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We investigate the close connection between metastability of the re-
versible diffusion procesX defined by the stochastic differential equation

dX,:—VF(X,)dt—I—«/stW;, 8>0,

and the spectrum near zero of its generatdt, = ¢A — VF - V, where
F:R4 - R andW denotes Brownian motion di?. For genericF to each

local minimum of F there corresponds a metastable state. We prove that
the distribution of its rescaled relaxation time converges to the exponential
distribution ase | 0 with optimal and uniform error estimates. Each
metastable state can be viewed as an eigenstdte with eigenvalue which
converges to zero exponentially fast ifiel Modulo errors of exponentially
small order in ¥e this eigenvalue is given as the inverse of the expected
metastable relaxation time. The eigenstate is highly concentrated in the basin
of attraction of the corresponding trap.
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1. Introduction. We address in this work the problem of characterizing—in
terms of potential theoretic quantities—the low-lying spectrum of the following
second-order, elliptic differential operator:

(1.1) Le=—gef?V .7tV = —¢A+VF .V, £>0,

on L2(R?, e~F/¢ dx), where the precise conditions dh:R¢ — R are given in
Assumption 1.2. Our main motivation is to derive precise uniform control in the
limit ¢ | O of the distribution ofmetastable transition times(x) of the diffusion
process(X;) on R? generated by-L., that is, the solution to the stochastic
differential equation

(1.2) dX¥ = —VF(XX)dt +~/2¢dW,, y=rx.

Here (W,) denotes Brownian motion dR? starting in zero. By definition (x) is

the first time of a transition from the basin of attraction corresponding to a given
local attractorx of VF, that is, a local minimum of, to small vicinities of the
more stable local attractors. The precise definitiom(@f) is given in (1.16).

We continue the work started in [4] and generalize the analysis of [3] from
the discrete to the continuous state space setting. To each local attratbtene
corresponds a simple eigenvalug of L, which is exponentially small in /.
Modulo this type of error this eigenvalue equals the inverse of the expectation
of 7(x). With the same precision an eigenfunction correspondirig is constant
in the basin of attraction of and exponentially small in “deeper” basins which
correspond to attractors satisfyingi, < A,. The results obtained in [4] then
yield in terms of F the leading-order asymptotic behavior of these eigenvalues.
Moreover, below some threshold of ordel no other eigenvalues occur. The
control of the low-lying part of the spectrum implies that the rescaled (by
its expectation) distribution of a metastable transition time converges—again
modulo in /e exponentially small errors—to the exponential distribution with
parameter 1.

Metastability in random dynamical systems is an intensively studied phenom-
enon. A Markov process in the metastable regime, roughly speaking, exhibits
guasi-invariant sets of the state space, which may be viewed as metastable states,
in which the process is captured for long time periods. For systems with discrete
state space in this regime in [22] and [23] as well as [30] and [7] the authors study
different aspects in this area. Concerning systems with continuous state space in
this regime, we refer the reader to [20, 33, 40, 41], where the authors develop a
large deviation technique for diffusion processes to study spectral and dynamical
properties. From the point of view of asymptotic expansions in the small parameter
¢ > 0 we mention [5, 6, 13-15, 19, 21, 30-32]. In most of these papers the authors
consider the process up to the time of exit from a single domain of attraction asso-
ciated to the unperturbed dynamical system. For the investigation of the spectrum
and its connection to metastability it is necessary to consider the process as it
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continues from one domain to another. In [9-11, 15, 21, 23] and in [5, 6, 32, 34],
where in the latter two articles the full description of the low-lying spectrum is
accomplished, the authors investigate properties of the spectrum of the generator
of the dynamical system that are connected to metastability. Unfortunately, these
approaches encounter the following shortcomings. Generally speaking, rigorous
asymptotic expansions, though giving sharp error estimates, suffer from strong reg-
ularity assumptions. On the other hadd:methods as applied in [34] and [9-11]

as well as large deviation theory lead to rough error estimates. In [3] and in [18] we
establish the characterization of the low-lying spectrum in the context of Markov
chains in the metastable regime. A key idea of [3, 4] and [17, 18] for irreversible
chains is to analyze metastability from the dynamical or from the spectral point of
view by potential theoretic methods, which particularly leads to a clear description
of the spectrum in terms of the geometryrofin addition to the work in [5, 6] and

in [32] we are able to establish the same precise relation of the small eigenvalues
to the geometric properties df. Our approach also considerably improves the
range of applicability as well as the quality of the error estimates. In [17, 18] this
aspect is particularly emphasized. Here we concentrate on the main new technical
complications which do not exist in systems with finite, discrete state space.

The technical tool to connect spectral to potential theory already appears in [40]
or in [35], relying on work of [44], and was rediscovered in [3]. Reference [40]
contains a description of the spectrum in terms of the underlying Markovian
process while in [44] and [35] the analytical counterpart is used to investigate
criticality of elliptic operators. This characterization is far more transparent for
processes with discrete state space as is demonstrated in [3] and in [17, 18]. The
fact that a point in discrete space can be visited by the process with strictly positive
probability, that is, has strictly positive capacity, might be seen as a main reason
for this difference. In continuous state spaces small balls are the equivalent of
points in discrete spaces. This choice entails the disadvantage that a function a
priori may change its sign on a small ball. Using level sets of functions instead of
balls, one quickly runs into technical complications whose solutions go beyond the
guestions we are addressing. The approach presented in the previously mentioned
references naturally requires to work in thé°-context. We hence shall follow
the strategy to first establish rather strong pointwisg-estimates. Compared
to [3] and [34] a second complication arises from the fact that the state space
is noncompact. A treatment of the analogous problem concerning irreversible,
infinite-state Markov chains can be found in [18]. There is a well-established
L2-theory of weighted estimates of solutions of second-order elliptic differential
equations as developed in [1] orin [26, 27] involving a small parameter from which
pointwise bounds on solutions can be obtained. The development of weighted
estimates will serve to gain control of the growth of eigenfunctions at infinity.
We would like to mention that the methods introduced in [4] and in [18] suffice
to prove the same kind of estimates for whifR-weighted estimates are not
available, even if the process is irreversible though technically simpler.
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The a priori input enables us to relate small eigenvaluek.ab the capacity
matrix introduced in [28]. For generi& the analysis of this matrix then is a
straightforward generalization of that in [3] and [18] for Markov chains. Let us
mention that this matrix representation also can be used to treat the degenerate
situation, where there exist attractors\of’ of equal strength with respect to each
other. It turns out that to each small eigenvalue there corresponds a quasi-invariant
set and a time scale, which roughly speaking equals the expected time the process
generated by, is captured this set. These time scales are defined in terms of
capacities and the invariant measure of the process. As is shown in [2] and [18]
in the discrete state space setting they determine the long-time behavior of the
process in a precise manner. These kind of results were extended in [4] to the
diffusion process generated lBy. They will serve as a crucial tool to investigate
small eigenvalues of ..

We now recall the main potential theoretic background. A Betwith
locally @2 boundary for some > 0 henceforth will be referred to asregular
set. Fix disjoint, nonempty closed regular séts8 ¢ R? such thal" = R\ A\ B is
connected (usually in the sequebndB are balls). The.-capacity of the capacitor
(A, B) is given by

(1.3) Ca[j}“(B)ES/aA e FE9uhY pdo —,\/Ae—F/de,

where locally there isx > 0 such thatF :R? — R is €1¢ for somea > 0,

o always denotes the Euclidean surface measure on the set the integration is
taken over,n is the unit normal at this surface pointing towardsu B and

the normal derivative is taken from outside and B. Here i, , denotes the
electrostatic equilibrium potential of the capacitor, that is, the weak solution
h e WL2(T, e=F/ dx) of the Dirichlet problem

(14) (Le—Mh(x)=gx), xel, h—feWyiT, e e ax),

where ' = RN\A\B, g =0, f = 14 and whereW; %', e ¥/ dx) denotes

the closure ofG3(I") in WL2(I", e=F/¢ dx), the space of weakly differentiable
functions with first partial derivatives ih?(T", e=¥/¢ dx). Under Assumption 1.2
standard regularity theory will show that (1.4) is uniquely solvable and that
the solution isC%* up to the boundary. Functioris satisfying (1.4) for some

f and g = 0 we sometimes refer to as (weaklgd. — A)-harmonicfunctions

(with respect to the measuee /¢ dx). In the commonly used terminology of
partial differential equations they are called wealdy. — e~/ 1)-harmonic (with
respect to Lebesgue measure), where we introduce the formally symmetric, locally
elliptic, second-order differential operator in divergence form

(15) AgE_Sv'e_F/8v=€_F/8L8,



248 M. ECKHOFF

In particular, the well-developed regularity theory for divergence-type operators is
available. Theommunication heightetween setd andB is defined by

(1.6) F(A,B)= inf  maxF(c([0, 1)),
¢:[0,1]—Rd
c(0)eA,c(D)eB

where the infimum is taken over all continuous curvesA K {x} is a singleton,
for convenience we writé (x, B) = F({x}, B) instead. Furthermore, for a finite
set of pointsl U x such thatB;, is a disjoint union of open balls, where

1.7) By=|JB(y.e/4, JCRY,
yeJ

we introduce

(1.8) Aci={yeRIF(y,x) < F(y, 1\0)}.

In analogy to [18] we define the time scales

e—F/é‘ dy
(1.9) T = L"—
cag (Br\x)

We recall from Theorem 3.1 in [4] the classical Eyring formula for the capacity.

THEOREM 1.1. Fix regular, disjoint, nonempty setel and B. Assume that
there is only one solution of (z*) = F(A, B) > maxF(A U B) + Relog(1/e)
such thatz* is a critical point of F. If in addition to the conditionF € €1« for
somex > 0 the Hessian at* of F exists and is nondegenerathen for somer,

2-1 .
(2m)4/2= 1) pd/2,~F(A.B)/e
JTdetHes#F (z9)] ’

wherer* is the uniquenegative eigenvalue of the Hessianzat The modulus of
the Landau symbol is dominated by a const@rt C(d, F).

(1.10) capi(B) = (1+ O(Delog(1/e))

Let M denote the set dbcal minimaof F. Forx € M andl C M\x nonempty
with nondegenerate Hessianaandz* as in Theorem 1.1, we obtain from (1.10)
that the time scale introduced above satisfies

| detHess (z*)] PG D=F(x))/e

(l.ll) Tx,l == (l+ (9(1)8 |0g(1/8))277\/|k*| detHeSSV(x)

Let us now describe the main results of this paper. We have to introduce some
more notation. For a regular domaihlet LZ denote the self-adjoint operator with
Dirichlet boundary conditions corresponding to the quadratic form

(1.12) qg):(h)zef e F/e\vn)?dx
)]
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of the operatotL, on L2(X, e~ ¥/¢ dx) with domainWé’z(E, e~ F/e dx). Denote
the principal eigenvalue of the Dirichlet operafof by

(1.13) AZ) =info(LY),

where o (LY) is the spectrum ofLZ. In the sequel we impose the following
conditions onF'.

ASSUMPTION 1.2. F € WEX°(RY) N eL(RY) and VF is locally Holder
continuous. There are constants> 0 and Cy satisfying infr~c;} IVF| > c.
Moreover,u, = A({F > C1}) > § for somes > 0 independent of smadl > 0.

Let us remark that the conditions under which (1.11) holds are not at all
borderline to our approach. In fact, the only condition we need is that either
8Ty 1\x > Ty,n\y OF Ty nx < 8Ty 1\y, Wherex,y € M, x # y, I CM, for some
8 > 0. In particular, as long as this condition is valid we can deal with all kinds
of degenerate situations @f in the relevant regions. This just leads to different
asymptotic behaviors df, ;. We refer the reader to [17, 18] where in the context of
Markov chains precise, minimal conditions on the time scales are given. We would
also like to mention that Assumption 1.2 can be weakened in several directions.
The condition infr~c,) I[VF| > ¢ can be relaxed to the existence of a subget
of the set of local minimamM of F with the property that min__ - T, it >
SUR e s it T it for someé > 0. In~ particular,FF may have infiniteJy many local
minima where the minima isM\.M are not as “deep” as those (. Moreover,
the analysis works for a large class of functidns= F, depending o also [for
further comment concerning this point see the remark after (4.47)]. One could
further considerably relax the regularity assumptionsforit is also possible to
study the irreversible situation whe¥eF' is replaced by a general vector figid
Finally, a generalization to Riemannian manifolds is straightforward.

The condition on the principal eigenvalue is quite natural and flexible. If, for
example F is in additionC? and lim sup, |, , |AF (x)|/|VF (x)|? < o0, itis easy
to see thaj, > §/¢ for somes > 0. For F = F, depending or the bound onu,
can be replaced by, for exampk? for some constan¥ or (even exponentially
small in 1/e with small rate depending on the geometryroin {F < C1}). If F is
uniformly strictly convex outside some convex set, one could use Brascamp-Lieb’s
inequality to show thaf, > inf(r.c;y min(o (VV'F)). As we only focus on the
new technical complications in the continuous state space setting we do not aim at
the most general conditions under which the analysis works.

Assumption 1.2 implies that has local uniform, exponentially tight level sets,
thatis, [z o ¢~ F/¢ dx < Ce*/* for some constar = C(d, [{F < «}|). Indeed,
for a pointx € {F > «} the solutiony to y(t) = VF(y(t)) with F(y(0)) = «
andy(T) = x we may estimatéd (x) —a = fOT IVFE(y@@))| |y @)|dt > cdist(x,

{F > a}) for « > C1. Therefore, in this work we may use in compact



250 M. ECKHOFF

(e-independent) sets (obvious generalization fréhbeing €2 to F being C1)
the results given in [4].

The first result, stated in Theorem 4.2 and referred to as the sharp uncertainty
principle, is strikingly reminiscent of the uncertainty principle in quantum
mechanics. We recall that the tunneling time of a quantum-mechanical particle
moving in a double-well potential approximately is given by the inverse of the
spectral gap. Lek(Q) be the principal eigenvalue of the Dirichlet operafgf
with zero boundary conditions oR4\Q, where Q is an open, regular set.
Furthermore, introduce for a Borel sBic R¢ the transition time

(1.14) tp =inf{t > 0|X; € B} and write shorthand 7; =73,

of the diffusion given by (1.2) fromx to the unionB; of small balls, defined
in (1.7), which are centered at the points/in

THEOREM 1.3. Assume thatF satisfies Assumptioh.2. Then there exists
N = N(d) > 0 such that for allp > Nelog(1/¢), x € M, I C M\x satisfying
Tyr =Ty = MaXeurs Ty, 1 > e P/ETuy,

(1.15) E[rj1=(1+ 0(1)8_Ne_p/s)m =(1+0@)e Ne /)T,
I

Here the modulus of the Landau symbol is dominated by a consiast
C(d, N, F).

We also are able to compute the limit law of the distribution of the rescaling
t(x)/E[7r(x)] of ametastable transition time(x), x € M, defined by

(1.16) T(x) = tfw(x)ugc, Mx)={y e M|F(y) < F(x)},
where Q c R? is a regular domain containing the sgt < C1}. Let us define
p=p(F,e) by

Tx,[\x

(1.17) ef= min{—
Ty 1y

X, yeM,x#y, I CM, Ty p\x > Ty,I\y}-
Then we have:

THEOREM 1.4. Suppose tha# satisfies Assumptioh.2 with u, > §e for
somes > 0. Assume furthermore that eithér is bounded orf;z_ ., |IVF|? x

e~ F=CD/7 gy < oo for somey > 0. There existV = N(d) > 0andC = C(d, F)
such that for allo > Nelog(1/e)

P[t(x) > TE[t(x)]]
=1+ 0@ Ve ) exp—(1+ OD)e Ve P/9)T),

where the modulus of the Landau symbol is bounded byiformly ine and T'.

(1.18)
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A more detailed version of this theorem is Theorem 5.2 [see also the remark
following (5.2)].

The main ingredient to prove (1.18) is that besides principal eigenvalues we
are able to analyze all other exponentially small eigenvalues and relate them to
the metastable structure given By We then have [see (4.6) for a more detailed
version]

THEOREM 1.5. Assume thatF' satisfies Assumptiofh.2. There existN =
N(d) = 0 and a constantC = C(d, F) such that for allp > Nelog(1/¢e) the
following holds

(i) Foreveryx € M there exists a simple eigenvalg of L, such that
(1.19) A =1+ 0D Ve PEARNB ),

whereM (x) is defined in(1.16).

(i) Let-M, ={y e M|Ly, < A.}. There is an eigenfunctiog, corresponding
to A,, normalized byg,(x) = 1 and a setM, of cardinality |.M,| such that
B(y,y/e)N M, is a singleton for ally € M, and for allz € {F < C1)}

ée(z) = (L+ (9(1)8_Ne_'°/£)IP’[t§ < le ]
(1.20) ;
+ (9(1)8_Ne_p/SIP’[er < 7]

Here the Landau symbols are bounded®in absolute value
(iii)
(1.21) o (L) N[0, &Ny = {is|x € M).

Equation (1.19) in combination with (1.15) and (1.18) relates exponentially
small eigenvalues of.. to the metastable structure of the diffusi@n Further-
more, under the conditions required for (1.11) we have determined the leading
asymptotic in (1.15).

Let us finally describe the organization of the paper. Using sharp Harnack- and
Holder-type estimates, in Section 2 we derive analogous estimates for a priori
nonpositive harmonic functions. As a result we gain in Lemma 2.3 pointwise
control on the oscillation of eigenfunctions corresponding to small eigenvalues
in terms of suprema over suitable small balls close to the local minima.of
In Section 3 we prove bounds of those suprema by exploiting the strong drift
of the diffusion toward local minima of". The a priori input then gives precise
control of eigenfunctions in compact sets. As soon as we have established this
structural information we are in a position to generalize the analysis developed in
the discrete state space setting to the diffusion setting. In particular, in Section 4
we relate the low-lying spectrum to the capacity matrix introduced in [28] and
derive the asymptotic information in terms of the time scales introduced in (1.9).
As a consequence we obtain the limit law of metastable transition times defined
in (1.16).
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2. Pointwise asymptoticsin bounded sets. Fix an open, connected, regular
setQ and recall the definitionW&’z(Q, e~ F/¢ dx). This section is devoted to the
following simple idea. A weak solutiop € W(}’Z(Q, e~ /¢ dx) of the eigenvalue
problem
(2.1) (Le = 2)¢(x) =0, x €,

with small energy. cannot create large oscillations everywhere in a region where
F is small. We start with the following.

2.1. A priori bounds on principal eigenvaluesRecall the definition of the
(Le — 2)-equilibrium potentialhﬁw, A, B closed and regular with connected
complementR?\ A\ B, 1 > 0, introduced in (1.4). Furthermore, Ie)tﬁ’B be the
solution of the Poisson problem (1.4) with=0 andg = hﬁLB. We also shall
use the convention, = h’; , andw) = w} ,. Sinceh’; , andw); , are weak
solutions of the corresponding problem for the operater— ¢~ f/¢1 defined
in (1.5), Theorem 8.8 in [24] in combination with Theorem 9.19 in [24] show
that the unique solutions if they exist are locafly* up to the boundary. Define
for K C (AU B)¢
w?&,B

P
hA,B

(2.2) sk (A, B) =sup
K

We abbreviate
s*(A, B) = s{y p)(A, B),

(2.3) st (A) =s% (A, B= A),
she =5k (A, B=A).

Recall the definition of the self-adjoint operatdf with Dirichlet boundary
conditions atd > corresponding to the quadratic form defined in (1.12) and its
principal eigenvalue.(X) = info (LY). Forx ¢ o (LY) we denote by
(2.4) Gh=(@LE -1
the resolvent operator. A priori we have that positive kernel of the resotvént
defined by the semigroup of the solutiot* of (1.2) for A < A(X), is in
LZ(EZ, e~ FW)+F)/e gy dy).

We refer to the lower bound in (2.5) on the principal eigenvalue as the
uncertainty principle.

LEMMA 2.1. LetX be a boundedregular, open connected sefThen for all
regular, closed setsd, B, such thatA U B = X¢ it follows that
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PrROOFE We claim that the following variational formula of Donsker and
Varadhan (see [15] or [36]) for the principal eigenvalue holds:

26) AZ)=  inf_ sup f Leul) ¢ 2dx.
FeCY D) yee2(T)ulaz=0’E UX)
fI0E=0, 5 =1 u(x)>0,xex

Since A, satisfies the conditions of Theorem 8.6 in [24], we hayE) > 0. By
the weak maximum principle Theorem 8.1 in [24] it follows t@ is a positive
operator, that is, the kernel is nonnegative and thus strictly positive S}@c'e;
injective. Theorem XIlIl.44 in [37] tells us that(X) is a simple eigenvalue and
that an eigenfunctiog e Wol’z(z, e~ F/¢ dx) almost surely does not change sign.
By the same arguments given before (2.2) this function €4 (). Inserting
u = ¢ on the right-hand side of (2.6) yields one inequality. On the other hand, for
every u in the class of functions the supremum is taken over, we may choose
f = Cue~F/¢¢)1/2 with normalizing C such thatf? is a density. We obtain
the remaining assertion by insertingon the right-hand side of (2.6) since the
integral equalgC? s Leuge F/¢ dx = C?A(Z) [x upe™F/¢ dx = A(X). Here we
have used that, is symmetric on%* (%) and thatL.¢ (x) = qub(x).

To obtain (2.5), we simply insert = w3 ; € €>%(Z) and useL,u = h , €
C%“(¥) on ¥, using that both functions exist by Theorem 8.3 in [24]]

From the variational principle, Theorems 4.5.2 and 4.5.1 in [12], we also obtain
the following sharp upper bound as we shall see in Theorem 4.2.

LEMMA 2.2. LetX be aregularopen set such thatisi.M N X, 9%) > p for
somep > 0. Thenforsom& =Cd, F|Z,p)andallx e M N X,
ca, o) (=)
fAﬁ .e_F/de’

x,%¢

(2.7) ME) <A+ CePleje)

where we have definedfszf ={ye SIF(y,x) < F(y,=¢ — B} forall B >0
such thatB(x, p/2) C A. Here F denotes the communication height introduced
in (1.6).

PROOF. Insertu =h9 ., 5. Withx € MNX and by convention, , ) z. =1
on B(x, ¢) into the variational principle Theorems 4.5.2 and 4.5.1 in [12]:
—F/e \V/ Zd
(2.8) A(D) = inf Jze wl ”2') a
ueWr2(s.e=Freaxno Jy e /e ul?dx

to obtain by Green’s first formula

(2.9) AT < o) (2) .
- fAf . e—F/e(h%(xys)’Ec)zdx
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Invoking Corollary 4.8 in [4], we deriveoc,B(x,E)(y) < CeP/# /¢ for someC =
cd, F|Af7zc) andally € Af’EC\B(x, 2¢). This estimate in combination with the

maximum principle showﬁ%(x,g)’zc(y) >1—CePlejeforally e Af’zc- This
establishes (2.7).0

2.2. Uniform regularity estimates foL, — A)-harmonic functions changing
sign. For a regular domairt c R? and a functionf :R¢Y — R we define the
oscillation of f in ¥ as

(2.10) 0SG f =supf —inf f.
D) p)

We are now in a position to turn the idea mentioned in the beginning of this section
into

LEMMA 2.3. LetB(F) > 0 be the Holder exponent @ locally around M.
There exists a constanf = C(d, F) with the following propertyLet i €
w24(R?) be a strong solution of the equatid@ii, — A)h = 0 in B(x, e¥/A+A),
B € (B(F)/2,B(F)), wherex € M and 0 < A < &. Then there existst e
B(x, e/d+P)) such thath does not change sign iB(, ¢).

LetT, = C T, be regular domaind_etg € LX.(R?) and leth be a nonnegative
strong (i.e., twice weakly differentiabjesolution of the equation(Z, — 1) x
h =g in T'. Assume that there ar@ < r < 1/2 and B(x, 2,/¢) C T such that
(1 —r)supgh < supg(, . h. Then for all0 < A < A(T'\B(x, ¢)) there isC =
C(d, F|B(x, 2,/¢)) such that

0SG h < (4r +Ce¥?)+4 sup h%d\nb,(x’g)) sup h
S\B(x,¢) B(x,e)

(2.11)
+Ce?? sup gl

B(x,2\/¢)

Having established positivity of eigenfunctions in vicinities of the local minima
of F, we may use strong pointwise regularity such as the local (boundary)
maximum principle Theorem 9.20 in [24] (Theorem 9.26 in [24]), the Harnack
inequality Theorem 8.20 or 9.22 in [24] and the (boundary) Hoélder estimates
Corollary 9.24 in [24] (Corollary 9.28 in [24]).

For later purpose also let us define foe R¢

(2.12) §(x) =8pc(x) = sup{S > 0|8 sup |VF|< 1}.
B(x,8¢6)

Clearly, ¢ only depends on|VF|/e and &4&(x)SUPg(y acs(x)) |V FI/e = 1.
Combination of Harnack’s and Hdélder’s principles gives:
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THEOREM 2.4. Assume thatVF is locally Hoélder continuousFix 0 <
p <e. Let0O<h e W24(R?) be a strong nonnegative solution of the equation
(Le =A)h=0in B(x,2,/p), wherex € M and0 < A < 1. Then there exist6' =
C(F|B(x,2,/p)) anda = a(F|B(x,2,/p)) > 0such thatforalld <r < /p

(2.13) 0SGu.nh <C(r//p)” Bi(nf )h.

Xx,r
Assume thab < h ¢ W24 (R%) is a strong nonnegative solution of the equation
(L;—\)h = fin X, whereX is an openregular set0 < 2 < 1and f isin LY(X).

There are constant€ = C(d) anda = a(d) > 0 such that for allx € ¥ and all
0 < p < &8(x) satisfyingB(x,4p)c X and allO<r < p,

(2.14) 0SGs(x,r) h < C(r/p)* (Bi(r;fr)h + ||f||Ld(B(x,r)ﬂ2))'

For x € 3% let V, be the exterior cone at. We still have for some constant
C=Cd,Vy)anda=a(d,V,)>0andallO<r < p < &d(x)

0SG(x,rnz h < C(”/P)a(OSCB(x,p)HE h+\f— )Lh”Ld(B(x,r)mz))
+ C 0SGy(x, /ip)nax I,

whereosG(x,nax h =limsup,_, g ynox i — liminfy_ g rnas h.

(2.15)

We also need the boundary Harnack inequality, which is a consequence of
Theorem 8.0.1 in [36].

THEOREM 2.5. Assume thaV F is locally Holder continuousLet ¥ be an
open set with uniformly Lipschitz continuous bound@here exisC = C(d), p =
o(d) > 0and a functionR : 9% — (0, 00), R < §, with the following properties
Fix z € 0X and writedX N B, = graphy for some ballB, aroundz and some
function x. Fix 0 < r < p and let0 < u, v € W24(X) be positive solutions of
L:h=0inXNB,NB(z,8cR(z)) andh =00ndX N B,N B(z,8¢R(z)). Then

u) _ ()

2.16 ,
(2.16) v(x) T u(y)

x,y € N B, N B(z,reR(2)).

PROOF Denote by ¥y (z) the best Lipschitz constant ¢f at z in B(z, 8¢)
and let YB(z) be the best Holder constant ®F in B(z, 8¢). Define R(z) =
min(B(z), y (z), 8(z)), wheres(z) is given in (2.12). Let us introduce the function
U(¥) =u(x), X = (x —2)/(¢R(2)), and likewisev. Furthermore, lef = —A +
b -V, whereb(x) = bgR(Z)(x) = R(z)VF(x). Fix r > 0 and letu and v be
L¢-harmonic inB(z, 8re R(z)) N B, N X, vanishing identically oiB(z, 8re R(z)) N
B, N 3X. We then computd.i = Lt = 0 in B(0,8)N B, N ¥, whereX =
ZgR(Z) = {#|x € £} and likewiseB,, and clearlyii = =0 0nB(0,8-)NB,NJX.
Note that by definition ofR(z) under this transformation, the best Lipschitz
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constant ofy (¥) = x (x) at z and the best Holder constant bfin B(0, 8) are
bounded by 1. Moreover, the supremum normbah B(0, 8) is that of VF in

B(z,8¢R(z)) and hence is bounded by 1 by definition &k). The boundary
Harnack principle Theorem 8.0.1 in [36] applied fo= B(0, 8) N B. N £ gives
the existence of = C(d) andp = p(d) > 0 such thati(x)/v(x) < Cu(y)/v(y)

forall0<r<pandi,y€BO,r)NB,NE. O

On several occasions we shall meet the following obvious representation
formula. The solutionz of the Poisson—Dirichlet problem (1.4) for an open,
connected, regular sét in a relatively compact, open, connected, regular set
¥ ccT isgiven by

(2.17) h(x) = Gk g(x) + HE:h(x), x€ex,

WhereHgf is the(L,; — A)-harmonic extension of to ¥ and where the resolvent
G% is defined in (2.4). Several times in the sequel we shall use the following
obvious consequence of (2.17) and the weak maximum principle:

(2.18) suplh| <s2(3%) supr|h| + |g|) + SupH2|A|, Kcxcr.
K p) K

Let Gi(x,y)ef®)/¢ pe the (symmetric) kemel ofG% in L?(%?
e~ (FOTEW/E gx dy). Itis easy to see tha\, — e~ F/21)GLef/? f = f weakly
for all f € L2(X). SinceG4e!/? f(x) = [x G4 (x, y) f(y)dy by definition, and
since L2(B(y,r)), y € X, r > 0, is separableG% (-, y) is (A; — e F/%n)-
harmonic inX\B(y, r) and almost alt € B(y,r) N X. Theorem 8.8 in [24] and
Theorem 9.19 in [24] imply thaG% (-, z) is C2%(X\B(y, r)) for thosez. Sym-
metry of G% (x, z)ef@/¢ implies the same assertion for alé B(y, r). Therefore,
Gk (x, y)ef /e is in €%%(22\D), whereD = {(x, x)|x € RY}. We recall from,
for example, [4] that théL, — A)-harmonic extensioy, f, = regular, open and
connected, of a functiof € L*>°(9X) is given by

h(x) = H: f(x) = —¢ / FO) By G (3, 1) FO=FON2 g5 (3
(2.19) 0%

S fa 0Dy Gy () do (),

wheren(y) denotes the outer unit normal atc 9% and the normal derivative is
taken from the inside of . Here we have used that” *)/¢ G4 (x, y) is symmetric
in x andy, that the normal derivative at= exists and thaGﬁE (x, y) vanishes on
the boundary.

As already pointed out, the problem is that a priori we cannot apply Theorem 2.4
to an eigenfunctiorp. However, by combination of Theorem 2.4 with the Poisson
representation formula (2.19) we still can control the regularity.of
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PrROOF OFLEMMA 2.3. By standard comparison arguments with the ordinary
Laplace operator irB = B(x, R) as can be found, for example, in the proof of
Theorem 2.1(i) in [36] one find$= §(F|B) > 0 andC(F|B) such that

(2.20) 59 < Ce@=P/AHH) for R = 8 /(1+8),

where 59 is defined in (2.3) and wherg = B(F) > 0 is smaller than or
equal to the optimal Hoélder exponent &f locally aroundx. For the con-
venience of the reader we shall formulate the details of the proof in our
situation. Definevg(y) = (R? — |y — x|%)/(2de) for |y — x| < R. We compute
—eAvg =1for|y —x| < R.Since|VF(y) - Vur(y)| <supg |VF||ly —x|/(de) <
ssupg |[VF|/(de*=Y1+P)) and sincex e M, it follows that L.vg > 1/2 for

8 =supr € (0,1) | r supg, ,e1/a4p) |VF| <de?™ VAP /21 > 0 and|y — x| < R

so thatvg(y) > (1/2wp(y) in B. Recall the notion of the principal eigen-
value A(X) of the Dirichlet operator.* introduced in (1.13). For the purpose
of (5.24) and (5.32) we note that on the other hand the same arguments show
vr(y) < (3/2wp(y) in B and therefore forsom€é = C(d, F) and all§ € (1/8, 1)

wp(y) =e’Pe
(2.21)
for R =8¢ andy € B(x, R(1—1/100) andA(B) > 1/(Ce),

where the last inequality is a consequence of (2.20) and (2.5).
Since the uncertainty principle (2.5) tells u¢B) > 1/sg, the condition on

A ensures thatG’, exists and that: satisfies (2.19). Choose a ballc B of
radius O< p < & such that sup|h| = sup; |A|. Since—an(y)G%(x, y) is a positive
strong solution for every € 3B, we may apply (2.15) and obtain for some
C=Cd, F|B), B=pB(F|B)andallyg, y1, y2 € B,

|h(y1) — h(y2)| < & [y 1h(D1|0n) G (31, 2) — On(z) G (v2, 2)| do (2)

1/(1+p)\a _ A
(2.22) <C(p/e ) SglngplhIS/aB ()G’ (y0,2)do (2)

< C(p/e™*P)* sup|h| suph’,
B B

whereh’, = Hj155. Applying (2.17) toh’y andE = B, we obtain
(2.23) suph’y < As% suph? + 1.
B B

Combination of (2.23) with (2.22) implies
C(p/gl/(1+,8))a sup; ||

2.24 h —h
(2.24) |h(y1) —h(y2)| < 10

The bounds on ands$ show that the denominator can be absorbed in the constant.
We thus have proven for sonte anda > 0 only depending or¥'|B that for all
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y1, y2 € B,

(2.25) sup [h(y1) — h(y2)| < C(p/e¥ TP)" sup]n|.
y1.y2€B B

Now let us assume that there ysc B such thati(y) = 0. We apply (2.18) for
¥ = B and deduce from (2.25), using the condition®m@nd choosing = ¢,

(2.26) suplh| < /\sg suplh| + Ceh/ A+ suplh|.
B B B

It follows that/ vanishes identically irB for smalle > 0 and hence by analytic
continuation everywhere iR¢.

For the proof of (2.11) let, = (7Cs*)"(Ce* + C|B|(2\ + supg |g|/ supz 1)),
where B = B(x, 2+ We claim the existence of = C(d, F|B), a =
a(d, F|B) > 0, such that for alk the inequalityc,_1 > M = max(r, C|B|(2\x +
supg lgl/ supz h), SUp;, 5 hﬂk%d\r,l?)’ B = B(x, ¢), implies

(2.27) 0SC; h < ¢, SUph.
B

For n = 1 this is nothing more than (2.13). Assume (2.27) for some 1. It
follows from 7z > 0 and (2.17) applied tb for K = £\ B in ¥ = I'\ B—in slight
abuse of notation—that

infh>0+ (1— cn)(l — suph&d\r é> suph
2 S\B ' B

(2.28)
> A —c)(1—r) <1 — suph%d\F é) suph,
S\B ' z
where we use the convention t N 0in B. Thus
0SGe h < <cn +r+ suph%d\F é) suph
S\B ' z
A
(2.29) = <<Cn +r+ ;t‘ghRd\Fﬁ)/(l - r)> Sgph

< 2<cn +r+ suphﬁRd\F B) suph.
T\B ' B
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From (2.13) again we hence obtain

0SC; h < C8“2<cn + r + suph* )

d 2,
g RI\T, B
(2.30) —I—CIBI(A/(l—r) +Sup|g|/suph) suph
B B B
< cn+1SUph
B

sincec, > M. Choosingn maximal in (2.27), from (2.29) we obtain the estima-
te sincec, <M. O

2.3. A priori bounds on conditione@xpected exit times from bounded sets.
this section we prove an estimate on the supre%(aﬁ, B) for regular, closed sets
A and B with bounded complement of their union.

For the sake of convenience we set

(2.31) T;= max Ty, JCM,J F#M,
yeM\J

where the time scald ; is defined in (1.9). In the cas¢ = M we use the
convention thatly = 1/¢4-1. For every finite set of pointg c R¢ such that
MiNy yer x2y dist(x, y) > 26 we setB; = B;(¢/4), where

(2.32) Bi(8) = B(x,9).

xel
We then have:

LEMMA 2.6. Fix disjoint, regular, nonemptyclosed setst, B c R such that
B;cAandB; C B,wherel = MNAandJ =M N B. There areN = N(d) and
C = C(d) such that

(2.33) sY(A, B) < Ce™N(Tyuy + IRN\A\B)).

We start with the following bound on the Green functid% (x,y) defined
in (2.4).

LEMMA 2.7. For all regular, open bounded set$" there existsC = C(d)
such that for allx,y € T and all 0 < p < §(y) satisfying|x — y| > pe and
dist(x U y, aT') > 4ps,

Chp(y.pey.re(x)e FO)/e
CapB(y,pe)(FC)
For |x — y| < pe, 0 < p < 8(x)e anddist(x, aT") > 4pe we have

(2.34) Gox,y) <

Ce—F(x)/s

C
2.35 Gox,y) < G (Ix -y + ——,
( ) r&,y o Yy capg . pe) (0
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whereG2 is the Green function of the Laplace operatofRf.

PROOF Leth, = h%(y e).re- The second Green formula as, for example,

in (2.8) in [4] for T = "'\ B(y, pe)\B(x,r) and forT" = B(y, pe) shows for all
O<r<|x—y|—ps,

e/ e F/EGr (-, x) 8yhy do
3B(y.pe)

=—8/ hy 8,,Gr(-,x)+8/ e F%3,Gr(, x)do
(2.36) IB(x,r) IB(y,pe)

— O/ x=y=p) () ~F /e / 9,Gr(x.-)do
ar’

= e T, (x),

whered, is the normal derivative taken from the interior with respect to the outer
unit normal at the boundary. The last equation uses (2.19) and the faet:that
can be chosen arbitrarily small. Invoking the Harnack inequality Corollary 9.25
in [24] on the left-hand side of (2.36), we thus have for sahe C(d)

(2.37) Gr(y, x) Capyy o) (I) < Ce " /ep, (x).

Equation (2.34) now follows from the symmetry 6% (y, x)ef ®)/¢ in x andy.
For the proof of (2.35) we first observe that considenirg x in (2.36) a similar
calculation gives forall G p <1

(2.38) ef e FlEGr (-, x) 8phy = e FO/E,
dB(x,pe)

Analogously to (2.37), we find' independent of such that for ally € d B(x, p¢),

o—F)/e

capgy. pe) () '

For, choose a sequence of pointg=y,...,yx = z € dB(x, 2pe) such that
pe/100< |y; — yir1]| < pe/3 and ballsB; of radii pe/3 such thaty; 1, y; € B;.
Applying the Harnack inequality to each ball, we derigg (y;, x)/Gr (yi+1,
x) < C for someC = C(d) and O< p < §(x). Since the arclength of a ball
depends linearly on the distance, we get thig bounded independent efand
v,z € 0B(x, 2p¢) and thus

(2.40) Gr(y,x)/Gr(z, x) < CK,

(2.39) Gr(y,x)<C

from which (2.39) follows. Assume first th&t= B(x, pe). Invoking the Dirichlet
principle for the capacity, we derive forr < p

(241)  capy . (B(x, pe)°) <eCe FW/E CaB ) (B(x, pe)°),
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where cap denotes the capacity with respect to the Laplace operator. Sifice
is rotationally invariant, it follows that

(242)  capy e (B(x, pe)) =1/(G*(pe) — G2 (re)) = 1/G*(pe).
Combination of (2.41) and (2.39) shows

C
(2.43) GBx.pe) (¥, X) < ;GA(Ix -y, x—yl < pe.

To obtain the full estimate we note that the funct@g (-, x) — Gp(x,pe) (-, X) — h
is a weakly L.-harmonic function inB(x, pe) and equals zero 0oAB(x, p¢),
whereh is the solution of the Dirichlet problem iB(x, pe) with boundary values
G B(x,pe) (-, x). By (2.39) and (2.43) we thus have proven for- y| < pe

Ce—F(x)/e

C A
(2.44) Or 0 = e Dt @

which gives (2.35). O

For later purpose we notice that the definitiorsaf (2.12) implies

(2.45) inf F — ¢ <inf F < supF < supF + .
> yeé $ed >

Indeed, fix arbitrary € T and lety € d B(x, £6(x)). We then obtain, using (2.12),

1
(2.46) F(y)— F(x) =/0 VF(A=0x +1y)- (y —x)dt <|x —y|/8(x) =¢
andF(y) — F(x) > —e by replacing the roles of andy.

PROOF OF LEMMA 2.6. Applying (2.16), respectively (2.15), twg,B,
respectivelyh?LB, with the obvious choice € 9B, respectively; € A, we may
assume that € RY\A\ B, whereA = A U (3A)R¢, B = B U (9 B)R¢ and where
R:9AU3B — (0,00) is as in Theorem 2.5. Letr : R4\ A\B — (0, 00) be the
maximum ofe§ and the distance frorB. We may assume that is bounded by 1.
We now may write, using (2.35) fdf = R¢\ A\ B and allx € R?\ A\ B,

wd 4 (x) Gy 5@ WAG 5 () .,

B y
WG px)  Jri\as hS p(x)

G\ 4 5@ WA 5 ()

§C ) Rd\A\BO A,B dy
(2.47) e 135
C Ce F®)/e

+—+ |B(x, &)

& CaPp(y cr(ry(AUB)

0 0
N [ o Pherwe.a @AY pgye
yR\ly\—Ar\\Es hg,B(x) CapB(y,r(y)S) (A U B)
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Using the Harnack inequality fdrg’B on B(y, er(y)), we observe for € (AU

BUB(y, er(y)))° that
(2.48) RB(y.erivy.auB A (V) < CHCAUBUB(y er(y))c Lo B(y.er () a, B(X)
< Chj} 5.

By (2.16) foru = G]%d\A\B(x, ») andv = 1% ; and by (2.34) once more we have

forall y=z+tR(2)en(z),z€ 9B, 0<t <1, the bound
G]]ogd\A\B(xv )’)h?x,B(y)

0
(2.49) = CGJ%d\A\B(Xv 2+ R(2)en(2))hy p(z + R(z)en(2))

0 0
- ChB(z+R(Z)€n(z),R(z)s/4),AUB(x)hA,B(Z + R(2)en(z))

’

CaPz(z+R(yen(2). R(2)s /4 (A Y B)
wheren is the outer unit normal vector field at the boundaryofWWe hence may
apply the Harnack inequality again to the right-hand side of (2.49), proving

S p(x)
CaPy (4 R(yen(2), Rye/4) (AU B)E
Invoking Proposition 4.7 in [4], we have forall®p < 1

(250) Gy 455 RS 5 () = C

(2.51) CaPs(y.pe) (A U B) = e FOAUBE (o) (Cps).
Inserting (2.50) and (2.51) into the integrals on the right-hand side of (2.47), we
thus may bound the right-hand side Gytimes

1 L Feaun-royse
& &

+|{F=F(,AUB)}\A\B|

+I{dist(, B) < Re}|  sup I GHR@m@)=F+R@en())/e
B 2€9B.0<1<1

(2.52)

1

+ = eFOIUN—=F(y)/e dy.

/{F<ﬁ(.,AuB)}\A\B
SinceR(z) < 6(z), (2.45) tells us that the supremum appearing in the fourth term is
bounded by. We readily verify (2.33) by computation of a Laplace-type integral.
Il

3. Growth estimates at infinity. Because of the strong drift 6f V F toward
the local minima ofF, the influence of the values of a solutigrof (2.1) at infinity
on its values in compact sets can be neglected. Technically, this will be achieved
by weightedL2-estimates near infinity in the spirit of Agmon and Helffer and
Sjostrand (see [1] and [26]) in combination with pointwise estimates based on the
maximum principle in compact sets.
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3.1. Laplace transforms in compact setsThe following lemma provides us
good control on Laplace transform@{’ 5 In compact sets away from its first
pole A(R?\ A\ B) in terms of the maximal conditioned expected exit time from
R4\ A\B.

LeEmmA 3.1. Fix regular, closed disjoint, nonempty setsA and B with
bounded complemeriR?\ A\ B. Assume that8; c A and B; C B, where I =
MNA and J =M N B. Assume thaD < As%(A, B) < 1/2. Then for some
N=N(d)andC=C(d)andallx ¢ AUB,

Wi px) -N d

(3.1) = <14 ArCe™NM(T;uy + |RY\A\B)).
hA’B(x)

Moreover
w* X

(3.2) A5 <1+1Ce N(Tjus + R\ A\B)).

wg’B(x)

PROOF  Equation (2.5) and the condition anshow thatG% and HZ, where
¥ ={a < F < B}, exist. The Harnack inequality, Theorem 8.20 in [24], the
weak maximum principle and (2.17) applied ko= hQ’B — h?\,B yield for all

x e X =RNA\B

h* W, GnS
N Eo) ML T
hy p(x) hy p(x) ha g A,B( )

(3.3) .

h
0 A,B
<As (A,B)sup(hO

z A,B

- 1) +s%(A, B).

Taking the supremum on the left-hand side and assuming it is finite, we have
proven

hk
(3.4) sup—5-2 <1+2.5%(4, B).
Py hA B

Simply by continuity at the boundary, the supremum stays finite near boundary
pointsxg € dA. Smceh  takes its minimal value at zero by the Hopf maximum
principle Theorem 3. 2 5 in [36], it follows that

h)A,B(x) -0 . an(xo)hﬁx,B(XO)

(3.5) -
E3x—x0 he\’B(X) -0 an(xo)h(f)\,B(xO)

Equation (3.1) now follows from (2.33).
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For the proof of (3.2) we apply (2.17) o= w}LB — wE’LB and obtain for all
x¢ AUB

W) 1 GO (ho Win wi"3>(x)
1 ) YaB %A B
wg,B(x) w?l,B( ) RAMBTAE h%,B w?\,B
1 h s
3.6 +——¢G9 (ho (— — 1)) x
oo o o Mg =)
k A

h
<8y sup —5 2+ sup 5E -1

" RN\A\B wA B RAA\BNA B

By the Hopf maximum principle we again may take the supremum B¢&A\ B
in this inequality. The assertion thus follows from (3.2) and (2.38).

3.2. Weighted estimates Let F be aC>-function on a regular domaiix.
Denoting byL? the operator defined in (1.1), we have that #ié2)-transform
HF = e=F/@) [ F¢F/2) equals the Schrodinger operator

(3.7) Hf =—eAn+ V], VE = |VF??/(4e) — AF /2.

Fix u € C%(Z) N €1(T). The well-known basic identity (see, e.g., Theorem 3.1.1
in [25])

8/ |Ve‘p/8u|2dx+/ (VF = |Vol2/e)e?/cu|?dx
= )

(3.8) . ~
= —/ 8n|e“’/£u|2d0+/ e*fu H udx
2 Jsx )

for L2-decay estimates is a consequence of Green’s first formula and Gauss’s
divergence theorem. Equation (3.7) holds for all Lipschitz continuous funations
onX. Fix C3 > C2 > C1 and let us now assume thétis close toF in C1(X) such

that sUpr _ ¢,y |AF| < ess— SUR F<cqny |AF| and such that the conditions in

Assumption 1.2 are also satisfied Byfor slightly modified constant€; < Cs,

¢ and i, defined with respect té instead [e.qg., leF (x) = [os(x —y)F(y)dy

for § > 0 sufficiently small, whereps is the density of the centered normal
distribution with covariance matrig §;;);, j<«]. Being only interested in bounds

on eigenfunctions in compact sets, we can bypass conditions like a uniform lower
bound onV[f. For, setR; = sup|x||F(x) < Co}, let L > R, and assume that
B(0, Ry + L) C{F < C3}. Let x:R — [0, 1] be a smooth, decreasing cut-off
function with y =1 on(—o0, 1], x =0 on[9, co) and x (4) = 1/2 and introduce
nonnegative functiondy(x) = (1 — J2(x)»)Y2 = J(x) = x ((|Ix|? — (R2)?)/L?).
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The IMS localization formula (see Theorem 3.2 in [8]) reads
HY = nHF 11+ 1HE 1o — |V 1) — |V o

IVJ|?
1—J2

(3.9) ) _
=hHE 4 RLHE I, —

Since on the left-hand side of (3.8) there appears the quadratic fc\Hﬁ @lpplied
to e¥/¢u and since by Assumption 1.2 and monotonicity in volume of the principal
eigenvalue foll > R», (1280152 sup|x’|/(fis)*?

(3.10) JoHE Ty = 17 21y2 |V 12/ (1= J?) = fic1(s<1/2/8
on Wg’z({J # 1}), we have

ef IVJe?eul?dx
X

20, 1o 2 IVJ|? 2
(3.11) +[2<J V8F+§€1{J<1/2}_g|v¢| ~Lu=127 |e#/u dx

e 3
< —/ anle?’ful?do +/ e?/ey Hf udx.
KD )

ChooseX = {F > C1, J > 0} and let@; be the solution to the eiconal equation
3.12) |VgPP=JAVF?,  g=Cion{F=Ci),  V(xo) = VF(x0),

for somexg € {F = C1}. By Theorem 5.5 in [23] and by local flattening of the set
(F = C1}, we can construct a unigue, smooth solution defined on a neighborhood
of this level set. In fact, we may assume that> 0, F > C1} is contained in the
domain ofg;. Moreover, as in Lemma 3.2.1 in [25] the solution can be identified
with the Agmon distance corresponding to the potentfaV F'|2. More precisely,

for a pointx € {J >0, F > Cq}

(3.13) @y(x) —C1=px) = [01]%3 upp /J(C(t))IVF(C(t))IIC(t)Idt

c(0)= x,F(c(l)) Cl

where the infimum is taken over all continuously differentiable curves. The proof
of the upper boundp;(x) — C1 < p(x) is the same as that in Lemma 3.2.1

in [25] while the proof of the lower bound is a slight modification of the
corresponding assertion. For convenience of the reader we shall give the details
of this modification. LetX, = (Vep, —V,p) be the Hamiltonian vector field
corresponding to the Hamiltoniap(x, £) = |£]12 — J(x)2VF )%, (x,£) €

R% . As in Proposition 5.4 in [23] we define\ to be the set of points
(x, &) such that there is an integral curygr) = (x(¢), £(t)) of X, satisfying
F(x(0)) = C1, £(0) = VF(x(0)) and (x(T), £(T)) = (x, £). Moreover, the proof
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of Theorem 5.5 in [23] show&x, V@, ()| F(x) > C1} CA. ReplacingA 1 inthe

proof of Lemma 3.2.1 in [25] byA, we compute analogously!/dt)g, (x(t)) =

V@ (x(1)) - x(t) = 2|E(1)|%2 = J|VF|(x(t)) |%(t)|, where we use thag(r) is an

integral curve ofX ,, £() = Vg, (x(¢)) and thaip; satisfies the eiconal equation.

The latter equation now giveJQ,T JIVF|(x(0)|x(0)|dt = @5(x) — §7(x(0)). As

x(t) e supp/ for all + < T, this clearly implieso(x) < ¢, (x) — C1. SinceJ =1

on{F < Cz} it is easy to see that(x) and thereforé, (x) — C1 equalsF (x) — C1

for all x € {F < C»}. Thus foré2R /24 larger than SUR, 7 —cs) |AF|/|VF|?and
¢2R /48 larger than 20sup’)2/((EL)2(1 — x?)), the choicep = (1 — Re)@y /2

shows that the second term on the left-hand side of (3.11) is bounded below by

1= IVIPY,
/ ) (—|VF| — ZAF - >| /ey )2 dx
(J>1/2,F>C1) \ 16 2 1-J2

IVF|?|e?/¢ul?dx.

(3.14)

.y
48 Ji¢1<F<Cy)

We therefore obtain foiC3 sufficiently large depending o, and R + L
the existence of a constadt depending orc and SURE, _ - cq) |AF|/|VF|?
satisfying

e
{C1<F<Cy}

(3.15) +(1/C)/C roo eA=ReF /6,12 4
1<F<Cg}

|Ve(1—Rs)F/(2s)u|2dx

< f/ 8n|e(17R5)F/(28)u{2d0 +/ e-ReIF /ey Hjudx.
2 Jyx z

This estimate readily implies:

LEMMA 3.2. There are constant€ = C(F|{F > C1}), C1 introduced in
Assumptiori.2,R = R(F|{F > C1}) su&h that for everg’s > C1 andC3 > C2, R
and for every functioth € C2(2)N CLT) we have

/ e|Ve CF2p12 4 ((1/C) — 1)e CF |h|?dx

(316) {C1<F<C»}

f(8/2)f 8,,|e_CF/2h|2da—|—/ e CFr(L, — Mhdx,
X P

whereX = {C1 < F < C3}, provided Assumptiofh.2 holds

PROOF. Insertingh = ¢f/?)y and the definition off/, we obtain (3.16)
with F in place of F. ApproximatingF in C1(X) by a sequeNncé:,, of functions
in ¢°°(X) and observing that the analogous quantifigsc,, C1,, corresponding
to F, tend tou, ¢, C1, respectively, we derive the assertiori]
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For a subsetz cRY and a functionr:R?¢ — (0,00) we introduce its
r-neighborhood by

(3.17) ¥ = {x e R?|dist(x, £) < r(x)}.

Recall definition (2.32) ofB;(y) and (2.12) ofs. Combination of the Harnack
inequality, Theorem 8.20 in [24] with (3.16) gives:

PrRoOPOSITION 3.3. Let F satisfy Assumptiod.2. For every regular open
domainQ c R? containing{F < C1} and every boundedegular subset c QN
{F > C31} there exists a constanf = C(d, F|2 N {F > C1}, ¥) such that
for every nonnegative functiop € C3(2) the solutionh € W2(Q N {F >
C1}, e~ F/¢ dx) to the boundary value problem

(Lg —2)h =0, O<i<1/C,e

(3.18)
h—¢eWy2(QN{F > C1},e e dx),

satisfies for ally € &

(3.19) h(y) < Ce®9/2 sup 4.

{F=C1}
Moreoverif u, > §¢ for somes > 0, then there exist€ = C(d, F) such that for
allyeQN{F>Ci}andall0<i<e¢

(3.20) h(y)<C sup |VF|d8—Ce(F(y)—Cl)/(28)—di5t(y,{F<C1})/C'
B(y,e8(y))

The reason for writing the poor a priori estimate at infinity in (3.20) is that in the
last section concerning the distribution function of transition times we shall need
some bound on the principal eigenfunction which is uniform in volume.

PROOF OF PROPOSITION 3.3. We first assume tha® is bounded. Since
h < hsupp_c, ¢, h = hip_c,) o DY the weak maximum principle, it suffices
to prove the assertion for. By the boundary Hélder estimates (2.15) we may
restrict ourselves to the case distoQ U {F = C1}) > 5(y), whered (x) is defined
in (2.12). Application of (3.16) and the Harnack inequality, Theorem 8.20 in [24],
to 1 € C2(Z) N CL(T) in combination with the condition onimply the existence
of C(d) > 0 such thae= ¥ [1(y)2|B(y, £8(y))|/C(d) is bounded above by

(3.21) Ce_CC1<s|{F =C1}| sup |VF| +e/ anzdo>,
{F=C1} {F=C1}
whereC is the constant appearing in Lemma 3.2. The assertion follows since by

definition §(¥) SUPg(y.es(y)) IVFI = 1/8 and since the integral equals
Jip=cy) Onhgeir<cy) do by Green's second formula adghg,e <,y < 00NIQ
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by the Hopf maximum principle and the fact tH@;CU{chl} >1andequaltol
on{F = Cq}.

For & unbounded, fix a sequence, CC Q of regular, open and bounded
domains and denote by, the solution to the boundary value problem with
replaced by<2,. Note thath, + h so thath is (L, — A)-harmonic inQ by
(2.17) and (2.19) as the Hopf maximum principle tells us that Poisson’s kernel
is nonnegative. Since the solution is unique by the weak maximum principle and
since the right-hand side of (3.19) on edghdoes not depend on the estimate
again follows.

Equation (3.20) is a consequence of (3.8). For, as already mentioned, this

equation may be rewritten in terms bf as

8/ |Ve‘”/£vlze_ﬁ/8 dx — }/ |V(,0|2|e‘/’/8vlze_ﬁ/‘8 dx

322 ’F o B ) )

= %/ Ople=F12=0/ey 2 4 +/ e~ F=20/ey Py dx,
Iz b

wherev = ¢/, Again by a simple approximation argument, we may assume
that ¥ = F. Let us introduce the function= (1 — J,)h, whereJ, is some smooth
cut-off function equal to 1 o F < C1}, equal to zero offF < C1}* and with
modulus of its gradient bounded l6y/s. Choosep(x) = e dist(x, {F < C1}) and

Y ={F > C1}. p =00n0dX and itis not difficult to see that satisfies the eiconal
equation|Ve|? = (8¢)? in = (see Exercise 5.7 in [23]). Since on the left-hand
side there appears the quadratic form of the operatasnd sincev satisfies the
boundary condition zero ofF = C1}, we obtain from (3.22)

(3.23) (e — 528)f e?/¢h|2e~F /% dx < gNe=Cile
B\(F<Cy)

for some N = N(d), where we use that is bounded bys" for some N

in {F < C1}*. By the Harnack inequality in combination with the condition
on u., it follows for someé§ > 0 after possibly increasingv that i(y) <
8(y)1/2eN ¢(F()=C1)/(2e)=8disty.{F<C1D) for all y ¢ {F < C1}¢ which implies the
assertion ifQ2 is bounded. By the same approximation argument as given above
we derive the estimate in the general cade.

3.3. Laplace transforms. We now want to sharply compare in compact
sets eigenfunctions to linear combinations of electrostatic equilibrium potentials
hS. 5 = Hup)1a for small neighborhoodst and B of relevantlocal minima.

More precisely, let¢ e Wol’z(Q,e‘F/e dx) be a solution of the eigenvalue

problem (2.1) for a regular doma{F < C1} c @ c R?. By Lemma 2.3 for every
x € M we find% € B(x, e¥/1*+P)) such thatp does not change sign in the ball
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B(%, ¢) for someB = B(F) > 0. Let M = M¢ be a collection of such points. Let
us define

(3.24) QocCcCccccc  whereX ccT standsforx cT’

via Qo = B; for I C M, where the former set was defined before (2.32),=
{F < C1} N Q whereC1 is given in Assumption (1.2) and, = {F < C2} N Q for
some large constaut,; > C1. Clearly, by, for example, (2.17)

(3.25) ¢=D ¢y,  ¢y=Hg g los,d
yel

in 2\Qo provided A < A(Q2\Qo). Generally speakingy and ¢°, where we
abbreviatep* = Zye M ¢, are not close to each other everywhere in unbounded

regions2 even if Q> = Q. In fact, we allow2 to be equal taR¢ and in this

case¢? stays bounded while in generalis unbounded near infinity. However,

exploiting the drift of F toward the local minima, we can show thatis close

to ¢° in bounded region$2;\ Qo independent ot and containing all relevant

local minima. For similar problems in discrete space we refer the reader to [18].
Let us first generalize Lemma 3.1 to the noncompact case. Recall the definition

of the maximal time scal&;, I C .M, given in (2.31). Combining this lemma with

the weighted estimates written in Proposition 3.3, we can prove:

ProOPOSITION3.4. Assume thaf satisfies Assumptioh.2 and let2 be a
regular domain independent af > 0 and containing{F < C1}, where C1 is
defined in Assumptiofh.2. Fix I C M and let2q be a union of|/| balls B, =
B(3,¢/4) C B(y, ety y e I. There areN = N(d) > 0 and 8 = B(F) > 0
such that for allC> > C1 and R > Owe findC = C(d, F, C», {F < C2}, R) with
the following propertyFor all 0 < 1 < ¢V /Ty, all nonnegativef € L>®(R%)\0
satisfyingsup g f < Rinfyp, f and allx € {F < C1}\Qo it follows that

Hé\golaszof(x)
-N —(C2—Cy)/e 0 )
< (1+ Ce ()\T] +e g ))H{F<C2}\§0]ldgof(x)

andforally el

(327) wh, @) < A+ Ce  ATNWG 5 e (x) e~V Tje 2PN/,

(3.26)

Before we turn to the proof of this proposition, we note the following a
priori lower bound on principal eigenvalues in unbounded domains, which is an
immediate consequence of (3.26).

COROLARRY 3.5. In the situation of the previous proposition we have

—N
(3.28) MQ\B) = .
Ty
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At this point we shall need the following consequence of Proposition 4.7 in [4]
giving decay of the Poisson kernel in bounded sets. We ideRtfyas an operator
acting on functions defined oR? via H% = 1suss Hgllaz and likewise for
functions a priori defined o, which by definition take the value zero outside

LEMMA 3.6. There isC = C(d, F|Q22) such that for alle < 8 — Celoge <
C> + 1 and all regular open connected set® c K C T satisfyingK C {F < «}
and{F < g8}cr

(3.29) ”le\fH]“O\f]laF” = SUBhoc,f < Ce—(ﬁ—a)/e/g‘
K\

PrROOF The existence ofC = C(d, F|22) follows from Propositions
4.3 and 4.7 in [4] such that for all e K

CaF%(x,(S(x)g)(Fc)
cz:1|c%(x,5(x)s)(l“C ux)

§Ce_(’3_°‘)/8/(8(x) sup |VF|>.
B(x,e5(x))

he g (x) < C
(3.30)

Equation (3.29) holds sing&x) SUpg; ¢s(x)) [VFI=1/8. [

PROOF OF PROPOSITION3.4. Leth* denote the function on the left-hand
side of (3.26) and sef2; = (Q\Q) N {F < Cp}. We first note that (2.33)
gives the existence of constamé= N(d) andC = C(d, F|{F < C1}, |{F <
C1}]) such thats®(B/, B U {F > C1}) < Ce~V. Therefore, forn < &V /(2C)
Lemma 3.1 in combination with (3.19) foE = Q> N {F > C1} and h =
Hézﬂ{bcﬂﬂ{pzcﬂhgw’BIUQE and the weak maximum principle yields

A A
sup h* <supf sup hBMV,B]UQ;

Q2\Q0 9%  Q\Qo
(3.31) < Cs@/ Zggpf {Fsug}h%m,,g,uszg
0 =C1
< Ce N supf,
0920

whereC = C(d, F|2, 22). We now use the equation
A A A A
(332) h* = ng\ﬁollagof + ng\ﬁojlagzh

in 1\ Q0 so that by the condition o, (3.31) and (3.1) in combination with (2.33)
for A = Qo and B = Q4 for someC = (d, F|Q,{F < C2},R), N = N(d) as
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above and alk € 1\,

A
hk h e (X)
- ) <1+ Ce_Niizz’Qo
Hgl\ﬁoﬂaﬂof(x) hﬁoﬂ‘z(x)
(3.33) ne. — (x)
<1+4+cCe N 2%

0
1- hQ‘é,ﬁo(x)
<1+ Cs_Ne_(CZ_Cl)/S,

where we have used Corollary 4.7 in [4] in the latter inequality. To derive the

- - by ; 0 ‘
result, it remains to comparHQl\ﬁojlagof with HQl\QOILaQOf. But (3.1) once

more forA = By, y € I, and B = Q4 shows after possibly increasirg for some
C=C(d, R),someN = N(d) and allx € 21\Q0

Hlélilaszof(x)
H[Q]_]]-E)Qof(x)

again by the condition oh. This proves the first equation in (3.26).
For the proof of (3.27) we note that we already have proven (3.28). Therefore,
the Cauchy inequality in combination with (3.26) fér= 1, implies for largeN

<1+ Ce NaoTy

(3.34)

(3.35) sup wy, g <& VT
Q1\Qo

Similarly to the argumentation in (3.31), (2.17) in combination with
(3.35) and (3.29) gives for all € 21\Qo

A A A A
3.36 wg. g uac(y) = wBX,B,uszg(y) + Hgl\ﬁoﬂaﬂzng,g,uszc(w
(8:30) < wk (y) 4+ & Ny~ (CFO)/e

= Wg,, BjuasY re €.

The assertion in (3.27) now follows from (2.33) in combination with (3.2).
For unbounded2 an argument analogous to that given at the end of the proof
of Lemma 3.1 shows (3.26) and (3.27) since the constants are unifd@m inJ

An immediate corollary from Proposition 3.4 is the following relation between
eigenfunctions with small eigenvalue and equilibrium potentials. Recall that we
have defined fop > 0

(3.37) Al =ty eRYF(, D) < F(y, J\I) - B).

COROLARRY 3.7. ChooseN =N(d), B=B(F)>0andC=C(d, F, Co,
{F < C2}) as in Proposition3.4 and let ¢ be a solution of(2.1) such that
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O<Aa< sN/Ti, where M is defined beforg3.24). Let ¢, y € I, be defined
in (3.25).For large C» it follows for all x € 21\ Q0

(3.38) ¢(x) =) ¢y(x), ¢y (x) = (1+ ODe VAT HY g Lo, ® ().
yel

Moreoverlet x € I be such thasup, g 4| = sup, ; |¢|. Then

(339) oM =Q+0Me VT +eP)p(x), ye Afj,

where the modulus of the Landau symbols is dominated. by

PROOFR. We may assume that is normalized such that it is positive a#,.
The Harnack inequality ensures the existenc€ ef C(d, F|B(y, 4/¢)) such that
supg, ¢ < Cinfp, ¢. Equation (3.26) forf = 1;p,¢ gives (3.38).

For the proof of (3.39) we first note that CoroIIary 4.8 in [3] in combination

with (3.38) and the condition animplies forally e /\x and allz € £ = Af 7
(3.40) 93 @)1 < 20, 5, (D) SUPI$] < Ce™ g (o)l /e,

where we have used the Harnack inequality to replace the supremum in the latter
inequality. Furthermore, for afl € X,

(341 16:() = Q/DA=hG, 5 )inflgsl = /3P0

In particular,p does not change sign . In view of (3.38) again and (3.40) we
now may choose = Ce™ (AT; 4+ ¢~F/¢) in (2.11) applied t@ andI" = . Since
{F < Ci}cCT, (3.1) forA=Qj and B = B, and (3.29) fora = supg F and
B = C1 show sug, g h¢e p < Ce™(C17®/¢ /g and (3.39) follows from (2.11);
note that we may replaceethere bye /4 without any harm. [J

4. Small eigenvalues. In this section we derive precise asymptotics of the
exponentially small eigenvalues bf in a regular domaii®2 containing{ F < C1},
whereC1 was introduced in Assumption 1.2. We first relate these eigenvalues to
the capacity matrix defined in (4.1). In the last section we show that for geReric
they are exponentially close to certain principal eigenvalues. In the following
section we therefore study principal eigenvalues in detalil.

4.1. Sharp uncertainty principle. In the sequel we want to derive necessary
conditions on small eigenvalues by relating them to a matrix which in leading
order equals the capacity matrix introduced in [28]. Namely, fix an eigenvalue
0 < 1 < ¢ with corresponding eigenfunctiop. Recall the choice ofM = M¢

given before (3.24). The existence .f is guaranteed by Lemma 2.3. Recall the
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definition ofBi, ICM, givenin (1.7). We definé,‘i(A, ¢) to be the matrix with
entries

(4.1) Ci(k,qb)yzzsf e*l”/sianhX do — 5Zy,\/ eF/Sd)idx,
B,v

B, ¢ (2) )

wherey z € I. For the sake of convenience we henceforth write shorthand for
I,JCM:

Wy ;=N puee  cap(l,J)=cap; (BjUQ9),
A;=A(Q\Bj).

(4.2)

Note that the choice of € B(y, /&),y € I, y € M, a priori depends op.

LEMMA 4.1. Let 0 < A < A; for some/C .M. Then i € (L) im-
plies detC;(x, ¢) = 0. Moreovey the vector¢3 = (¢(5’))yei solves the system

Ci(h, ¢)p =0.

PROOF.  This characterization is a consequence of Green's second formula
applied toB; and2\ B; showing for ally € 1

0= / ‘F/":hk AL =N dx

_Z/ _F/gd)anh;jdo—k/B e Flepdx,

y

(4.3)

where we have used that the normal derivative ef o B; taken from inside\ B ;
equals the negative of the normal derivative taken from insige [

Lemma 4.1 can be used to analyze principal eigenvalues leading to the sharp
uncertainty principle Theorem 4.2. As in [3] or [18] one provgs< A, for

x € M\ so that from Lemma 4.1 it follows that

(4.9) e/aB‘e_F/sd)ianh;’_ido —/\i/B e Fleprdy =0,

TUx

whereg; is the principal eigenfunction at$ such thatp;(x) = 1. This equation
implies:

THEOREM 4.2. There existN = N(d) and C = C(d, F) with the following
properties For nonempty properly contained/ c M and x € M\/ such that

Txi:T <€ T wehave

T caf (x, I)
4.5 =(1+0@c VN IUX)
(4.5) r=(1+ 0w ey
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where A P = AO - was defined in(3.37) and where the modulus of the Landau
symbol is domlnated by.

PROOF Taylor's formula shows for ally € B/\B,, 0 < r < ¢, and some
O<ip=2o(y) <A,

As .
(4.6) 0 =0 )+ 2w () + 25070 ()2
By the Cauchy inequality and (3.28) we may bound for some univérsal
4.7 W% () < (C/O = 20w (3) < Ce™ N T, wih, (7)
for somei; < eN/T~ not depending oy so that from (4.6) it follows that
T
(4.8) ) =k )+l 1) + O ’TUX W (),

where we have used (3.28) once more. From (4.8) and (4.6) we obtairefoB,
the double side estimate

rAr Ts
49) = ’T“xaw“(y><ah'(y)—ah ;00 =28, ;) <0,

where the normal derivative is taken from outsiBle Denote bys(F) > 0 the
optimal Hélder exponent of aroundM and fix 8 € (8(F)/2, B(F)) and define

By g = By (eY/+P)). We want to estimate for =0, A1

—F/ep A A
E/BB e thde\vaﬁ anwadG
X

_ —F/s A
(4.10) = /BW\ 5 h’s, ri\B, » 4

—F A
+8/Z;Bﬂ w10y g, , 40

where the latter equality uses Green’s second formula. By (?w??i)is bounded
by ’

(4.11) (L+ CaTjw? ;oo +Ce Ve @D sup 17

F<(Ci
for someC = C(d, F|{F < C2}, |{F < C2}|), where in slight abuse of notation
wx fUse = ?3 BAUEC for ¥ = {F < C2}. Combination of (4.10) and (4.11)

with (3.1), (3.2) and (2.33) yields for sonteas before and somE = N (d)

8/ e Fle 8nw)‘1~da
3By x

4.12 N —F
(4.12) >(1-Cs™ /\Tfo)e/QBxe e opul ;o do

—Ce™" cay (R/\Byp)Tj e~ @D/ e,
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Again by Green'’s second formula we compute fog Nelog(1/e)

_ —FJe 0~
S/BBve h waluzcdo

— —F/s 0
= hxjdy

2:\BIL.Jx

_Z/ e FIlep0 _dz + e /el _dz
A\ x\By xI Af: i\Bx %1

(4.13)

—i—f e Flen0 .
S\U,erAha\al ; xl

Since F is bounded below by (x, I) — 8 on E\UyeiA’f,,x\Af owe simply
bound the last integral in (4.13) by ’

=\ U AL NP,

(4.14) e~ (Fa.D=p)/e.

For the integrals in the sum on the right-hand side by Corollary 4.8 in [4] we may
boundh0 -ONBi\By,yel, by

(4.15) hg,i HBS\B 133511 S<Ce —(Fa.D=F)/e /g

and onA’yS,x\B;", by Ce—(ﬁ(X,i))—F)/g/g’ so that
(4.16) /Af,v\sy e‘F/Sthdz < C|AP \Byle P& ID/e /e,

Concerning the second term on the right-hand side of (4.13), we again use
Corollary 4.8 in [4] applied t&:%_, > ho B = B, \(R?\ B,)?/1%0 on Aﬁ \Bx

in combination with Green’s second formula showing that for sdme N(d) and
someC = C(d, F|Aﬂ |A'S )

/ﬁ e_F/shSidz—i- e Fle gy
AP \B, :

By

—F/e 0 —F/e
> e 1—-hg p)dz +f e dz
(4.17) /Af. B ( B..B) 5.

z(l—Cs_N/Ti)fﬁ etz
Ai
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Inserting (4.17), (4.16) and (4.14) into (4.13) and the result into (4.12), we derive

8/ e_F/eaw da+ e Fle gy
3B, By

—N Ble
(4.18) <1_|_ CAT;,, + C&)/ e Fle g,
T;
— CS_NT~ e_CZ/S,

where we have used c%de\Bx p) < Ce~F™/e/ed=1 following from Proposi-
tion 4.7 in [4]. Using (4.10) in combination with (4.18) in (4.4), we now conclude

. 1 Ble T-
caf(x, 1) = <1 + (9(1)8_N<7+Te~ + e~ C2mFN/e 4 _}m))
(4.19) ! !
-F
X Aj N ~e /e dz,
x,1
where we have replacag; by 1+ O(L)e™N (1/T; + e~ €2=F)/¢) in view of
(3.39) and (2.7). Sinc€» can be made arbitrarily large, the proof is completed by
choosingB = Nelog(l/e) and thatAf ; may be replaced byﬂg 7 without harm.
’ ’ O

Equation (4.5) implies the following intuitive sharp uncertainty principle.

COROLARRY 4.3. In the situation of the previous theoreme have

(4.20) aj= (1+ OV Tm)}g[ 1

’
T; TBiuszc]

WhereE[rgiUQc] is the expected time of the first visit Bf U Q¢ of the diffusion
generated by, and starting inx.

PROOF We first note that by (2.18) foE = Q\{F > C1} andT" = Q\{F >
C2}, C2 > Cy,

0 5 c
sop, (BfUQ)

S 2:\BIK_J)( + SlZJphFC’BI_staF(Bi U Qc) + San (Bi U QC)

(4.21)

Since for largeC» the first term on the right-hand side of (4.21) is bounded by
Ce—NT . forsomeN = N(d) andC = C(d, F|{F < Ca}, |{F < C2}|) by (3.27)

in comblnatlon with (2.33), after possibly increasifig we obtalnsz\B (Bj U
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Q) < Ce—NTiUx + sng (Bj U Q). Invoking (6.1) in [4] in combination with the
fact that the nominator in this estimate is computed in (4.17), we conclude

T..
(422 S0, (BjURH= (1 eV T )sgBX(Bi U,
)‘ 1
It follows from (2.11), (4.22) and (6.1) in [4] that
T.,
(4.23) supw? ge < (1 + Ce‘N%) inf w9 e
By 1 x

It follows from Green’s second formula and (4.23) that modulo the error term
appearing above

w9 ge (x) cap (x, I
:8/33 e Fewd ged,hl  do

(4.24)

= —g/ e 789wl g do + e FIen L dy
0By ’

_ —F/e10
=/ e hl ;dy.
/S‘-Z X,I y

The latter integral was computed in (4.17) so that the assertion follows from (4.5).
O

Q\B.

We want to analyze the diagonal entries of the mattjx, ¢) in more detail.

LEMMA 4.4. Inthe situation of the previous theorem there &re= N (d) and
C=C, F) satisfyingforall 0 < A < Ao, o=V /Tj,

Ci(h dpxx =—(1+O0De VaT;)

Ux!

(4.29) X (A —rj— (L — Ai)ZO(l)s_NTiUX)/A e Fleay.

X1

PROOF  Performing a Taylor expansion at= A; to second order of the
Laplace transform on the left-hand side of (4.25), we compute similarly to (4.9)
using (4.4)

Cih, 9p)xx = (A — )Li)<8/ e_F/8¢i8nwki~da —/ e_F/Sq’)idx)

3B, xI B,
(4.26)
(I-s)AjtsA

x,1

1
+(A—A,~)Zs/ sds/ doe "¢z dyub
0 0By

Analogously to (4.8) by the Cauchy formula and (3.28) @B, we have the
estimate

. (1-$)Aj+sh
w -

(4.27) B > (C/Ga = 1) B’y = (100C /o) By
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for some universal constant, (1/1001g < A1 < Ag and all 0< A < (1/200 0.
Moreover, (4.18) remains valid fér= A, A1 so that analogously to (4.19) fdah
large the last term on the right-hand side of (4.26) is of order

32— N. —F/e
(4.28) (A —Xj)e TIUX/Afi\Bxe dy

while the first term can be estimated by

14+ eB/e
4.20) (h—x ;)(1+ o@eN (/\ T+ %)) [, ereax.
I Avi
In view of (3.28) from (4.29) and (4.28) for somé= N (d) andB = Nelog(1l/s)
the assertion follows. [J

4.2. Small eigenvalues.We now turn to the investigation of small eigenvalues
of L.. Namely, we will show how the capacity matrix introduced in (4.1) can
be used to analyze the spectrum Iof near zero. The proof of Theorem 4.6
proceeds close to the line of arguments of the analogous assertion in [18] or in [3].
In particular, for proofs, which are straightforward generalizations, we refer the
reader to the counterparts therein.

In addition to the notation introduced in (2.31) let us define

(4.30) M(x)={y e MIF(y) < F(x)}, T =Ty M) x €M,
in case thatM (x) # @. We use the conventioRi, = d, = oo for M(x) = 2.

ASSUMPTION4.5. F is generic in the sense that> Nelog(l/¢) for some
N = N(d) > 0, wherep was introduced in (1.17).

From this assumption and its consequence Lemma 4.8 it follows that
M > x — T, is injective [see (4.47) for a proof]. We hence obtain an ordering
of M via

(4.31) x<y ifandonlyif T7,>T,.

We also define

(4.32) Moy ={y € My <x}, My ={y € M|y <x}.
We also shall need

(4.33) Jc= min min T, ..

YEM oy ZEM o \y

Let us briefly outline the strategy of finding small eigenvalues. Starting the
process in a local minimum of’, we believe that for exponentially long times
in 1/¢ it behaves like the process obtained by reflecting the original one at the
boundary of the corresponding valley. For each M, we thus look for a solution
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of the equation appearing in Lemma 4.1 near the ground-state energy of the
associated Dirichlet operatdr*, where X = Q\BM<X—recaII the choice ofM

given before (3.24). We then show that these solutions are the only candidates
for eigenvalues below” for someN and that they have to be simple in case.
Since from, for example, [39] or [8] we already know that there |ag¢ many
eigenvalues, these candidates in fact constitute all eigenvalues b¥lowe use

the conventionsly = oo, hﬁ,g =1, A+# 0O, hg’B =0,B#J, A,y =0 and

a/oo =0 fora > 0. The result is

THEOREM 4.6. For some N = N(d) there is C = C(d, F) dominating
all moduli of the Landau symbols appearing below in case that Assumptions
1.2and 4.5 hold. There are|-M| simple eigenvalues, < Ay, x,y € M, x <y,
satisfying

(4.34) o (L N[0, eN) = {A,|x € M).

For every x € M, x # minM, we have 7, > e”/¢T, and T, > e”/® x
maX,es\ -, Ty, Where p is defined in(1.17). Furthermore there existg =
B(F) >0,asetM_, of |M_,| points such that -, N B(y, e/AA) vy e M_,,
is a singletonand

T, ma T
(4.35) = <1+ (9(1)8—N<T—" TR y))xM
X

X

where we use the notation introduced (#.2) for the principal eigenvalue. ;.
Moreovey every eigenfunctionp, corresponding toi, satisfies for allz €
(F<C1}NQ

N T,
R e LG
(4.36)

T,
-N_fx ;o
+ Z O(De Tyxhy’{MSX(z).
YEM <y ’

Combination of 4.2 with (4.35) and (1.11) yields the following.
COROLARRY 4.7. In the situation of Theore.6 we have for allk € M
(4.37) A=1+0Q)s Nerle)——

Ty
In particular, under the conditions of Theorebil it follows that

detHesg" (x) o= (Pt D=F(x)/s
| det Hess (z*)| ’

(4.38) Ay = (1+ O(Delog(1/e))|A*] \/
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PROOF. It only remains to show that we may replagé&(x) by M (x) within
the error estimates i ; . =T j [ = M(x), where we use (4.43). This is
obvious for the nominator of the latter time scale. For the denominator we have
by the Hopf maximum principle 0B, for smalls > 0

0o _ 0 _ 0 0
nh Q= _a"hi,x = —8,1H(BXUB[_(5))L-]laBi(5)(1 — hx,i)
(4.39) _ _(1 _ (9(1)6,—(F(x,1)—maxF(Bi(8)))/s/8) anh%i(é),Bx

—(1- (9(1)67(F(x,1)7maxF(B,~(8)))/6/€) anh%X,Bi(é)’

where the second equality again is a consequence of Corollary 4.8 in [4]. We thus
obtain

(4.40) caf) (Bp) =(1— O (L)e~ (FE.D-maxF(B;6)/e /¢) carf), (B;(9)).
Applying the same arguments fo= M (x), we obtain
(4.41) T j=(1—-0We "/ Ter)Tes

for § = e¥/4A) whereg > 0 is the Holder exponent of locally at M. The
assertion then follows from (4.43)

We have to introduce some more notation. Fix a $étof cardinality ||
such thatB(x, e¥/1+£)) N M is a singleton, wher@ = B(F) > 0 is the constant
appearing in Proposition 3. M inherits the ordering of( in an obvious way. Let
us defines, = oo for x = min.M and forx € M\ min .M set

(4.42) &= min T
yeM oy YoM \y*

The first lemma actually is a special case of Lemma 4.5 in [18] or Lemma 5.3
in [3].

LEMMA 4.8. For all x € .M it follows for someN = N(d), C=C(d, F) >0
if p > Celoge

(4.43) A+O0We Ve VT =Ty =T, 4
For x € M\ min.M we have

(4.44) T > & > T,
Moreoverfor x, y € M, y < x,

(4.45) max T g .y = erlt Ty jicoy

ze,M\,Msx
In particular, for y € My,

(4.46) Ty oy = Ticy

kl
I/\
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For the proof that the map — T, is one-to-one, we first note that (4.41)
also holds for some8 = B(F) > 0 and arbitrary/ c M and I such that/ N
B, (¢YMB) x e M, is a singleton. We then have far< y by definition and
Assumption 4.5

Tx ~ TM<x = m(AZaX TZ,M<)( = TXNAZ<X
(4.47) ce M
> ep/STy’Mq > ep/gTy,Mq Nep/eTy.
We would like to explain the geometrical background of the previous crucial
lemma. The exponential rate of the time scAlg is given by

(4.48) F(x,I)— F(x) =¢logTy.; + O(1)log(1/e),

where F' is the communication height defined in (1.6). The latter equality is a
consequence of Proposition 4.7 in [4], where the Landau symbol denotes a quantity
with modulus bounded by a constaht= C (d, F|{F < C1}). The first observation

is that the restrictiort of the communication height to singletons ini satisfies

the ultrametric triangle inequality, that ié,(x, y) < max(E(x, 2), E(z, y)) for all

x,y,z € M. Using the conventiorf (x, x) = 0, it is also positive definite and
symmetric and therefore it is an ultrametric by definition. It is not difficult to
see that the ultrametric triangle inequality is equivalent to the assertion that an
ultrametric ball is centered at each of its interior points, that is,/farM and

x € M\I and ally € M\ such thatE (y, x) < r = E(x, I) = max.c; E(x, y) we
haveE (y, I) = r. We would like to point out that the time scales still exhibit this
ultrametric structure under very general conditions without knowing (4.48). If, for
example,F = F, also depends on with degenerate growing level sets at local
minimal values, the process behaves like a Brownian motion when started there.
It therefore might be that the process stays in such regions rather because it takes
much time for Brownian motion to leave a large set. This feature is taken care of
in the definition of the time scalg, ; in (1.9), which then is large not because the
capacity caP(x, I) is small but because the invariant measfiyye, e e/t dx ofa
basinA, ; is fairly large. Under the same genericity assumption as Assumption 4.5
one can still prove ultrametricity and we refer the interested reader to [18], where
under minimal conditions this point is made rigorous.

Lemma 4.8 is a special case of Lemma 5.3 in [3]. Indeed, within the notation
used therein a glance at the proof of Lemma 5.3 in [3] shows that it actually holds
for any set of times scales; j, x € My, J C My\x (depending on a parameter
N = 1/¢), on some finite seidy such that(1/N)log7y j =e(x,J) — f(x) +
O Q) log(N)/N for some functionf = fy and some ultrametrie= ey on My.

The quantitysy appearing there (see Definition 1.2 in [3]) correspondst¢ in
our case choosing(y = M, M. With our favorite choice of the set of time scales
we then havey = E = F|M = F|M and fy = F in our context.
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We now analyze the possible solutions of the capacity matrix introduced
in (4.1).

Henceforthwe assume for somee M\ minM that i, is an eigenvalue of &
satisfying for some > 0

(4.49) €% )8 < Ay < e_“/gTMSX.
Furthermore ¢, denotes a corresponding eigenfunction.

Fory € M, according to Lemma 2.3 we choose a $ét, of |M—,| points
each of them lying in one baB(y, eY/3*A)), y e M_,, for B = B(F) appearing
in the choice off in Corollary 3.7 such thap, does not change sign iB(7, ¢).
Equation (3.39) implies that, does not change sign B(x, ¢/4). Indeed, assume
that |¢,| attains its supremum in some bal(y, e/4), wherey € I = M_,,
y ¢ B(x, e +A)y in Corollary 3.7. It follows from (3.39) in combination with
the upper bound in (4.49) that, does not change sign iAﬂ i for arbitrary

but fixed8 > 0. Choosing: = |¢,| restricted toAﬁ M in (2. 6) forx = Aﬂ ,

it follows A(X) > A,. On the other hand, we obtaln from (2 7) in comblnatlon

with Proposition 4.7 in [4] thak(X) < e~ sﬂ/STy’Mq\y <e NePlejg,. Since

&, < eNé&,, we thus have derived a contradiction to the lower bound in (4.49) for

B < a. In view of (3.39) we now may assume that<, N B(x, /1Ay = x.

Note that by the obvious generalization of (4.41) the various time scales in the
error estimates appearing in Theorem 4.6 may be replaced without harm by those
defined with respect ta( _, instead. In addition, the replacementmt , by ng
changes only by an amount of orde¥N ¢ log(1/¢). Therefore,

In the sequel we identify( ., with the setM_,.

Let C, = diagle” /%) e u, Cue, (A, $x), WhereCye_ (1, ¢x) is the matrix
defined in (4.1) forl = M<x. Note that by Green's second formula and
h;MQ |0 B, = 1 it follows that the latter matrix is symmetric. Hence

( Kx(X) —&x(A) )
—(diage " O=FON/Ey g ()" eFDEC K (b, )an
=Cx(2)
4,
(4.50) :<8/ o~ (F-FQ)/e P54 W-do
9B, éx(2)
— 8y / o (FFON/e_Px_ du) :
By O (y) ZyEM <

During the rest of the section we write shortha@dz hA . Let us furthermore

define
(4.51) Ny = D, — Ky,
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where
D, = diag g/ ~(F=FO)/e_Px d,h* do
(4.52) 9B, o (y) 7
N O du) _
By éx(y) y<x

Equipped with the ultrametric structure in the form written in Lemma 4.8 and
the control of Laplace transforms and of eigenfunctions obtained in the previous
section, one simply can write a Neumann series [see (4.58); recall that a matrix
is invertible if the serie§ ;- |1 — A|* converges in one multiplicative norfn ||

in which caseA™ = ¥, _o(1 — A)] for 1 — D, (W)L N, (1) for A neari_,
proving invertibility of X (). We then compute

Ky 0
4.53) detC, =det =G, detX
( ) * (_(diaqe(F(x)—F(y))/s)yfxg»x)t Gx) x x
where
(454) Gy = Cx(')xx - (diaqe(F(X)_F(y))/s)yfxgx)t ) Kx_lgx'

This follows by simply adding the column vector

X, o
—(diagleFW-FOVE) gy ) 8x

(which clearly is a linear combination of the first columng®j to the last column
in C. From this representation we obtain thatis very close to 4 _ . We begin
with:

LEMMA 4.9. There isN = N(d) such that for alla > 0 and someC =
C(d, F,«) dominating the supremum norms of the Landau symbols appearing
below and all

(4.55) /6 < < e_“/E/TMSX,

the inverse ofK, (1) exists More preciselyuniformly ini

(4.56) (KM 1E), =0 y=ux.

o, S
Moreoveywe obtain

(4.57) reo(ly) << G, =0,
whereG, (1) is defined in4.54).
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PrROOF  Formally the inverseX, (1)~1 is given by the Neumann series, that
is,
K@) = (1 - Do) TN (W) DL (1)
(4.58)

= (D) TN W) D (W)
s=0

In order to make sense out of this calculation and to extract the exponential
decay estimate written in (4.56) out of the sum, a straightforward computation
for s € N\O gives the random walk representation

(D V)TN () D ()T

(4.59) _ ( 5 ﬁ Cx(Wap 1oy 1 )
w.y—>7 t=1 CX ()\)a)[,la),,l Cx ()\)zz VZ,y,2<x
lw|=s

where forJ C M, we write shorthand : y — J fora sequence = (wo, ..., wr)
such thatwo =y, wr € J, oy € M<x\J andw;_1 # o, forall t =1,...,T.

|w| denotes the length of the sequence. By means of (4.46) we may apply (4.25)
for x = y < x—in slight abuse of notation—anfl= M, \y and conclude us-
ing (4.5) in combination with Proposition 4.7 in [4] that for soie= C(d, F)
andN = N(d) and allA satisfying (4.55)

Co()yy = (1/C) /A e~ (F=FOD/e gy

X, M<x

(4.60) % (= hatery) (L (h = 2o ) O(D T,

=(1/C)reV.

In addition, (3.26) forl = M_, in combination with the upper bound in (4.55)
proves for som& = C(d, F) and ally,z € M<,, y #z,

(4.61) nhl > C0,hd > Cd,h2 = —C 9,h

ond B,. Harnack’s inequality applied t, | B(y, ¢) and Corollary 4.8 in [4] show
for someN = N(d)

—Ci (M) = _8/ e FFOIe 55 4 o

3B, éx ()
(4.62) - Cg/ o~ (F=F)/e g 10 4o
— n v,z
9B,
<Ce™N/Ty .

Now fiXx y € M<y, z € M<,\y and a sequence = (wo, ..., wr):z — y Such
thatw; 11 #w, fore=0,..., T — 1, o, e M, forr=1,...,T — 1. We observe
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that there is & 19 < T such that
(4.63) F(wg-1, 010) > F(z, ).

For, if we assume that the contrary is true forrgh=1, ..., T — 1, it follows from
ultrametricity of M, x Moy (y 7) > F(y, 7) that F(w1,y) = F(z,y). By
the same argument this |mpI|d§(a)2 y) = F(z,y) and so forth. We conclude
F(wr—_1,0r) = F(wr_1,y) = F(z,y) so thattg = T does the job. Choosg
satisfying (4.63). Combining this with the triviality, , > &, for y,z € M<,,

y #z,y < x,whereg, is defined in (4.42), we obtain

o] fo—1 ; - o]
l_[ th—lawt l_[ th Wt — 16 (wto 1wt0) @7e l_[ Tw, 1,W¢
(4.64) 1 =1 t=to+1
> T, 671

Combination of (4.64), (4.62) and (4.60) tells us that the computations in (4.58)
are justified and that foy < x

2l Ce (Mo
(K180, Z]‘[ LIRS

WYX (= 1C ()“)wt 10r-1

1 \lel-1
Z o NAT (0(1)8Nk8x)

(4.65) wy—x
o0
= O 3 (M| = ' leT VD emr el
ATy x =
— oM ——
T TeNATy

We thus obtain (4.56).
_ Equation (4.57) then is a direct consequence of (4.53) and Lemma 4.1 for
I = MSX' D

We are searching for solutionsneara ,__ of the equation appearing in (4.57).
We want to apply Lagrange’s theorem to this equation (see [42]) which tells us
the following: Fix a pointa € C and an analytic functiod defined on a domain
containing the point. Assume that there is a contour in the domain surroundling
such that on this contour the estim@e(¢)| < |¢ — a| holds. Then the equation

(4.66) ¢ =a+ V()

has a unique solution in the interior of the contour. Furthermore, the solution can
be expanded in the form

(4.67) t=a+y )t ()"
n=1
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We are in a position to prove Theorem 4.6.

PROOF OFTHEOREM4.6. Equation (4.57) can be written as

(468) —Cy(Mxx + CI)J(C) =0,

where we have set= A fA —F/e du/cad (x, M) and

(4.69) Di(0) =D ColWy (KW 18 N)),
y<x

Fix constant arbitrarg > 0 and let us denote by, the interval of allz such that
(4.70) ea/sTx/é} << e_a/STx/TMSX.

Defining £, = Au_, cap(x, M_,)/ fA,e e Fledu, B> 0 small, it follows

tu., =e%® from Theorem 4.2 and we may apply (4.25) forak U, to obtain
for someN N(d)

f P —F/edu
_ xM<X
@71y W= s My
x OBV (g — gy 4 (¢~ Eu,)*Re(D),
where
3 oJe caf(x, M) N pge Ther
(4.72) R (0)=0(De TfofAﬁ T =0Q)e Ve T,
X, M<x

by Proposition 4.7 in [4]. In view of (4.71) it follows that (4.68) is equivalent to

for some function¥, satisfying
cap’(x, M—y) _
@78) ) = P M) N OW (1) + (¢ =t 2R 0).
fo,s L€ du

Furthermore, (4.62) shows for glle U, and aIIy <Xx

(4.75) —Cx(M)yy = (9(1)
Tx,y

Thus for all|¢ — ¢u_, | = 1 we deduce from (4.5) and (4.56) that for ak U,

_Nep/sTXZ - E—Nep/sTx

ca(x, M—y) _y P
(4.76) T ey ENGIEDY

X, M<x

Tx,yTy,x - 7}

y<x
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By means of (4.72) and (4.76) it follows for — CEH' =1
e NeP/eT, e_Nep/gTMSX
Tx Ty

Since 7, > &, in view of (4.44) we may apply Lagrange’s theorem to (4.73)
giving the existence of a unique solution= 1, [,s e */*du/caP(x, M)
X, M<x

of (4.68) satisfying¢; — ¢u_, | < 1. We rewrite (4.73) in the form

(4.77) W (O] =

g NerleT, e NePlET ),
@78 ao=g, o e

Since from invertibility of X, (,) it follows that the kernel ofC,(%,) is at
most one-dimensional, Lemma 4.1 implies that is simple. Using (4.5) for

[ = M_, from (4.78) we derive that (4.35) holds. Moreover, using< AMoys
which follows from (4.5) and (2.5) in combination with (2.33) from Lemma 4.1
we conclude that

(4.79) (6 () ey = Bx () K () 7182 Our).

Hence from (4.56) and, = ¢?Px . we obtain from (3.38) and (3.39)
that (4.36) is satisfied. Now it is very easy to finish the theorem. In view of
Lemma 4.8 and Assumption 4.5 choosing< liminf. op the union of the
intervals described in (4.55) contains an interval of the fgdnz?"), N = N(d).
Noting that [39] after possibly increasir{ gives the existence ¢ | eigenvalues

in this interval, we obtain (4.34). Actually, similarly to (2.7) one can also use the
variational formula, Theorems 4.5.1 and 4.5.2 in [12], by (4.36) obvious choice
qu = ]1‘2 PRESS M, for some smalB > 0 as a trial function fop, to obtain the
existence of these eigenvalues—and already rather precise upper bolinds.

5. Distribution of metastable transition times. In the sequel we show how
the structure of the low-lying part of the spectrum developed in the previous
section determines in a precise way the asymptotic behavior of the distribution
of metastable transition time<x) defined in (1.16).

We first would like to point out that Theorem 4.6 holds in more generality with
only obvious changes in the notation. Namely, if we defngB; instead of2, for
some nonempty, properly contained subket.M, then Theorem 4.6 still holds
for the Dirichlet realization.! = DBl in L2(Q\By, e~ F/¢ dx) when M(x) is
replaced bym (x) U I for all x € M\ 1. Moreover, we could have looked only for
the principal eigenvalue and its eigenfunctiond.¢fand the same procedure then
leads to:

THEOREM 5.1. Fix a nonempty properly contained subseft c M. Then
Theorem4.6 still holds for the operatorZ! with the modification thatM has
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to be replaced byM\/, M(y), y € M\I, by its union with/, M_,, M<, are
defined with respect to the time scalgs= T,y (yyur and M, M, are chosen
depending on the exchange.&f. ,, M~,.

Letx € M\I be the unique solution to the equati@n; = 7;, where the latter
was defined in{2.31).In addition to the equivalent of4.36)in this situation we
have on{F < C1}

Trux
(5.1) br = (1+ O@)e N ITL,J >¢x(x)h§3’,
with the usual dependence of the constahiand the constant dominating the
Landau symbol and where we use the converifign= 1.

For I = M(x) # @ modulo factors of order ¥ O(1)e™ ™ (Tu,/Tu.,),
respectively, the small eigenvalues bf equali,, y € M\M_,, wherexr, are
given by (4.34) forl = o.

As we shall see, it is not difficult to obtain the leading part in the following
result from Theorem 5.1. But for reasonable control of the remainder term we
have to prove additional a priori large deviation type estimates to which most of
this section is devoted. Recall the definition (1.2) of the diffusion generatdd by
starting inx and that of the hitting time in (1.14) and setj o = 73, IN
slight abuse of notation.

THEOREMb5.2. Suppose the assumptions of Theodke6are met and assume
that either is bounded orf;;_ ¢, IVF ‘e~ ~CV/7 dy < oo for somey > 0.
Assumemoreoverthat . defined in Assumptioh.2 satisfiesu, > 5¢ for some
constants > 0 independent iz > 0. Letx € M\ be the unique local minimum
such that7, ; = T;. Let A, be the principal eigenvalue dfg. Then for alls > 0

Trux
5.2) Plejuge > 1= (14 00 T2
1
where the modulus of each Landau symbol is bounded by a coistartt (d, F)
andN = N(d) > 0.

For I = M(x), x € M, we obtain Theorem 1.4 from (4.20), the generalization
of (4.35) and (4.41).

REMARK. We note that the a priori bound qn is the natural choice. More
precisely, for F of sufficient regularity this is the case as can be proven by a
semiclassical approximation similarly to Theorem 11.1 in [8]. Moreover, this
property is trivially fulfilled if liminf|,— o |AF(x)|/|VF(x)|? < oo.
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REMARK. As the reader might observe while reading the proof of (5.2), the
methods are fully sufficient to obtain the following result from the generalization
of Theorem 4.6 described in the first part of Theorem 5.1. In the situation of the
previous theorem let (L) = {1,|y € M\I} be the low-lying spectrum of...
Then for somec =« (d, F) >0andallr >0

T,
Plt] qe > t]=e ™! (1 + 00N %)
1

T
(5.3) + Y MoV
yeM\I\x T

+eo@e ™ (Ti +em(mr 8)
1

with the usual dependence of the errors. Since the computations [starting
with (5.4)] necessary for this result are a bit tedious, to keep this work at a
reasonable length we omit its proof. Instead we refer the interested reader to [3]
for a proof in discrete space, which unfortunately does not generalize directly to
the continuous state space setting. The full strength of this expansion would be
achieved if one proves lower bounds on eigenfunctions, that is, in view of (3.38) on
transition probabilitieshg’B(z), in regions where they are small by, for example,
applying large deviation principles. This would lead to a replacemenit(dj in

the sum above by eXp-(rate+ o(1))/¢), where the rate depends on the properties
of the flow of VF.

PROOF OFTHEOREM 5.2. Assumption 4.5 assures thats unique. Letp,
be a corresponding eigenfunction to the principal eigenvajuef L! normalized
such thatp, (x) = 1. Fix y € B, and write

(5.4) Plt) e > 11=e """t (1g\5,) ().

Using the spectral decomposition corresponding to the principal eigenvaltfe of
we compute

0\ 71
eFOIZFEN/e gL (10 ) (y)

(5.5) (¢x: LB, ) F—F(x :
=t BT () 4 e L (1g,5,) ),

I Z_F o)

where| - | denotes the norm induced by the inner product » on L2(Q\ By,
e~ /¢ dz) and wherdT, is the orthogonal projection onte, ). To estimate the
second term on the right-hand side of (5.5) we introdtge= {F < C1} and
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I'h={—¢<F —Cy—ke <0} for k e Nand write
ki, (La\z,) )
= E[HX(]lQ\E,)(Xty)» Tluge > 1]
(5.6) =E[M, (1g,5,)(X7), X; € Av1(B), Tjuge > 1]
+ E[My (1 5,)(X7), X; € Q1\Ay 1(B), Tjuge > 1]

+ ) B[y (1g3,) (X)), X7 € Tk, 1j50¢ > 1],
keN

where we recall definition (3.37) off’,. To estimate the right-hand side we start
with the claim that

~nT1

X
1 11
1, tal, TO@

ana? \B,

Combination of (5.1) with Corollary 4.7 in [3] gives oﬁf 1 B> Celog(1/e),

bs _ZnA,s B, OLeFON=Ple 1o L o)1

B B
ye] Q \ALx\AxA,I

(5.8)

T .
(14 0@V (HYE 4 oF@D=Fle /o)) g,
TI AxA,I

whereA’f,x =Uyes A’yg,x and thus

(R
(5.9) _ <1+(9(1)8—N<T1UX +e—2(ﬁ(x,1)—F(x)—ﬂ)/s))/ o~ (F—F()/e
TI Af,l
whereas
B B N Tux | (Fa.D—Fo—p)/e
(@x. 1o\3,) rru = (1+0De T te
(5.10) !

y f | e,
Ax,[

Equations (5.9) and (5.10) give the claim and thus the first term on the right-hand

side of (5.6) is of ordee*N(TIUX/TI)P[rfUQC > t] for someN = N(d, F). In
addition, together with (5.8) they imply that the first term on the right-hand side
of (5.5) equals the leading part in (5.2).

The remaining part of the proof is devoted to the estimate of the second

and the third terms on the right-hand side of (5.6). Next, we generalize
Proposition 5.9 in [2] to our setting. This generalization is—besides technical
details—straightforward. We have:
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LEMMA 5.3. ForsomeN = N(d, F) uniformly ine > 0and¢ > 0,

(5.11) Plty >t]> e /TigN,

For the proof of this lemma it will be useful to introduce the following renewal
structure. Letw, W%, k e NU 0, be a sequence of independent Brownian
motions onR? starting in zero defined on a common probability space; denote
by X%, X>®, the strong solution to (1.2) defined with respectito W = w®,
respectively, starting im = z. Fix two regular domaind C ~ C B¢ and define the
stopping times

512) of =inf{r > 0|Fgos, X2V ¢ %, X2V € A},
pi =inf{r > 0| x> e B).

Moreover, fory € A setSo=0,z0=y, S; = Sl,1+af“, = Xf’*l’(” forr=S;.

PrROOF OF LEMMA 5.3. Now chooseB = B; U Q¢ A= B, and & =
B, (¢/2). We may write, using the strong Markov property and independence, for
everyk e N

Plef > 1] = P[Sk > 1, Vici<koy < o]

=P[Vic<ko," " < o MP[Sk > t|V1i<i<k 07t < o/ ]
(5'13) : z z k Z1-1 Z-1
> Ing Plo] < p1l) PLSk > t|Vi<i<ko; ™ < p; ]
Z€E X

> (1 — Ce_(F(Z’I)_F(x))/g/s)k]P’[Sk > t| Vi<i<k Glzl_l < plzl_l],

where the last inequality follows by the strong Markov property and Corollary 4.8
in [4] yielding

(5.14) Plof <pil> inf Pty <1) gl > 1— CemF&D=F@/e /g

yeIB(x,8/2)
The claim is proven once we show that for sonieand allr > 0 andk = ¢~ V¢
the second term in the product of (5.13) is bounded below. For, we recall an
inequality going back to Paley and Zygmund—also referred to as the second
moment inequality—saying that

(5.15) P[X > (1-8E[X]] = 8E[X]?/E[X?],  §€(0,1),

for any random variabl& with finite expectation. We want to apply this inequality
to the variableX = S;/k, where we choosé = 1 — I/(Rk/inf.¢yp, E[o]]
o7 < pi]), where R is specified later on, and the probability measute=
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P[-|Vi<i<ko; ' < p/'~*1. Therefore, we notice that by independence

E[Sk| Vi<i<ko,' ™ < o' 1]

Zn-1 -1 -1
=Y Eloy" | Vic<ko; ™ < ']

n<k
> Y E[El0],07 <piliy—. ,» Yisi<no] "t < p[Y]
(5.16) <k
8 inf oeap, P[Vi<i<k—no; "t < o/ ']

-1 -1
P[Vi<i<ko; ™ < p

= (k/C)_inf Eloflof < pil.

In the last inequality we have used independence once more in combination with
the Harnack inequality for harmonic measures (see, e.g., Theorem 4.3 in [36]
which is applicable after a scaling argument to get rid of the dependeneg on
saying that forz>® = x)® ats = Tp.ej2c @nd Z¥ = X7 att =1t again

by independence for sonte= C(d, F) and ally, y € 9By,

y y -1 Z1-1
Ploy < p1, Yo<i<nop ™ < p; 7]

= P[2" M € dz|P[t? < T3 e, Z° € d7]
(5.17) 9Bx(e/2)
X P[V1<i<n UZZFl < ,O[Zlil]
= e(g(l)]P’[af < pli, Vzgsnaf"l < plz”l].
Similarly, one proves

E[(S)?| Vi<i<koy ™t < p' ]

— Z E[(Gjn71)2| Vlslsko_lzl—l < plzlfl]
n<k
+ > Elow" ou" [ Vaci<ko] Tt < p 7]
(518) n,m<k
m#n

= 0Dk sup E[(o§)?|0F < pi]
z€0 By

+ODk(k — 1) sup E[of|of < pil2.
z7€0 By
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We thus obtain for alt € 9B,

P[Sk > t|Vi<i<kp] <o ]

z(l/C)(l—r/(Rk inf E[af|af<pi]>)2

x k2 |nf IE[01|01 < pl]
z€0

(5.19)

-1
y <k(k 1) sup Efoflof < pi2 +k sup E[(05)2|of < p§]> .

7€ By 7€ By

It remains to estimate the right-hand side of the previous inequality from below.
By the strong Markov property we compute

2
El01)% 0f < o] = E[(t], (¢/2) PIT} < Tl =Xi 1=, )
(5.20) + 2B[7h /e Bl < Trugell,= Xi 1=, <s/2>f]
+E[E[(t)% ) < TIUQL]|y Xj 1=t (8/2)6]

By the Cauchy inequality in combination with (2.21) and (2.18)/e ng(g/z)f,

K =% =T = By(¢/2) and forh = hy_ (¢/2)c the firstterm on the right-hand side is
bounded bWE[er(S/Z)C /A(Bx(g/2)) < C. For the second term we compute by
the strong Markov property and Assumption 4.5 for sa¥hand ally € d B (g/2)
andz € M\I\x satisfyingT, jux = Trux

E[z), 1) < leuszc]
<E[r}, 1) = TMUQ‘]
+E[r) |t = 1300 Pl = Thuge] SUp Pltd < 15 g

ueciB,

5.21
(5:21) + Pt = t30qc] SUP PItf < 75 qc JEITE|TE < 5 qe]
uecodB,

N (8—N + Cs_NT[Ux)e_(F(x’Z)_F(x)+F(Z’x)_F(Z))/€/82

< &N (l—l— Ce*(lf"(x,z)*F(x))/S),
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where we have used (2.33) in the second inequality. For the third term on the right-
hand side of (5.20) we obtain similarly to (5.21) by the strong Markov property

2
El(z))% 7} < Tjuge]
2
<E[()% 1) = Ty

2
+ Pt} = tdy%UQc]E[(tzy) It} = ‘L’X{UQ(;] Sla.lg Plr) < 17uqe]
uedB;

5.22
( ) +P[r) = TJy%UQC] Sglr; Pz < t}‘UQc]E[(tf)2|t)’: < Tfqe]
uedB,

+ 2P[r) = TCLUQC]E[sz“zy = Td{tuszc]

x sup P! < f o BT 2t < 7f g
uedB;

so that in combination with the Cauchy inequality for< eV /Tiux A (AM(Q\
Biuy)/C) and someu < e¥ A (A(Q\By)/C), Proposition 3.4 and (2.33)

2
E[(z), 1) < TIyUQc]
(5.23) <e Nu+EN/u+ E_NTIUX/)\')e_(ﬁ(xvz)_F(x)'f'ﬁ(Z,X)_F(Z))/S/gZ

<Ny 8—Ne—(ﬁ(x,z)—F(x))/s + e Norle,

In case thatM = I U x the bounds in (5.21) and (5.23) remain valid if the terms
involving exponentials are replaced by zero by an even simpler argumentation and
an obvious generalization of (2.33) to the cdseJ = M. Furthermore, for some

C = C(d) ande > 0 small enough, using (2.21) again,

i Y
Elof, o1 < p1l = Elog, . /2] yea,'gr(‘j,g/z) Pty < 1750l

.24 inf  E[t), 1) <1} o
(5.24) +y€aB(x78/2) [T, T < Tiugel

= E[O’é(x’e/z)c]/z >¢/C

since the latter probability converges exponentially fast/ntb 1. On the other
hand, combination of (2.21) and (5.21) gives

Elof, 07 < pil < E[Uzza(x,g/z)c] + sup E[r).7) < rIyUQc]
(5.25) y€8B(x,€/2)

< Ce+e V(14 CemFra-FuN/e),

Combination of (5.20) with the remark following, (5.21) and (5.23) and the
resulting bound with (5.24), (5.25) and (5.14) shows that the right-hand side
of (5.19) is bounded below by~" for someN = N(d, F) and allk > ¢~ "¢,

O
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With the uniform a priori estimate (5.11) we can proceed with the generalization
of Proposition 6.1 in [2] to our setting. F@re (F(x), co) we denote bye, (B) the
connected component ofin {F < 8}.

LEMMA 5.4. ThereisC = C(d, F) > 0 such that for som&/ = N(d, F), all
B> F(x)+ Celog(1l/e),all t > 0andally € By,

(5.26) PIX] ¢ Co(B)T) qe > 1] < & N Tyyge PFEV/E,

PROOF Let T =inf.cyp,(s/2 Elojlo; < pil/2, where we have choseh=
By (¢/2)¢, ¥ = B{ and B = B; U Q€ in the definition (5.12). Decomposing
the event{X; ¢ C,(B), r,y > t} according to the number of returns By from
By (¢/2)¢ before timer, we have fork = min{k € N|kT > ¢}

PLX] ¢ Cx(B), T ge > ]

(5.27) =3 Y PIX¢CB).T) <t <T; 3 Atjge,
n>01<k<K

ve[(k—DT, kT At1)],
wheren; denotes the first instant of reachiBg(e/2)¢ after the moment;; of the
nth return toB, from B, (g/2)¢ before timer when starting iny. For thekth term

in thenth inner sum on the right-hand side of the last equation we may write using
the strong Markov property

P[X] ¢ Gx(ﬂ) T <t <T, 4 ATjugemy € [(k— DT, kT At)]
(528) E[ ¢ e (/3) T[UXUQ‘ >1— r]lszf,rzn,};’
Ye[tk—DT, kT At AT)Lqe)],
where for someC = C(d, F), someN = N(d), all A < eV /Ty, all r € [(k —
1)T,kT) and allz € d B, (¢/2) by the exponential Chebyshev inequality, the strong
Markov property, (3.26) and Corollary 4.8 in [4],
Plt —r < 75 000 Xi—r ¢ Cx(B)]

—A(z kT) z z
E[¢* usuae , T = Tiuwuae]

(5.29) <e MTHDELe o ' Tp < Tjuxuge]  SUP % ’UMZ”]
yedCx(p)

= e_k(l_kT)CP[ffzj < Tiuwuge]

< M=KD 0o (B=F (/¢ 1.
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where we have introducedé = inf{r > O|F(x/) > B}. Combination of this
estimate with (5.28) and (5.27) leads to

IP)[X? ¢ Cx(B), leugzc > 1]

C
<Y o—-Fwy/e
(5.30) =%
x Y e KD S Py € [(k— DT, kT At AT]ge)]-
1<k<K n>0

From the definition ofT" in the beginning of the proof and the second moment
inequality (5.15) it follows for som&v = N(d, F) and allz € 9B, (¢/2) and all
reltk—DT,kT At ATj 0e)

PlkT At —r <07 < pil = PIT <05 < pil

(5:31) . _ o Eloflof <pil _
=t <Al oot < g1 = °
1)7101 < P

where the last line involves a computation almost the same as in (5.14) and
in (5.20) to (5.23) which we leave to the reader. Moreover, similarly to (5.24)
the reader may convince himself that

(5.32) Eloflof < pil>e"  (z€dBi(e/2)

after possibly increasingv. Using (5.31), we compute by the strong Markov
property

Pl(k — DT <n) <kT At <11 < Tjugel

=E[PkT At —r < 0§ < pil|_x7 ey

(5.33)
ny €[k — DT, kT At AT) e )]

> eVP[n) € [k — DT, kT At AT ge)]-

Letn; be the first time after (k — 1)T such thatX] reachesB, (¢/2). Combination
of (5.32) and (5.33) with (5.30) shows for sorive

PIX] ¢ Cx(B), T} uge > 1]

=N —(B—F(x))/e
(5.34) =& e

x Y e MITEDP(k — DT <) <kT At AT) o],
1<k<K
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On the other hand, we have by the strong Markov property again in combination
with the a priori lower bound (5.11)

Pltjyge > 1= Pltk — DT <n} <kT At <t <7Tj gl
(5 35) = E[P[TI))UQ” >1— r]‘ZEX,):,rET]i’
' (k=DT <n) <kT At AT} 0]
> ¢ N CSDDTIND[(k — )T < ) <kT At AT g0l
The last two estimates, the choice afand T in combination with (5.32)
prove (5.26). O
Now we are in a position to estimate the second and third terms on the right-
hand side of (5.6). Foy € B, combination of (5.26) and (3.20) leads to
E[TT, (ﬂg\g,)o@’ ), X? € Q1\Ax 1(B), r,yugc > 1]

keN
=0 VPr) g > 1]

5.36 T ;
( ) X( TUx 4 Tyupe~ FaD=F@)=p)/e
1

4 Tyuge—CLmFa/e

X/ sup |VF|de—(F(y)—Cl)/(Ze)—dist(y,91)/Cdy)
{F>C1} B(y,e8(y))

for sufficiently largeC andﬂ > Celog(1l/e). Here we also have used the trivial
bound(1g, 1}, ¢x)p/||¢>x||F < 1. Itis not difficult to see that by the integrability
condition on F the latter integral on the right-hand side of the last display is
bounded uniformly ine > 0 small enough. The theorem is proven since in the
bounded case we do not need (3.2Q)]
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