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SELF-INTERSECTION LOCAL TIME: CRITICAL EXPONENT,
LARGE DEVIATIONS, AND LAWS OF THE
ITERATED LOGARITHM?

BY RICHARD F. BASS AND XIA CHEN
University of Connecticut and University of Tennessee

If B; is renormalized self-intersection local time for planar Brownian
motion, we characterize whee?”P1 is finite or infinite in terms of the
best constant of a Gagliardo—Nirenbéngquality. We prove large deviation
estimates fop1 and— 1. We establish lim sup and liminf laws of the iterated
logarithm forg; ast — oc.

1. Introduction. Let 8, be the renormalized self-intersection local time of a
planar Brownian motiorkX,. Formally,

t N t N
ﬁt:/ / 60(XS —Xu)duds—E/ / (SO(XS _Xu)duds7
0 Jo 0 Jo

wheredy is the delta function, and more precisely,

(1.1) ﬂ,:!i_r)no[/ot /OS%(XS—Xu)duds—E/Ot/OS%(Xs —Xu)duds],

wheregy; is a suitable approximation to the identity. We have three main results in
this paper:

1. Le Gall [16] showed that there is a critical expongpnsuch that

< 00, if v <wyg,

vB1
(1.2) Ee {: 0. it > yp.

We characterize/g in terms of the best constant of one of the Gagliardo-
Nirenberg inequalities.

2. We prove large deviation estimates farand— 1.

3. We prove laws of the iterated logarithm for the limsup and liminf behavior

of B;.

Self-intersection local time has been an object of much study in recent years.
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on this subject. In addition to probability theory, self-intersection local time has
applications to some branches of mathematical physics, for example, constructive
quantum field theories and polymer measures.

The quantity /3 /3 ¢e (X5 — X,,) duds converges almost surely to infinity as
¢ — 0 and to get convergence, the expectation of this integral must be subtracted.
Therefore, exponential integrability ¢f is a subtle issue. In 1994 Le Gall [16]
proved there is a critical valugg such that (1.2) holds. This fact has proved to
be of considerable interest to the study of constructive quantum field theories. See
also Theorem 2.23 of [5] for a discussion in the context of random walks with
continuous time but discrete values. Our first main result characterizes

THEOREM 1.1. e have y3 = A~4, where A > 0 is the best constant in the
inequality

(1.3) Iflla<CVIVEIRVIfl2,  fiR2>R

Inequality (1.3) is one of a class of igealities known as Ggiardo—Nirenberg
inequalities. The proof of (1.3) is quiggmple. Begin with the well-known Sobolev
inequality inR?:

lgllz < callVglla.

Replaceg by f2, write V f2 as 2fV f and apply the Cauchy—Schwarz inequality

to the right-hand side. The best constant in (1.3) appears to be a difficult problem,
however, and is currently open. The best constant for Nash’s inequality, which
is another special case of the Gagliardo—Nirenberg inequalities, was found by
Carlen and Loss [6]. Two recent articles [9, 10] found the best constants for a
class of Gagliardo—Nirenberg inequalities. Numerical values for the best constant
in (1.3) were investigated as long ago as 1983 by Weinstein [21], who solved
an eigenvalue problem by numerical methods and foundAhatapproximately

(r x 1.86225...)~1/4. By Theorem 1.1,

yp ~m x 1.86225 - - ~ 5.85043

This is very close to a conjecture made by B. Duplantier (private communication).
We could ask an analogous question about the intersection local time of two
independent planar Brownian motions. There is a critical exponerithe critical
value in this case was determined in [7] and was found to be the same cotisfant
with A as above. As a matter of fact, the result given in [7] is an important
ingredient in the proof of Theorem 1.1 (and Theorem 1.2 as well).
As part of our proof of Theorem 1.1, we obtain large deviation estimates; for

THEOREM1.2. \Wehave
o1 _4
lim —logP(B1>1)=—A"",
t—>00 ¢

where A isasin the statement of Theorem 1.1.
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We easily see that Theorem 1.1 is a direct consequence of Theorem 1.2.
Interestingly, the lower tail of; is not exponential, but instead is double
exponential.

THEOREM 1.3. Thereexists0 < L < oo such that

lim =27 logP{—pB1 > logt} = —L.
—00
We also investigate laws of the iterated logarithmger

THEOREM 1.4. Wehave

. 1
limsu Pr

p—————=— as.
t—oo tloglogr  yp

The liminf behavior is described by the following theorem.

THEOREM 1.5. Wehave
Bt 1

imnf ——=—— a.s.
1—oo tlogloglogr 2

Note the triple log in the rate of growth of the liminf. This is suggested by the
double exponential tail of 8;. Compare this also with the result in [4] on the law
of the iterated logarithm for the range of a random walkZ8nthe rate of growth
there also has a triple log term. For a random walk the number of self-intersections
is related to the range of the random walk up to timeand Theorem 1.5 may
provide some further insight into the result in [4]. Theorem 1.5 suggests that the
right constant in [4] should be related t¢2z ; we hope to return to these matters
in future research.

Section 2 contains some basic facts about intersection local time. Theorems
1.1-1.3 are proved in Section 3. Theorem 1.4 is proved in Section 4 and
Theorem 1.5 is proved in Section 5.

In all of the proofs, a key step is the representatiop @fs the normalized sum
of intersection local times of various pieces of the Brownian path plus sums of self-
intersection local times; see Proposition 2.2. What makes the two-dimensional case
much more difficult than the three-dimensional case is that in two dimensions these
intersection local times of distinct pieces of the Brownian path are the dominant
term.

2. Preliminaries. Let us begin with some notation. LeY; be a planar
Brownian motion, let¥; be the completion of {X,; s <t} and letP* denote the
law of X whenX is started ak. We useP for P°. The shift operators are denoted
by 6; as usual. Ifl is an interval, we writeX (1) for the random setX;;s € I}.
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The ball of radius- aboutx is denotedB(x, r) and the letter with subscripts is
used for positive finite constants whose exact value is unimportant.

If X andY are two independent planar Brownian motions, the intersection local
time can be defined formally by

N t
a(s, 1) :/ / So(X, — Y dudr,
0 JO

whered is the delta function. To make this rigorous,delbe a smooth nonnegative
function in the Schwartz class which integrates to 1pl€k) = ¢ 2¢(x/¢) (so that
@, IS an approximation to the identity) and define

s ot
(2.1) a(s, )= lim / / 0 (X, —Y,)dudr.
¢—0Jo0 Jo

On the other hand, self-intersection local time cannot be defined so simply because

the limit
. K t
im [ [ (X = X0
e—0Jo Jo

does not exist. A procedure called renormalization is needed. The renormalized
self-intersection local time oX is formally defined as

tops tops
ﬁt:/ / do(X —Xu)duds—E/ / do(Xs — Xy)duds.
0 JO 0 JO

To give a rigorous definition, let

(2.2) B; =8|il’|)10|:/0t /OS%(XS — X, duds —E/Ot /: 0e (X5 — Xu)duds].

That the limit exists a.s. and is continuoug iis proved, for instance, in [13, 15]
and [23]. Sometimes slightly different normalizations are used; they differ from
ours by at most a constant timesSo there is no difference in the critical exponent
or laws of the iterated logarithm, no matter which normalization is used.

If I is an interval, we use& (/) for the renormalized self-intersection for the
piece of the pattX (7). Thatis, ifI = [s, ¢], then

(23) B(I) = Bi—5 0 0.

If I andJ are two intervals whose interiors are disjoint, Jet/; J) denote the
intersection local time for the two process€él) and X (J). To define this more
precisely,

2.4) AL ) =!To/1/1%(XS — X,)dsdt.

REMARK 2.1. It is immediate by Brownian scaling thatz, r) is equal in
law to ra (1, 1) andg; is equal in law tor81. Supposd = [a, b] andJ = [b, c].
ThenA(I; J) measures the intersections of the two independent Brownian motions
Xp — Xp—s andXp4, — Xp, and soA(7; J) is equal in law tax (b — a, ¢ — b) with
starting point(0, 0).
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PROPOSITION2.2. If I is an interval that is the union of subintervals /;,
1< j <n,suchthat theinteriors of the /; are pairwise disjoint, then

(2.5) B()=) BU)+Y AU 1) —E)Y AU 1.
j=1 i<j i<j

PROOE We have

// %(X,—Xs)dsdz—E// 0. (X, — X,) ds dt
s,tel,s<t s,tel,s<t
n
:ZU/ (pg(X,—Xs)dsdt—E// (pg(Xt—Xs)dsdt]
j=1 s,telj,s<t s,telj,s<t

+ // 0e(X; — Xy)ds d1
. selj,tel;

i<j

~YE[[ p-X)dsdr
seljtel;

i<j

We now lete — 0. O
AlthoughE«(z, ) is a constant times we need a bit more precision.

PROPOSITION2.3. Let P00-Y0) pbethejoint law of (X;, Y;) when X, is started
at xo and Y; is started at yo. Then

1

(2.6) EX0Y0 g (s, £) < 2—[(s +1)log(s 4+ 1) — slogs —  logz].
JT

If xo = yo, then we have equality in (2.6).

PrRoOF We have thatX, is a two-dimensional normal random vector with
meanxg and covariance matrix that istimes the identity and thdf, is a two-
dimensional normal random vector with megnand covariance matrix that is
times the identity; moreover, the two random vectors are independent. Therefore,
X, — Y, is a two-dimensional normal random vector with megn— yo and
covariance matrix that is+ u times the identity. Hence

N t
E (0.0 /O /0 0e(X, — Y,)dr du

S 1 —IZ—xo+yo|2>
= ex dzdrdu.
/o_/o R2¢£(Z)Zn(r+u) p( 2(r +u) carau

Lettinge — 0 and using (2.1),

S [! 1 —|x0 — yol?
SRR o g Y
(s, ) 0Jo 2n(r +u) 2(r +u) rau
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The right-hand side is less than or equal to

K t 1
[ ——
0 Jo 2n(r+u)

with equality whenxg = yg. Some routine calculus completes the prodil

Le Gall [16] showed that there exists a valygsuch that

) g [0 My <m
' = 00, if v >yg.

In the same article, Le Gall proved that there exists a vglusuch that

(2 8) Eeya(l,l) <00, if v <Y,
' = 00, ify > yy.

He also gave a proof ([16], page 178) of a result by Varadhan [20] that

(2.9) FEe 7P < 00

forall y > 0.

3. Large deviation estimates. In [7], the large deviations for intersection
local time of p independent-dimensional Brownian motions under the condition
p(d — 2) < d were studied. Taking = p = 2 in this result,

(3.1) lim }Iog]P’{a(l, D>t)=—A"%
>0 t

whereA > 0 is the best constant in the Gagliardo—Nirenberg inequality

Iflla < CVIV fll2vIL f 2.

Let

M= sup{(/Rz|f<x>|4dx)l/2— [ vreoiax)

feF2

whereF, is the set of absolutely continuous functionsRhsatisfying
f |f(x)|?dx=1 and f IV £ (x)|2dx < oo.
R2 R?2
As a special case of Lemma 8.2 in [7],
(3.2) M=1a%

In the following result, we claim that; satisfies the same large deviation principle
thata (1, 1) does.
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THEOREM 3.1.
1
(3.3) lim ~logP{py>1}=—-A""
t—oo t
In particular,

Ee?hr { < 00, ify <A™4,
= 00, ify > A4,

Note that this theorem impliegs = A~* and is a reformulation of Theorems
1.1and 1.2.
PROOFE To establish the upper bound, we consider the decomposition
B1= P12+ B([1/2,1]) + A([0, 1/2]; [1/2, 1]) — EA([O, 1/2]; [1/2, 1D).

Recall thatB([1/2, 1]) andpBy,2 are equal in law tc%ﬁl, andA([0,1/2];[1/2,1))
is equal in law to%oe(l, 1). Moreover,B([1/2, 1]) is independent oB1/>. Given
e >0,

P{1>1} <Pla(1,1) —Ea(1,1) > (L - &)t} + P{B1+ p1 > (L + &)1},
whereg] is an independent copy @h. In view of (3.1),

lim sup} logP{B1 >t}

t—o0 I
-4 1 /
< max{—(l —&)A™", lim sup; logP{B1+ 1> (1 + e)t}}.
1—00
We now need the simple fact that (1.2) is equivalent to
1
limsup-logP{B1 >t} = —yp.
t—oo
Also notice that
2 [ <00, Y < Vg,
Bexy b1+ ) = Cexprpa)? [ 00 7 7
So
. 1 ,
lim sup-— logP{f1+B1> (L+e)t} =—(1+e)yp
1—00

and therefore

1
limsup=logP{B1>1} < —(1—e)A™%.
t—oo I
Lettinge — 0T, we obtain
1
(3.4) limsup=logP{g1 >t} < —A™*.

t—oo I



3228 R. F. BASS AND X. CHEN

By scaling we have the upper bound of (3.3).
By scaling, Theorem 3.1 is equivalent to

1
(3.5) lim =logP{B, >6n?}=—-0A"%  6>0.
n—oo n
Let
n—1
Ca=Y_ A([0,k; [k, k +1]), n=12,....
k=1

Then by Proposition 2.2,

n
Bn=Cn—EC,+ ) B(lk—1k)).
k=1
Notice that{8([k — 1, k])} is an i.i.d. sequence with the same distributiorgas
Since the moment generating functiongafexists in a neighborhood of the origin,
Crameér’s theorem implies that for ady- 0,

.1 " 2
(3.6) lim - logP ];ﬁ([k —1,k]) > 8n°} = —c0.
Also, using Proposition 2.3, a calculation implies
1
(3.7) EC, = —nlogn.
2

By Theorem 4.2.13 in [11], (3.5) is then equivalent to
1
(3.8) lim =logP{C, > 6n’}=—0A"%  6>0.
n—-oo n

We now claim that Theorem 3.1 holds provided

3.9 liminf = logE xcl/2>’\2A2 A>0
(3.9 erllor!);og expirC;, }_T’ > 0.

Indeed, from the upper bound (3.4), we can improve (3.9) into equality. In the case
A < 0, we use Jensen’s inequality:

EexpACY2} > expgAECY/?) > exp{A(EC,)Y/?) = exp[— O (/nlogn)},

where the last step follows from (3.7). Therefore, we have
lim_ % logE exp{ACY2) = (3)
for any real numbek, where
22A%
yw=1"73 =0
0, A <0.
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By the Gartner—Ellis theorem (Theorem 2.3.6 in [11]),

1 1
= /2
nll_r)noo " logP{C,/“ > On}

A2A%
=—supird —y (L)} = —sup{w - —} = —0%A7%, 6 >0,
AeR >0 4

which is equivalent to (3.8).
We now prove (3.9). Some of the ideas come from [8]. We start with the fact
(see, e.g., [17]) that for any measurable, bounded fungtion R?,

1 n 1
lim = IogEexp{/ f(Xt)dt} = sup{/ F0)g2(x)dx — —/ |Vg(x)|2dx}.
n—o0o p 0 gel, /R2 2 Jr2
For anys > 0, let p.(x) be the density ok, and write
t
L(t,x,e):/ pe (X5 —x)ds, xeRz,tZO.
0

It is easy to see from the semigroup property that

1/2
( [ patxo- X»dsdt)
O<s<t<n

1/2
= %2</]RZ L%, x, s)dx>

> 3 [ f@Loredi=3 [* oo
for any measurablg¢ onR? with
[, r2wax=1
R2
where
Je(x) = /sz(x — Y)pe(y)dy.

Therefore,

1 1/2
liminf — IogEexp{A(// P2:(Xs — Xp)ds dt) }
n—0oo n O<s<t<n

> sup{%sz Fo(0)g%x) dx — %/R |Vg<x>|2dx}

g€l

= supl 7 [ 1o [ g% =y )ax - [ s ar)
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Taking the supremum oveft with || f||l2 = 1 and using the fact that the dual bf

is L2 gives
1/2
I|m|nf IogEexp{k(//< . p2e (X —X,)dsdt) }
O_S;_n 2 1172
(3.10) >gsel£{ﬁ[/ (/Rzg (x—y)pe(y)dy> dx]
-5 | Ivecorax]
foranya > 0.

On the other hand, write
ae)=[ [ poe(Xy — Xydsdr,  k=1.2,...,
{k—1<s<t=<k}

and

n—1
D, = JI0,k) x (k, k + 1], n=12,....
k=1

Then{&(e)}x>1 is ani.i.d. sequence and

//{OSSStSn}pze(X Xt)dsdt—// p2s (X X,)dsdt+2§k(e)

k=1

Let p, g > 1 be such thap~ + ¢~ = 1. By the triangle inequality and Holder’s

inequality,
1/2
Eexp{p_lk<// p2e(Xs — X;) ds dt) }
{0<s=<t<n}

1/2y41/
§[Eexp{x(/ pge(Xs—Xt)dsdt) ” !
Dy,
n 1/2y41/q
X[Eexp{qp—l,\<25k(e)> ” .
k=1

It is easy to see from standard large deviation theory that

1/2
nl|_>moo = IogEexp{qp 1A< > ";‘k(e)) } =0.

k=1
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Therefore, by (3.10) we have

1 1/2
liminf — IogEexp{A(// p2e(Xs — Xp)ds dt) }
n—>oo n Dy

: [/éz(szg%x—y)m(y)dy)zdx}l/z

> sup{p_ *
=y
gelF, \/é
1 2
—E/RZWg(xn dx}.

Letting p — 11 gives

1 12
Ilnrn)lpof ;IogEexp{k(//Dn p2e (X —X,)dsdt) }
3 2 1172
3.11 - 200 _
(3.11) 2 sup| 75| [ ([~ npenar) ax]

1 2
-5 [, 1vew dx}.

For anym > 0, let k > 0 be the integer such thatx< m < 2(k + 1). By
Lemma 3.4,

E(Cr(zm+2)/2) > [EC£+1] (m+2)/(2(k+1))

k+14(m+2)/(2(k+1))
z[E(ff pzs<xs—xf>dsdr) ]
D,

m/2q(m+2)/m
z[E(ff pzs<xs—xf>dsdr) } .
D,

Asn — oo, itis clear thatC,, — oco. Using Lemma 3.4, we can also see that there
isaN > 0 andgg > 0 such that

m/2
E(// pZS(XS_XZ)det) >1, m=0,1,...,
D,

if n > N ande < gg. Hence

m/2
E(C"212) > E( / / P2 (Xy — X,)dsdt) .
Dy,

Using the Taylor series expansion gt , for each 0< § < A,

E(C, exp((A — 8)CY?)) > Eexp{ (n — 3)(//1) poc(Xs — X,)ds d;)l/z}.
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By the fact that*v™ > xe*~9VX for sufficiently largex > 0 and in view of (3.11)
(with A replaced by — §), the above estimate implies

1
liminf = logE exp(ACY/?}
n—-oo p

— )P [ v .
fe%'f{ 7 U <R2g (x—y)p <y)dy) ax| =5 [, IVewitax

Lettinge — 0" on the right-hand side gives

liminf = IogEexp{ACl/Z}

1/2 1 5
>§$$B{ 2 ([ tewortax) =3 [ ivewoiax)

_ (=972 4, \% 1 2 }
=T sw| ([ treortax) 5 [ scorax

_ (.—5)%A%
B 4
for any O< § < A, where the second step follows from the substitution

)
s ="2r(22)
f V2
and the last step follows from (3.2). Finally, lettidg~ 0™ gives (3.9). O

(3.12)

THEOREM3.2. Thereisa0 < L < oo such that
timoot‘z” logP{—pB1 > logt} = —

Theorem 3.2 proves part of Theorem 1.3.

PrROOF OF THEOREM 3.2. For any positive integers andn, by Proposi-
tion 2.2,

Bm+n = Bn + B([n,n +m]) + A([O, n]; [n,n + m]) — EA([O, n]; [n, n + m])
> fn + B([n,n+m]) — EA([O, n]; [n, n + m]),
andg, andB([n, n + m]) are independent. Hence

Eexp—27 (m + n)B1}
= E exp(—27By4n}
<exp2rEA([O, n]; [n,n + m])}E exp{—27 B([n, n + m])}E exp{—27 8, }
=exp2rEA([O, n]; [n, n + m])}E exp{—27 8, } E expl—27 8, }
=exp2rEA([O, n]; [n, n + m])}E expl—2rmpB1}E exp{—2rnB1}.
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Using this and Proposition 2.3,

(m +n)~ " E exp(—27 (m +n) f1)

< (m~"Eexp{—2rmp1})(n""Eexp{—2rnp1}).

If we write

a(n) =log(n"Eexp{—2rnpB1}), n=12...,
then we have proved that for any positive integerandn,

a(n+m) <a(m)+a(n).
Consequently,
1 1
nll_)moO —a(n) = In>fl{ Za(m) }
By Stirling’s formula, this is equivalent to
nli_)moo % |Og((n!)_1E expg{—2rnp1}) =1+ ni1nzf1{ %a(m) }

By Lemma 2.3 of [14],

limsupr 2 logP{exp{—27p1} >t} = — exp{—l — infl{la(m)” =—L,
m=1l{m

I—00
_exp{ l—nllrlfl{—a(m)” 0

REMARK 3.3. Infact,L < oo. This is established in Corollary 5.7.

where

LEMMA 3.4. For any positive numbers ¢ and ¢ with ¢ > ¢/, any D C
{(s,1); s <t} andinteger m > 1,

E[//Dpe/(X,—Xs)dsdt]mZE[//ng(X,—Xs)dsdt]m.

Furthermore, if D isafinite union of digjoint rectanglescontainedin {(s, t); s < t},
n
D= JUx x Jp),
k=1
then

U/ pe(X; — X)dsdt] <E[ZA(Ik,Jk)} :

k=1
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PrROOF By the Fourier transform,
1

(27)?
Hence

E[//D pe( Xy — Xs)dsdt]m

1
= [ dsidtr---dspdt e ---d
(27'[)2’" Lm §1aly Sm m'/(Rz)m %_l gm

peXe = X0 = 5 [ dgexpl—it - (X - X)) expl - Sle 2.

m e
x E expl—i& - (X; — X;)) expl — = &2 }
Lljl ' p{ 2 }

1
= )7 /Dm dsidry---dsp dip, /(Rz)m dé1- - d&y,
1 m e m
x expl —>Var| Y & - (X, — X) | pexpt —= > |&I? .
2 k=1 2k:l

which leads to the first half of the lemma.
As for the second half of the lemma, by Theorem 4 on page 191 in [15],

n m
E[ZA(Ik; Jk)i| < 00, m=0,1,...,
k=1

and
n
[[ pexi=Xpdsar— Y A g -0
D k=1

in L™-norm for all integersz > 1. (In fact, Le Gall proved the above convergence
with p, replaced by the uniform density on the disk of radiuk can be seen from
his argument that this remains true in our case.) Therefore, letting 0" leads

to the second half of the lemmal]

4. Thelimsup result. In this section we establish Theorem 1.4.

LEMMA 4.1. There exist constants c1, ¢ such that for all A > 0 and all
a€(0,1),
P(x(1,a) > 1) < c1exp(—caA//a).
PROOF Letm > 1 be an integer. We first prove there exist constapis,
such that

4.1) Ela(l,a)"] < C3cz1am/2m!.
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To establish this, write

1 pa
oz(l,a):sliLnO/O/Op(s,O,XU—Yu)dvdu,

wherep(e, x, y) is the transition density of planar Brownian motion. As mentioned
in the last paragraph of the proof of Lemma 3.4, the convergence takes plate in
for every p. By the semigroup property,

Pe.0. X, = ¥,) = ple. Xy ¥o) = [, ple/2.x. X)) p(e/2.x.Y,) dx

and so
1 ra m
|:/ / p(e,O,Xv—Yu)dvdui|
0 JO

n 1
- dxl---dxm(l‘[ / p(e/z,xk,xv>dv)
0
k=1

(R2)m

X ‘ p(e/2, xk, Yy) a’u).
(4

Using the independence af andY, the expectation is equal to

m .1 m g
/ dxl---dmeE[n/ p(s/Z,xk,Xv)dv:|E|:H/ p(£/2,xk,Yu)du:|.
(R2)™ k=170 k=170

By the Cauchy—Schwarz inequality this is less tha¢)1/2J>(¢)1/2, where

m 1 2
Jl(e)zf(Rz)m dxl---dxm<E[n/0 p(e/2, xk,xv)dvD
k=1

and

m a 2
Jz(e):/(Rz)m dxl---dxm<E[Hfo p(e/2, xk,Yu)du:|) .
k=1

By Brownian scaling,
(4.2) lim J2(¢) =a™ lim Ji(e).
e—0 e—0

To estimate/1(g), we rewrite it as

mn 1 m 1
/(Rz)mdxl---dme[H/o p(e/2,xk,Xv)dvi|E|:H/0 p(e/2,xk,Yu)dui|
k=1 k=1

and so by the argument above in reverse order,

1,1 m
Jl(s)zE[/o /0 p(e, XU,Yu)dvdui| .
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Therefore lim_.o J1(¢e) = E[x (1, 1)"]. Lemma 2 of [16] together with (4.2) and
an application of Fatou’s lemma completes the proof of (4.1).
We then obtain

Ee a(l,a) OO 1 \"Ela(l,a)"] -
p(204f) o <204f) m! =

wherec7 does not depend an Finally,
P(a(1,a) > 1)
< exp(—r/(2cav/a))Eexpa(l,a)/(2cav/a)) < crexp(—r/(2cav/a)),

which is what we wanted.d

The key to the upper bound is to obtain an estimate of the following form.
PROPOSITION4.2. If y < yg, thereexists c; such that

4.3) ]P’(supﬂ, > /\) <cie 7, A>0.

<1

PrROOF By Proposition 2.2,
B — Bs = B([s, t]) + A([O, s; [s, t]) — EA([O, s]; s, 1]).

Let y’ be the midpoint ofy, yg) and lete > 0 be chosen so that' (1 — ¢) is the
midpoint of (v, y’). Note

(4.4) P(B; — Bs > A) <P(B([s, t]) > A/2) + P(A([O, s1; [s, 1) > 1/2).

Since B([s, t]) equalsg;_, in law, which equals(z — s)B1 in law, the first
probability on the right is bounded by

(4.5) c2 exp{ 20— }

However, A([0, s]; [s, ¢]) is equal in law tox (s, t — s), which is smaller than
a(l,t —s). So by Lemma 4.1 there exists not depending om or ¢ such that

. A Cc3A
(4.6) IP’(A([O,S], [s,t]) > 5) < eXp{—m}-

Fix n = 2V. Since

SUpE exp(y ' Bi/n) = SUpE exp((y'k/n)p1) < ca,

k<n

wherec, does not depend on then

(Supﬂk/n >(1- 8))») <n supIP(ﬂk/,, > (1—¢)A)

k<n

(4.7)

<ne V' A=Oh < yomvh
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Now we use metric entropy. fe (0, 1), lett; be the largest multiple of 2 that
is less than or equal to Write

Bt =By + (ﬁfzv+1 - ﬂtN) + (ﬂ1N+2 - ﬁfN+1) t+---

If B; > A for somer < 1, either (a) for somé < n, we haveBi,, > (1 —¢)A or
(b) for somej > N and some < 7 with 7 —s = 27/ and both, 7 integer multiples
of 27/, we have

(4.8) B: — By > €1/ (10052).

The probabilityof possibility (a) is bounded by (4.7). Using (4.5) and (4.6), the
probability of possibility (b) is bounded by

(4.9) 5 Y 2/[exp(—ey'r2/ /(200/2)) + exp(—c3er2//2/(200/%))].
j=N

The 2 in front of the brackets comes about because there ‘agas (s, ) to
consider. It is not hard to see that the sum in (4.9) is bounded by

co[exp(—ey 22N /(400N ?)) 4 exp(—c3e22V/2/(400N?))].
If we chooseN large enough so that™2/(400N2) > 1 and c32V/2¢ /(400 x
N?) > y’, we then have that the probiityi of possibility (b) is bounded by
2676_}’/)‘ < 2c7eV*,

If we combine this with (4.7), we have (4.3)

Using the Borel-Cantelli lemma it is now straightforward to get the following
theorem:

THEOREM4.3. Wehave
Bt

. 1
imsup——— < — a.s.
t—oo tloglogr ~ yg

PROOF. Let M > 1/yg. Chooses > 0 small andg > 1 close to 1 so that
M(yp — 2¢)/q > 1. Lett, = ¢" and letC, = {sup., Bs > Mt,_1loglogs,—1}.
By Proposition 4.2 and scaly, the probability ofC,, is bounded by

crexp(—(yg — e)Mt,_1loglogt,—1/1,).

By our choices ok andg this is summable, so by the Borel-Cantelli lemma the
probability thatC,, happens infinitely often is zero. To complete the proof we point
out that if 8, > Mt loglogr for somer € [1,_1, t,], then the evenf,, occurs. O

To finish the proof of Theorem 4.3 we prove the next theorem:
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THEOREM4.4. \Wehave
B 1

limsup—— >

as.
t—oo tloglogtr = yg

Jointly, Theorems 4.3 and 4.4 are a reformulation of Theorem 1.4.
PROOF OFTHEOREM4.4. Lety > yg and lety’ be the midpoint ofyg, ).
Then by Theorem 3.1,
(4.10) P(B1 > aloglogn) > cpe Y ¢109l00" a>0.

Let § > 0 be small enough so thal + 8)y’/y < 1 and setr, = exp(ni*?).
By (2.5),

B, = B([0, 1,])
= B([tn-1, ta]) + B([O, t,-1])
+ A([O, tp—1]; [tn—1, ta]) — EA([O, tp—1]; [tn—1, ta])
> B([ta—1, ta]) + B[O, 1,—1]) — EA([O, t,—1]; [tn—1, tn])-
By scaling,
EA([O, ty—1]; [tn-1, tn]) < Ea(ty, tn)
=t,Ex(1,1) =o(t,loglogt,), n— oo.
SinceA > 0, we need only to prove
B([th-1. ) _ 1

4.11 l " oaloar "
(4.11) P T loglogn, =y O°
and

n—>o0 ¢, loglogt,
Using (4.10) and scaling, it is straightforward to obtain

> ]P’(B([tn_l, 1)) > 1tn log Iogtn) = 0.
14

n=1
Using the fact that different pieces of a Brownian path are independent and the
Borel-Cantelli lemma,

B([t,— 1
lim supM > — a.s.
n—oo t,loglogts, y
Lettingy — v, gives (4.11).
Lete > 0. By (2.9) there existss > 0 such that

(4.13) P{—p1 > eloglogn} < cge2'09'09"
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So (4.12) follows from Theorem 3.1, (4.13), scaling and the Borel-Cantelli lemma.
O

REMARK 4.5. Theorems 4.3 and 4.4 together imply Theorem 1.4,

5. Theliminf result. Let us write D; for —g8;. We knowE exp(y D1) < o0
for everyy > 0, but in fact we have the following proposition.

PROPOSITIONS.1. Wehave E exp(y sup.; Dy) < oo for every y > 0.

PROOF Fix y > 0. ChooseN a fixed integer so that?/(160QV3) > 2. If
s <t <1, we knowEA([O, s]; [s,¢]) <c1(t — s)L(t — s) < c2, WhereL(x) =
1 + |log(1/x)|. Supposer > c3, where ¢z is chosen so thatsz/(400j2) >
2c¢127/L(277) for eachj > 0. Lets; = inf{k/2/ :s <k/2/}. If s € [0, 1], we can
write

Dy = Dy + (DSN+1 - DSN) + (DSN+2 - DSN+1) T

So if Dy > A for somes € [0, 1], then either (a) for somé < 2V, we have
Dy jov > 1/2 or (b) for somej > N and somes < ¢, both multiples of 2/ with
t—s=27J,

A

D, =Dy > ——.
£ 50052

We haveP(D, v > 4/2) = P(D1 > 2¥1/(2k)) < P(D1 > 1/2) < cae™ 2"
sinceE exp(4y D1) < oo. So the probability of possibility (a) is bounded by

(5.1) c42N e,
By Proposition 2.2,
Dy — Dy = —B([s, t]) + EA([O, s]; [s, 1]) — A([O, s]; [s, 1])
< —B([s,t]) +c1(t —s)L( —s).

Since 1/(400j2) > 2c¢1(t — s)L(t — s), then for D, — D, to be larger than
1/(200j2), we must have-B([r — s]) > 1/(400j2). Since—B([s, t])/(t — s) is
equal in law toD1, then

P(—B([t — s1) > 1/(400%) < csexp(—y 12/ L(2/)/(800;2)).

Since for each;j there are 2 pairs (s, ) to consider, the probability of (b) is
bounded by

> 52/ exp(—y 227 L(27)/(8002)).
j=N



3240 R. F. BASS AND X. CHEN

This is summable and can be bounded by

ceexp(—y 12N /(160av3))
for somecg. By our choice ofV, this is less than
(5.2) cee "2,
Combining (5.1) and (5.2), we have

IP’(SupDS > A) < crerH

s<1

if A > c3. Our result follows immediately from this.(J

THEOREM5.2. With probability 1,

limsu D =
,_mpt logloglogr — 2

Theorems 5.2 and 5.5 together are just a reformulation of Theorem 1.5.

PROOF OFTHEOREMb5.2. Let

K =[loglogt], R=t/K and I;=[(j—DR,jR].

Let
Ej= sup  (=B([(j — DR,11)).
(J—DR=<t<jR
By Proposition 2.2, ifs <t and(£ — 1)R <s < £R, then
Dy <Y (=BU)) + (—B([(t — DR, s]))
j<t
+ Z EA(; 1) + ZEA([(E —DR,s); Ij)
i<j<{t j<t
K
Z + > EAU; )
j=1 i<j<kK
K K
= Z +>_EA(I0. (j = DRI: I;).

j=1

By Proposition 2.3 and Remark 2.1, the last term on the last line is bounded by

Z —[iRlog(jR) - (j = DRIog((j — DR) — RIogR],
]:l
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which is easily seen to equal
1
—rtlogloglogr.
2
Then fore > 0 andr large enough we have

(supD > 1+ 25)—t loglog Iogt)

s<t

K
< ]P’(Z E; > etloglog Iogt)
K K
E; etlogk E;
_ £ S ¢KlogkK
(5 ) (g o)

Klogk X E; KlogK Eq K
<cge NP9t Eex 27 = cge 1109 <Eexp(?)) ,

j=1
using the independence of tii&. SinceE1/R is equal in law to sup; Dy, then

by Propositim 5.1, the above is bounded by
—eK IOgK(C7)K

cege
If we taker large enough, we have the bound
cge_ZK.

We apply this withr,, = ¢" with ¢ > 1 close to 1 so thatl + 3¢) /g > 1 + 2¢.
Since exp—2loglogr,) = O(n=2), we have

(supD > (1+38)—ln loglog Iogt,,) < Cz

s<ty n

for n large. If D > (1+48)ES logloglogs for somes € [¢,_1, t,,], then it follows
that sup_, Ds > 1235 =1, loglog logt,. By the Borel-Cantelli lemma, it follows
that

D;
li _— < 4 .S.
Iiioolotlogloglogt_z (1+4¢) as

Sincee is arbitrary, our result follows. [
We now turn to the lower bound.

LEMMA 5.3. Thequantity

1 r1
IP( sup —/ ]13(x,,)(Xs)ds>k>
x€B(0,3) 1 JO
r<2

tendsto 0 as A — oo.
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PROOF Let
t
Ui ) = [ Lncer (X0 ds.

By symmetry, the expectation & U; (x, r) is largest whery = x. We have

1 1 1 —|z —x|?
o (o= [ L o8 g,
0 B(x,r)( s)ds 0 Jser) s 2 zas

and a straightforward calculation shows this is boundedib$(1 + logt (1/r)),
wherec1 can be chosento be independent aindr. Then by the Markov property,

ElUi(x,r) = U;(x,7)|F] = EX Ui_i(x,r) < c1r2(1+ |Og+(1/r)).

By [1], Theorem 1.6.11, sinc¥, (x, r) has continuous paths and is nondecreasing,
there existg» such that

(5.3) Eexp(c2U1(x,r)/r?(1+log"(1/r))) < 2.

Setr; = 27 and letA; be the set of points iB(0, 4) such that each coordinate
is an integer multiple of 2¢. The cardinality of; is less thancs2%. By
Chebyshev’s inequality,

IP( sup —Ui(x, rg) > —) <42 exp( - )
xpehr Tk 4 rk(1+1og™ (1/rk))

This is summable ik, so

1 A
IP’( sup sup —Ui(x,rg) > Z)

k>—1xeAr Tk

tendsto 0 as. — 0. If x € B(0,3) andr < 2, thenB(x,r) C B(xy, ry) for some
X € A and some such thaty /4 < r < r¢. Our result now follows. [

LEMMA 5.4. Suppose u isa measure supported in B(0, 2) such that for all
r<2andall x € R2, we have u(B(x, r)) < c1r. There exists ¢, such that for all
X € RZ,

1
/O /p(s,x,y)u(dy)dSchz,

where p(s, x, y) = 1/(2ns) exp(—|x — y|2/(2s)) is the transition density of two-
dimensional Brownian motion.

PrROOF(cf. [2]). Substitutings = |x — y|2/(2s) shows that

1
/0 ps.x, y)ds < ca(1+10g" (1/}x — y]).
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We then use the Fubini theorem to write

| ' [ pGs.x. vty ds

oo
<c 1+log™(1/|x — d
<ay Lo st e e (11067 = D)ty

o0 o0
<cs Y R+bu(Bx,27M) <ceer Y @+0)27F <cpen,
k=-1 k=—1

as required. O

THEOREM5.5. Wehave

i —B: 1
imsup——— > — as.
—oo tlogloglogr — 2r

PROOF LetK =[bloglogt] andR =t/K, whereb is to be chosen later. Let
I;=[(j — DR, jR].Let§; =0 (X,:s < jR).
By (2.5) we have

K K K
—Bi=) —BUj)) =Y A(I;;[0,(j — DRI)+ Y EA(I;; [0, (j — DR])

j=1 j=1 j=1
=J1+ Jo+ J3.

Recall thatA(/;; [0, (j — DR]) is equal in law tox (R, (j — 1)R). By Proposi-
tion 2.3 and Remark 2.1,

K

1
=Y Z[leog(jR) — RIogR — (j — DRIog((j — DR)]
i=1

and it is straightforward to see that this is equaizlrgo logK .
Define the sets

Dj]_ = {XjR S B(j\/ﬁ, \/E/].G)},
Dj>={X()) C[(j —DVR—(VR/8). jvR+ (VR/8)] x [-VR/8.VR/8]},

Dj3={B(l;) <k1R},

jR
D~4:{/ 1 (X5)ds <korR
J G-DR Bx.rvR) Xs)

forallx € B(jv/R,3VR),0<r <2¢E},

Djs={A(l;-1;1;) <k3R},
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wherex1, k2 andxg are constants to be chosen later and that do not depend on
j.b,t andR. Let

Ci=DjiNDjND;j3NDjsNDjs

and
E = Cj.
j=1
We want to show
(5.4) P(Cjl1$j-1) > c1

ontheseCi1N---NCj_1, wherecy > 0 does not depend 0f) b, t andR. Once
we have (5.4), then

m m—1 m—1
]P’(ﬂCl) :E<P(Cm|9>m—l); ﬂ Cl) ZClP(ﬂ Cl)
i=1 i=1 i=1
and, by induction,

K
(5.5) IP’( N Ci) > K = 1091%0" _ ey loglogt logey).
i=1
On the sefE we have
K
—J1=)_ B(;) <k1KR=x1t.

j=1

Since for eacly we are on the seb >, then on the event we haveX (/;) disjoint
from X (1;) if |i — j| > 1. Therefore,

K
—J2=>_ A(j_1;1j) <k3KR =«at.
j=1
So onE we have altogether that
1
J1+Jo+ J3> 2—t logloglogr — (k1 + k3)t.
T

We now proceed to show (5.4). By the support theorem for planar Brownian
motion and scaling (see [1], Theorem 1.6.6),

P(Dj1N Dj2|$,-1) > c2.
By scaling,
EB(I;) = REB([0, 1]) < c3R.
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So if k1 is chosen large enough,
P(B(I;) > k1R) < c2/6.

Now let us look atD ;4. By scaling and Lemma 5.3 it follows th&(D;4) <
c2/6 if we chooser; large enough.

Next we look atD;s. We have an estimate dBA(/;_1; /), but what we
actually need is an estimate &A(/;_1; 1;)|$;—1]. To show

P(A(Ij-1; Ij) > k3R|§-1) < c2/6
if k3 is large enough, it is enough to show
(5.6) E[A([j-1; Ij)|$j-1] < caR

on the seﬂ{;ll C;. By [3], we can letu be the measure dk? defined by

1
W(F) = /0 15(X,)ds

and consideA ([0, 1]; [1, 2]) as an additive functional of Brownian motion that
corresponds to the measure So to show (5.6), by scaling and translation
invariance it is enough to show

(5.7) E[A([O, 1]; [1, 2)|#1] < ¢5
on the set whereu(B(x,r)) < k1r for all x € B(0,3) and allr € (0,2). The
conditional expectation (5.7) is bounded by

1
SUIO/O /p(s,y,z)u(dZ)ds,
y

where p(s, y, z) is the transition density for planar Brownian motion. Using
Lemma 5.4 we have (5.7).

Settingcg = ¢2/2 gives the desired lower bound (5.4).

Let 1, = exp(n?) for somey > 1 and lete > 0. Provided we take (in the
definition of K') small enough, the Borel-Cantelli lemma tells us that

1

(58) —B([th—1, 14]) > (2_ - 8) (ty — th—1) Iog Iog |O§Xl‘n —tp-1)
T

infinitely often with probability 1. By (2.5) we have

(5 9) —B([O, tn]) = _B([Ov tn—l]) - B([tn—l’ tn]) - A([Ov tn—l]; [fh—1, tn])
' +EA((O, ty-1]; [tn-1, 1a]).
By the upper bound forg;, from Theorem 4.3, we know that

(5.10) B([O, t,—1]) = O(t,—1logloglogr,_1) = o(t, loglog logr,) a.s.
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By scaling,
(5.11) An = A([0, ty_1; [tn—1, 1))

is equal in law toA,,a (1, t,-1/A,), whereA,, =t, —t,_1. By Lemma 4.1,

~ t A
P(A, > t,) <expl —cs-—.| — |,
An n—1

which is summable. Using the Borel-Cantelli lemma, we have
(5.12) A, =o(t,logloglogr,)  a.s.
Substituting this, (5.8), (5.10) and (5.12) in (5.9) proves the theorém.

REMARK 5.6. Theorem 1.5 follows immediately from Theorems 5.4 and 5.5.
The following corollary completes the proof of Theorem 1.3.
COROLLARY 5.7. Let L beasin the statement of Theorem3.2.Then L < oco.

PROOF In the proof of Theorem 5.5 we showed that the evénthad
probability at least ex@loglogrlogec;) and that on the evenE we had
—B > %tlog loglogr — cot provided: was large enough. Chooseso that

% logloglogr — c2 = logs. Using scaling, we then have

P(—p1 > logs) > exp(—czloglogr) = exp(—cas?™).

Now take logarithms of both sides and divides#f. O

REMARK 5.8. Theorem 1.3 follows immediately from Theorem 3.2 and
Corollary 5.7.
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