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This paper studies the regularity properties of the density of the
exit measure for super-Brownian motion wifi + B)-stable branching
mechanism. It establishes the continuity of the density in dimensien2
and the unboundedness of the density in all other dimensions where the
density exists. An alternative description of the exit measure and its density is
also given via a stochastic integral representation. Results are applied to the
probabilistic representation of nonnegative solutions of the partial differential
equationAu = y1th.

1. Introduction and statement of results. This paper is devoted to regularity
results for the density of the exit measure of super-Brownian motion with
(1+ B)-stable branching mechanism from a smooth domaiR%fExit measures
of superprocesses were introduced by Dynkin in connection with applications
to partial differential equations (see in particular [5] and [6]). Here we use a
stochastic integral representation of exit measures to get precise information
on their regularity or irregularity. As an application we provide a probabilistic
representation for all nonnegative solutionsfof = x1*# in a smooth domain, in
the so-called subcritical case whete: 1+ 2/8.

Let D be a bounded domain of clag¥ in R? (d > 2 throughout this work). If
x € D, we write p(x) = dist(x, D) for the distance of to the complement ob.

We denote byM 2 the space of all finite measures &n which is equipped with
the weak topology. Ifx € M{?, supp ) denotes the closed supportof which is
a subset oD, and we set

MP. . ={i € MP :SUpp) C D}.

The integral of a functionp with respect to a measune will often be written
as(u, ¢).
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EXIT MEASURE OF SUPER-BROWNIAN MOTION 195

Let 8 € (0, 1] and letX = (X;,t > 0) be a super-Brownian motion iP with
(1 + B)-stable branching mechanism. To be specilicis a superprocess with
branching mechanism (1) = u'*#, whose underlying spatial motion is Brownian
motion inRR¢ killed when it exitsD. The process( is a strong Markov process
with values in M?, whose distribution will be characterized in Section 2. If
n e M2, we write P, for the probability measure under which starts fromg.
In the first two theorems below, we will consider the case where the initial value
U E M}?’c (see, however, Remark 3.1).

As a special case of the martingale problem recalled in Section 2.3, we know
that for every twice continuously differentiable functignon D, with compact
support contained i,

t
<Xf,¢>=<u,¢>+fo<xs,%¢>ds+Mt<¢>,

whereM, (¢) is a martingale undep,,. It will be convenient to use the notation

M, ($) = /0 /D Li0.1()¢ (¥) M (ds. dx).

Standard arguments then show that the “stochastic integral”

/ooo/Df(S’X)M(dS,dx)

can be defined for a wide class of integrarfdésee Section 2.3 and the beginning
of Section 3).

Let XP be the exit measure ok from D. Note that the usual definition
of X? involves the associated historical process, which contains more information
than (X;,t > 0). Alternatively, one can proceed as in [6] or [8] by defining the
superprocess as the collection of all exit measures from time-space open sets (these
include the measureX; as special cases). The measii® is a random finite
measure supported @D. We prove in Section 2 thaf” can be obtained via the
following approximation, which is of independent interest. For every0, set

D, ={xeD:px)> e} F,=D\ D¢,

and
D 2 [
XP(dy)=¢ fo 1, ()X, (dy) dt.

Then XP converges weakly tax? as e tends to 0, inP,-probability (see
Proposition 2.1). This shows in particular th&f is a measurable function of
(X, t=>0).

It was proved in [1] and [21] thak P is almost surely absolutely continuous
with respect to Lebesgue measuread if and only if 2<d < 1+ 2/8. In the
casep = 1 andd = 2, more can be said” has a continuous density (see [15]).
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In this work we consider the “stable branching” case; that is, from now on we
concentrate on the case<08 < 1, and we address the question of regularity of the
density of the exit measure in dimensions 2 < 1+ 2/8.

Our first theorem provides a stochastic integral representation for the exit
measure and for its density when it exists.

THEOREM 1.1. Let (Pp(x,y),x € D,y € D) denote the Poisson kernel
of D, and leto denote Lebesgue measuredb. Let . € M7 ..

(i) For every continuous functioponaD, P, -a.s.,

(1.1) (XD, ¢) = (11, Ppg) + /0 fD Po(x)M(ds, dx),
where
Ppd(x) = /6  Po(xr. )9 (o (@y).

(i) Suppose thal < 1+2/8. Thenfor everyy € d D, we may define undé,,,

12  XP(y)= /D Pp(x. y)u(dx) + /O fD Pp(x, y)M(ds. dx).

The mapping: — X P (y) is continuous inL?(P,), foranyp € [1,1+ B), and we
haveX?(y) > 0,P,-as., for everyy € 9 D. Finally,

XPdy)=XP(y)ody), P,-as.

To be precise, we should say in the last assertion that we consider a measurable
modification of the processX?(y), y € dD).

We now come to the main result of the present work, which deals with the
regularity properties ok . For any measurable functiof: 9D — R, let || f|| 5
denote the essential supremum (with respect to Lebesgue measurg ofi f on
the relative open sé8 C aD.

THEOREM 1.2 (Regularity and irregularity of density).Let u € QM,Q’C.

(@) If d = 2, the process(XP(x),x € D) has a continuous modification
underP,,.
(b) Suppose tha® <d <1+ 2/8. Then

IXP()lu=oco  wheneverx”(U) > 0, for any open set) C 9D, P,-as.
Obviously, the second part of the theorem remains valid if we repltdy

any version of the Radon—Nikodym derivative f with respect too. Thus,
when 3<d < 1+ 2/8, there exists no continuous density of the exit measure.
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The main motivation for studying exit measures comes from their connections
with partial differential equations. A basic result of Dynkin [5] shows that the
exit measure yields a probabilistic solution of the nonlinear Dirichlet problem
associated withgAu = u*#. To be specific, for any nonnegative continuous
function¢ on d D, the function

(1.3) v(x) = —logEs, [e_(XD’¢)], xeD,
is the unique nonnegative solution to the following boundary value problein in
%Av = p1th in D,
(1.4)
v=2¢ onabD.

A major problem is to extend this probabilistic representation to all nonnegative
solutions of%Au — u¥t# in D, and to see that this representation induces a one-to-
one correspondence between solutions and their traces on the boundary (defined in
a proper way). This problem was solved in [15] in the particular gas€l, d = 2.
Later, Marcus and Véron [17] generalized the results of [15] by showing that in
the so-called subcritical cage< 1+ 2/8, there is a one-to-one correspondence
between nonnegative solutions and admissible traces. The next theorem gives a
probabilistic formula for this correspondence. In order to be able to use the results
of [17], we restrict our attention to the case of the unit ball.

We need one more definition. The rangeof X is defined as the closure of the
set

U suprix,).

t>0

THEOREM 1.3. Suppose thaf < 1+ 2/ and thatD is the unit ball ofR?.
Let K be a compact subset 8D, and letv be a Radon measure @D \ K. The
function

(1.5) u(x)=—IlogEs, [Jlmm(:@} exp(—/)_(D(y)v(dy)>], xeD,

solves the equatioa}uAu = u't8 in D. Converselyif u is any nonnegative solution

of %Au = u¥*P in D, there exists a unique paiKk , v) such that the representation
formula(1.5) holds

As the proof will show, the paifK, v) can be interpreted as the trace of the
solutionu (defined analytically in [17]).

Let us emphasize an important point. To make sense of the probabilistic
representation stated in Theorem 1.3, it is crucial to have chosen a specified version
of the Radon—Nikodym density of the exit measure. In dimengien2, we may
of course choose the continuous density (as was done in [15]), but Theorem 1.3
shows that in higher dimensions the right choice is to consider the prad&ss
as defined in Theorem 1.1.
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REMARK 1.1. Inthe present work, we do not discuss the quadratic branching
casep = 1. However, our results also hold in that case. Both Theorem 1.2(a) and
Theorem 1.3 are proved in [15] in the cag8e= 1. Furthermore, the reader will
easily check that the stochastic integral representation of Theorem 1.1 is also valid
in that case:M should then be interpreted as the ushidtmartingale measure
associated with super-Brownian motion. As a matter of fact, this stochastic
representation can be used to simplify the proof of the key technical lemma of [15].

Let us record some convenient notation for future use. In generdl,if a
set of functions, we write" ™ for the set of all nonnegative functions . We
usec or C to denote a positive, finite constant whose value may vary from place
to place. A notation of the form(a, b, ...) means that this constant depends on
parameters, b, .... If E is a metric space, |eB(E) be the corresponding Borel
o-algebra [B(E) will also serve as the set of Borel measurable function&bn
We denote byC(E) the space of all continuous functions @and by Cp(E)
[resp.Bp(E)] the space of bounded functions @ E) [resp. inB(E)]. We also
denote by(?g(D) the set of all twice continuously differentiable functions bn
with compact support contained . Finally, if x e R? andr > 0, B(x, r) stands
for the open ball of radius centered at.

The paper is organized as follows. Section 2 recalls basic facts about super-
Brownian motion and states some preliminary results. Theorem 1.1 is proved in
Section 3, Theorem 1.2(a) is proved in Section 4, and part (b) of Theorem 1.2 is
proved in Section 5. Connections with partial differential equations are discussed
in Section 6. The Appendix gives the proof of a technical auxiliary lemma.

2. Prdiminaries.

2.1. Estimates for the Green function and the Poisson kerriedt (G p (x, y);
x,y € D) be the Green function ab and recall that{ Pp(x,z); x € D,z € dD)
denotes its Poisson kernel. The functi@hs and Pp are continuous o x D and
D x 0D, respectively, and they have the following probabilistic interpretation. Let
(&,t > 0; I, x € D) denote Brownian motion killed at its first exit time fron,
and letz be the lifetime of this process. Then, for apyg By(R?) andx € D,

nx[/:m)dz] = [ 60Go. )y,

Mg &)= [ 60)Polx. o).
We will use the following estimates. For everyy € D andz € 9D,

(2.1) Gp(x,y) < C(D)p(y)lx — y*4,
(2.2) Gp(x,y) <C(D)p(x)p()|x —y|~@
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and
(2.3) Pp(x,2) <C(D)p(x)|x —z| ™.

Estimates (2.1) and (2.2) can be found in Theorem 2.3 of [22] in dimension
d > 3. In dimensiond = 2, they both follow from the more precise bound in
Theorem 6.23 of [2]. Finally, (2.3) is a consequence of (2.2) and the interpretation
of the Poisson kernel as half the normal derivative of the Green function at the
boundary (see Proposition 5.13 in [2]).

2.2. Super-Brownian motion and its exit measurén this section we recall
the basic facts about super-Brownian motion that will be used in the proofs of
our results, and we also discuss properties of the associated martingale measure.
Without additional effort, the results of this section are valid in a more general
setting than in the Introduction, namely, for a branching mechanism fungtioin
the type

w(u>=/n(dr><e—” “l4ur),  u=0,

wheren(dr) is ao-finite measure 010, co) such that/ (r A r?)n(dr) < co. Note
thaty (u) > 0O for everyu > 0.

Our super-Brownian motionX with branching mechanismy is a time-
homogeneous Markov process 2, whose semigroup is characterized as
follows: For everyu € M2, ¢ € 8 (D) andt > 0,

Eple™ 9] = exp—(u, u),

where the functior{u,(x), > 0, x € D) is the unique nonnegative solution of the
integral equation

AL
() + 0, [ fo w(u,_s(ss))ds] L[ E) L]

(see, e.g., [6] or Chapter 2 of [16]). In particular, taking= 1 > 0, we get an
expression for the Laplace transform (@f;, 1), from which one easily sees that
E,.[(X:, 1)] <(u, 1) for everyt > 0.

From the preceding Laplace functional, it is not hard to derive that for any
1eMg, ¢ e By (D),

E. [exp(— fOOO(X,, o)) dt)i| = exp—(u, v),

where the functiorfv(x), x € D) is nonnegative and solves the integral equation

b(x) + I, [f: w(v(st))dr} -1, [/j ¢(§t)dl]-
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In view of approximating the exit measui&”, we now write the following joint
Laplace transform. For anye B, (dD) and¢ € B, (D),

2, e~ [T Xy ar - (xP.g)) | = exp— (e w),

where the functiorfw (x), x € D) is honnegative and solves the integral equation

w(o) + 0, [/: w(w@t))dr} -1, [/(f P& di + g(s;_)].

This statement is a special case of Theorem 1.1.8 in [6]. We can now prove the
approximation of the exit measure stated in the Introduction.

PROPOSITION2.1. Let X be defined as in Sectidh ThenX? converges
weakly toX? ase | 0,in P,,-probability.
PROOF Lety e @*T(D). Itis enough to prove that
(X2, 0) — (XP, )
in IP,-probability, ase — 0. To this end, we need only check that, for every
A A >0,
E.lexp(—(X, @) = 2 (XP, D] = Ep[exp(— 0+ ) (X7, )]

ase — 0. We fix A and)” and establish the preceding limit.
By our definition of Xf, and results recalled before the statement of the
proposition, we have

E.[exp(=2 (X2, @) — X (XP, 9))] = exp(— (i, w®)),

where
¢
W (x) + I, [ /o (W &) dt]

(2.4) .

_m, [; fo 15 (&) ¢ (&) di + /\’w(é‘;—)] = 1 (x),
Similarly,

E,[exp(— (L + ) (XD, ¢))] = exp(— (i, w)),
where

¢
25 w4, [ / w(w@z))dr] L [0+ M) (E )] = h(x).

By standard arguments (see, e.g., the proof of Theorem 1.1 in [5]), (2.5) is
equivalent to the boundary value problem

AW =y (w) inD,
w=M\+N)p onabD.
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Uniqueness of the nonnegative solution for this boundary value problem is a
consequence of the maximum principle, and so we seewh# the unique
nonnegative solution g®.5).

An application of the bounds (2.1) and (2.2) shows that there exists a
constantC (D) such that for every € D ande € (0, 1],

¢
nx[ f levs(;%t)dz}= f Gp(x,y)dy < C(D)é?.
0 F,

To get this, first note that by the strong Markov property it is enough to consider
the case when € F,, and then use the bound (2.1) whpn— x| < ¢ and the
bound (2.2) wheny — x| > . The point is to observe that the Lebesgue measure
of F, N B(x, §) is bounded above bg’ (D)3~ for everys € [e, 00).

It follows from the previous bound that the functions, ¢ € (0, 1], are
uniformly bounded overD, and by (2.4) the same holds for the function$,
¢ € (0, 1]. We have then

1 ¢ 1
ST [/0 ﬂFg(smo(s,)dr} =5 /F Gp(x. »)o(y)dy.

Using either of the bounds (2.1) or (2.2), and the fact tAgtx, z) is half the
normal derivative of the mapping— G p(x, y) atz [in other words G p (x, y) ~
2p(y) Pp(x, z) wheny tends toz along the normal t@ D atz], we easily get

1
m = [, Goeyemdy= [ Po.9p@e @) =il

It follows thath® (x) — h(x) ase — O, for everyx € D.

Let K be a compact subset @, and leteg € (0, 1] such thato(x) > ¢q for
everyx € K. Denote byzg the first exit time fromD,,. From (2.4) and the strong
Markov property at timeo, we get that for every € D, ande € (0, gol,

%o
wS(x)+nx[ / w(w%ss))ds}: (),

where the functionshg are harmonic onD., and uniformly bounded. As
previously, this integral equation implies that soIves%AwE =Y (w®) in Dy,

and since the functions® are uniformly bounded orD, standard analytic
arguments (see, e.g., Theorem 3.9 in [12]) show that the functighsare
equicontinuous orkK. At least along a subsequence, we may therefore assume
that w® converges to a limiting functiomb, uniformly on every compact subset

of D. By passing to the limit in (2.4), we see thatsolves (2.5) and thu® = w.

We conclude that® converges tav, which completes the proof.[]
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2.3. The associated martingale measur&or the results of this section, it is
convenient to equip the underlying probability spaeewith the filtration (#;)
generated by, which is completed as usual with the class/f-measurable sets
which areP,-negligible for everyu € M2. All martingales or local martingales
will be relative to the filtration(#;). We will use the standard notatioh X =
X, — X for the jump ofX at times (no confusion should arise from the use/f
also for the Laplacian).

We first recall from [3], Section 6.1 or [10] that satisfies the following
martingale problem. For evegye C3(D) and everyf € C(R),

t
FUXi, ) = f({Xo,9) — %/o U Xs, (X5, Ap) ds

- /Ot (/D /(wa)(f«Xs, @) +rox))

— f( X5, 0) = [/ (X, w))ﬂp(X))n(dr)Xs(dX)) ds

is a local martingale.

From this martingale problem, one easily infers that the jumpX ohust be
of the following type. Ifs > 0 is a jump time ofX, then AX; = r§, for some
r > 0 andx € R?. More precisely, if/ denotes the set of all jump times &f, the
compensator of the random measure

N = Z S(S,AX';)

seJ

is given by the following formula. For any nonnegative predictable funckiam
Ry x 2 x MP,

(2.6) EH[Z F(s,w, AXS)} =E, U F(s,w, M)]V(ds,du)},

seJ

whereN is the random measure @, x MPE defined by

/G(s,u)ﬁ(ds,du)=/Ooods/n(dr)fXs(dx)G(s,rSX).

See Théoréme 7 in [10] or [3], page 111.
Let F be a measurable function @ x M2 such that for every > 0,

1/2
(2.7) EMK 3 F(s,AXs)2> ]<oo.

seJN[0,1]

Following [14], Section I1.1d, we can then define the stochastic integralwith
respect to the compensated measiire N,

/O Fs, ))(N — N)(ds, dp),
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as the unique purely discontinuous martingale (vanishing at time 0) whose jumps
are indistinguishable from the process(s) F (s, AXj).

We shall be interested in the special case WheW@, u) = Fy(s, n) =
[ ¢ (s, x)u(dx) for some measurable functighon R x D. [Some convention
is needed wherfi |¢ (s, x)| i (dx) = oo, but this will be irrelevant in what follows.]
If ¢ is bounded, then it is easy to see that condition (2.7) holds. Indeed, we can
bound separately

1/2
EM[(Z(AX;,1)211{<Axx,1>§1}> }

s<t

1/2
<E, [Z(AXS’ 1>2]1{(AXS,1>51}:|

S<t

, / 1/2
= (/(0,1]r ”(d’")Eu[/o (X5, 1) ds]) < 00,

and, using the simple inequality? + --- + a2 < (a1 + --- + a,)? for any
nonnegative realg, ..., a,,

1/2
EM|:(2<AXSs 1>2]1{(AXX,1)>1}) } <E, [Z(AXSv 1>1{(AXS,1)>1}:|

S<t s<t

t
= /(1’00) rn(dr)EM[/o (X5, 1) ds] < 00.

In both cases, we have used (2.6) and the factEh&tX,, 1)] < (u, 1).
To simplify notation, we write

M, ($) = /O fD¢<s,x>M(ds,dx)z /O Fy(s. )N — N)(ds. dp),

whenever (2.7) holds foF = F,. This is consistent with the notation of the
Introduction. Indeed, if¢ (s, x) = ¢(x) where ¢ € Gg(D), then by the very
definition, M;(¢) is a purely discontinuous martingale with the same jumps as
the processX,, ¢). Since the same holds for the process

t
0
(see Théoréme 7 in [10]), we get thit (¢) = M, ().

M, (p) = (X, ¢) — (Xo.0) — & / (X,. Ap) ds

3. The stochastic integral representation. We return to the special case
wherey (1) = u'*# and thus

_BBHD oy

n(dr) = Fi—p)
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for someg € (0, 1).

In this section and in the next two, we fix the initial measuref our super-
Brownian motion, and we assume that M7, .. To simplify notation, we write
P instead ofP,, andE instead ofE,,.

We need to introduce some notation. I{@t;D(x, y), t > 0,x,y € D} be the
transition density of Brownian motion killed on its exit frob, and Iet{S,D, t >0}
be the corresponding semigroup. For any measuﬁe%? set

SPu(y) = / pP(x.yw(dx),  yeD, t>0.

Recall thatE[(X;, ¢)] = fD(]ﬁ(x)StD;L(x)dx for everytr > 0 and¢ € 8™ (D) (this
first-moment formula is easy from the Laplace functionak ®f, ¢) recalled in
Section 2).

For anyp > 1, we define the Banach space

L =LP(Ry x D, SPju(x)ds dx)

of equivalent classes of measurable functions with finite norms

00 1/p
||f||pz(/0 fDIf(s,x)IPSSDM(x)dxds) .

Note that if f does not depend on the “time” parametethen

1/p
||f||p=(/D|f<x)|"GDu<x>dx) ,
where

GDV(y)E/ Gp(x, y)v(dx), yeD, ve ME.
D
LEMMA 3.1. Letg € L?, for somep € (1+ B, 2). Then the martingale

t
Mf(¢>)=/0fD¢<s,x)M<ds,dx), i>0,

is well definedand bounded irl.4 (P) for everyqg € (1, 1+ ). More preciselyfor
everyg € (1,1+ B),

(3.1) E[sugwt(as)w} < c(B. p. ) (IB1% + 119
=

Moreover for any sequence of functiori@,, n > 1} such thatg, — ¢ in L?, as
n — oo, we have

G2 Jim E[supiM,¢,) - M@ =0 Vged.1+p).

t>0
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PROOFE To see that the martingal®;(¢) is well defined, we need to verify
condition (2.7) withF = F4. We will in fact prove more by checking that, for
everyg € (1,1+ B),

q/2
(3.3) E[(Z F (s, AXS)2> } < 00.
seJ

First note that sincg/2 < 1, we have(Y;c;a)?? < Y., ai”/z whenever
a; > 0 for everyi € I. We use this in the second inequality below:

q/2

seJ

[ p/244q/p
=k (Zﬂ{<AXs,1><1}F(s,AXS)2> }

seJ

B q/p
<k Z Lyax, p<ul F (s, AXs)I”}

LseJ

r oo /
:E_/O ds/n(dr)/Xs(dx)]l{r<1}rp|¢(s,x)|p]q !

00 q/p
- ((/ rpn(dr))/ ds/ dx Sj)u(x)|¢(s,x)|l’>
0.1] 0 D

=CB, p. o,

using (2.6) and the fact thaf, 1, 7Pn(dr) < oo sincep > 1+ B.
Similarly,

q/2
E[(Zﬂ{mxs,lbl}F(s,AXS)Z) ]

seJ

= E[Z Lyax,,n>1!F(s, AXS)W}

seJ

:E|:fo dS/n(dr)/Xs(dx)]l{,>1}rq|¢(s’x)|qi|

= <</(l,oo) rqn(dr)) /OOO dS/DSsDM(dX)W(S,qu)

=CB.ploli,
using (2.6) and the fact thgigl’oo) rin(dr) < oo sinceg < 1+ 8.
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By combining the last two bounds, we see that (3.3) holds. Furthermore, by the
Burkholder-Davis—Gundy inequality for purely discontinuous martingales (see,
e.g., Chapter VII of [4]),

q/2
E[suth(«p)w} < C(q)EKZ F(s, AXS)Z) }

120 seJ

and the bound (3.1) follows from the previous inequalities. The last assertion is
immediate from (3.1), observing that — ¢ in L? implies¢, — ¢ in L7 since
the measuré? u(x) dx ds is finite. O

The next lemma is a Fubini-like theorem for our stochastic integrals.

LEMMA 3.2. Let (E, &,v) be ao-finite measure space and let be a
measurable function oR; x D x E. Assume that for somee (1+ 8, 2),

fE/O /D|¢><s,x,y>|PSsDu<x)dxdsv<dy><oo,

and for everyy € E,

/(; /D |¢(S,X,y)|pSSDM(x)dxds < 0.

For everyy € E set¢,(t,x) = ¢(t,x,y) and

t
M;((by):/(; /quy(s,x)M(ds,dx).

Then for every ¢ € [0, o0], the process(M;(¢y),y € E) has a measurable
modification and

@4 [ mwman=[ [ ([ o6xywian)mas.an.  pas

PROOF We only sketch the arguments. First note that our integrability
assumptions guarantee that the stochastic integeaig,) are well defined for
everyy € E, that the functiony — ¢(s, x, y) is v-integrableS? u(x) dx ds-a.e.,
and that the stochastic integral in the right-hand side of (3.4) is well defined,
independently of the value we give 1 ¢ (s, x, y)v(dy) wheny — ¢(s, x, y)
is not v-integrable. By standard arguments, it suffices to prove the lemma when
v is a finite measure anfl= 14 is an indicator function (note that the integrability
assumptions of the lemma are then automatically satisfied). In the particular case
whereA = A1 x A, with A1 € B(Ry x D) and A € &, the various assertions
of the lemma are immediately verified. The general case follows from a classical
monotone class argument]
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PROOF OF THEOREM 1.1(i). Let ¢ € C(@D). We may extendp to a
continuous function o, which we still denote by. By standard techniques (see
Proposition 2.13 in [11] or Exercise 11.5.2 in [19] for the finite variance branching
case), it is easy to obtain that for every 0, P-a.s.,

(3.5) (X:,0) = (u, SP o) +//S d(x)M(ds, dx).

We then apply Lemma 3.2 to the (bounded) funct{enx, r) — Jl{ss,}S,D_sqb(x),
noting that/s° 1< S2 ;¢ (x) dt = G p¢ (x). It follows that

(3.6) fo (X ¢)dit = (i, G o) + /O - /D G o (x)M (ds. dx).

From the definition ofX”, we get for any > 0,
@7 xP)=wGos+ [ [ Gorioms.dx,

where f¢(x) = 8_211}78 (x)¢(x). As in the proof of Proposition 2.1, it is easy to
verify that, for everyx € D,

(3.8) Gpf®(x) > Ppp(x)

ase — 0, and furthermore, the functiorGp ¢ are uniformly bounded oveb.
By dominated convergence, we see tliap /¢ converges toPp¢ in P for
every p € (1+ 8, 2). By passing to the limie — 0 (using the last assertion of
Lemma 3.1), we get the desired result]

PROOF OF THEOREM 1.1(ii). Let p e (1,45). From the bounds

(2.1) and (2.3), itis straightforward to verify that, for any compact suksef D,

(3.9) sup ([ GD(x,y)PD(y,Z)de> < 00.
x€K,z€edD \YD

We are assuming/ < 1+ 2/B, or equivalently 1+ g < 4t1. We can thus
choosep € (1 + B, %t} A 2) and the preceding estimate implies that the (time-

independent) functlo(ls y) — Pp(y,z) isinL? for everyz € D. In particular,

the stochastic integral appearing in the definition P (z) is well defined
according to Lemma 3.1. Furthermore, using the fact fhat M2 . We can
apply Lemma 3.2 to the functiofy, s, z) — Pp(y, z) and the measurable space
(E,&,v) = (3D, B(dD), o). It readily follows that the process(”(z), z € 9 D)
has a measurable modification, and that, for aryC (0 D), P-a.s.,

(XP.9)=u. P+ [ [ ( [ o z)¢<z)a(dz>)M<ds, dx)

:f ¢(z)(f PD(x,z)u(dx))G(dz)
aD D
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+/8D¢(Z)(/OOOfDPD(x,z)M(ds,dx))o(dz)
- f $()XP (20 (dz).
oD

This is enough to conclude that’ (dz) = X (z)o (dz), P-a.s.

In particular, we must hav&?(z) > 0, o(dz) a.e.,P-a.s. From the estimate
(3.9) and the last assertion of Lemma 3.1, it is easy to see that the mapping
z — XP(z) is continuous inLY(P), for everyq < 1+ B, and it follows that
XP(z) > 0,P-as., forevery € 9D. O

REMARK 3.1. The proof of part (i) of Theorem 1.1 does not depend on
the assumption. € M7 ., and the result is indeed true for an initial measure
n € MP. Things go differently for part (ii): Ifu € M7 \ M7 ., the function
(s,x) — Pp(x,z) may no longer be ifi.? for any p > 1+ B, and the stochastic
integral appearing in (1.2) may not be defined. Still from the additivity property
of superprocesses, we can recover from the particularm&s@t?c the fact that
the exit measure is absolutely continuous with respect to Lebesgue measure on the
boundary.

4. Continuity of the density in two dimensions. In this section, we assume
thatd = 2 and we prove part (a) of Theorem 1.2. As we want to use the Riemann
mapping theorem, we will first assume thats simply connected.

The first term in the right-hand side of (1.2) is obviously continuous io, to
prove the existence of a continuous modificatiorXdt(y), it is enough to check
the existence of a continuous madification of the stochastic integral

Z(y)E/O ‘/.DPD(x,y)M(ds,dx).

Before we continue, let us introduce the following notation. Dgtbe the unit
disc of the plane and denote by(dy) the Lebesgue measure on the unit circle
9 Dg. The Poisson kernel in this case can be computed explicitly:

11— |x)?
2m |y —x|?’
The next lemma is crucial for estimating the moments of increments of

(4.1) Po(x,y) = x € Do, y € dDy.

LEMMA 4.1. (a)Setpg(x) = dist(x, dDg). Leta >0, p € (0,2+ a), and

2
2+a—p, if¥<p<2+a,

2+a . i _2+a
2 ’ P="5

2
D, fO0<p< -|2-a’

(4.2) y =
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wheree € (0, Z’LT“) is arbitrary. Then there exists a constant= c(p, a, €) such
that

(4.3) /D po(x)?| Po(x, y1) — Po(x, y2)|” dx < c|y1 — y2|” V y1, y2 € 3 Do.
0

(b) For any B C Dg such thatdist(B, d Dg) > 0, there existg: = ¢(B) such that
(4.4)  sup|Po(x, y1) — Po(x,y2)| <cly1—y2|  V¥y1,y2€9dDo.

xeB

The proof of Lemma 4.1 appears in the Appendix.

Since D is a bounded simply connected domairiRiA, the Riemann mapping
theorem allows us to find a conformal mappitigfrom Dg onto D. Under our
assumption thab is of classC?, i extends to a one-to-one continuous mapping
from Dg onto D. In fact, we can say more. According to Chapter 3 of [20]also
has a continuous extensionBy andy’ does not vanish ofg. In particular,|y’|
is bounded below and above @ by positive constants. It is also easy to check
that for everyx, y e D andz € 9D,

(4.5) Pp(x,2) =¥/ (v 2@)| " Po(v 1), (@),
(4.6) Gp(x,y) = Go(y1(x), v ().
Let6(x) = |y¥/'(y~1(x))| for everyx € D.

LEMMA 4.2, Let p € (0,3), ¢ € (0,3) and u € M2 . There existsc =
c(p, e, D, ) such that for every, y» € 9D,

/D 10(y1) Pp(x, y1) — 0(y2) Pp(x, y2)|” G pp(x) dx

clyr — y2|?, if0<p<%,

<{ cly1— y2/¥/?%72,

clyr— y2I*77, if 3<p<3.
PROOF Let i be the image ofx undery 1, and set&(fi) = Suppit),
px = dist(&(f1), dDg), and €(f1)**/%2 = {x € Dg:dist(x, E(1)) < px/2}. Then,
using (4.5) and (4.6),

/D 10(y1) Po(x. y1) — 6(y2) Pp (., y2)|P G pa(x) dx
= [ 1ol ow) = R’ v 02
0

x ( A 0 Go(w,x/)ﬁ(dw)>|¢/(x/)|2dx/-



210 J.-F. LE GALL AND L. MYTNIK

By an application of the Fubini theorem,

/ ( Golw, X’)/l(dw)) WO dx < c(ii ),
Dg \J Dg

and on the other hand, the bounds (2.1) easily imply that for every Dg \
g(ﬂ)p*ﬁ,

fD Golw, x)i(dw) < c(fi, ¥)pox').
0

It readily follows that

/D 0(y1) Pp(x, y1) — 0(y2) Pp(x, y2)|" G pp(x) dx

§c(/l,1ﬂ)( sup  |Po(x’, v 1(yn)) — Po(y', v 1(v2))|”

x'€€(u)P+/?

* ./;) \E(f1) /2|P0(x/’ v on) — Po(x, v () [P po(x) dx/>
o " Px

<c(@, )10 — v roIP + v o) — v o)1),

wherey is as in Lemma 4.1 witla = 1, and we have used boih assertions of this
lemma to derive the last inequality. Singe! is Lipschitz onD, the bounds of
the lemma follow easily. [

LEMMA 4.3. Letp e (1+ 8,2 andg € (1,1 + B). There exists a constant
c=c(B, p,q, D, n) such that
clyr— y2l?, if0<pB<3.

E[10(y1)Z(y1) — 0(y2) Z(y2)|?
[10(y1DZ(y1) —0(2)Z(y2)|] < L|yl_y2|q(3—p)/p, if3<p<1l

Proor Recall from the proof of Theorem 1.1(ii) that the functionx) —
Pp(x, y) belongs td.” foranyy € D andr € (1, 3). From Lemma 3.1, it follows
that

E[60(y1)Z(y1) — 0(y2) Z(y2)|7]

q/p
<c(B. p, q)((/D 10(y1) Pp(x, y1) — 0(y2) Pp(x, y2)|" G pja(x) dx>

+ /D 160(y1) Pp(x, y1) — 60 (y2) Pp(x, yz)l"GDu(x)dy>-

In the case O< 8 < % choosep € (1 + B, %) and immediately get the desired

bound from Lemma 4.2. Similarly, in the ca%:e_< B < 1, the desired result follows
from Lemma 4.2. O
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PROOF OFTHEOREM1.2(a). We apply the Kolmogorov criterion of continu-
ity to get the existence of a continuous modification of the proéésgZ (y) [and
hence also o (y)]. The needed bounds for moments of increment&(e) Z (y)
are obtained from the preceding lemma: In the casef< % this is immediate

sinceqg > 1, and in the casé < B < 1, we observe that we can chogsendg
sufficiently close to ¥ 8 to ensure thag (3— p)/p > 1. The existence of a contin-
uous modification of the procegyy), together with the remarks of the beginning
of this section, completes the proof of part (a) of Theorem 1.2, in the simply con-
nected case.

The general case wheb is not simply connected can be treated via a
localization procedure analogous to Section 4 of [15]. Instead of the special
Markov property of the Brownian snake used in [15], one uses the Markov property
of superprocesses in the form stated in Theorem 1.1.3 of [6]. Details are left to the
reader. [J

5. Irregularity of the density in high dimensions. In this section, X d <
1+2/B.1f z€dD andr > 0, we denote byB;(z, r) the open ball centered at
and with radius- in dD: By(z,r)={y€dD:|y —z| <r}.

In order to prove part (b) of Theorem 1.2, it is enough to verify that the property
(5.1) 1XP ()|l = oo, P-a.s. on the everity” (B) > 0}

holds whenever B is a fixed boundary ball.

We thus fix a boundary ball B= By(zo, no). For technical reasons, we also
introduce a smaller closed ball B: B;(zo, 1), With ng < no. If 3B’ denotes the
relative boundary of Bwe assume that(dB’) = 0 (this is certainly true for all but
countably many values of;). We consider a sequencs;,) of positive numbers
decreasing to 0. For definiteness we may take- 27". Then, for every integer
n>1, we set

B, ={x € D:dist(x, B’) <¢g,)}.
LEMMA 5.1. We have

o
8’1—2/0 X,(B,)ds — XP (B asn — oo, in P-probability.

PROOF From (1.1), we have for eveky € B,(d D),
ELX, )1 = (1, Pog) = [ n(dx) [ o @) P gy,
aD

Taking ¢ = 155, We see that our assumptien(dB’) = 0 implies X?(dB’) =0,
a.s. The statement of the lemma is then an easy consequence of the weak
convergence ok P towardsX? (Proposition 2.1). [J
We fixa € (2/( +1),2). Let
7, =inf{s > 0:AX(B,) > &)/ }.
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LEMMA 5.2. We have

(5.2) P(t,=occ| XP(B)>0 -0 asn— oo,
and
(5.3) lim supP(z, = 00) < P(X?(B') = 0).

n— oo

ProoF Equation (5.3) is an immediate consequence of (5.2). To verify (5.2),
we will follow the lines of the proof of Lemma 4.1 of [18]. Define

Z' = N([0,1] x {n € ME: u(B,) > %)),

whereN is the point measure of jumps of the proc&ssvhich was introduced in
Section 2.3. Then

(5.4) {t, =00} ={Z}, =0}.

Recall (2.6) for the compensator &f. From a classical time change result for
counting processes (see, e.g., Theorem 10.33 in [13]), we get that fon ¢laete
exists a standard Poisson procd8s= (A" (¢), t > 0) such that

2 = " (c(re; 0 | [ X(B,)ds ).

wherec(8) =B/T(1—B) > 0. Fixd >0suchthat 2 «(B+ 1)+ 8 <0. Then
P(z", =0, X?(B') > 0)

o0
< P(A"(en—s) =0, c(B)e, ¥ P+D / X;(By)ds > &%, XxP(B) > o)
0

(5.5) + P(c(ﬁ)e;“<ﬂ+1) /O > X;(Byds <e,°, XP(B) > o)
<P(A" (e, %) =0)
+ IP>(c(ﬁ)e,%—"“ﬁ“H(3 (8;2 /0 = XS(B,,)ds) <1 xP®)> o).
The first term on the right-hand side of (5.5)8A" (¢, %) = 0) = exp{—e¢,°},
which converges to 0 as — oo. Now, by Lemma 5.1,»3”‘2[5’0 X,(B,)ds —

XxP (B, in probability, as: — co. Since 2— a(8 + 1) + 8§ < 0, we immediately
get that

o0
P(c(ﬁ)sﬁ—“w“)” (8;2 f XS(B,,)ds> <1, xP@®) > o) — 0,
0
asn — o0o0. Hence, the result follows from (5.4) and (5.5).]

In order to get a lower bound fo¢? in terms ofX ?, we observe that there exists
a positive constant; = C1(D) such that (B, (x, 2¢,,)) < C1e¢~1 for everyn > 1
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andx € dD. If n is large enough so that2 < no — 7, which we assume from
now on, we haveB;(z, 2¢,) C B for everyz € B/, and so

supX?, 1, ;,20,)) < C1ed7H X g.
zeB’

Thus

(5.6) Elexpi—C1|XP|Ig}] < E[exp{— supel=?(xP, 1138@,26”))”.

zeB/

On the event{t, < oo}, denote by¢,, r, the spatial location and the size of
the jump at timer,, meaning thatAX,, = r,6,,. From the strong Markov
property at timer,, together with the additivity property of superprocesses, we
know that conditionally on{r, < oo}, the process X, 4,,t > 0) is bounded

below in distribution by()?f,t > 0), whereX" is a super-Brownian motion with
initial value r,8,. From our approximations of the exit measure, it follows that
conditionally on{z, < oo}, X is bounded below in distribution by the exit
measureX”-? of X" from D. Hence, from (5.6) we get

Elexp(—C1[X”|8}]

< E[ﬂ{tn@o} exp{— supsl=?(xP, 133(1,2,3,,)>” +P(t, = 00)

zeB’

(5.7)

< E[ﬂ{fn@o}Erng{n [exp{— supsld(xP, ﬂga(z,zgn))”] + P(z, = 00).

zeB’

Note that, on the everjt, < oo}, we haver, > ¢ and¢, € B,. We now claim
that

(5.8) lim  sup By, [exp{— supsl=?(xP, 133(2,28}1))” =0.

xeBy,r>g% zeB’

To verify (5.8), letxg € B, andr > ¢%. By the definition of B, there existgg € B’
such thatyg — xg| < &,. Then, using the Laplace functional of the exit measure as
recalled in Section 2.2,

Eyrsg [GXP{ — supe,~{x”, 13, (z,28n>>”

zeB/

(5.9) < Ersy, [GXP{—Si_d<X b, JlBa<yo,2en>)”

=exp(—r v;o (x0))
< exp(—e, vy, (x0)),

where the nonnegative functi@n{ (x), x € D) solves the integral equation

(5.10) vﬁo(x)+/ GD(X,y)v;’O(y)lJrﬂ dy=8,}_d/ Pp(x,z)o (dz).
D By (y0,2¢n)
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LEMMA 5.3. Under the condition?/(8+ 1) <a <2and3<d <1+ 2/8,
we have
5.11 lim inf ‘o = .
( ) ”_’°°<XO€Bn,yo€B’, [yo—xol<é&x £n V0 (XO)) o
Let us postpone the proof of Lemma 5.3. Our claim (5.8) readily follows from

(5.9) and (5.11). By passing to the limit—> oo in the right-hand side of (5.7), and
then using Lemma 5.2, we arrive at

Elexp(— | X" [g}] < limsupP(z, = o0) < P(X”(B") = 0).

We can now let Bincrease to B by varyingy, along a suitable sequence
increasing too. Since the everitX P (B) = 0} is the decreasing limit of the events
{XP(B') = 0} along this sequence, we get

Elexp(—IX?|s}1 < P(XP(B) =0).

Since obviously| X P ||g = 0 on the even{X P (B) = 0}, the desired property (5.1)
follows from this last bound. This completes the proof of part (b) of Theorem 1.2.

PROOF OF LEMMA 5.3. Letn > 1 and xg € B,, yo € B’ such that
|xo — yo| < &,. In what follows we will need to assume thats sufficiently large,
but our bounds will then be uniform irp and yo. To simplify notation we write
v" =vy,. Note that by (5.10), for every € D,

VH(x) < ei_df Pp(x,z)o(dz).
Bii(y0728n)
Therefore,

/ Gp(xo, YV (0P dy
(5.12)

1+
< 8511_d)(1+,3)/ Gp(xo,Y) (/ Pp(y, Z)G(dz)) dy.
D By (y0.2¢n)

We first get a lower bound on the right-hand side of (5.10xfer xo. SinceD
is of classC?, there is a numbet > 0 such that, for every € 3D, there exists an
exterior sphere of radiug tangent tod D at z. Suppose thai is large enough so
thate, < «, and forz € 9 D denote byB; the closed ball with radius, /2 tangent
to 9D atz and such thaB: N D = @. Then, ifx € D is such thatx — z| <¢,, the
probability that a Brownian motion started atexits the domainD at a point of
Bj(z, 2¢;,) is bounded below by the probability that this Brownian motion Bifs
before exitingB(z, 2¢,,). Clearly, this probability is bounded below by a constant
Co(d) > 0. Hence,

(5.13) f Pp(x0,2)0(dz) =Ty, (&.— € By(yo, 2¢,)) = Co(d).
Bj(y0,2¢)
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We then turn to an upper bound for the integral ovrin the right-hand
side of (5.12). It will be convenient to deal separately with the integrals over
D N B(yo, &) and D N B(yo, €} )¢, respectively, where & y < 1 is chosen so
that

1
d< tr + 1.
B
With obvious modifications, we can then follow the calculations of ([1], page 81)

and, using (2.1) and (2.3) in the first inequality below, we obtain,sfdarge
enough,

1+
= Goon)([  Poaow) dy
DNB(yo,e))¢ By (y0,2¢n)

148
< e(D) ( / a(dz))
Bjy(y0,2¢n)

<[ o=y sup =213 dy
DNB(yo,en )° z€By(y0,2¢1)

< c(D)e{= VAR gy (A=) / PP sup |y —z P ay
DQB(YOsé‘Z)C 2€By(y0,2¢p)
_ — . 2+B8—d(1
<DV [ (distly, By(vo, 260))2 P dy
DNB(yo.&})¢

diamD
< C(D)Sr(Ld—l)(1+ﬂ—y)f pd=1(p — 2g,)2HB—dAHP) g,

34

< C(D)S,(ld_l)(l+ﬂ_y) ,

where the last inequality holds because 1+ 2/ implies 1+ 8 —df > —1.
Let us turn to the integral ove N B(yo, ¢ ), which is denoted by . Notice
that, fory € D,

/ Pp(y. 2)0(dz) = I, (§,— € By(yo, 26x)) < 1.
By (yo,2¢n)

Hence, using again (2.1) and (2.3),

pef  Goeon([  Pot.aows)dy
DNB(yo,&)) By (y0,2¢1)

<c(D) o=y o)
DNB(yo.en)

X <1{p<y>s4en}

+ Lip(y)>4e,) /B Py — zl“’o(dz)> dy

3(y0,2en)
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<c(D) s 120 = YT o0 (Lp(r)<ten) + Lio)=e,p (e ) dy
DmB(YOsEn)
<cDyen [ - lro—yFdy
DﬂB()‘O,&?n)

<c(D)enel .
By combining the preceding bounds, we get
| Gote )M dy < e OE R 0+ 1)
(5.14) < g DIHR) (=D A+—y) | o1ty
— C(Slglfd)y +8’21+ﬂ+y7d7d,3)_
Therefore, by (5.10), (5.12)—(5.14), we have
(5.15) V" (x0) > Co(d)er™ — (D) (s} D7 4 g2HPty—d=dp)
Hence,

(516) v (x0) 2 £ 1 (Cold) — (D) eI 4 et 7))

for n large enough. Sinceé < HTV + 1 andy < 1, the expression in brackets

converges tdCo(d) > 0 asn — oo. Moreover, sincel > 3 anda < 2, we have
g2*t1=d _ 100 asn — oo, and the desired result follows[]

6. The probabilistic representation of solutions of Au =u*#. In this
section, we concentrate on the case wiieis the unit ball ofR¢, and we prove
Theorem 1.3. Before starting the proof, let us observe that our definition of the
range (which agrees with [6]) is slightly different from the one in [7] or [8].
The reason is that a superprocess is defined in [7] or [8] as the collection of its
exit measures from space-time open sets. It is, however, not hard to see that both
definitions give rise to the same random closedBgta.s. for anyu € M2,

We first recall the definition of the trace of a solution following [17]. kdie a
nonnegative solution of the partial differential equation

(6.1) IAu=u'  inD.

We define the trace () of # on the boundary as the paiK, v), wherek is a
compact subset @gfD andv is a Radon measure @D \ K, which is determined
as follows:

(i) A point y € D belongs toK if and only if, for every relative neighbor-
hoodU of y in 9D,

Irlgnlfl]u(rz)a(dz) = 0.
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(iiy For every continuous functiop on a D, with compact support contained
indD\ K,

im /a (@0 (d2) = /8 o YOV,

Under the conditiord < 1 + 2/8, Marcus and Véron [17] proved that the
mappingu — tr(u) induces a one-to-one correspondence between the set of all
nonnegative solutions 0}‘Au = ul*8 in D and the set of all pairéK, v), where
K is a compact subset 6fD andv is a Radon measure @D \ K. (In the special
caseB = 1, this result was obtained earlier in [15].)

Let us prove the first assertion of Theorem 1.3ulis given by (1.5), we
aim at proving that: solves (6.1). This is basically a consequence of the known
connections between superprocesses and partial differential equations. Consider
first the case whew(dy) = g(y)o(dy), whereg is a nonnegative continuous
function ond D, with support contained iaD \ K. The random variabl& such
thatY = 400 on the even{R N K # @} andY = (XP,g) on{RN K = @} is
a stochastic boundary value in the sense of [7] (see, in particular, Theorem 6.1
in [7]). Therefore the function

x — — logEs_[exp—Y] = — logEs, [ﬂ{mm} exp(— f g(y)XD<dy))]

solves3 Au = u'*# in D.

Coming back to the case of a general Radon measunedD \ K, we may
find a sequence of nonnegative continuous functignswith support contained
indD \ K, such that

Jm_ [ emeno@n = [y
for everyp € (D) with compact support contained &D \ K.

LEMMA 6.1. On the eventR N K = o}, we have

(XD, gu) > / X2 (»)v(dy)

asn — o0, in Ps,_-probability for everyxo € D.

PROOF Lete >0 andK, ={y e aD:dist(y,K) < ¢}. SinceR is a closed
set, the eventR N K = @} is the union of the evenfsR N K, = @} over alle > 0.
Also, on the even{R N K, = @}, it is easy to see that? puts no mass oK,
(use Proposition 2.1) and that” (y) =0 a.s., for every € K.

Fix ¢ > 0 and leth.:0D — [0,1] be a continuous function such that
he(y)=01if y € Koo andh (y) =1if y ¢ K. In view of the preceding remarks,
the proof of the lemma reduces to checking that
im_ (X7, hega) = [ XP(0he()v(dy),

n—oo
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in Pg_xo-probability, foranyxg € D, e > 0.
As a special case of (1.1), we hdﬁgo-a.s.,

(XD hogn) = Pp(hegn)(x0) + /0 /D Pp(hegn) ()M (ds, dx).

Now, for everyx € D, we have

Pp(hegn)(x) = /d P )he ()8 (1) (dy) /d P 3)he (V@)

asn — oo. Recall from the proof of Theorem 1.1(ii) that the (time-independent)
functions (s, x) — Pp(x,z) are bounded if.? when z varies indD for any
pe(d+8,(d+1)/(d—-1). Itfollows that the previous convergence hold€.ih
foranyp € (148, (d+1)/(d —1)). By Lemma 3.1, we conclude thax”, i.g,)
converges .4 (]P)(sxo), for everyq € (1, 1+ B), toward

[ Poto e+ [ (/ PD<x,y)hg<y>v<dy))M<dsdx>
aD 0 D oD

= [ XPmhvay.
thanks to (1.2) and the “Fubini theorem” Lemma 3.2]

We come back to the proof of Theorem 1.3. For every 1 let

s () =~ 10gEs, | Lank—c1 00— [ :0XP@n)|.  xeD.

We already saw that, solves (6.1), and by the lemma,(x) converges ta(x) as
n — oo, for everyx € D. Since the set of nonnegative solutions of (6.1) is closed
under pointwise convergence (see, e.g., Theorem 5.3.2 in [8]), we conclude that
also solves (6.1). This completes the proof of the first part of Theorem 1.3.

In order to prove the second half of the theorem, we keep assuming ihat
given by (1.5) and we determine the trace:ofor everyn, set(K,, v,) = tr(u,).
Note that

n(x) > ug (x) = —logPs, (RN K = 2)

and thatug has trace(K, 0). Indeed,ug is the maximal nonnegative solution
of (6.1) that vanishes odD \ K; see [8], Theorem 10.1.3. From the definition of
the trace, it follows thak,, D K. On the other hand, set

ig,(x) = —logEs, [exp<—/gn(y)XD(dy)>]

and recall thatu,, solves (6.1) with boundary conditiomyp = g,. From the
bound

Es, [nmng} exp(— [ gn(y)XD(dy)ﬂ _E, [exp(— [ s (y)XD(dw)”

<Ps, (RNK # 2)
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and the previous observations og, we see thatu, — ug,,)(x) converges to O
asx — y, for everyy € D \ K. Thusu, has boundary valug, on aD \ K,
and we conclude th&’,, = K andv, (dx) = g, (x)o (dx). Furthermore, we know
from Theorem 5.6 of [17] that the convergencepfto u implies the convergence
of tr(u,) towards tfu), in the sense of Definition 5.5 of [17], and we obtain that
tr(u) = (K, v).

Finally, if v is any nonnegative solution of (6.1) and, v) is its trace, the
solutionu defined by (6.1) has the same tracevaand by the uniqueness theorem
of [17], we must have = u.

REMARK 6.1. The main contribution of [15] is a direct probabilistic proof of
the special casg = 1 of Theorem 1.3. Note that the probabilistic representation of
solutions in [15] looks a bit different because it is formulated in terms of excursion
measures, which we did not introduce in the present work. Very probably (at least
in the casel = 2 where the densit ? has a continuous modification), one could
give a probabilistic proof of Theorem 1.3 along the lines of [15], without any
reference to the results of [17]. On the other hand, this probabilistic approach
remains restricted to the valu@gs< 1, whereas the analytic results hold for any
B > 0. For this reason, we chose to use the full strength of the results of [17] to give
a short proof of the probabilistic representation (1.5). Also note that closely related
results appear in the recent work of Dynkin and Kuznetsov; see, for example,
Theorem 1.4 in [9].

APPENDIX

PROOF OFLEMMA 4.1. First we will prove part (a) of the lemma. From
the explicit formula (4.1) for the Poisson kernel, we have for ewery Do and
y1, y2 € 9 Do,

1 2lx - (y1— y2)l
(A1) |Po(x.y1) — Polx.y2)l = =—(1— [x[) ‘ 5

27 ly1 —x|ly2 — x|
whereu - v stands for the usual scalar productRA. Clearly, 1— |x|? < 2po(x),
and hence,

lx - (y1 — y2)I?
lyr — x|2P|y2 — x|2P

| Po(x, y1) — Po(x, y2)|” < cpo(x)”
Set
Er={x € Do:|y1—x|V|y2 — x| = 3|y1 — y2I},
Ex={x € Do:ly1—x|V|y2— x| <3[y1 — y2l}.
If x € E1, we have plainly
(A.2) Iy1 = x| Aly2 — x| > 2|y1 — y2l,
(A.3) Iyi— x| Alyz—x| = §(Iy1 — x| V [y2 — x]).
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Also note that
Ix - 1=yl = |(x — 31+ ¥2) - (1 — ¥2)]
(A.4) =21 —y1) - (1 —y2) + (x —y2) - (1 — ¥2)|

= (Jx = y1l vV Ix = y2Dly1 — y2l.
By combining (A.2)—(A.4), we obtain

/E po(x)?| Pocx, y1) — Po(x, y2)|” dx
1

lx - (y1 — y2)I?
ly1 — x|?P|y2 — x|?P

<c / po(x)™+P
E;

A

c(/ ()P 31 — x172P |y —x|"dx)|y1 —yal?
[x—y1|Alx=y2|>2|y1—y2|

=([ o) 1ys = x| % dx ) vz — "
[x—y1l>2|y1—y2|
2
< c</ pitatry=3p dr)lyl — yal”
2|y1—y2In2
) 2+a
clyr — yol?, if0<p< 5
1 . 2+4+a
< c(log+7+1)|y1—y2|p, if p= ;
ly1— 2| 2J2r
clyr — y2l*H77, itp>—

Then consider the integral diy. If x € Eo, we have by (A.4),

x - (1= y2)| < 3ly1— y2l*.
Also note thayr — x| V [y2 — x| > 3|y1 — y2|. Then it follows that

fE po()? | Pox, y1) — Po(x, y2)|” dx
2
sc/E o) P (y1 — x| 72 + [y — x| 72P) dx
2

Po(X) P (Iy1 — x| A ly2 — x) "2 dx

A
o

/Ixy1|V|Xy2|<3|y1y2|

IA

-2
C/ po(xX)* TP |y — x| 7P dx
[x—=y1]<3|y1—y2|

3ly1—y2l
c/ plta=r gy
0

24+a—p

IA

<cly1— y2|
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provided thatp < 2 + a. Hence, the result of part (a) of the lemma follows by
combining bounds o1 and E>.

The proof of part (b) is easy. Define= dist(B, 9 Dg), and recall thab > 0.
Then from (A.1) we obtain, for every, y» € d Do,

[x|ly1 — yal _
sup| Po(x, y1) — Po(x, y2)| < csup < cbh™*|y1 — yal,

xeB veB |y1 — x[?|y1 — x/|?

and the result follows. O
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