖p

)
dr dh(w)

= n

�(n/p + 1)

∫ 1

0

rn−1

(1− rp)n/p+1

×
(∫

(0,∞)
wn/pe−rpw/(1−rp) dh(w)

)
Ef

(
r

G

‖G‖p

)
dr.

On the other hand, letM be a probability measure onBn
p with �p-radial density

φ(‖x‖p) (x ∈ Bn
p). By the polar coordinate integration formula forµBn

p
, the

representation from Theorem 2 and the fact that vol(Bn
p) = [2�(1/p+1)]n

�(n/p+1)
(see, e.g.,

page 11 in [29]),

∫
Rn

f (x) dM(x) = nvol(Bn
p)

∫ 1

0
rn−1φ(r)Ef

(
r

G

‖G‖p

)
dr

= n[2�(1/p + 1)]n
�(n/p + 1)

∫ 1

0
rn−1φ(r)Ef

(
r

G

‖G‖p

)
dr,

from which the result easily follows.�

Since (1) holds true for

dh(w) = e−w1{w>0} dw and ψ(r) = 1[0,1](r)
vol(Bn

p)
,

we have established Theorem 1. We now study more general distributions.
By making the change of variables = rp

1−rp in (1), we obtain the following
representation theorem. We refer to [36] for completely monotone functions and
the Laplace transform.

THEOREM 4. Let ν be a probability measure onRn with density
ψ(‖x‖p)1[0,1](‖x‖p). Assume that the function

s �→ 1

(1+ s)n/p+1ψ

((
s

1+ s

)1/p)
, s > 0,
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is completely monotone. Then there is a positive random variableW such that for
every measurableA ⊂ R

n,

ν(A) = P

(
G

(‖G‖p
p + W)1/p

∈ A

)
,

and the density ofW is given by

[2�(1/p + 1)]n
wn/p

L−1
[
s �→ 1

(1+ s)n/p+1ψ

((
s

1+ s

)1/p)]
(w), w > 0,

whereL is the Laplace transform.

Next, we single out an interesting case for which the above theorem may
be applied: whenW is a gamma(α,1) random variable, the density ofW is
h(w) = 1/�(α)wα−1e−w, and thus[

2�

(
1

p
+ 1

)]n

ψ(r) = 1

�(α)(1− rp)n/p+1

∫ ∞
0

wn/p+α−1e−w/(1−rp) dw

= (1− rp)n/p+α

�(α)(1− rp)n/p+1

∫ ∞
0

wn/p+α−1e−w dw

= (1− rp)α−1�(n/p + α)

�(α)
.

COROLLARY 3. LetW be a gamma(α,1) random variable. Then the random
vector G

(‖G‖p
p+W)1/p generates the measure onBn

p with density

f (x) = �(n/p + α)

�(α)[2�(1/p + 1)]n (1− ‖x‖p
p)α−11[0,1](‖x‖p).(2)

Finally let us give a geometric interpretation of some of our representations.
Fix two integersm,n and consider the orthogonal projection of the cone measure
on ∂Bn+m

p onto the firstn coordinates. By the Schechtman–Zinn theorem, this
measure is generated by the random vector

(g1, . . . , gn)

(
∑n

i=1 |gi |p + ∑m+n
i=n+1 |gi |p)1/p

.

The random variable
∑m+n

i=n+1 |gi |p is independent ofg1, . . . , gn and has a
gamma(m/p,1) distribution. Hence, the above discussion leads to the following
extension of classical observations aboutBn

1 and Bn
2 (for these sets the cone

measure coincides with the better studied normalized surface measure).

COROLLARY 4. Whenp is an integer, the orthogonal projection of the cone
measure on∂B

n+p
p onto the firstn coordinates is the(normalized) volume measure
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on Bn
p. More generally, for arbitrary p > 0, the orthogonal projection of the cone

measure on∂Bn+m
p onto the firstn coordinates has density

f (x) = �((n + m)/p)

�(m/p)[2�(1/p + 1)]n (1− ‖x‖p
p)m/p−11[0,1](‖x‖p).

2.1. An application: sub-independence of coordinate slabs.The sub-indepen-
dence of coordinate slabs inBn

p is helpful in the study of the central limit problem
[1, 25] and of various deviation inequalities [8, 24]. More precisely, this property
is enjoyed by the normalized volume measure onBn

p, as proved analytically in
[4] and geometrically in [1]. It was established probabilistically in [24] for the
cone measure onBn

p. In this section we combine our representation results with
an argument of [24] in order to derive sub-independence of coordinate slabs for a
wider class of distributions. We require the following result:

THEOREM 5 ([7]). Let X1, . . . ,Xn be independent symmetric random vari-
ables. Assume thatXi has densityψi = e−Vi , whereVi is locally integrable. For
X = (X1, . . . ,Xn), the random vector X

‖X‖p
is independent of the random variable

‖X‖p if and only if there areb1, . . . , bn > −1 anda, c1, . . . , cn > 0 such that for
every1≤ i ≤ n, ψi(x) = ci |x|bi e−a|x|p .

REMARK. As a consequence of this characterization, setting fork ≤ n,
Xk := (X1, . . . ,Xk) (where we write for simplicityX for Xn), it follows that the
independence of X

‖X‖p
from ‖X‖p guarantees for everyk < n the independence

of Xk

‖Xk‖p
from ‖Xk‖p.

The following lemma was essentially proved in [24]. It was stated there for the
cone measure on∂Bn

p, but the proof carries through to the more general setting.
We sketch the argument for the sake of completeness. Our geometric interest led us
to consider symmetric variables, but it is clear that the result concerns nonnegative
variables.

LEMMA 5. Let X1, . . . ,Xn be independent symmetric random variables.
For i = 1, . . . , n − 1, assume thatXi has densityψi = exp(−Vi), whereVi is
locally integrable. We writeµn for the law of |Xn|. DenoteX = (X1, . . . ,Xn),
Xn−1 = (X1, . . . ,Xn−1) and assume thatXn−1

‖Xn−1‖p
is independent of‖Xn−1‖p. Let

f1, . . . , fn : [0,∞) → [0,∞) be nonnegative nondecreasing functions. Then

E

[
n∏

i=1

fi

( |Xi |
‖X‖p

)]
≤

n∏
i=1

Efi

( |Xi |
‖X‖p

)
.
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PROOF. The proof is by induction onn. Assume thatn > 1 and that the
required inequality holds forn − 1. Conditioning on|Xn|,

E

[
n∏

i=1

fi

( |Xi |
‖X‖p

)]
=

∫
R+

E

{[
n−1∏
i=1

fi

( |Xi |
(‖Xn−1‖p

p + rp)1/p

)]

× fn

(
r

(‖Xn−1‖p
p + rp)1/p

)}
dµn(r).

Note that by the remark after Theorem 5,X
n−2

‖Xn−2‖p
and‖Xn−2‖p are independent,

so that we may apply the inductive hypothesis. Denote byϕ the density of

‖Xn−1‖p, and by the independence ofX
n−1

‖Xn−1‖p
, and‖Xn−1‖p it follows that for

everyr > 0,

E

{[
n−1∏
i=1

fi

( |Xi |
(‖Xn−1‖p

p + rp)1/p

)]
· fn

(
r

(‖Xn−1‖p
p + rp)1/p

)}

=
∫ ∞

0
ϕ(u)fn

(
r

(up + rp)1/p

)
· E

[
n−1∏
i=1

fi

(
u

(up + rp)1/p
· |Xi |
‖Xn−1‖p

)]
du

≤
∫ ∞

0
ϕ(u)fn

(
r

(up + rp)1/p

)
·
n−1∏
i=1

Efi

(
u

(up + rp)1/p
· |Xi |
‖Xn−1‖p

)
du.

Foru > 0 lethu(r) = fn(
r

(up+rp)1/p ) and

ku(r) =
n−1∏
i=1

Efi

(
u

(up + rp)1/p
· |Xi |
‖Xn−1‖p

)
.

Thushu is nondecreasing andku is nonincreasing and ifX′
n is an independent copy

of Xn, then[hu(|Xn|) − hu(|X′
n|)] · [ku(|Xn|) − ku(|X′

n|)] ≤ 0 pointwise. Taking
expectation of this inequality,∫

R+
hu(r)ku(r) dµn(r) ≤

(∫
R+

hu(r) dµn(r)

)(∫
R+

ku(r) dµn(r)

)
,

implying that

E

[
n∏

i=1

fi

( |Xi |
‖X‖p

)]
≤

∫
R+

∫ ∞
0

ϕ(u)hu(r)ku(r) dudµn(r)

≤
∫ ∞

0
ϕ(u)

(∫
R+

hu(r) dµn(r)

)(∫
R+

ku(r) dµn(r)

)
du

=
n∏

i=1

Efi

( |Xi |
‖X‖p

)
. �
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The main result of this section is contained in the following theorem.

THEOREM 6. Let G = (g1, . . . , gn) be a random vector with independent
coordinates with distributione−|t |p/(2�(1+1/p)), t ∈ R. LetW be a nonnegative
random variable, independent fromG. Letν be the distribution(supported onBn

p)
of the vector

G

(‖G‖p
p + W)1/p

.

Then for everys1, . . . , sn > 0,

ν

(
n⋂

i=1

{|xi | ≥ si}
)

≤
n∏

i=1

ν({|xi | ≥ si}).

PROOF. Assume thatε is a random variable independent ofG andW which
takes the values+1,−1 with probability 1/2. We setX = (g1, . . . , gn, εW

1/p) ∈
R

n+1. By Theorem 2, G
‖G‖p

and‖G‖p are independent, so we can apply Lemma 5
to X, with fi(x) = 1[si ,∞)(x) for i = 1, . . . , n andfn+1 = 1. Hence,

P

(
n⋂

i=1

{ |gi |
(‖G‖p

p + W)1/p
≥ si

})
≤

n∏
i=1

P

({ |gi |
(‖G‖p

p + W)1/p
≥ si

})
.

�

REMARK. By the very same proof, one can see that the conclusion of
Lemma 5 holds for nonnegative, nonincreasing functions. Thus Theorem 6 also
holds for symmetric slabs{|xi | ≤ si}.

REMARK. We have obtained sub-independence of coordinate slabs for a
class of measures onBn

p, described in Theorem 3. This unifies the previously
known occurrences of such sub-independence, since the cone measureµn

p and the
normalized volume measure onBn

p belong to this class. We obtain new concrete
examples, as the measuresνα with density

fα(x) = �(n/p + α)

�(α)[2�(1/p + 1)]n (1− ‖x‖p
p)α−11[0,1](‖x‖p).

Since these measuresνα are isotropic, an immediate consequence of Theorem 6 is
that they enjoy the central limit property in the sense that Theorem 5 of [25] holds
for them. We refer to that paper for details.

2.2. An application: moment inequalities onBn
p for p ≥ 1. In what follows,

given two sequences of positive real numbers(ai)i∈I , (bi)i∈I , the notationai ∼ bi

refers to the fact that there are constantsc and C such that for alli ∈ I ,
cai ≤ bi ≤ Cai . We emphasize that suchc,C are always absolute numerical
constants.
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We can relate moments of linear functionals onBn
p to moments of linear

functionals of the random vectorG = (g1, . . . , gn) with independent coordinates
with distributione−|t |p/(2�(1+ 1/p)):

LEMMA 6. For every integern ≥ 1, everyp,q ≥ 1 and everya ∈ R
n, one has

(
1

vol(Bn
p)

∫
Bn

p

∣∣∣∣∣
n∑

i=1

aixi

∣∣∣∣∣
q

dx

)1/q

∼ 1

(max{n,q})1/p

(
E

∣∣∣∣∣
n∑

i=1

aigi

∣∣∣∣∣
q)1/q

.

PROOF. Denotea = (a1, . . . , an). By the probabilistic representation of the
volume measure onBn

p established in Theorem 1,

1

vol(Bn
p)

∫
Bn

p

∣∣∣∣∣
n∑

i=1

aixi

∣∣∣∣∣
q

dx = E

∣∣∣∣
〈

G

(‖G‖p
p + Z)1/p

, a

〉∣∣∣∣
q

= E

[( ‖G‖p
p

‖G‖p
p + Z

)q/p∣∣∣∣
〈

G

‖G‖p

, a

〉∣∣∣∣
q]

=
[
E

( ‖G‖p
p

‖G‖p
p + Z

)q/p]
·
[
E

∣∣∣∣
〈

G

‖G‖p

, a

〉∣∣∣∣
q]

=
[
E

( ‖G‖p
p

‖G‖p
p + Z

)q/p]
· E|〈G,a〉|q

E‖G‖q
p

,

where we have used the independence ofG
‖G‖p

and‖G‖p. Applying this identity
to a = (1,0, . . . ,0) yields

1

E‖G‖q
p

[
E

( ‖G‖p
p

‖G‖p
p + Z

)q/p]
= 1

vol(Bn
p)E|g1|q

∫
Bn

p

|x1|q dx.

Now, E|g1|q = �((q+1)/p+1)
(q+1)�(1/p+1)

, and for everyp,q ≥ 1,

1

vol(Bn
p)

∫
Bn

p

|x1|q dx

= 2vol(Bn−1
p )

vol(Bn
p)

∫ 1

0
uq(1− up)(n−1)/p du

= 2[2�(1/p + 1)]n−1�(n/p + 1)

�((n − 1)/p + 1)[2�(1/p + 1)]n
1

p

∫ 1

0
v(q+1)/p−1(1− v)(n−1)/p dv

= �(n/p + 1)

�((n − 1)/p + 1)�(1/p + 1)
· �((q + 1)/p + 1)�((n − 1)/p + 1)

(q + 1)�((n + q)/p + 1)
,
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where we have used vol(Bn
p) = (�(1+ 1/p))n/�(1+ n/p). Therefore,

1

E‖G‖q
p

[
E

( ‖G‖p
p

‖G‖p
p + Z

)q/p]
= �(n/p + 1)

�((n + q)/p + 1)
,

and by Stirling’s formula, there are constantsc,C > 0 such that for alln,q,p ≥ 1,

c
1

(max{n,q})1/p
≤

(
�(n/p + 1)

�((n + q)/p + 1)

)1/q

≤ C
1

(max{n,q})1/p
. �

For independent symmetric random variable with log-concave cumulated
distribution function, Gluskin and Kwapień [17] obtained an almost exact
expression of moments of linear functionals. We apply their result to obtain:

PROPOSITION7. Let n ≥ 1 be an integer. Let p,q ≥ 1 and a1 ≥ a2 ≥ · · · ≥
an ≥ 0. Then(

E

∣∣∣∣∣
n∑

i=1

aigi

∣∣∣∣∣
q)1/q

∼ q1/p‖(ai)i≤q‖p′ + √
q‖(ai)i>q‖2,

wherep′ ∈ [1,+∞] is the dual exponent ofp, defined by1
p

+ 1
p′ = 1.

The proof of Proposition 7 requires some preparation.

LEMMA 8. For everyt > 0,∫ ∞
t

e−up

du ≤ e−tp

ptp−1 ,

and for everyt ≥ 1, ∫ ∞
t

e−up

du ≥ e−tp

2ptp−1 .

In addition, the functiont �→ ∫ ∞
t e−up

du is log-concave.

PROOF. For everyt > 0,∫ ∞
t

e−up

du ≤
∫ ∞
t

up−1

tp−1 e−up

du = e−tp

ptp−1 .

To prove the reverse inequality assume thatt ≥ 1. Integrating by parts,∫ ∞
t

e−up

du =
∫ ∞
t

u1−p · up−1e−up

du

= e−tp

ptp−1 − p − 1

p

∫ ∞
t

e−up

up
du ≥ e−tp

ptp−1 −
∫ ∞
t

e−up

du,
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which implies the assertion.
Finally, setf (t) = ∫ ∞

t e−up
du. In order to show thatf is log-concave it suffices

to show thatf ′′f − (f ′)2 ≤ 0 point-wise. Now,

f ′′(t)f (t) − f ′(t)2 = e−tp
(
ptp−1

∫ ∞
t

e−up

du − e−tp
)

≤ 0,

by the first assertion we proved.�

PROOF OF PROPOSITION 7. In what followsg denotes a random variable
with density 1/(2�(1+ 1/p))e−|t |p . Let θp > 0 be such thatP(θp|g| ≥ 1) = 1/e.
DenoteN(t) = − logP(θp|g| ≥ t) and letN∗(t) be the Legendre transform ofN ,
that is,N∗(t) = sup{ts − N(s); s > 0}. By Lemma 8,N is convex, and a result
of Gluskin and Kwapién [17] states that in this case,(

E

∣∣∣∣∣
n∑

i=1

aigi

∣∣∣∣∣
q)1/q

∼ θp

[
inf

{
t > 0;∑

i≤q

N∗
(

qai

t

)
≤ q

}
+ √

q

( ∑
i>q

a2
i

)1/2]
,

wherea1 ≥ a2 ≥ · · · ≥ an ≥ 0. Whenp = 1, all the above quantities are easily
computed [in particularN(t) = t ] and the proposition follows. Forp > 1, we
shall prove below that there exist universal constantsc, c′,C,C′ > 0 such that
for all p > 1,

c′ ≤ θp ≤ C′, ∀ t > 0 (N∗(t))(p−1)/p ≤ Ct and
(3)

∀ t ≥ 2 (N∗(t))(p−1)/p ≥ ct.

First we explain how these inequalities allow us to conclude. Let

t0 = inf

{
t > 0;∑

i≤q

N∗
(

qai

t

)
≤ q

}
.

The above upper bound onN∗ gives that ifu0 = Cq1/p(
∑

i≤q a
p/(p−1)
i )(p−1)/p,

then ∑
i≤q

N∗
(

qai

u0

)
≤

(
Cq

u0

)p/(p−1) ∑
i≤q

a
p/(p−1)
i ≤ q,

which yields

t0 ≤ Cq1/p

(∑
i≤q

a
p/(p−1)
i

)(p−1)/p

.

Moreover, ifi0 is the biggest integer in{1, . . . , q +1} such thatqai0−1/t0 ≥ 2, then
for all i ≤ i0 − 1, qai/t0 ≥ 2, in which case we can use the lower bound ofN∗ and
for all i ≥ i0, ai < 2t0/q. By definition oft0, we get

q ≥ ∑
i≤q

N∗
(

qai

t0

)
≥ ∑

i≤i0−1

(
Cqai

t0

)p/(p−1)

,
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which shows thatt0 ≥ cq1/p(
∑

i≤i0−1 a
p/(p−1)
i )(p−1)/p. It is now clear that

q1/p

(∑
i≤q

a
p/(p−1)
i

)(p−1)/p

≤ q1/p

( ∑
i≤i0−1

a
p/(p−1)
i

)(p−1)/p

+ q1/p

( ∑
i≥i0

a
p/(p−1)
i

)(p−1)/p

≤ t0

c
+

(
q − i0 + 1

q

)(p−1)/p

2t0 ≤
(

2+ 1

c

)
t0.

Now we establish inequalities (3). To prove the bounds onθp, note that since
|g| has uniformly bounded density inp, there is an absolute constantc > 0 such
that for everys > 0, P(|g| ≥ s) ≥ 1 − cs. If s = c−1(1 − e−1), then P(|g| ≥
s) ≥ P(|g| ≥ 1/θp), which shows thatθp ≤ s−1 ≤ C. On the other hand, Lemma 8
implies that there is an absolute constantc′ for whichP(|g| ≥ c′) ≤ 1/e = P(|g| ≥
1/θp), and thusθp ≥ 1/c′.

Finally, we address the above mentioned bounds onN∗. Lemma 8 states thatN
is convex. In particular,N is bounded from below by its tangent function at zero,
that is,N(s) ≥ sN ′(0). So if t ≤ 1/θp�(1+ 1/p) = N ′(0), then

0≤ N∗(t) = sup
s>0

(
ts − N(s)

) ≤ sup
s>0

s
(
t − N ′(0)

) = 0,

and the claimed upper bound onN∗ is obvious. We may restrict attention to
t ≥ 1/θp�(1+ 1/p). DenotingS = s/θp, Lemma 8 shows that for everyS ≥ 1,

N(s) = N(Sθp) ≥ Sp + (p − 1) logS + log[p�(1+ 1/p)] ≥ Sp.

Hence, for everyS ≥ 1,

ts − N(s) = tSθp − N(Sθp) ≤ tSθp − Sp

≤ sup
S>0

{tSθp − Sp} = (p − 1)

(
tθp

p

)p/(p−1)

≤ (Ct)p/(p−1).

For 0< S < 1, that is, 0< s < θp, st − N(s) ≤ θpt ≤ (Ct)p/(p−1) since t is
bounded from below, and the upper bound forN∗ follows.

The lower bound in Lemma 8 shows that there are absolute constantsc,C > 1
such that ifS ≥ c, N(s) = N(Sθp) ≤ (CS)p. ThereforeN∗(t) ≥ sup{tSθp −
(CS)p;S ≥ c} and if tθp ≥ cp−1Cpp, this supremum is attained atS =
(tθp/pCp)1/(p−1) ≥ c so that

N∗(t) ≥
(

1− 1

p

)(
tθp

C

)p/(p−1) 1

p1/(p−1)
,
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and we are done. We may therefore assume thattθp ≤ pcp−1Cp. By our choice of
θp, N(1) = 1, which implies that for allt ≥ 2,

N∗(t) ≥ t − N(1) ≥ t

2
≥ (C̃t)p/(p−1),

with a new constant̃C. This completes the proof.�

The results of this section may be combined to obtain the following exact
expression, up to universal constants: fora1 ≥ a2 ≥ · · · ≥ an ≥ 0,

(
1

vol(Bn
p)

∫
Bn

p

∣∣∣∣∣
n∑

i=1

aixi

∣∣∣∣∣
q

dx

)1/q

∼ q1/p‖(ai)i≤q‖p′ + √
q‖(ai)i>q‖2

(max{n,q})1/p
,(4)

which virtually allows one to solve any question related to moment estimates
onBn

p.

2.2.1. Khinchine inequalities. A well-known variant of Khinchine’s inequal-
ity (see [23]) states that for every 1≤ p,q < ∞ and every integern, there are
A(p,q,n),B(p, q,n) > 0 such that for every(a1, . . . , an) ∈ R

n,

A(p,q,n)

(
n∑

i=1

a2
i

)1/2

≤
(

1

vol(Bn
p)

∫
Bn

p

∣∣∣∣∣
n∑

i=1

aixi

∣∣∣∣∣
q

dx

)1/q

≤ B(p,q,n)

(
n∑

i=1

a2
i

)1/2

,

and we assume thatA(p,q,n),B(p, q,n) are the best constants for which the
above inequality holds for all(a1, . . . , an) ∈ R

n. We determineA(p,q,n) and
B(p,q,n), up to absolute multiplicative constants.

THEOREM 7. For every integern and for every1≤ q < ∞ and1≤ p ≤ 2,

A(p,q,n) ∼
√

q

n1/p
min

{
1,

√
n

q

}
and B(p,q,n) ∼ min

{
1,

(
q

n

)1/p}
,

while for 2< p < ∞,

A(p,q,n) ∼ min
{
1,

(
q

n

)1/p}
and B(p,q,n) ∼

√
q

n1/p
min

{
1,

√
n

q

}
.

This is a consequence of (4) and of the following:
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LEMMA 9. For everya = (a1, . . . , an) ∈ Sn−1, if 1 < p ≤ 2 then

√
q max

{
1,

(
q

n

)1/p−1/2}
≤ q1/p

(∑
i≤q

a
p/(p−1)
i

)(p−1)/p

+ √
q

( ∑
i>q

a2
i

)1/2

≤ √
2 · q1/p.

If 2< p < ∞, then

q1/p ≤ q1/p

(∑
i≤q

a
p/(p−1)
i

)(p−1)/p

+ √
q

( ∑
i>q

a2
i

)1/2

≤ √
2q min

{
1,

(
n

q

)1/2−1/p}
.

Furthermore, these inequalities are optimal, up to universal constants.

PROOF. Assume that 1< p ≤ 2. Since
√

a + √
b ≤ √

2
√

a + b,

q1/p

(∑
i≤q

a
p/(p−1)
i

)(p−1)/p

+ √
q

( ∑
i>q

a2
i

)1/2

≤ q1/p

(∑
i≤q

a2
i

)1/2

+ √
q

( ∑
i>q

a2
i

)1/2

≤ √
2 · q1/p.

Similarly, if q > n, then

q1/p

(∑
i≤q

a
p/(p−1)
i

)(p−1)/p

+ √
q

( ∑
i>q

a2
i

)1/2

= q1/p

(∑
i≤n

a
p/(p−1)
i

)(p−1)/p

≥ q1/p

n1/p−1/2 ,

and ifq ≤ n,

q1/p

(∑
i≤q

a
p/(p−1)
i

)(p−1)/p

+ √
q

( ∑
i>q

a2
i

)1/2

≥ √
q.

The fact that these inequalities are best possible up to universal constants follows
by considering in each case the vectors(1,0, . . . ,0), (1/

√
n, . . . ,1/

√
n ) or

(1/
√

q, . . . ,1/
√

q,0, . . . ,0) whenq ≤ n. The proof of the casep ≥ 2 is equally
simple. �
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2.2.2. ψ2-directions. We start with a few definitions. Letα ∈ [1,2] and setµ
to be a probability measure onRn. For a measurable functionf :Rn → R, define
the following Orlicz norm associated withα andµ by

‖f ‖ψα(µ) := inf
{
λ > 0;

∫
e|f/λ|α dµ ≤ 2

}
.

It is well known that‖f ‖ψα(µ) ∼ supq≥1 q−1/α(
∫ |f |q dµ)1/q (this follows from

the Taylor expansion of the exponential). Given a vectorθ in the unit sphereSn−1

of R
n, one says thatθ defines aψα-direction forµ with a constantC > 0 if the

functionfθ (x) = 〈x, θ〉 satisfies

‖fθ‖ψα(µ) ≤ C

(∫
|fθ |2 dµ

)1/2

.

In other words, the moment offθ of orderq is bounded from above by a constant
timesCq1/α times the second moment offθ .

From now on consider a convex bodyK ⊂ R
n, with the center of mass at the

origin. Such a body is said to be aψα-body with constantC if all directions
θ ∈ Sn−1 areψα with a constantC, with respect to the uniform probability measure
on K . It follows from the Brunn–Minkowski inequality that convex bodies are
ψ1 with a uniform constant, and any improvement on this estimate would be
very useful. Note that the notion ofψ2-bodies is crucial in Bourgain’s bound
on the isotropy constant [12] of convex bodies. This motivated recent works on
the ψ2-directions of convex bodies. In fact, it is not even clear that there exists
a universal constantC such that any convex body (of any dimension) admits at
least oneψ2-direction with constantC. This question of Milman was solved in
special cases such as zonoids [27] and unconditional bodies (Bobkov and Nazarov
[11] show that the main diagonal isψ2). Thanks to (4) we are able to study these
questions forBn

p.

PROPOSITION10. There existsC > 0 such that:

(i) for everyn ≥ 1 and everyp ≥ 2, Bn
p is aψ2-body with constantC.

(ii) for everyn ≥ 1 and everyp ∈ [1,2], Bn
p is aψp-body with constantC.

The first point was actually a consequence of results in [8], where sub-
independence was also used.

PROOF. Without loss of generality we consider a directionθ ∈ Sn−1 with
θ1 ≥ θ2 ≥ · · · ≥ θn ≥ 0. Fix q ≥ 1. Equation (4) gives, with obvious notation,

(EBn
p
|〈X,θ〉|q)1/q

(EBn
p
|〈X,θ〉|2)1/2 ∼

(
n

max{n,q}
)1/p

· (
q1/p‖(θi)i≤q‖p′ + √

q‖(θi)i>q‖2
)
,(5)

wherep′ = p/(p − 1).
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The result now follows from obvious estimates. Indeed, sincen/max{n,q} ≤ 1,
for p ≥ 2, Hölder’s inequality implies that‖(θi)i≤q‖p′ ≤ min{n,q}1/2−1/p ×
‖(θi)i≤q‖2 ≤ q1/2−1/p. Hence, the right-hand side in (5) is less than 2

√
q. For

p ∈ [1,2], it is evident that‖(θi)i≤q‖p′ ≤ ‖(θi)i≤q‖2 ≤ 1 and thus the ratio of
moments is bounded by a constant timesq1/p. �

Next, we describe theψ2-constant onBn
p of every direction for 1≤ p ≤ 2.

PROPOSITION11. Let p ∈ [1,2]. For any integern ≥ 1 andθ ∈ Sn−1, θ is a
ψ2-direction ofBn

p and the best constant for which it isψ2 is, up to an absolute

multiplicative constant, n1/p−1/2‖θ‖p′ .

Observe that from the above result, the direction of the main diagonal isψ2. For
p = 1 we recover a result of Bobkov and Nazarov [10]. (Let us note that in that
paper, the authors give another moment estimate forBn

1 , which can be recovered by
our method, and which implies that most directions areψ2−ε . Moreover, Bobkov
and Nazarov show that these moment upper estimates forBn

1 can be transferred to
isotropic unconditional convex bodies.)

PROOF. Assume, as we may, thatθ1 ≥ θ2 ≥ · · · ≥ θn ≥ 0. Forq < n the right-
hand side of (5) is equal to

q1/p‖(θi)i≤q‖p′ + √
q‖(θi)i>q‖2 ≤ √

q
(
n1/p−1/2‖(θi)i≤n‖p′ + 1

)
≤ 2

√
qn1/p−1/2‖(θi)i≤n‖p′,

where we used Hölder’s inequality in the form 1= ‖(θi)i≤n‖2 ≤ n1/p−1/2 ×
‖(θi)i≤n‖p′ .

If q ≥ n, the right-hand side of (5) isn1/p‖θ‖p′ ≤ √
qn1/p−1/2‖(θi)i≤n‖p′ .

For q = n, it is easy to see that the estimate cannot be improved by more than
a universal factor. �

3. Extremal geometric parameters of sections of Bn
p , p > 0. In what

follows we will denote byG a standard Gaussian vector. IfE ⊂ R
n is a

k-dimensional subspace, thenG will still stand for a standard Gaussian vector
onE (which is well defined due to rotational invariance).

3.1. Bounds via stochastic ordering.In this section, we present monotonicity
properties for sections ofBn

p asp > 0 varies. We follow the approach of Meyer and
Pajor [22]. They proved that for a fixed vector subspace of dimensionk in R

n, the
ratio Volk(E ∩ Bn

p)/Volk(Bk
p) is nondecreasing inp ≥ 1. This was later extended

to p > 0 and to�p-sums of arbitrary spaces of finite dimension (see [6] and
the reference therein). We are interested in Gaussian averages of the�p-norm on
sections. Our results will recover in several ways the latter result on the volume.



498 BARTHE, GUÉDON, MENDELSON AND NAOR

We will use the notion of peaked ordering on measures. Given two absolutely
continuous measuresµ andν on R

d , one says thatν is more peaked thanµ and
writesµ ≺ ν if for every symmetric bounded convex setC,

µ(C) ≤ ν(C).

In the following statement, we put together the properties that we need. They
follow from more general results by Kanter [19].

PROPOSITION12. Letµ,ν be probability measures onR, with even densities
which are nonincreasing on[0,∞). If µ ≺ ν, then for everyn ≥ 1 one has
µ⊗n ≺ ν⊗n.

The aim of the next two lemmas is to relate Gaussian averages of the�p-norm
on subspaces to the values of some product measures. LetE ⊂ R

n be a subspace
with dim(E) = k. We denote byPE the orthogonal projection fromRn ontoE and
let uk+1, . . . , un be an orthonormal basis ofE⊥. Set

B∞(E⊥) =
{
x ∈ E⊥; sup

i=k+1,...,n

|〈x,ui〉| ≤ 1
2

}

and forε > 0,

E(ε) = {x ∈ R
n;x − PE(x) ∈ εB∞(E⊥)}.

We denote byγn the standard Gaussian measure onR
n, and byγE the standard

Gaussian distribution on a vector subspaceE.

LEMMA 13. Let E be a k-dimensional subspace ofRn and seth to be
a continuous function inL1(R

n, γn), with the following property: there exist
K,η > 0 such that for everyx ∈ R

n one has|h(x)| ≤ Ke‖x‖2
2/(2+η). Then∫

E
h(x) dγE(x) = lim

ε→0

(
2π

ε2

)(n−k)/2 ∫
E(ε)

h(x) dγn(x).

PROOF. Fix someε > 0. In the following we recall the dimension of the
variable of integration by writing

∫
E f (a) dka when dim(E) = k,

(2π)n/2
∫
E(ε)

h(x) dγn(x)

=
∫

Rn
e−‖x‖2

2/21E(ε)(x)h(x) dx

=
∫
E×εB∞(E⊥)

e−‖a‖2
2/2−‖b‖2

2/2h(a + b)dka dn−kb

= εn−k
∫
E×B∞(E⊥)

e−‖a‖2
2/2e−ε2‖c‖2

2/2h(a + εc) dka dn−kc.
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By continuity and dominated convergence, the latter integral converges whenε

goes to zero to

voln−k

(
B∞(E⊥)

) ∫
E

e−‖a‖2
2/2h(a) dka,

which gives the claimed result.�

Fix 0 < p, λ < ∞, let α(p,λ) = 2
∫ ∞
0 e−λtp−t2

dt and setµp,λ to be the
probability measure onR defined by

dµp,λ(t) = e−λα(p,λ)p|t |p−α(p,λ)2t2
dt.

LEMMA 14. Let E be ak-dimensional subspace ofR
n and 0 < p,λ < ∞.

Then

Ee
(−λ/2p/2)‖G‖p

E∩Bn
p

Ee
(−λ/2p/2)‖G‖p

Bk
p

= lim
ε→0

εk−nµ⊗n
p,λ(E(ε)).

PROOF. By Lemma 13,

Ee
(−λ/2p/2)‖G‖p

E∩Bn
p

= lim
ε→0

(
2π

ε2

)(n−k)/2 ∫
E(ε)

e(−λ‖x‖p
p/2p/2)−(‖x‖2

2/2) dx

= lim
ε→0

(
2π

ε2

)(n−k)/2

2n/2α(p,λ)n

×
∫
E(ε/(

√
2α(p,λ)))

e−λα(p,λ)p‖x‖p
p−α(p,λ)2‖x‖2

2 dx

= lim
ε→0

2k/2α(p,λ)k
(

2π

ε2

)(n−k)/2

µ⊗n
p,λ(E(ε)).

Thus, applied toE = {x ∈ R
n;xk+1 = · · · = xn = 0} with ui = ei for i > k, this

identity yields

Ee
(−λ/2p/2)‖G‖p

Bk
p

= lim
ε→0

2k/2α(p,λ)k
(

2π

ε2

)(n−k)/2(∫ ε/2

−ε/2
e−λα(p,λ)p|t |p−α(p,λ)2t2

dt

)n−k

= 2k/2α(p,λ)k(2π)(n−k)/2,

from which the required result follows.�

In the forthcoming lemmas and propositions, we look for comparison results in
the sense of the peaked ordering, between measures of the formµp,λ. We start with
useful facts about the constantsα(p,λ) which appear in the definition ofµp,λ.
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LEMMA 15. Let λ > 0 and 0 < p < q < ∞. Then α(p, λ
�((p+1)/2)

) <

α(q, λ
�((q+1)/2)

).

PROOF. By its definition,

α(p,λ) = 2
∫ ∞

0
e−λtp−t2

dt = √
π · Eexp

(
−λ|g|p

2p/2

)
,

whereg is a standard Gaussian random variable. Recall that

E|g|p = 2p/2
√

π
�

(
p + 1

2

)
,

and thus

α

(
p,

λ

�((p + 1)/2)

)
= √

π · Eexp
(
− λ|g|p√

π · E|g|p
)
. �

Therefore, Lemma 15 follows from the following result:

LEMMA 16. Fix 0< p < q < ∞ and letX be a nonnegative random variable
with EXq < ∞. Then for every convex functionf : [0,∞] → [0,∞),

Ef

(
Xp

EXp

)
≤ Ef

(
Xq

EXq

)
.

PROOF. Let t0 be defined byt1/p
0 (EXp)1/p = t

1/q
0 (EXq)1/q . Clearly,

E

[
f

(
Xp

EXp

)
− f

(
Xq

EXq

)]
=

∫ t0

0
f ′(t)h(t) dt +

∫ ∞
t0

f ′(t)h(t) dt,(6)

whereh(t) = P(Xp ≥ tEXp) − P(Xq ≥ tEXq). Sinceh ≥ 0 on[0, t0] andh ≤ 0
on [t0,∞) and

∫ ∞
0 h(t) dt = 0, then∫ t0

0
f ′(t)h(t) dt +

∫ ∞
t0

f ′(t)h(t) dt

=
∫ t0

0
[f ′(t) − f ′(t0)]h(t) dt +

∫ ∞
t0

[f ′(t) − f ′(t0)]h(t) dt ≤ 0,

where we have used the fact thatf ′ is nondecreasing. Combined with (6), this
completes the proof.�

PROPOSITION17. Let 0 < p < q andλ1, λ2 > 0. Then:

(a) If q ≥ 2 andα(p,λ1) > α(q,λ2), thenµp,λ1 ≺ µq,λ2.
(b) If q < 2 andα(p,λ1) < α(q,λ2), thenµp,λ1 ≺ µq,λ2.
(c) If p < 2 and q ≥ 2, then without any restriction onλ1 and λ2,

µp,λ1 ≺ µq,λ2.



GEOMETRY OF THE�n
p-BALL 501

(d) If 0< p < 2 andλ1 < λ2, thenµp,λ2 ≺ µp,λ1.
(e) If p > 2 andλ1 < λ2, thenµp,λ1 ≺ µp,λ2.

PROOF. Defineh : [0,∞) → R by

h(a) =
∫ a

0

[
e−λ1α(p,λ1)

ptp−α(p,λ1)
2t2 − e−λ2α(q,λ2)

q tq−α(q,λ2)
2t2]

dt.

In order to prove thatµp,λ1 ≺ µq,λ2 one has to show thath(a) ≤ 0 for all a ≥ 0.
Note thath(0) = limx→∞ h(x) = 0, and if

ψ(t) = −λ1α(p,λ1)
ptp−2 − α(p,λ1)

2 + λ2α(q,λ2)
qtq−2 + α(q,λ2)

2,

then sign(h′) = sign(ψ).
In case (a), lima→0 ψ(a) < 0 and lima→∞ ψ(a) > 0. Henceh′ < 0 in a

neighborhood of 0 andh′(a) > 0 for a large enough. If there were somea0 > 0
such thath(a0) > 0, then it would follow thath′ must have at least three zeros.
Thusψ would also have three zeros, implying thatψ ′ has at least two zeros. This
is impossible since

ψ ′(t) = −λ1(p − 2)α(p,λ1)
ptp−3 + λ2(q − 2)α(q,λ2)

q tq−3

clearly has at most one zero.
Cases (b) and (c) are just as simple. To prove case (d) one must show that the

function

ψ(t) = (
λ2α(p,λ2)

p − λ1α(p,λ1)
p)

tp−2 + α(p,λ2)
2 − α(p,λ1)

2

is first positive and then negative. Since it changes signs only once, it is enough to
check this at zero and infinity. Observe that

α(p,λ) = 2
∫ ∞

0
e−λtp−t2

dt and λ1/pα(p,λ) = 2
∫ ∞

0
e−tp−t2/λ2/p

dt,

so thatα(p,λ) is decreasing inλ andλα(p,λ)p is increasing inλ. Sincep < 2,
then limx→0 ψ(x) = +∞ and limx→∞ ψ(x) < 0. The proof of the last case is
almost identical. �

PROPOSITION18. Let E be ak-dimensional subspace ofR
n and setλ > 0.

For p > 0, let

F(p) =
Eexp[−(λ‖G‖p

E∩Bn
p
)/(2p/2�((p + 1)/2))]

Eexp[−(λ‖G‖p

Bk
p
)/(2p/2�((p + 1)/2))] .

ThenF is nondecreasing on(0,2]. Moreover, for p ≥ 2 one hasF(p) ≥ F(2) = 1.
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PROOF. Let r < 2, fix someλ > 0, letp > r and define

λ1 = λ

�((r + 1)/2)
and λ2 = λ

�((p + 1)/2)
.

By Lemma 15 and cases (b) and (c) of Proposition 17,µr,λ1 ≺ µp,λ2. Tensorizing
and applying Proposition 12, it follows thatµ⊗n

r,λ1
≺ µ⊗n

p,λ2
. In particular, for every

ε > 0,

µ⊗n
r,λ1

(E(ε)) ≤ µ⊗n
p,λ2

(E(ε)).

By Lemma 14,

Eexp[−(λ‖G‖r
E∩Bn

r
)/(2r/2�((r + 1)/2))]

Eexp[−(λ‖G‖r
Bk

r
)/(2r/2�((r + 1)/2))]

(7)

≤
Eexp[−(λ‖G‖p

E∩Bn
p
)/(2p/2�((p + 1)/2))]

Eexp[−(λ‖G‖p

Bk
p
)/(2p/2�((p + 1)/2))] ,

henceF(r) ≤ F(p) holds whenr < 2 andr < p. �

THEOREM 8. LetE be ak-dimensional subspace ofR
n. Then the function

p �→
E‖G‖p

E∩Bn
p

E‖G‖p

Bk
p

is nonincreasing inp > 0.

PROOF. Assume thatp < q ≤ 2. Both sides of (7) equal 1 forλ = 0, so the
same inequality must hold between the derivatives at 0 of both sides; that is,

−
E‖G‖p

E∩Bn
p

2p/2�((p + 1)/2)
+

E‖G‖p

Bk
p

2p/2�((p + 1)/2)

≤ −
E‖G‖q

E∩Bn
q

2q/2�((q + 1)/2)
+

E‖G‖q

Bk
q

2q/2�((q + 1)/2)
.

Note that

E‖G‖p

Bk
p

= E

k∑
i=1

|gi |p = 2k√
2π

∫ ∞
0

xpe−x2/2 dx = 2p/2+1
√

π
k�

(
p + 1

2

)
.

Hence, the above inequality translates to

− 2k√
π

·
E‖G‖p

E∩Bn
p

E‖G‖p

Bk
p

+ 2k√
π

≤ − 2k√
π

·
E‖G‖q

E∩Bn
q

E‖G‖q

Bk
q

+ 2k√
π

,
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so that

E‖G‖p
E∩Bn

p

E‖G‖p

Bk
p

≥
E‖G‖q

E∩Bn
q

E‖G‖q

Bk
q

.

It remains to deal with the case 2≤ p < q, which is slightly more complicated
because the last proposition does not give much in this case for a fixed value of the
parameterλ. However, something remains true whenλ tends to zero, and thus one
can pass to the limit.

Indeed, fix two numberscp, cq > 0 such that

cp <
1

�((p + 1)/2)
and cq >

1

�((q + 1)/2)
,

and for everyλ > 0 define

f (λ) = α(p, cpλ) − α(q, cqλ) = 2
∫ ∞

0
e−cpλtp−t2

dt − 2
∫ ∞

0
e−cqλtq−t2

dt.

Then

f ′(0) = −2cp

∫ ∞
0

tpe−t2
dt + 2cq

∫ ∞
0

tqe−t2
dt

= 2 ·
[
cq�

(
q + 1

2

)
− cp�

(
p + 1

2

)]
> 0.

Sincef (0) = 0, it follows that there is someδ = δp,q > 0 such that for every
0< λ < δ, f (λ) > 0, that is,α(p, cpλ) > α(q, cqλ). Part (a) of Proposition 17
now implies thatµp,cpλ ≺ µq,cqλ. As before, tensorization and an application of
Lemma 14 give that for everyλ < δ,

Eexp(−λcp‖G‖p
E∩Bn

p
/2p/2)

Eexp(−λcp‖G‖p

Bk
p
/2p/2)

≤
Eexp(−λcq‖G‖q

E∩Bn
q
/2q/2)

Eexp(−λcq‖G‖q

Bk
q
/2q/2)

,

and the required inequality follows by taking derivatives at 0 and lettingcp andcq

tend to 1/�((p + 1)/2) and 1/�((q + 1)/2), respectively. �

REMARK. Assume that 0< p < 2. By Proposition 17, for everyλ > 0,
µp,λ ≤ µ2,λ = γ̄ , whereγ̄ has densitye−πx2

on R. Hence, by rotation invariance
of this Gaussian density, one has that for everyλ > 0,

Ee
−λ‖G‖p

E∩Bn
p ≤ Ee

−λ‖G‖p

Bk
p .

Thus, for any (reasonable) measureτ on [0,∞),

E

∫ ∞
0

e
−λ‖G‖p

E∩Bn
p dτ(λ) ≤ E

∫ ∞
0

e
−λ‖G‖p

Bk
p dτ (λ),
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which by Bernstein’s theorem (see, e.g., [36]) implies that for everyf : [0,∞) →R

which is completely monotonic,

Ef
(‖G‖p

E∩Bn
p

) ≤ Ef
(‖G‖p

Bk
p

)
,

provided these expectations are finite.

Two particular cases which should be singled out aref (t) = e−λtθ for 0< θ ≤ 1
andλ > 0, andf (t) = t−η for η > 0. The first case implies that for everyλ > 0,

Ee
−λ‖G‖θp

E∩Bn
p ≤ Ee

−λ‖G‖θp

Bk
p ,

which by differentiation at 0 yields

E‖G‖θp
E∩Bn

p
≥ E‖G‖θp

Bk
p
.

From the second case it is evident that for 0< α < k,

E‖G‖−α
E∩Bn

p
≤ E‖G‖−α

Bk
p
.

The conditionα < k is imposed to ensure that these expectations would be finite.
When 2< p < ∞, γ̄ ≺ µp,λ, and all the above inequalities are reversed.

Summarizing, we obtain

COROLLARY 19. Let E be a k-dimensional subspace ofR
n. Then for0 <

p < 2 and every0< α < k and0< β ≤ p,

E‖G‖−α
E∩Bn

p
≤ E‖G‖−α

Bk
p

and E‖G‖β
E∩Bn

p
≥ E‖G‖β

Bk
p
.

If 2< p < ∞, then for every0< α < k and0< β ≤ p,

E‖G‖−α
E∩Bn

p
≥ E‖G‖−α

Bk
p

and E‖G‖β
E∩Bn

p
≤ E‖G‖β

Bk
p
.

The following proposition is a corollary of parts (d) and (e) in Proposition 17.

PROPOSITION 20. Let E be a k-dimensional subspace ofRn. Then the
function

λ ≥ 0 �→ rp(λ) := Ee
−λ‖G‖p

E∩Bn
p

Ee
−λ‖G‖p

Bk
p

is nonincreasing whenp ≤ 2 and nondecreasing whenp ≥ 2.
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REMARK. Since rp(0) = 1, we have an alternative proof to Corollary 19.
Additionally, the limit ofrp(λ) whenλ tends to infinity is

∫
E e

−‖x‖p

E∩Bn
p dx

∫
Rk e

−‖x‖p

Bk
p dx

= volk(E ∩ Bn
p)

volk(Bk
p)

.

The above equality can be proved by polar integration. The comparison between
rp(0) and rp(+∞) yields an alternative proof of the Meyer–Pajor theorem [22]
which uses a different interpolation between exp(−t2) and exp(−|t |p).

3.2. Bounds via convolution inequalities.In this section we derive upper
bounds on the Laplace transform of‖G‖p

E∩Bn
p

for p > 2. The main tool is Ball’s

version of the Brascamp–Lieb inequality [3, 13]. We follow the method of [3]
where the main focus was on the volume of sections.

Let E be ak-dimensional subspace ofR
n and letP be the orthogonal projection

ontoE. The canonical basis ofRn provides a decomposition of the identity map
as

∑n
i=1 ei ⊗ ei = Idn, where(v ⊗ v)(x) = 〈x, v〉v. Projecting this relation ontoE

yields a decomposition of the identity onE
n∑

i=1

Pei ⊗ Pei = IdE .

Settingci = |Pei |2 and ui = Pei/|Pei | (or any unit vector if the norm ofPei

is 0), this rewrites as
∑n

i=1 ciui ⊗ui = IdE . Let λ > 0, and note that for anyx ∈ E

the ith coordinate in the canonical basis isxi = 〈x, ei〉 = 〈Px, ei〉 = 〈x,P ei〉 =√
ci〈x,ui〉. Hence,∫

E
e−λ‖x‖p

p−‖x‖2
2/2 dx =

∫
E

n∏
i=1

e−λ|xi |p−|xi |2/2 dx

=
∫
E

n∏
i=1

e−λ|√ci〈x,ui〉|p−ci〈x,ui〉2/2 dx

=
∫
E

n∏
i=1

(
e−λc

p/2−1
i |〈x,ui〉|p−〈x,ui〉2/2)ci dx

≤
n∏

i=1

(∫
R

e−λc
p/2−1
i |t |p−t2/2 dt

)ci

= exp

[
n∑

i=1

ci logψ

(
1√
ci

)]
,

where we have setψ(s) = 2
∫ ∞
0 e−λs2−ptp−t2/2 dt . First, observe that forp > 2 the

function defined on(0,∞) × [0,∞) by (s, t) → −λs2−ptp − t2/2 is concave.
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[Indeed, on this set the function(s, t) → s2−ptp is convex, as follows from a
direct calculation of its Hessian matrix.] Therefore, by a well-known result of
Borell, Prékopa and Rinott (see, e.g., [30]), logψ(s) is a concave function ofs > 0
[because it is the integral int of a log-concave function of(s, t)]. Lemma 22 below
ensures that the map

s > 0 �→ s logψ

(
1√
s

)

is concave. This property can be combined with the relation
∑n

i=1 ci = k (which
follows by taking traces in the decomposition of the identity). It yields that
for p ≥ 2, ∫

E
e−λ‖x‖p

p−‖x‖2
2/2 dx ≤

(∫
R

e−λ(
√

k/n )
p−2|t |p−t2/2 dt

)k

.

Returning to our previous setting, it implies that for everyλ > 0,

Ee
−λ‖G‖p

E∩Bn
p ≤ Ee

−λ(
√

k/n )p−2‖G‖p

Bk
p .

Integrating this inequality against positive measures on[0,∞) and applying
Bernstein’s theorem [36], it follows that for every completely monotonic function
f : [0,∞) → [0,∞),

Ef
(
λ‖G‖p

E∩Bn
p

) ≤ Ef
(
λ
(√

k/n
)p−2‖G‖p

Bk
p

)
.

In particular, the following corollary is evident.

COROLLARY 21. For anyp ≥ 2, every0≤ θ ≤ 1 and everyλ ≥ 0,

Ee
−λ‖G‖θp

E∩Bn
p ≤ Ee

−λ(
√

k/n )θ(p−2)‖G‖θp

Bk
p .

In particular, by differentiation at0 it follows that for every0≤ β ≤ p,

E‖G‖β
E∩Bn

p
≥

(
k

n

)β(1/2−1/p)

E‖G‖β

Bk
p
.

Also, for every0≤ α < k,

E‖G‖−α
E∩Bn

p
≤

(
n

k

)α(1/2−1/p)

E‖G‖−α

Bk
p
.

REMARK. Assume thatk dividesn, and writen = mk. Consider the subspace
F ⊂ R

n which is the “main diagonal” with respect to the decompositionR
n =

R
k × · · · × R

k [i.e., F = {(x1, . . . , xm);xi ∈ R
k, x1 = · · · = xm}]. Then

E‖G‖p
F∩Bn

p
= m

(
1√
m

)p

E‖G‖p

Bk
p

=
(

k

n

)p/2−1

E‖G‖p

Bk
p
,

which shows that whenk dividesn, the caseβ = p in Corollary 21 is optimal.
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LEMMA 22. Let c : [0,∞) → [0,∞) be a nondecreasing concave function.
Then the functionf (t) := tc( 1√

t
), defined fort > 0, is concave.

PROOF. We may assume thatc is twice continuously differentiable. Clearly,

f ′(t) = c

(
1√
t

)
− 1

2
√

t
c′

(
1√
t

)
,

which is nonincreasing provided the functiong(u) = c(u)− u
2c′(u) is nondecreas-

ing on [0,∞). Now, g′(u) = c′(u)
2 − u

2c′′(u) is nonnegative by our assumptions
on c. �

3.3. Gaussian measures of sections of the cube.In view of the previous
results, one is tempted to conjecture that the following distributional inequality
holds for Gaussian measures of sections of dilates of the�n

p-ball, that is, for
every k-dimensional subspaceE and everyr > 0, γk(rB

k
p) ≤ γE(E ∩ rBn

p) if
p ≥ 2 and the reverse inequality forp ≤ 2. If such a statement were true, some
of the previous results would follow by integration. Unfortunately, it seems that
the known techniques are insufficient for this purpose. The product structure of the
cube will, however, allow us to prove this conjecture forp = ∞.

By Lemma 13, for everyk-dimensional subspaceE ⊂ R
n andr > 0,

γE(E ∩ rBn∞) = lim
ε→0

(
π

2ε2

)(n−k)/2 1

(2π)n/2

∫
E(ε)

n∏
i=1

e−x2
i /21[−r,r](xi) dx.

Let θ(r) = θ be such that ∫ r/θ

−r/θ
e−θ2t2/2 dt = 1,

that is,

θ(r) =
∫ r

−r
e−t2/2 dt.

Clearlyθ is increasing and the functionr �→ θ(r)
r

is decreasing.
Denote byρr the probability measure onR defined by

dρr(t) = e−θ(r)2t2/21[−r/θ(r),r/θ(r)](t) dt.

Thus,

γE(E ∩ rBn∞)

= lim
ε→0

(
π

2ε2

)(n−k)/2 θ(r)n

(2π)n/2

∫
E(ε/θ(r))

n∏
i=1

e−θ(r)2y2
i /21[−r,r]

(
θ(r)yi

)
dy

= lim
ε→0

(
2

π

)k/2

· θ(r)k

2nεn−k
· ρ⊗n

r (E(ε)).
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Observe that

γk(rB
k∞) = 1

(2π)k/2

(∫ r

−r
e−t2/2 dt

)k

= θ(r)k

(2π)k/2 ,

hence

γE(E ∩ rBn∞)

γk(rBk∞)
= lim

ε→0

1

(2ε)n−k
· ρ⊗n

r (E(ε)).(8)

LEMMA 23. For everyr > s > 0, ρr ≺ ρs .

PROOF. As usual, defineh : [0,∞) → R by

h(a) =
∫ a

0

[
e−θ(r)2t2/21[−r/θ(r),r/θ(r)](t) − e−θ(s)2t2/21[−s/θ(s),s/θ(s)](t)

]
dt,

and our goal is to show thath(a) ≤ 0 for all a ≥ 0. The above mentioned properties
of θ yield r

θ(r)
≥ s

θ(s)
, so thath(a) = 0 for a ≥ r

θ(r)
. Moreover, for s

θ(s)
≤ a ≤ r

θ(r)
,

h(a) = ρr([0, a]) − 1 ≤ 0. Finally, for 0≤ a ≤ s
θ(s)

,

h(a) =
∫ a

0

[
e−θ(r)2t2/2 − e−θ(s)2t2/2]dt ≤ 0,

sinceθ(r) ≥ θ(s). �

By (8), tensorizing the above lemma yields:

THEOREM 9. For everyk-dimensional subspaceE ⊂ R
n the function

r �→ γE(E ∩ rBn∞)

γk(rBk∞)
, r > 0,

is nonincreasing. In particular, by passing to the limitr → ∞ it follows that for
everyr > 0,

γE(E ∩ rBn∞) ≥ γk(rB
k∞).

By arguments analogous to those in Section 3.2 one can also obtain the
following upper bound on the Gaussian measure of sections of dilates of the cube,
which is a Gaussian analog of Ball’s slicing theorem in [3]. As noted in Section 3.2,
these bounds are optimal whenk dividesn.

THEOREM 10. For everyk-dimensional subspaceE ⊂ R
n and everyr > 0,

γE(E ∩ rBn∞) ≤ γk

(
r

√
n

k
Bk∞

)
.
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3.4. An application: a remark on the Komlós conjecture.In this section we
apply the results of the previous section to prove the following proposition, which
was stated in the Introduction:

PROPOSITION24. There is an absolute constantC > 0 such that for every
integerm > 0 and everyx1, . . . , xm ∈ �∞, if we denote byd the dimension of the
linear span ofx1, . . . , xm, then there are signsε1, . . . , εm ∈ {−1,1} such that∥∥∥∥∥

m∑
i=1

εixi

∥∥∥∥∥∞
≤ C

√
logd · max

1≤1≤m
‖xi‖2 ≤ C

√
logm · max

1≤1≤m
‖xi‖2.

PROOF. We may assume thatx1, . . . , xm ∈ �2, in which case we may write
xi = yi + zi , whereyi ∈ �N∞ for some (large)N , and ‖zi‖∞ ≤ 1/m. Denote
E = span{y1, . . . , ym} and letd ′ be the dimension ofE. There is a constantc > 0
such that forr = c

√
logd ′ ≤ c

√
logd , γd ′(rBd ′

∞) ≥ 1
2. By Theorem 9, if we set

K = E ∩ rBN∞, thenγE(K) ≥ 1
2. By Banaszczyk’s theorem [5], there are signs

ε1, . . . , εm ∈ {−1,1} such that
∑m

i=1 εiyi ∈ cK , wherec is an absolute constant.
Hence ∥∥∥∥∥

m∑
i=1

εixi

∥∥∥∥∥∞
≤

∥∥∥∥∥
m∑

i=1

εiyi

∥∥∥∥∥∞
+

m∑
i=1

‖zi‖∞ ≤ (c + 1)
√

logd.
�

It is equally simple to deduce the following�p-version of this result forp > 2:

PROPOSITION25. There is an absolute constantC > 0 such that for every
2 ≤ p < ∞, every integerm > 0 and everyx1, . . . , xm ∈ �p, if we denote byd
the dimension of the linear span ofx1, . . . , xm, then there are signsε1, . . . , εm ∈
{−1,1} such that∥∥∥∥∥

m∑
i=1

εixi

∥∥∥∥∥
p

≤ C
√

p · d1/p · max
1≤1≤m

‖xi‖2 ≤ C
√

p · m1/p · max
1≤1≤m

‖xi‖2.

PROOF. As before, we may assume thatx1, . . . , xm ∈ �N∞ for some largeN .
By Corollary 19, if we setE = span{x1, . . . , xm}, then

E‖G‖p

E∩BN
p

≤ E‖G‖p

Bd
p

= dE|g1|p = O(dpp/2).

Hence, for everyr > 0,

γE(E ∩ rBN
p ) = 1− P

(‖G‖p

E∩BN
p

≥ rp) ≥ 1−
E‖G‖p

E∩BN
p

rp
≥ 1− O

(
dpp/2

rp

)
.

Setting K = E ∩ rBN
p , then for somer = O(

√
p · d1/p), γE(K) ≥ 1

2, which
concludes the proof by Banaszczyk’s theorem [5].�
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REMARK. The above estimate can actually be improved to give tail estimates
as follows. LetE be anm-dimensional subspace ofR

n. For p > 2 the function
x �→ ‖x‖p is Lipschitz with constant 1 onRn and the Gaussian isoperimetric
inequality shows that for everyε > 0,

γE

(
E ∩ (

E‖G‖E∩Bn
p

+ ε
)
Bn

p

) ≥ 1− e−ε2/2.

SinceE‖G‖E∩Bn
p

≤ E‖G‖Bk
p

≤ c
√

p · m1/p for some absolute constantc, then

γE

(
E ∩ (c

√
p · m1/p + ε)Bn

p

) ≥ 1− e−ε2/2.

3.5. An application: covering numbers of convex hulls of points in�2 by Bp

balls. In this section, which is similar in spirit to the previous one, we use our
results to give an infinite-dimensional extension of a classical inequality which
bounds the minimal number of cubesεBd∞ required to cover a convex hull of a
finite number of points in�d

2 (this classical result depends on the maximum ofd

and the number of points). Here, we are interested in finding upper bounds of the
minimal number of cubesεB∞ required to cover a convex hull of a finite number
of points in �2 depending only onε and the number of taken points. Since the
structure of�∞ depends deeply on the chosen basis in�2, a simple approximation
argument is not enough to obtain our result.

The main result of this section, as described in the Introduction, is restated
below:

PROPOSITION26. There exists an absolute constantC > 0 such that for every
integerm, ε > 0 and2≤ p ≤ ∞, for all x1, . . . , xm in the unit ball of�2,

logN(absconv{x1, . . . , xm}, εBp) ≤ C
logm

εp/(p−1)
.

PROOF. We first prove the proposition in the case whenp = ∞. Since allxi ’s
are inB2 we can find an integerd so that we can writexi = yi + zi with yi ∈ Bd

2
and‖zi‖∞ < ε for all i = 1, . . . ,m. If the absolute convex hull ofy1, . . . , ym can
be covered byN translates ofεBd∞, then the absolute convex hull ofx1, . . . , xm

can be covered byN translates of 2εB∞. So, it is enough to prove the result for
theyi ’s.

Let T :�m
1 → �d

2 defined byT ei = yi for all i = 1, . . . ,m, E = span{y1, . . . , ym}
and G be a Gaussian vector inE. Since ‖xi‖2 ≤ 1, then by Sudakov’s
inequality [35],

sup
ε>0

ε
√

logN
(
T (Bm

1 ), ε(Bd
2 ∩ E)

) ≤ E sup
i=1,...,m

|〈G,yi〉| ≤ C
√

logm.

Moreover, by the dual Sudakov inequality due to [26],

sup
ε>0

ε
√

logN(Bd
2 ∩ E,εBd∞) ≤ E‖G‖�d∞∩E,
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and by Corollary 19,E‖G‖�d∞∩E ≤ E‖G‖�dimE∞ ≤ C
√

logm. Therefore,

sup
ε>0

ε
√

logN(Bd
2 ∩ E,εBd∞) ≤ C

√
logm.

Since the covering numbers are sub-additive,

logN
(
T (Bm

1 ), εBd∞
)

≤ logN
(
T (Bm

1 ),
√

ε(Bd
2 ∩ E)

) + logN
(√

ε(Bd
2 ∩ E), εBd∞

)
≤ C · logm

ε
.

For a generalp ≥ 2, the proof follows by interpolation. Recall that for Banach
spacesX, Y and a compact operatoru :X → Y , the entropy numbers ofu are
defined for every integerk by

ek(u :X → Y) = inf
{
ε;N(

u(BX), εBY

) ≤ 2k}.
Let T be defined as before on�m

1 by T ei = xi for all i = 1, . . . ,m. It is well known
(see Lemma 12.1.11 in [28]) that for every integerk,

e2k−1(T :�m
1 → �p) ≤ ek(T :�m

1 → �2)
2/pek(T :�m

1 → �∞)1−2/p.

The above result forp = ∞, stated in terms of entropy numbers, is

ek(T :�m
1 → �∞) ≤ C · logm

k
,

and Sudakov’s inequality [35] is just

ek(T :�m
1 → �2) ≤ C ·

√
logm

k
.

Therefore,

e2k−1(T :�m
1 → �p) ≤ C ·

(
logm

k

)1−1/p

,

as claimed. �
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