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LENSES IN SKEW BROWNIAN FLOW

BY KRZYSZTOF BURDZY1 AND HAYA KASPI2

University of Washington and Technion Institute

We consider a stochastic flow in which individual particles follow skew
Brownian motions, with each one of these processes driven by the same
Brownian motion. One does not have uniqueness for the solutions of the
corresponding stochastic differential equation simultaneously for all real
initial conditions. Due to this lack ofthe simultaneous strong uniqueness
for the whole system of stochastic differential equations, the flow contains
lenses, that is, pairs of skew Brownian motions which start at the same point,
bifurcate, and then coalesce in a finite time. The paper contains qualitative
and quantitative (distributional) results on the geometry of the flow and
lenses.

1. Introduction and main results. The present paper is a continuation of
[1] and [4] where an investigation of a stochastic flow of skew Brownian motions
driven by a single Brownian motion was initiated. We will study multiple strong
solutions to the stochastic differential equation defining the skew Brownian
motion. For a fixed starting point, the strong solution to that equation is unique.
However, there exist exceptional times (“bifurcation times”) when multiple
solutions start. We will call pairs of such solutions “lenses” and we will study
their properties. Our paper is devoted to a detailed study of a model that belongs
to a family of processes analyzed in a series of recent interesting papers by Le Jan
and Raimond [9–12]. We will explain how our model fits into that more general
framework at the end of the Introduction.

A skew Brownian motion is a process that satisfies the stochastic differential
equation

Xt = Bt + βLt ,(1.1)

whereBt is a given Brownian motion,β ∈ [−1,1] is a fixed constant andLt is the
symmetric local time ofXt at 0, that is,

Lt = lim
ε→0

1

2ε

∫ t

0
1(−ε,ε)(Xs) ds.(1.2)

The existence and uniqueness of a strong solution to (1.1) and (1.2) was proved
by Harrison and Shepp [5]. In the special case ofβ = 1, the solution to (1.1)
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is the reflected Brownian motion. The caseβ = 0 is trivial. From now on we
will restrict our attention to|β| ∈ (0,1). An alternative way to define the skew
Brownian motion is the following. Consider the caseβ > 0. Take a standard
Brownian motionB ′

t and flip every excursion ofB ′
t below 0 to the positive side

with probabilityβ, independent of what happens to other excursions. The resulting
process has the same distribution asXt defined by (1.1) (see [6] and [18] for more
details).

The following is a straightforward generalization of (1.1). Suppose that{Bt ,

t ∈ R} is a Brownian motion on the real line, that is,{Bt, t ≥ 0} and{B−t , t ≥ 0}
are two independent Brownian motions starting from 0. With probability 1, for all
rationals andx simultaneously, the equations

X
s,x
t = x + Bt − Bs + βL

s,x
t , t ≥ s,(1.3)

have unique strong solutions, where

L
s,x
t = lim

ε→0

1

2ε

∫ t

s
1(−ε,ε)(X

s,x
u ) du.(1.4)

For s, x, t ∈ R, t ≥ s, let

X
s,x−
t = sup

u,y∈Q
u<s

X
u,y
s <x

X
u,y
t ,(1.5)

L
s,x−
t = sup

u,y∈Q
u<s

X
u,y
s <x

L
u,y
t ,(1.6)

X
s,x+
t = inf

u,y∈Q
u<s

X
u,y
s >x

X
u,y
t ,(1.7)

L
s,x+
t = inf

u,y∈Q
u<s

X
u,y
s >x

L
u,y
t .(1.8)

PROPOSITION 1.1. (i) Xs,x−
s = Xs,x+

s = x and X
s,x−
t ≤ X

s,x+
t for all s,

x ∈ R and t ≥ s, a.s.
(ii) The processes t → X

s,x−
t and t → X

s,x+
t are Hölder continuous, for all

s, x ∈ R, a.s.
(iii) With probability 1, for all s, x ∈ R simultaneously, the pairs of processes

(Xs,x−· ,Ls,x−· ) and (Xs,x+· ,Ls,x+· ) satisfy (1.3),and Ls,x−· and Ls,x+· satisfy (1.4).

For a fixed “typical”ω and a “typical” pair(s, x) ∈ R2, X
s,x−
t = X

s,x+
t , for

all t ≥ s. This follows easily from the strong uniqueness for a fixed pair(s, x)
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and the Fubini theorem. Note that the solutions to (1.3) are consistent in the sense
that if Xs,x−· ≡ Xs,x+· andXu,y−· ≡ Xu,y+· for someu < s, andX

u,y−
s = x, then

X
u,y−
t = X

s,x−
t for all t ≥ s.

This paper is devoted mostly to those(s, x) for which the processesXs,x−
t and

X
s,x+
t are not identical. We will later show that even ifX

s,x−
t andX

s,x+
t are not

identical, there exists somet1 = t1(s, x) < ∞ such thatXs,x−
t = X

s,x+
t for t ≥ t1.

DEFINITION 1.2. (i) We will say that{(Xs,x−
t ,X

s,x+
t ), t ∈ [s, u]}, is a lens

with endpointss andu if s < u, Xs,x−
u = Xs,x+

u andX
s,x−
t �= X

s,x+
t for t ∈ (s, u).

If {(Xs,x−
t ,X

s,x+
t ), t ∈ [s, u]}, is a lens, thens will be called a bifurcation time.

(ii) We will call a bifurcation time s semi-flat if for somes1 > s, either
L

s,x−
t = Ls,x−

s = 0 for all t ∈ [s, s1] or L
s,x+
t = Ls,x+

s = 0 for all t ∈ [s, s1].
A bifurcation time which is not semi-flat will be called ordinary.

It is easy to see that if{(Xs,x−
t ,X

s,x+
t ), t ∈ [s, u]}, is a lens, thenx = 0.

Hence, we will use the term “bifurcation times” rather than “bifurcation point
(s, x).” A similar remark applies to the lens endpointu, that is, for every lens
Xs,x−

u = Xs,x+
u = 0.

THEOREM 1.3. (i) With probability 1, the family of all lens endpoints, that is,
u ∈ R such that for some s, x ∈ R, u is the endpoint of a lens {(Xs,x−

t ,X
s,x+
t ), t ∈

[s, u]}, is infinite and countable.
(ii) There exist uncountably many bifurcation times, a.s.

Part (i) of Theorem 1.3 should be clear in view of the following assertion which
appears in the next section as Lemma 2.3(i). For any rational timess1 < s2, with
probability 1, the range ofQ 	 x → X

s1,x
s2 consists of two semi-infinite “intervals”

(−∞, y1] ∩ Q and[y2,∞) ∩ Q, and a countable setS ⊂ (y1, y2) which does not
have accumulation points inside(y1, y2).

THEOREM 1.4. (i) If |β| ∈ (1
3,1), then semi-flat bifurcation times exist, a.s.

(ii) If |β| ∈ (0, 1
3), then there are no semi-flat bifurcation times, a.s.

The critical exponent13 appeared in Corollary 1.5 of [4], which says that there

exist random timest whenβL
0,0
t = sups≤t Bs if and only if β > 1

3. It would be
interesting to find a direct link between that result and Theorem 1.4 above, for
example, via a time reversal argument; so far, we are unable to provide such a
direct link.

The next result is concerned with solutions to (1.3). For a deterministic function
t → Bt , the pair of equations (1.3) and (1.2) have a clear meaning, not depending
on any probabilistic concepts (but that does not mean that a solution must exist
for every deterministicBt ). Hence, for any “fixed” Brownian pathsBt , we can
consider all solutions to (1.3) and (1.2) with a given initial condition(s, x).
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THEOREM 1.5. (i) With probability 1, there exist (s, x) ∈ R2 where three
distinct solutions to (1.3)start.

(ii) There are no (s, x) where four distinct solutions start.

We believe that “ordinary” bifurcation times are typical and “semi-flat”
bifurcation times are less typical. This informal claim is supported by Theorems
1.3(ii) and 1.4(ii). One can probably formalize the claim by computing the
Hausdorff dimensions of ordinary and semi-flat bifurcation times for various
values ofβ. We will not do this in the present paper. Instead, we will focus on
a subfamily of bifurcation times and the corresponding lenses because we can give
several fairly explicit formulas in this special case.

We will write Xx−
t instead of X0,x−

t and, similarly, Xx+
t = X

0,x+
t . The

corresponding local times will be denotedLx−
t andLx+

t . Recall thatX0,x
t , x ∈ Q,

denotes the family of unique strong solutions to (1.3). For rationalx, we will
write Xx

t = X
0,x
t and Lx

t = L
0,x
t . We will call a bifurcation times anticipated

if it corresponds to a lens{(Xs,0−
t ,X

s,0+
t ), t ∈ [s, u]}, and for somey ∈ R, we

haveX
y+
s = 0 andX

y−
s = 0. In other words, an anticipated bifurcation point may

appear only on the trajectory of one of the processesX
y−
t or X

y+
t for some realy.

Note thatX0−
t ≡ X0+

t , a.s., and that for everyx �= 0, there exists a randomt1 > 0
such thatLx−

t = Lx+
t = 0 for all t ∈ [0, t1].

If s is a bifurcation time,Us will denote the lens{(Xs,0−
t ,X

s,0+
t ), t ∈ [s, u]},

shifted to 0, that is,

Us = {(Xs,0−
s+t ,X

s,0+
s+t ), t ∈ [0, u − s)}.

We let Us(t) = �, a cemetery state, fort ≥ u − s. Let L̂s
t = L

s,0−
t + L

s,0+
t ,

σt = inf{u : L̂s
u > t}, andZs

t = β|Ls,0−
σt

−Ls,0+
σt

|. In other words,Zs
t is the distance

betweenXs,0−
t andX

s,0+
t on the time scale defined by the local time clock. Let

�s = inf{t > 0 :Xs,0−
t = X

s,0+
t } and�s

Z = inf{t > 0 :Zs
t = 0}.

Brownian motion is continuous soLs,0−
t andL

s,0+
t increase on disjoint intervals

for t ∈ (s, �s), whose endpoints have no accumulation points inside(s, �s). This
and the definition ofZs

t show that on some intervalsZs
t increases at the rateβ and

on some other intervals it decreases at the rateβ. In other words, it is a piecewise
linear function with the slopeβ or −β almost everywhere, on the interval[0, �s

Z].
Let J s

t = 0, if at timeσt , X
s,0−
t is at 0, andJ s

t = 1, if at timeσt , X
s,0+
t is at 0. If

β > 0, thenJ s
t is the indicator function of the intervals whereZs

t is increasing.

Let Qx,y denote the distribution of{(X0,x
t ,X

0,y
t ), t ≥ 0} killed at the time

ζ = inf{t > 0 :X0,x
t = X

0,y
t }. Note thatζ < ∞, a.s., by the result in [1]. Although

we have definedX0,x
t and X

0,y
t for rational x and y only, it is clear that the

definition of the distributionQx,y applies to any realx andy.
The next theorem involves aσ -finite measureQ on C[0,∞)2. We will now

introduce some notation related to this measure. The measureQ is supported
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on pairs of trajectories, say,({Xt, t ≥ 0}, {X̃t , t ≥ 0}). There exists a process
{Bt , t ≥ 0} (whose trajectories have Brownian path properties away fromt = 0),
and

Xt = Bt + βLt , X̃t = Bt + βL̃t ,

where

Lt = lim
ε→0

1

2ε

∫ t

0
1(−ε,ε)(Xs) ds, L̃t = lim

ε→0

1

2ε

∫ t

0
1(−ε,ε)(X̃s) ds.

We write L̂t = Lt + L̃t , σ̂t = inf{s : L̂s > t}, and Zt = β|Lσ̂t − L̃σ̂t |. Hence,
Zt is the distance between the two components of theQ-lens on the time scale
defined by the local time clock. Finally, we let� = inf{t ≥ 0 :Xt = X̃t } and
�Z = inf{t ≥ 0 :Zt = 0}.

THEOREM 1.6. (i) Let G denote the set of all anticipated bifurcation times.
With probability 1, all anticipated bifurcation times are times when the Brownian
motion Bt attains its running extremum, that is, if s ∈ G, then Bs = supt≤s Bt or
Bs = inft≤s Bt . The set G is countable.

(ii) There exists a unique (up to a multiplicative constant) σ -finite measure Q

on C[0,∞)2 which is Markov on every interval (s,∞), s > 0, with the transition
probabilities Qx,y , and such that both paths start from 0, Q-a.e. We have
limy↓0(1/y)Q−y,0 = cQ, for a constant c. We will normalize Q so that c = 1
in the last formula.

(iii) Let |C| denote the Lebesgue measure of C ⊂ R. For a suitable normal-
ization of Q, (nonrandom) Borel sets A ⊂ R and bounded continuous functions
f :C[0,∞)2 → R,

E
∑
s∈G

1A(Bs)f (Us) =
(

1− β

1+ β
|A ∩ (−∞,0]| + |A ∩ (0,∞)|

)∫
f dQ.(1.9)

(iv) Let B be the collection of pairs (Bs,Us) in R × C[0,∞)2 for all s ∈ G.
The point process B is not Poisson.

(v) Let QZ,J be the Q-distribution of the process (Zt , Jt ). Assume that β > 0
and let A be the collection of all pairs (Bs, {(Zs

t , J
s
t ), t ∈ [0, �s

Z]}), where s ∈ G.
Let D be the space of cadlag functions mapping a finite or infinite interval [0, ζ ]
to [0,∞) × {0,1}. Then A is a Poisson point process on R × D with intensity
measure

1(−∞,0](x) dx × 1− β

1+ β
QZ,J + 1(0,∞)(x) dx × QZ,J .

An analogous result holds in the case β < 0, by symmetry.
(vi) For any fixed b > 0, the QZ,J -distributions of {Zt, t ∈ [0, �Z]} and

{Z�Z−t , t ∈ [0, �Z]}, conditional on {supt≥0 Zt = b}, are identical.
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(vii) For any fixed b > 0, the Q-distributions of processes {(Xt , X̃t ), t ∈ [0, �]}
and {(X�−t , X̃�−t ), t ∈ [0, �]}, conditional on {supt≥0 Zt = b}, are different.

The measureQ is the “distribution” of a lensUs . Theorem 1.6 shows that the
point process of lenses has only some of the properties of the familiar excursion
processes. It is not a Poisson point process, but one can find a Poisson point
structure by restricting attention to a functional of a lens, namely,(Zs

t , J
s
t ). The

point process of lenses does satisfy a Maisonneuve-type formula (1.9) (cf. [13]).
A similar remark applies to the “lens law”Q. The lens lawQ is not invariant under
time-reversal, but the functionalZt of a lens is invariant under this transformation.

As a byproduct of the proof of Theorem 1.6, we obtain the following
Williams-type decomposition ofZt underQ [see the remark before the proof
of Theorem 1.6(vi) for an alternative presentation]. The processZt is piecewise
linear on every closed interval contained in(0, �Z). The slope ofZt is either
β or −β, at almost everyt . Suppose thatβ > 0, condition the processZt on
{supt≥0 Zt = b} and letν be such thatZν = b. For t < ν, the processZt changes
the slope fromβ to −β at the rate(1 − β)/(2Zt), and from−β to β at the
rate (1 + β)/(2Zt). By Theorem 1.6(vi), the evolution ofZt for t > ν, may be
described using time-reversal. Moreover,{Zt, t ∈ [0, ν]} and{Z�Z−t , t ∈ [ν, �Z]}
are independent underQ given{supt≥0 Zt = b}.

The rest of the paper contains some additional results and the proofs of the
main theorems; it is divided into two more sections. The next section deals with
the definition and properties of the flow and the existence of ordinary and semi-flat
bifurcation times. The last section is devoted to anticipated bifurcation times and
their distributions.

We will now explain how some of our results can be derived from those of
[9–12], although we will use our own elementary methods in the formal proofs to
keep our paper self-contained. The semigroup corresponding to the skew Brownian
motion is symmetric. By [9], it is possible to construct a coalescing flowϕs,t such
that for every functionf in the domain of the generator of skew Brownian motion,
for all x ands < t ,

f
(
ϕs,t (x)

) = f (x) +
∫ t

s
f ′(ϕs,u(x)

)
dBu + 1

2

∫ t

s
f ′′(ϕs,u(x)

)
du.

This shows thatϕs,t (x) = x + Bt − Bs + βL
s,x
t , a property analogous to (1.3). For

s = 0, anyn ≥ 1, and anyx1, x2, . . . , xn, one can solve (1.3) simultaneously for all
initial conditionsx1, x2, . . . , xn. One can show that thisn-point motion is Feller
and then one can apply a result from [10] to prove that there exists a unique, up to
a modification, coalescing flow solving (1.3). Our processesX

s,x−
t andX

s,x+
t are

cadlag and caglad modifications of the flow, in the space variable. Lemma 2.2 can
be deduced from the flow property. Lemma 2.5 follows from the fact that the flow
is coalescing.



SKEW BROWNIAN FLOW 3091

2. Skew Brownian motion flow. We fix someβ ∈ (−1,0) ∪ (0,1) in this
section, until stated otherwise.

Recall the notation and definitions from Section 1. The modulus of continuity
δ[a,b](r) of the Brownian path on the interval[a, b] is defined by

δ[a,b](r) = sup{|Bt − Bs | : s, t ∈ [a, b], |s − t| ≤ r}.
Note thatr → δ[a,b](r) is nondecreasing.

PROPOSITION2.1. With probability 1, for all rational s, x with s ≤ a, and all
u, v ∈ [a, b],

|Xs,x
u − Xs,x

v | ≤ 2δ[a,b](|u − v|).

PROOF. Since rationals are countable, it is enough to prove the proposition
for fixed s and x. Let X

s,x
t and L

s,x
t be as in (1.3). For anyt > 0, let g(t) =

inf{u :Ls,x
u = L

s,x
t } andd(t) = sup{u :Ls,x

u = L
s,x
t }. We will argue thatXs,x

g(t) = 0.
Suppose otherwise. Then for someε > 0,Xs,x

t �= 0 for all u ∈ (g(t)− ε, g(t)+ ε).
It follows from (1.2) thatLs,x

u = L
s,x
g(t) for all u ∈ (g(t) − ε/2, g(t) + ε/2), and

this contradicts the definition ofg(t). Similarly, Xs,x
d(t) = 0, a.s. We haveXs,x

g(t) = 0
andX

s,x
d(t) = 0 for all rational t simultaneously, a.s. Then it is easy to see that,

in fact, X
s,x
g(t) = 0 andX

s,x
d(t) = 0 for all real t ≥ 0 simultaneously, a.s. Consider

u, v ∈ [a, b], and assume without loss of generality thatu < v. If d(u) ≥ g(v),
then|βLs,x

u − βLs,x
v | = 0. Otherwise,|d(u) − g(v)| ≤ |u − v| and

|βLs,x
u − βLs,x

v | = ∣∣βL
s,x
d(u) − βL

s,x
g(v)

∣∣ = ∣∣Bd(u) − Bg(v)

∣∣
≤ δ[a,b]

(|d(u) − g(v)|) ≤ δ[a,b](|u − v|).
Hence,βL

s,x
t has the same modulus of continuity asBt on [a, b], or smaller one.

SinceXs,x· is the sum of two functionsx +B· −Bs andβLs,x· with the modulus of
continuity bounded byδ[a,b](·), its modulus of continuity is bounded by 2δ[a,b](·).

�

Since for everyα < 1
2 the Brownian motion isα-Hölder continuous, the same

is true forXs,x
t , for all rationals andx simultaneously.

LEMMA 2.2. With probability 1, for all rational s1, s2, x1, x2 simultaneously,
if s1 ≤ s2, then either X

s1,x1
t ≤ X

s2,x2
t for all t ≥ s2 or X

s1,x1
t ≥ X

s2,x2
t for all t ≥ s2.

PROOF. The claim is a part of Proposition 1.7 of [4].�

PROOF OF PROPOSITION 1.1(i) AND (ii). Fix some reals and x and an
arbitrarily smallε > 0. Findγ > 0 so small thatδ[s−γ,s](γ ) < ε, a rationalu ∈
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[s − γ, s], and a rationaly ∈ [x − 3ε, x − 2ε]. It follows from Proposition 2.1 that
X

u,y
s ∈ (x − 4ε, x). Sinceε > 0 is arbitrarily small, it follows from definition (1.5)

thatXs,x−
s = x. Similarly, Xs,x+

s = x.
Lemma 2.2 and definitions (1.5) and (1.7) easily imply that a.s. for alls, x ∈ R

andt ≥ s simultaneously,Xs,x+
t ≥ X

s,x−
t .

It is an elementary fact that if all elements of an arbitrary family of functions
have moduli of continuity bounded by 2δ[a,b](·), then so does the supremum of the
functions in the family. This, definitions (1.5) and (1.7) and the remark following
Proposition 2.1 imply that all processesX

s,x−
t andX

s,x+
t are Hölder continuous,

for all reals andx simultaneously. �

LEMMA 2.3. (i) For any rational times s1 < s2, with probability 1, the range
of Q 	 x → X

s1,x
s2 consists of two semi-infinite “ intervals” (−∞, y1] ∩ Q and

[y2,∞) ∩ Q, and a countable set S ⊂ (y1, y2) which does not have accumulation
points inside (y1, y2). If x ∈ Q and X

s1,x
s2 /∈ (y1, y2), then L

s1,x
s2 = 0.

(ii) Fix any rational times s1 < s2 and let  = {Xu,x
s1

:u ∈ Q, u ≤ s1, x ∈ Q}.
With probability 1, {Xu,x

s2
:u ∈ Q, u ≤ s1, x ∈ Q} consists of two semi-infinite

“ intervals” (−∞, y1] ∩  and [y2,∞) ∩ , and a countable set S ⊂ (y1, y2)

which does not have accumulation points inside (y1, y2). If u,x ∈ Q, u ≤ s1, and
Xu,x

s2
/∈ (y1, y2), then Lu,x

s2
− Lu,x

s1
= 0.

PROOF. (i) Standard arguments can be used to derive (i) from Theorem 1.2
of [4]. (ii) The argument proving (i) does not depend on the assumption thatx ’s are
rational numbers but on the fact that rationals are countable. Since is countable,
the same argument applies.�

LEMMA 2.4. With probability 1, s is not a bifurcation time for any s which is
a local extremum of Bt .

PROOF. Consider the stochastic differential equation (1.3) withs = 0, rational
x �= 0, driven by a three-dimensional Bessel processBt in place of the Brownian
motion. Recall that the path properties of the three-dimensional Bessel process are
the same as those of the Brownian motion on any fixed time interval[s1, s2], with
0 < s1 < s2 < ∞, by the Cameron–Martin–Girsanov formula ([7], Section 3.5).
For everyx �= 0, there exists (random)s3 > 0 such thatBt �= −x for all t ≤ s3.
Hence, we have strong existence and uniqueness for solutions to (1.3) with
s = 0, simultaneously for all rationalx �= 0, driven by a three-dimensional
Bessel processBt , on every interval[s1, s2] ⊂ (0,∞) and, in fact, on the whole
interval[0,∞).

Since the three-dimensional Bessel process is transient, it is easy to see that
P (L0,−1∞ < ∞) = p > 0. Hence,P (L0,−1∞ ≤ b) = p1 > 0 for someb < ∞. By
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scaling,P (L0,−x∞ ≤ xb) = p1 for rationalx > 0. Hence, for everyε > 0,

P

( ⋃
x∈Q,x∈(0,ε)

{L0,−x∞ ≤ xb}
)

≥ p1,

and so

P

( ⋂
ε>0

⋃
x∈Q,x∈(0,ε)

{L0,−x∞ ≤ xb}
)

≥ p1.

This and the definition ofX0,x−
t andL

0,x−
t show thatL0,0−

t = 0 for all t ≥ 0 with
probability greater than or equal top1. The eventA = ⋃

s>0{L0,0−
t = 0, t ∈ [0, s]}

belongs to the germσ -field F0+ and its probability is bounded below byp1 > 0
so P (A) = 1, by Blumenthal’s 0–1 law. IfA occurs, we must haveL0,0−∞ = 0,
because the three-dimensional Bessel process never returns to 0 a.s. This proves
thatP (L0,0−∞ = 0) = 1 a.s.

Now we go back to solutions of (1.3) driven by a Brownian motionBt . Suppose
β ≤ 0, consider any rational numbers 0≤ r1 < r2 < ∞ and lets denote the unique
time whenBt attains its minimum on[r1, r2]. Note thats < r2 a.s. It is well
known that{Bt+s − Bs, t ∈ [0, r2 − s]} has the same path properties as the three-
dimensional Bessel process (this follows, e.g., from Williams’ decomposition,
see [15], Section VII.4). Hence,Ls,0−

t = 0 for t ∈ [0, r2 − s]. We obviously have
L

s,0+
t = 0 for t ∈ [0, r2 − s], sos is not a bifurcation time. It is easy to see thats

is not a bifurcation time whenβ > 0. Every local minimum ofBt is the global
minimum over some interval[r1, r2] with rational endpoints, so our argument
holds for all local minima simultaneously. The local maxima can be dealt with
in an analogous way.�

PROOF OF PROPOSITION 1.1(iii). Fix arbitrary reals andx. Let s1 be the
smallest time greater than or equal tos with the property thatBs1 = −x + Bs

andBs1 is not a local extremum ofBt . All local extrema ofBt occur at different
levels so there is at most one local extremums2 ∈ [s, s1) with the property that
Bs2 = −x + Bs .

ConsiderXs,x−
t and first suppose thatLs,x−

s1
= 0. Then, clearly,Xs,x−

t = x +
Bt − Bs andL

s,x−
t satisfy (1.3) on[s, s1]. If there is nos2 as described above,

then obviouslyLs,x−
t satisfies (1.2) on[s, s1]. Next assume that there exists a

unique extremums2 ∈ [s, s1) with Bs2 = −x + Bs . By Trotter’s theorem on the
joint continuity of Brownian local time ([8], Section 5.1), the local time ofBt at
the level−x + Bs does not increase between timess ands1. Hence, againLs,x−

t

satisfies (1.2) on[s, s1].
Next we will keep the assumption thatLs,x−

s1
= 0 and considerXs,x−

t for t > s1.
Fix any rationals3 > s1. Recall thats1 is not a local extremum. Since Brownian
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motion does not have points of increase, the range{Bt, t ∈ [s1, s3]} contains an
interval of lengthε > 0 centered atBs1. It follows from Lemma 2.3 that{

Xu,y
s3

:Xu,y
s1

∈ [
x + Bs1 − Bs − ε/2, x + Bs1 − Bs + ε/2

]
, u, y ∈ Q, u ≤ s

}
is a finite set. This and the definition ofX

s,x−
t andL

s,x−
t imply thatXs,x−

t = X
u,y
t

andL
s,x−
t = L

u,y
t for someu,y ∈ Q and allt ≥ s3. Hence,Xs,x−

t andL
s,x−
t satisfy

(1.2) and (1.3) on[s3,∞). Sinces3 > s1 is arbitrarily close tos1, the conditions
(1.2) and (1.3) are satisfied on(s1,∞). We will now consider the case when
Ls,x−

s1
> 0. It is easy to see that if there is nos2 as defined at the beginning of

the proof, then we must haveLs,x−
s1

= 0. Similarly, it is easy to see thatLs,x−
s2

= 0.

Moreover, inf{t :Ls,x−
t > 0} = s2, because otherwiseLs,x−

t would have been zero
on the whole interval[s, s1].

It is easy to see thats2 cannot be a local maximum ofBt . If it is, the Brownian
motionBt has to stay below−x + Bs for t ∈ [s, s2) in view of the definition ofs2.
It follows that for anyt1 ∈ (s, s1), there existsz1 < x such that forz ∈ (z1, x), the
Brownian motionBt does not hit−z + Bs in the interval[s, t1). This implies that
Ls,x−

s1
= 0, a contradiction.

We will now assume thats2 is a local minimum ofBt . If β > 0, the definition
of X

s,x−
t implies that it is the sum ofx + Bt − Bs and a nondecreasing process.

Hence, it stays above 0 on some interval(s2, t2] with t2 > s2. This and the
definition ofXs,x−

t imply that for everyt3 ∈ (s2, t2), there existsz2 < x such that
for all u, z ∈ Q with u < s andXu,z

s ∈ (z2, x), the processXu,z
t stays above 0 on

the interval[t3, t2]. Hence,Lu,z
t does not increase on this interval and so the same

can be said aboutLs,x−
t . Sincet3 is arbitrarily close tos2, we see thatLs,x−

t does
not increase on[s2, t2]—this contradicts the fact that inf{t :Ls,x−

t > 0} = s2.
Let us assume thatβ < 0. Suppose that for somes4 > s2 and all t ∈ [s2, s4],

we have−βL
s,x−
t = infu∈[t,s4] Bu − Bs2. Let s5 be the minimum ofBt on

some interval(s6, s4) with the property thats5 �= s6, s4 and s6 ∈ (s2, s4). Then

−βL
s5,X

s,x−
s5 −

t ≥ −β(L
s,x−
t −Ls,x−

s5
) for t ∈ [s5, s4] andL

s5,X
s,x−
s5 +

s4 = 0. Thus,s5 is
a bifurcation point, but this contradicts Lemma 2.4. We conclude that in every right
neighborhood ofs2 there existst with −βL

s,x−
t > infu∈[t,s4] Bu − Bs2.

Consider s7 > s2, arbitrarily close tos2, and find s8 ∈ (s2, s7) satisfying
−βLs,x−

s8
> infu∈[s8,s7] Bu − Bs2. Let s9 > s8 be the smallest time such that

Bs9 = Bs2 − βLs,x−
s8

ands9 is not a local extremum ofBt . Then we can repeat the

argument applied above tos1 ands3 to see thatXs,x−
t = X

u,y
t andL

s,x−
t = L

u,y
t

for someu,y ∈ Q and allt ≥ s10, for everys10 > s9. By the uniform continuity of
all processesL andX [Proposition 1.1(ii)],s9 → s2 ass7 → s2, so (1.2) and (1.3)
hold for X

s,x−
t andL

s,x−
t on [s2, s1].

The same proof applies toXs,x+
t andL

s,x+
t by symmetry. �

LEMMA 2.5. With probability 1, for all s1, s2, x1, x2 ∈ R simultaneously,

X
s1,x1−
t = X

s1,x1+
t = X

s2,x2−
t = X

s2,x2+
t
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for t ≥ t1, where t1 < ∞ depends on s1, s2, x1, x2.

PROOF. Consider any rationals3 < min(s1, s2) and note that, for sufficiently
largeK < ∞ and all rationalsx with |x| > K , L

s3,x
s1 = L

s3,x
s2 = 0. Choose rational

x3 and x4 with the property thatXs3,x3
s1 < x1, X

s3,x3
s2 < x2, X

s3,x4
s1 > x1, and

X
s3,x4
s2 > x2. By a theorem from [1], with probability 1,Xs3,x3

t = X
s3,x4
t for t ≥ t1,

where t1 = t1(s3, x3, x4) < ∞. Note that this claim holds for all rationals3, x3
andx4 simultaneously, a.s. The lemma now follows fromXs3,x3

t1
= X

s3,x4
t1

and the
definitions ofXs1,x1−

t ,X
s1,x1+
t ,X

s2,x2−
t andX

s2,x2+
t . �

LEMMA 2.6. With probability 1, for all pairs s, s1 ∈ R simultaneously, if
s < s1, then the set {x ∈ R :Xs,x−

s1
�= Xs,x+

s1
} is countable.

PROOF. This follows easily from Lemma 2.3.�

LEMMA 2.7. With probability 1, for any s, x ∈ R and t1 > s, there exist
s1, x1 ∈ Q, such that X

s,x−
t = X

s1,x1
t for t ≥ t1, unless L

s,x
t1

= 0, and a similar
statement holds for X

s,x+
t .

PROOF. This follows from the argument given in the proof of Proposi-
tion 1.1(iii). �

Supposes1, s2 ∈ Q, s1 < s2, and consider pointsy1 andy2 in {Xs1,x
s2 , x ∈ Q},

such thaty1 < y2 and(y1, y2) ∩ {Xs1,x
s2 , x ∈ Q} = ∅. Pointsy1 andy2 with these

properties exist by the results of [4] (see Lemma 2.3 above). The results of [4]
show in addition that the sets{x ∈ Q :Xs1,x

s2 = y1} and {x ∈ Q :Xs1,x
s2 = y2} are

intervals inQ with a common endpointz. It follows easily thaty1 = X
s1,z−
s2 <

X
s1,z+
s2 = y2. Hence, we see that we cannot have strong uniqueness of solutions

to (1.3) simultaneously for alls, x ∈ R, and so bifurcation times exist. Note that
for a fixeds1, typically there are manyz’s with X

s1,z−
s2 < X

s1,z+
s2 . For all z �= 0, in

this family we haveXs1,z−
t = X

s1,z+
t for t ∈ [s1, s3] and somes3 = s3(z) > s1.

Recall that if{(Xs,x−
t ,X

s,x+
t ), t ∈ [s, u]} is a lens, thenx = Xs,x−

u = Xs,x+
u = 0.

PROOF OF THEOREM 1.3(i). Consider any lens{(Xs,0−
t ,X

s,0+
t ), t ∈ [s, u]}

and note that by Lemma 2.7, for somes1, s2, x1, x2 ∈ Q andu1 ∈ (s, u), we have
X

s,0−
t = X

s1,x1
t andX

s,0+
t = X

s2,x2
t for all t ∈ [u1, u]. Hence,(u,X

s1,x1
u ) = (u,0)

is a point in space-time where the processesXs1,x1· andXs2,x2· coalesce, for some
rationals1, s2, x1, x2 ∈ Q. The set of such points is countable. It is easy to see that
it is also infinite. �

Note that in the next two lemmasT1 denotes a bifurcation time.
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LEMMA 2.8. The following holds with probability 1 for all s, t1, x ∈ R

simultaneously. Suppose that s < t1 and X
s,x−
t1

< X
s,x+
t1

. Let T1 = inf{t ≥
s :Xs,x−

t �= X
s,x+
t } and T2 = sup{t ≥ s :Ls,x−

t ∨ L
s,x+
t = 0}. Then T1 = T2.

PROOF. Clearly, T1 ≥ T2. Suppose thatT1 > T2, note thatt1 ≥ T1 and let
t2 ∈ (T2, T1). Then, by Lemma 2.7, there exists1, s2, x1, x2 ∈ Q such thatXs,x−

t =
X

s1,x1
t andX

s,x+
t = X

s2,x2
t for t ≥ t2. By the strong uniqueness of solutions to (1.3)

for rationals andx, X
s,x−
t = X

s1,x1
t = X

s2,x2
t = X

s,x+
t for t ≥ t2. This contradicts

the assumption thatXs,x−
t1

< X
s,x+
t1

and soT1 = T2. �

LEMMA 2.9. With probability 1, the following holds for all s, x ∈ R. Suppose
that X

s,x−
t1

< X
s,x+
t1

for some t1 > s and x ∈ R. Let T1 = inf{t ≥ s :Xs,x−
t <

X
s,x+
t }. If x �= 0, then T1 > s and T1 is not a semi-flat bifurcation time.

PROOF. It is obvious thatx �= 0 impliesT1 > s. By Lemma 2.4, the bifurcation
timeT1 is not a local extremum ofBt . Lety = Bs −x. Note thatBT1 = y and either
Bt > y for all t ∈ [s, T1) or Bt < y for t ∈ [s, T1). Since Brownian motion does not
have points of increase (or decrease) andT1 is not a local extremum, it follows
that Bt crosses the levely infinitely often in every interval(T1, T1 + δ), δ > 0.
By Lemma 2.8,Ls,x−

T1
= L

s,x+
T1

= 0. Suppose thatT1 is a semi-flat bifurcation
time. Then for somes1 > T1, eitherLs,x−

s1
= 0 orLs,x+

s1
= 0. Assume without loss

of generality thatLs,x−
s1

= 0. Since the Brownian motionBt crosses the levely
repeatedly between timesT1 ands1, it accumulates some local time at this level
(by Trotter and Ray–Knight theorems, [8], Sections 5.1 and 5.3), and so the process
Xs,x−

s1
accumulates some local time at 0. This contradicts the assumption that

Ls,x−
s1

= 0. �

PROOF OFTHEOREM 1.3(ii). Recall that we call a bifurcation timeordinary
if it is not semi-flat. First, we are going to show that ifs is an ordinary bifurcation
time ands1 > s is such thatXs,0−

s1
�= Xs,0+

s1
, then for everyε > 0, there exists an

ordinary bifurcation times2 ∈ (s, s1 ∧ (s + ε/2)) such thatXs,0−
s2

< 0 < Xs,0+
s2

,

X
s2,0−
s1 �= X

s2,0+
s1 , L

s,0−
s+2(s2−s) < L

s,0−
s+ε , and L

s,0+
s+2(s2−s) < L

s,0+
s+ε . Since s is an

ordinary bifurcation time, we can finds3 ∈ (s, s1 ∧ (s + ε/2)) such that both
processesXs,0−· andXs,0+· cross 0 in the interval(s3, s1 ∧ (s + ε/2)). This and
Lemma 2.3 imply that the set{Xt,y

s1 , t ≤ s3,X
t,y
s3 ∈ [Xs,0−

s3
,Xs,0+

s3
], t, y ∈ Q} is

finite; let x1 be the second largest element of this set and denotex2 = Xs,0+
s1

, that

is, the largest element of the set. Fort < s1, let �t = inf{y ∈ Q :Xt,y
s1 = Xs,0+

s1
}

and note that�t is not constantly equal to 0 on any interval(s, s + δ) because
s is an ordinary bifurcation time. Lets4 ∈ (s, s + (s3 − s)/2) be so close tos
that Xs,x−· andXs,x+· cross 0 in the interval(s4, s + (s3 − s)/2), and�s4 �= 0.

Note thatX
s4,�s4−
s1 ≤ x1 < x2 ≤ X

s4,�s4+
s1 and let s2 = inf{t ≥ s4 :X

s4,�s4−
t <
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X
s4,�s4+
t }. By Lemma 2.9,s2 is an ordinary bifurcation time. Note thats2 ≤

s + (s3 − s)/2 ≤ s1 ∧ (s + ε/2) becauseXs,0−· andXs,0+· cross 0 in the interval

(s4, s + (s3 − s)/2). Moreover,Xs2,0−
s1 = X

s4,�s4−
s1 ≤ x1 < x2 ≤ X

s4,�s4+
s1 = X

s2,0+
s1 .

We haveL
s,0−
s+2(s2−s) < L

s,0−
s+ε , andL

s,0+
s+2(s2−s) < L

s,0+
s+ε becauseXs,0−· andXs,0+·

cross 0 in the interval(s3, s1 ∧ (s + ε/2)). It is easy to see thatXs,0−
s2

≤ 0≤ Xs,0+
s2

.
The inequalities are, in fact, sharp because on every interval (s5,∞) with s5 > s,
Xs,0−· agrees with someXu,z· with rationalu andz, and the last process does not
pass through bifurcation points, a.s., and the same holds forXs,0+· . This completes
the proof of our claim.

Recall thats is an ordinary bifurcation time ands1 > s is such thatXs,0−
s1

�=
Xs,0+

s1
. We will construct a family of ordinary bifurcation timesu with u ∈ [s, ((s +

s1)/2) ∧ s3) in the following inductive way. Start with an ordinary bifurcation
time s0 such thats0 ∈ (s, (s + (s + s1)/2) ∧ s3), Xs,0−

s0
< 0 < Xs,0+

s0
, X

s0,0−
s1 ≤ x1,

X
s0,0+
s1 ≥ x2, L

s,0−
s+2(s0−s) < L

s,0−
s+1 , and L

s,0+
s+2(s0−s) < L

s,0+
s+1 . Then find ordinary

bifurcation timess00 ands01 such thats0 < s00 < s01 < (s + 2−1) ∧ s3, X
s0,0−
s00 <

0 < X
s0,0+
s00 , X

s00,0−
s1 ≤ x1, X

s00,0+
s1 ≥ x2, L

s0,0−
s0+2(s00−s0)

< L
s0,0−
s+2−1, L

s0,0+
s0+2(s00−s0)

<

L
s0,0+
s+2−1, Xs0,0−

s01 < 0 < X
s0,0+
s01 , Xs01,0−

s1 ≤ x1, Xs01,0+
s1 ≥ x2, Ls0,0−

s0+2(s01−s0)
< L

s0,0−
s+2−1,

andL
s0,0+
s0+2(s01−s0)

< L
s0,0+
s+2−1.

We can find inductively ordinary bifurcation timess0k1k2...kn for all n ≥ 2, with
kj = 0,1, with the following properties. Suppose thats0k1k2...kn have been defined
for n ≤ m and let δm be the minimum of distances between distinct elements
of {s0k1k2...kn, n ≤ m,kj = 0,1}. Then for anykj = 0,1, j = 1,2, . . . ,m, find
ordinary bifurcation timess0k1k2...km0 ands0k1k2...km1 with

s0k1k2...km < s0k1k2...km0 < s0k1k2...km1

<
(
s0k1k2...km + (δm/10) ∧ 2−m+1) ∧ s3,

X
s0k1k2...km ,0−
s0k1k2...km0 < 0< X

s0k1k2...km ,0+
s0k1k2...km0 ,

X
s0k1k2...km0,0−
s1 ≤ x1,

X
s0k1k2...km0,0+
s1 ≥ x2,

vm0 = s0k1k2...km + 2
(
s0k1k2...km0 − s0k1k2...km

)
,

L
s0k1k2...km ,0−
vm0 < L

s0k1k2...km ,0−
s+2−m ,

L
s0k1k2...km ,0+
vm0 < L

s0k1k2...km ,0+
s+2−m ,

X
s0k1k2...km ,0−
s0k1k2...km1 < 0< X

s0k1k2...km ,0+
s0k1k2...km1 ,(2.1)
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X
s0k1k2...km1,0−
s1 ≤ x1,

X
s0k1k2...km1,0+
s1 ≥ x2,

vm1 = s0k1k2...km + 2
(
s0k1k2...km1 − s0k1k2...km

)
,

L
s0k1k2...km ,0−
vm1 < L

s0k1k2...km ,0−
s+2−m ,

L
s0k1k2...km ,0+
vm1 < L

s0k1k2...km ,0+
s+2−m .

It follows from (2.1) that the sequence(s0k1, s0k1k2, s0k1k2k3, . . .) converges
for any choice of 0, k1, k2, k3, . . . The family S of limit points is uncountable.
We will show that every element ofS is a bifurcation time. Fix anyu ∈ S
and anyu1 ∈ (u, s1). Find 0, k1, k2, k3, . . . such thats0,k1,k2,k3,...,km ↑ u. By con-

struction,X
s0k1k2...km ,0−
· ≤ X

s0k1k2...kmkm+1,0−
· andX

s0k1k2...km ,0+
· ≥ X

s0k1k2...kmkm+1,0+
·

on the interval(s0k1k2...kmkm+1,∞). Passing to the limit and using the fact that

X
s0k1k2...km ,0−
s0k1k2...km0 < 0 < X

s0k1k2...km ,0+
s0k1k2...km0 and X

s0k1k2...km ,0−
s0k1k2...km1 < 0 < X

s0k1k2...km ,0+
s0k1k2...km1 , we

see thatX
s0k1k2...km ,0−
u ≤ 0 ≤ X

s0k1k2...km ,0+
u . For sufficiently largem, we have

L
s0k1k2...km ,0−
u < L

s0k1k2...km ,0−
u1 andL

s0k1k2...km ,0+
u < L

s0k1k2...km ,0+
u1 . This implies that

Lu,0+· andLu,0−· increase on the interval(u,u1). Hence, for everyu2 > u, Xu,0+·
agrees with someXv,x· with rationalv andx on the interval(u2,∞), and the same
remark applies toXu,0−· . SinceXv,x· does not pass through any bifurcation points,
eitheru is a bifurcation time orXu,0−

t = X
u,0+
t for all t ≥ u. Our construction

implies thatXu,0−
s1

≤ x1 < x2 ≤ Xu,0+
s1

sou must be a bifurcation time.�

We will use excursion theory in the next proof and the proof of Theorem 1.6.
Various accounts of excursion theory may be found in [2, 15], Chapter XII,
and [16], Chapter 8. Some of the most relevant material is contained in [13]. We
will use Proposition 4.1 and Theorem 5.1 of [3].

PROOF OF THEOREM 1.4. (i) We will use the method of Watanabe [19].
First we will construct a family of “excursions” whose starting points are semi-
flat bifurcation points. Then we will assemble these excursion into a Brownian
motion, as in [19].

Assume without loss of generality thatβ ∈ (−1,−1
3) and fix a largeK < ∞

whose value will be specified later. Let̃B1
t , B̃2

t , . . . be independent Brownian
motions starting from 0 and letBk

t = B̃k
t −β2−k . Define processesXk

t by equations
analogous to (1.3) and (1.2):

Xk
t = Bk

t + βLk
t , t ≥ 0,

Lk
t = 2−k + lim

ε→0

1

2ε

∫ t

0
1(−ε,ε)(X

k
s ) ds.
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Let

T1 = inf{t > 0 :B1
t = 0 orX1

t ≥ −KβL1
t },

Tk = inf{t > 0 :Bk
t = 0 orLk

t = 2−k+1 or Xk
t ≥ −KβLk

t }, k ≥ 2,

Sk,n = Tk + Tk−1 + · · · + Tn+1, n = 0,1, . . . , k − 1,

Y k
t =



Xk
t , for t ∈ [0, Tk);

Xn
t−Sk,n

, for t ∈ [Sk,n, Sk,n−1), 1≤ n ≤ k − 1,

if Bm
Tm

> 0 andXm
Tm

< −KβLm
Tm

for all m < n;

0, for t ∈ [Sk,n, Sk,n−1), 1≤ n ≤ k − 1,

if Bm
Tm

= 0 orXm
Tm

= −KβLm
Tm

for somem < n;

0, for t ≥ Sk,0,

Ak
t =



Bk
t , for t ∈ [0, Tk);

Bn
t−Sk,n

, for t ∈ [Sk,n, Sk,n−1), 1≤ n ≤ k − 1,

if Bm
Tm

> 0 andXm
Tm

< −KβLm
Tm

for all m < n;

0, for t ∈ [Sk,n, Sk,n−1), 1≤ n ≤ k − 1,

if Bm
Tm

= 0 orXm
Tm

= −KβLm
Tm

for somem < n;

0, for t ≥ Sk,0.

In other words,Y k
t is a process assembled fromXk

t ,X
k−1
t , . . . ,X1

t andAk
t is a

Brownian motion assembled fromBk
t ,Bk−1

t , . . . ,B1
t . The processesY k

t andAk
t

are sent to 0 at the time

Sk = inf{t > 0 :Ak
t = 0 orY k

t ≥ −KβL̂k
t },

where

L̂k
t = 2−k + lim

ε→0

1

2ε

∫ t

0
1(−ε,ε)(Y

k
s ) ds.

It is elementary to check that the processesY k
t and Ak

t satisfy the equation
analogous to that forXk

t andBk
t :

Y k
t = Ak

t + βL̂k
t , 0 ≤ t ≤ Sk.

Let Qk denote the distribution ofAk
t and letα = β−1

2β
− 1+β

2Kβ
. We will argue that

limk→∞ 2αkQk exists and defines an excursion lawH for Brownian motion.
Let Uk = inf{t > 0 :L̂k

t ≥ 2−k+1}. The event{Uk < Sk} is the same as the first
excursion ofY k

t above 0 of height greater than−KβL̂k
t and the first excursion

of Y k
t below 0 which reaches the levelβL̂k

t occuring after̂Lk
t increases by 2−k .

According to the excursion theory, on the time scale corresponding to the local
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time L̂k
t , the point process of arrivals of excursions ofY k

t above 0 with height
greater than−KβL̂k

t is a Poisson point process with the variable intensity, equal
to f1(s) = −(1 + β)/(2Kβ(s + 2−k)). The intensity for the analogous point
process of arrivals of excursions ofY k

t below 0 which hitβL̂k
t is equal tof2(s) =

−(1 − β)/(2β(s + 2−k)). Hence, the probability that none of these excursions
occurs beforêLk

t increases by 2−k is equal to

exp
(
−

∫ 2−k

0

( −(1+ β)

2Kβ(s + 2−k)
+ β − 1

2β(s + 2−k)

)
ds

)
.

Elementary calculations show that this is equal to 2−α. Let Un
k = inf{t > 0 :L̂k

t ≥
2−n} for n < k. By induction and the strong Markov property,

P (Un
k < Sk) = 2−(k−n)α.(2.2)

It follows that for every fixedn and all k > n, the measures 2αkQk give the
same mass to paths ofY k

t in the set{Un
k < Sk}. It is clear from the construction

of processesY k
t that for a fixedn, the conditional distributionFn

k of Un
k given

{Un
k < Sk} is nondecreasing ink, that is, the distributionFn

k+1 is stochastically
larger thanFn

k . If we show that the expectations ofFn
k are uniformly bounded

in k, that will prove that the distributionsFn
k converge ask → ∞.

Let c1 be the expected lifetime of a Brownian excursion above 0 conditioned
on not hitting level 1. It is well known thatc1 < ∞. By scaling, the expectation of
excursion lifetime conditioned on not hitting levela is equal toc1a

2. For k > n,
the expectation ofFn

k is equal to∫ 2−n

2−k

(
1+ β

2
c1(Kβs)2 + 1− β

2
c1(βs)2

)
ds ≤ c22−3n,(2.3)

soFn
k ’s converge ask → ∞. This and the strong Markov property applied atUn

k

imply that the distributions of{Y k
t , t ≥ Un

k } under 2αkQk converge ask → ∞.
Since{Ak

t ,0 ≤ t ≤ s} is a function of{Y k
t ,0 ≤ t ≤ s}, we have similar convergence

for distributions ofAk
t ’s. The integern is arbitrary, so we conclude thatH =

limk→∞ 2αkQk exists.
It is clear from the definition thatH is a σ -finite measure which is the

“distribution” of a process{At,0 ≤ t ≤ S} satisfying

Yt = At + βL̂t , 0 ≤ t ≤ S,

L̂t = lim
ε→0

1

2ε

∫ t

0
1(−ε,ε)(Ys) ds,(2.4)

S = inf{t > 0 :At = 0 orYt ≥ −KβL̂t},
and such that for everys > 0, the distribution of{At, t ∈ [s, S]} given{S > s} is a
Brownian motion stopped atS.
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By (2.3), theH -expectation ofS ∧ inf{t > 0 :L̂t = 1} is bounded by
∑

n≥0 c2 ×
2−3n2nα < ∞, assumingα < 3. Since theH -measure of{inf{t > 0 :L̂t = 1} < S}
is finite, theH -measure of{S > s} is finite for everys > 0. It follows from the
definition ofH and (2.2) that theH -measure of̂L-paths hitting level 2−n is equal
to 2nα. This and the easy fact thatH has the same space-time scaling properties as
the Brownian motion imply thatH(S > s) = c3s

−α/2. Hence, theH -expectation
of S on the set{S < 1} is finite if α < 2. Recall thatβ ∈ (−1,−1

3) and note that
we can chooseK so large thatα < 2.

Now generate a Poisson point process of excursions on the product of[0,∞)

and the space of stopped continuous paths with intensity given by the product of
the Lebesgue measure andH . The excursions can be assembled into a Brownian
path, as in [19], because theH -expectation ofS on the set{S < 1} is finite.
The starting points of constituent excursions in this Brownian path are semi-flat
bifurcation points—this follows from (2.4) and the fact thatS > 0 for H -almost
every path.

(ii) This part of the proof is based on a classical covering argument.
Suppose without loss of generality thatβ ∈ (−1/3,0) and letγ = (β −1)/(2β).

Thenγ > 2. LetS = inf{t > 0 :L0,0
t = 1} andTε = inf{t > 0 :Bt = −ε}, for ε > 0.

The event{S < Tε} is the same as that the first excursion ofX0,0· below 0, starting
at a times, which hits the level−ε + βL0,0

s occurring after timeS. We calculate
the probability of this event using excursion theory, as in part (i) of the proof,

P (S < T ) = exp
(
−

∫ 1

0

1− β

2(ε − βs)
ds

)
= (1− β/ε)(1−β)/2β ≤ c1ε

γ .(2.5)

Let Ss,ε = inf{t > 0 :Ls,−ε
t = 1} and Ts,ε = inf{t > 0 :Xs,ε

t = 0}, for ε > 0.
Note thatTs,ε = inf{t > 0 :Bt −Bs = −ε}. By the strong Markov property applied
at inf{t > 0 :Xs,−ε

t = 0}, (2.5), scaling and shift invariance of Brownian motion,
we have

P (Ss,ε < Ts,ε) ≤ c2ε
γ .(2.6)

Fix somen > 1 andα ∈ (2, γ ), let ε = 1/n andsk = k/n, for k = 0,1, . . . , n.
Let Ak be the event that there exists a semi-flat bifurcation timeu ∈ [sk−1, sk] with
the following properties:Xu,0+

sk
,Xu,0−

sk
∈ [−ε1/α, ε1/α] and inf{t > 0 :Lu,0−

t =
1} < inf{t > 0 :Xu,0+

t = 0}. Then Lemma 2.2 easily implies that onAk , Ssk,ε
1/α <

Tsk,ε
1/α . By (2.6),P (Ak) ≤ c2ε

γ/α and

P

( ⋃
1≤k≤n

Ak

)
≤ c2ε

γ/α−1.(2.7)

The following standard estimate for Brownian motion,

P

(
sup

t∈[sk−1,sk]
∣∣Bt − Bsk−1

∣∣ ≥ ε1/α

)
≤ c3ε

1/α−1/2 exp
(−1

2ε2/α−1),(2.8)



3102 K. BURDZY AND H. KASPI

applies also to all skew Brownian motions driven byBt because of Proposition 2.1.
Hence, ifCk denotes the event that there exists a semi-flat bifurcation timeu ∈
[sk−1, sk] with inf{t > 0 :Lu,0−

t = 1} < inf{t > 0 :Xu,0+
t = 0}, then (2.7) and (2.8)

yield

P

( ⋃
1≤k≤n

Ck

)
≤ c2ε

γ/α−1 + ε−1c3ε
1/α−1/2exp

(−1
2ε2/α−1).

This goes to 0 asε → 0 so there are no semi-flat bifurcation timesu ∈ [0,1] with
inf{t > 0 :Lu,0−

t = 1} < inf{t > 0 :Xu,0+
t = 0}. An analogous argument shows that

for any integerm > 1, there are no semi-flat bifurcation timesu ∈ [0,m] with
inf{t > 0 :Lu,0−

t = 1/m} < inf{t > 0 :Xu,0+
t = 0}. Hence, there are no semi-flat

bifurcation times if|β| < 1
3. �

PROOF OF THEOREM 1.5(i). Note that the distribution ofL0,0
t does not

depend onβ. Since forβ = 0 this is the usual Brownian local time,L0,0
1 has

a continuous density, for anyβ. An easy argument based on the strong Markov
property and scaling shows that for anyx, the random variablex + βL

0,x
1 has

a continuous density on(x,∞). This clearly implies that with probability 1,
for all rational x simultaneously,x + βL

0,x
1 �= 0. Hence, by Theorem 1.2

of [4], infx∈Q |x + βL
0,x
1 | > 0, a.s. Letρt = infx∈Q |x + βL

0,x
t |. By scaling,

for t > 0, the distribution ofρt is the same as that of
√

tρ1, and it is also
the same as the distribution of infx∈Q |x + βL

1−t,x
1 |. Hence, for everya,p > 0,

P (infx∈Q |x + βL
1−t,x
1 | < a) < p, for sufficiently larget . Note that the random

set{x + βL
t,x
1 :x ∈ Q} is increasing int . It follows that for everya,p > 0, and

sufficiently larget ,

P

(
inf
x∈Q

inf
u>t

|x + βL
1−u,x
1 | < a

)
< p.(2.9)

Let � = {X0,x
1 :x ∈ Q}, y1 = X

0,0
1 , y2 = inf{y ∈ � :y > y1} andy3 = sup{y ∈

� :y < y1}. It follows from Theorem 1.2 of [4] thaty1 is an isolated point in�, so
y3 < y1 < y2, a.s. Lett = {x ∈ Q :Xt,x

1 = y1} ands0 = inf{t :t �= ∅}. We will
prove thats0 > −∞ and then we will show that three distinct solutions to (1.3)
start at(s0,0).

Suppose thats0 = −∞ with positive probability. Finda,p1 > 0 such that
P (|y1| < a/2, s0 = −∞) > p1. According to (2.9), we can findt > 0 so large
that

P

(
inf
x∈Q

inf
u>t

|x + βL
1−u,x
1 | < a

)
< p1/2.

Find t1 > t such that with probability greater than 1−p1/4, there existst2 ∈ (t, t1),
such thatB1−t2 = B1. Then X

1−t2,x
1 = x + βL

1−t2,x
1 for all rational x, and,
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hence,s0 ≥ t2 > t1. We see thatP (s0 < t1) < p1/2+ p1/4, which contradicts the
assumption thatP (|y1| < a/2, s0 = −∞) > p1. It follows thatP (s0 > −∞) = 1.

Let λ−
t = inf t , λ+

t = supt , γ − = lim inf t↓s0 λ−
t , andγ + = lim supt↓s0

λ+
t .

We will first prove thatγ − = γ +. Suppose thatγ + − γ − = b > 0 and finds1 < s0
ands2 > s0 so close tos0 that supt,u∈[s1,s2] |Bt − Bu| < b/16. Then supx∈Q |x −
X

s1,x
s2 | < b/8 andλ−

s2
≤ γ − + b/8 < γ + − b/8 ≤ λ+

s2
, by Proposition 2.1. Hence,

λ+
s2

− λ−
s2

≥ 3b/4 and it follows that for somex ∈ Q, X
s1,x
s2 ∈ (λ−

s2
, λ+

s2
). This

implies thatx ∈ s1, sos1 �= ∅ and inf{t :t �= ∅} ≤ s1 < s0, a contradiction.
Note that we must haveXs0,0−

1 ≤ y3 and X
s0,0+
1 ≥ y2. Consider anyxn ∈

s0+1/n. For any fixeds3 > s0, andn so large thats0 + 1/n < s3, the processes

{Xs0+1/n,xn
t , t ∈ [s3,1]} are equicontinuous by Proposition 2.1. This implies that

a subsequence converges on[s3,1]. Since this holds for anys3 > s0, the diagonal
argument can be applied to show that a subsequence of{Xs0+1/n,xn

t , t ∈ [s0,1]}
converges to some function{Yt , t ∈ [s0,1]}. One can show that this process solves
(1.3) just like in the proof of Proposition 1.1(iii). The three solutions of (1.3)
starting from(s0,0), X

s0,0−
t , Yt andX

s0,0+
t are distinct becauseXs0,0−

1 ≤ y3 <

y1 = Y1 < y2 ≤ X
s0,0+
1 . �

3. The lens law Q and anticipated bifurcation times. We will prove various
parts of Theorem 1.6 in different order than stated in the theorem. We will start
with the construction and analysis of the “lens law”Q. Our first result is a set of
explicit formulas we will need in our arguments.

We recall the definition ofQx,y . Supposex, y ∈ R, x < y. ThenQx,y denotes
the distribution of{(X0,x

t ,X
0,y
t ), t ≥ 0} killed at the timeζ = inf{t > 0 :X0,x

t =
X

0,y
t }. Let L̂t = L

0,x
t + L

0,y
t , σt = inf{s : L̂s > t}, andZt = |x + βL0,x

σt
− y −

βL
0,y
σt |. In other words,Zt is the distance betweenX0,x

t andX
0,y
t on the time scale

defined by the local time clock. Let� = inf{t ≥ 0 :X0,x
t = X

0,y
t } and�Z = inf{t ≥

0 :Zt = 0}. Note that the initial values ofX0,x
t andX

0,y
t (i.e., x andy) are not

reflected in the notation forZt—this is because we will be mostly concerned with
the transition probabilities ofZt . Recall thatZt is a piecewise linear function with
the slopeβ or −β almost everywhere, on the interval[0, �Z]. We have definedJt

to be equal to 0, if at timeσt , X
0,x
t is at 0, andJt = 1, if at timeσt , X

0,y
t is at 0. If

β > 0, thenJt is the indicator function of the intervals whereZt is increasing.

PROPOSITION3.1. (i) The process (Zt , Jt ) is Markov with the generator

Af (z,1) = β
∂

∂z
f (z,1) − 1+ β

2z
f (z,1) + 1+ β

2z
f (z,0),

Af (z,0) = −β
∂

∂z
f (z,0) − 1− β

2z
f (z,0) + 1− β

2z
f (z,1).
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(ii) The potential density u((x, j), (z, k)) of (Zt , Jt ) (i.e., the density of the
expectation of the occupation measure) is given by

u
(
(x,0), (z,0)

) =


1+ β

2β2 , z ≤ x,

1− β

2β2

x

z
, z > x,

(3.1)

u
(
(x,0), (z,1)

) =


1− β

2β2 , z ≤ x,

1− β

2β2

x

z
, z > x,

(3.2)

u
(
(x,1), (z,0)

) =


1+ β

2β2
, z ≤ x,

1+ β

2β2

x

z
, z > x,

(3.3)

u
(
(x,1), (z,1)

) =


1− β

2β2
, z ≤ x,

1+ β

2β2

x

z
, z > x.

(3.4)

PROOF. (i) The claim that(Zt , Jt ) is a Markov process follows easily from the
classical Itô excursion theory so we will only outline the evolution of this process
and its relationship with{(X0,x

t ,X
0,y
t , ), t ≥ 0}. SupposeJ0 = 0. As long asJt = 0,

only X
0,x
t visits 0. The excursions ofX0,x

t below 0 occur at the rate(1− β)/2 and
the excursions above 0 occur at the rate(1+ β)/2, on the local time scale, that is,
on the same time scale as for the processZt . When an excursion on the negative
side occurs, with the absolute height exceedingZt , thenJt jumps from 0 to 1 and
the analogous process starts: as long asJt = 1, onlyX

0,y
t visits 0. The excursions

of X
0,y
t below 0 occur at the rate(1 − β)/2 and the excursions above 0 occur at

the rate(1+ β)/2, on the local time scale. When an excursion on the positive side
occurs, with the height exceedingZt , thenJt jumps from 1 to 0. The excursions
of X

0,x
t andX

0,y
t are generated according to the same excursion law as for the

standard Brownian motion, only their rates are different.
Suppose thatJ0 = 0. The “probability” that a Brownian excursion has an

absolute height greater thanx is 1/x, according to the usual excursion law. It
follows from the above that the arrival time of the first negative excursion ofX

0,x
t ,

with the absolute height exceedingZt , has the distribution of the first jump arrival
time in the Poisson process with variable intensity(1 − β)/(2Zt), on the local
time scale. This is the same as the jump rate forJt from 0 to 1. Similarly, the
jump rate forJt from 1 to 0 is the same as the rate of arrival of the first jump
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in the Poisson process with variable intensity(1 + β)/(2Zt). The formula for the
generator follows directly from our description of the(Zt , Jt ) evolution.

(ii) It is elementary to check that the function

h(z,1) = z, h(z,0) = 1− β

1+ β
z,

is harmonic for the semigroup of(Zt , Jt ), using the explicit formulas for the
generator given in part (i).

Forv > 0, letTv = inf{t :Zt ≥ v}. We will show that

Pz,0(Tv < ∞) =


z

v

1− β

1+ β
, v > z,

1, v ≤ z,
(3.5)

Pz,1(Tv < ∞) =


z

v
, v > z,

1, v ≤ z.
(3.6)

Sinceh is positive, it follows thatNt = h(Zt , Jt ) is a positive martingale. By the
main result in [1],Zt → 0, a.s., ast → ∞, so Nt → 0, a.s., ast → ∞. By the
optional stopping theorem applied toNt at timeTv ∧ t , we get, forv > z,

1− β

1+ β
z = Ez,0

(
NTv∧t

) = vPz,0(Tv ≤ t) + Ez,0
(
Nt1{Tv>t}

)
.

Note that 0< Nt1{Tv>t} ≤ v1{Tv>t} andNt1{Tv>t} → 0 ast → ∞. It follows from
the dominated convergence theorem that forv > z, 1−β

1+β
z = vPz,0(Tv < ∞). For

v ≤ z, Tv = 0, P0,z-a.s., and this completes the proof of (3.5). We obtain (3.6) in
the same manner from

z = Ez,1
(
NTv∧t

) = vPz,1(Tv ≤ t) + Ez,1
(
Nt1{Tv>t}

)
.

Suppose that(Z0, J0) = (x,0) and letS be the time of the first jump ofJt to 1.
It follows easily from our description of the evolution of(Zt , Jt ) in part (i) of the
proof (see also [1]) that

P (ZS/Z0 < z) = z(1−β)/(2β), 0≤ z ≤ 1.

Hence, the density ofZS/Z0 is 1−β
2β

z(1−3β)/(2β) for z ∈ (0,1). By the strong
Markov property applied atS and (3.6), the probability that(Z0, J0) will return
to its starting point, that is,(x,0), is equal to∫ 1

0

1− β

2β
z(1−3β)/(2β) · z dz = 1− β

1+ β
.

Hence, the expected number of returns to(x,0) (including the starting time) is(
1− 1− β

1+ β

)−1

= 1+ β

2β
.
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Since the slope ofZt is β, the density of the expectation of the occupation measure
at (x,0) is equal to(1+ β)/(2β2), as claimed in (3.1). Note that this number does
not depend onx, so by the strong Markov property applied at the first hitting time
of z < x, the same formula holds for allz ≤ x, as stated in (3.1).

If z > x, the probability thatZt will ever hit z is equal to(x/z) · (1−β)/(1+β),
by (3.5). This combined with the strong Markov property at the hitting time ofz

and the first part of (3.1) yields the second part of (3.1).
Formula (3.2) can be obtained from (3.1) by noting that forz > x, the number

of visits to (z,1) is the same as the number of visits to(z,0), a.s. Forz < x, the
number of visits to(z,1) is one less than the number of visits to(z,0).

The other two formulas can be obtained in a very similar manner so the rest of
the proof is left to the reader.�

We will give two constructions ofQ. The first one, presented as a formal
proof of Theorem 1.6(ii), is based on an explicit representation ofQ in terms
of h-processes. This construction is followed by a remark containing the second
construction, based on Maisonneuve’s ideas [13]. The second construction is
shorter and has a more abstract character.

PROOF OF THEOREM 1.6. (i) The first assertion is a special case of
Lemma 2.8. It is easy to deduce thatG is countable from Lemma 2.3(i).

(ii) Recall that the functionh given byh(z,1) = z, h(z,0) = z(1− β)/(1+ β),
is harmonic for(Zt , Jt ). Let (Zh

t , J h
t ) be the Doobh-transform of(Zt , Jt ). The

potential densityuh for (Zh
t , J h

t ) is given by

uh
(
(x, j), (y, k)

) = h(y, k)u((x, j), (y, k))

h(x, j)
.

By Proposition 3.1(ii) , fory > x, we haveuh((x, j), (y, k)) = c(j, k), where
c(j, k) depends only onβ.

Let (Z
(0,1)
t , J

(0,1)
t ) denote the process(Zt , Jt ) killed when Zt escapes from

(0,1), and let(Z(0,1),h
t , J

(0,1),h
t ) stand for the process(Z(0,1)

t , J
(0,1)
t ) transformed

by h. If the process(Zt , Jt ) starts from(x, j) with x < 1 and if Zt leaves
(0,1) through 1 at times, then, necessarily,Js = 1. Recall thath(1,1) = 1 and
lim supz→0 supj h(z, j) = 0. This implies that(Z(0,1),h

t , J
(0,1),h
t ) is the same as

the process(Zt , Jt ) conditioned by the event thatZt hits 1 before 0.
Let u(0,1) be the potential density for(Z(0,1)

t , J
(0,1)
t ) and letu(0,1),h have the

similar meaning for(Z(0,1),h
t , J

(0,1),h
t ). We obviously haveu(0,1) ≤ u and so

u(0,1),h ≤ uh. We have shown thatuh is bounded by a constant, so the same applies
to u(0,1),h. It follows that

sup
x∈(0,1)

∑
k=0,1

∫ 1

0
u(0,1),h

(
(x, j), (y, k)

)
dy < ∞.
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This shows that the point(0, ·) is an entrance point for(Z(0,1),h
t , J

(0,1),h
t ) [it makes

no sense to specifyJh
0 when Zh

t starts from 0 because it is clear thatJh
t will

have infinitely many jumps on every interval(0, ε), ε > 0]. For anya > 0, we
can construct in a similar way a process(Z

(0,a),h
t , J

(0,a),h
t ) starting from(0, ·) and

representing(Zt , Jt ) conditioned by the event thatZt hitsa before 0.
On some measurable space define probability measuresQ̂k with disjoint

supports, such that̂Qk is the distribution of the process(Zk
t , J

k
t ) with the

following properties. For an appropriate random variableTk ∈ (0,∞), the process

{(Zk
t , J

k
t ), t ∈ [0, Tk]} has the distribution of(Z(0,2−k),h

t , J
(0,2−k),h
t ) starting from

(0, ·). For k ≥ 1, the process{(Zk
t , J

k
t ), t ≥ Tk} starts from(2−k,1), has the

transition probabilities of(Zt , Jt ) conditioned not to hit(2−k+1,1), and is
independent of{(Zk

t , J
k
t ), t ∈ [0, Tk]}. We do not have the conditioning in the case

k = 0, that is,{(Z0
t , J

0
t ), t ≥ T0} starts from(1,1), has the transition probabilities

of (Zt , Jt ), and is independent of{(Z0
t , J

0
t ), t ∈ [0, T0]}. Let Q̂ = ∑

k≥0 2kQ̂k .
The weights forQ̂k ’s in the sum have been chosen according to (3.6), so that
underQ̂, the process(ZQ

t , J
Q
t ) has the same transition probabilities as(Zt , Jt )

on (s,∞) for any s > 0. We add excursions to(ZQ
t , J

Q
t ), in the same manner

as described in part (i) of the proof of Proposition 3.1, to obtain a process
{(XQ−

t ,X
Q+
t ), t ≥ 0} with the transition probabilitiesQx,y on every interval

(s,∞), s > 0. Its distribution will be denotedQ.
Next we will argue thatQ is the unique measure (“lens law”) with the transition

probabilitiesQx,y . Note that given the distribution of(ZQ
t , J

Q
t ), an argument,

as in part (i) of the proof of Proposition 3.1, shows that the distribution of
{(XQ−

t ,X
Q+
t ), t ≥ 0} is uniquely defined because underQ, the last process has

transition probabilitiesQx,y on (s,∞) for everys > 0. LetT Q
a = inf{t :ZQ

t ≥ a}.
The distribution of{(ZQ

t , J
Q
t ), t ≥ T

Q
a } is uniquely defined (up to a multiplicative

constant) because underQ, the transition probabilities for this process are the same
as for(Zt , Jt ). The distribution of{(ZQ

t , J
Q
t ), t ∈ [0, T

Q
a ]} underQ, conditioned

by {T Q
a < ∞}, is that of(Z(0,a),h

t , J
(0,a),h
t ) starting from(0, · ). This concludes

the proof of uniqueness forQ.
It is clear from the construction of̂Q and (3.5) that limy↓0(1/y)Q−y,0 = cQ

for some constantc. Recall that we have chosen our normalization ofQ so that

lim
y↓0

(1/y)Q−y,0 = Q.(3.7)

In view of (3.5) and (3.6),

lim
y↓0

(1/y)Q0,y = 1− β

1+ β
Q.(3.8)

(iii) We will only outline the proof of (1.9) because the formula does not
require any independence of the lenses and so it is not very deep. Assume without
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loss of generality thatβ > 0. It is enough to prove the formula for setsA of
the form (a, b), with b < 0 or a > 0. Suppose thata > 0 and fix someε > 0.
Let T1 be the infimum of timest such that for some lensUs1 with s1 ∈ G and
Bs1 ∈ (a, b), we haveLs1,0+

t ≥ L
s1,0−
t + ε. Note thatT1 is a stopping time. Clearly,

{Us1(t), t ≥ T1− s1} has the same transition probabilities asQ and its value at time
T1 − s1 is (−ε,0). Similarly, letTk be the infimum of timest > Tk−1 such that for
some lensUsk with sk ∈ G andBs1 ∈ (a, b), we haveL

sk,0+
t ≥ L

sk,0−
t + ε. We

see thatTk is a stopping time and{Usk (t), t ≥ Tk − sk} has the same transition
probabilities asQ. Summing over allk and using (3.7), we obtain (1.9) for
functionsf which depend only on the post-T process, whereT is the infimum
of times such thatZt = ε. The general result is obtained by lettingε → 0.

The caseb < 0 requires an application of (3.8) instead of (3.7) because
if we follow an analogous argument, we haveUs1(T1 − s1) = (0, ε) and not
Us1(T1 − s1) = (−ε,0). This explains the factor1−β

1+β
on the left-hand side of (1.9).

�

REMARK 3.1. We will now sketch an alternative construction of the lens
law Q. We need the usual general Markov process setup, with some probability
space(�,F ,P ), filtration {Ft} and shift operatorsθt on � that act on the
Brownian motionBt as usual, that is,Bs(θt ) = Bs+t − Bt , and onXx

t in the

following manner:Xx
s (θt ) = X

Xx
t

s (θt ). Consider the increasing process

At = ∑
s∈G
s≤t

∫ L(θs)

0
e−u 1

2

(
e−|�̄(u)| − e−|ū(u)|)du,

whereL is the length (in time units) of the lens,�̄(u) is its lower limit at time
u andū(u) is its upper limit. Since

∫ ∞
t=0 e−t 1

2

∫ ∞
−∞ e−|x| dx dt = 1, and in the half-

planeR+ × R, lenses do not intersect each other (although they may touch), we
see that

∫ ∞
0 e−t dAt ≤ 1. It can be easily verified thatAt+s = At + As ◦ θt . Thus,

(At ) is a raw additive functional ofFt , and since no(Ft ) stopping time passes
through its jumps, its dual predictable projection(Ãt ) is a continuous additive
functional of(Ft ), which we shall call the lens local time. The functionalx → Xx·
is monotone, in the usual sense of inequality between functions. The family of
such functionals is “good” so arguing as in [13], we can prove that there exists a
kernelQX· such that, for every(Ft )-predictableV andF -measurablef ,

E
∑
s∈G

Vsf ◦ θs = E

∫ ∞
0

VsQ
Xs(·)(f ) dÃs.

Note further that the evolution of a lens (its width, the position of its upper
and lower parts during times between its formation and its coalescence, etc.) is
independent of the value of the functionX·

s at times when the lens starts. It only
depends on the Brownian motion(Bt ◦ θs)t≥0 and the fact that at times, Xx

s = 0
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for somex, and for a sequencexn increasing inn, with X
xn
s < 0 for all n, X

xn
s

increases to 0 asn → ∞. All points s ∈ G satisfy this condition and, therefore,Ã

does not charge points for whichX·
s does not satisfy this condition. In particular,∫ L(θs)

0 e−u 1
2(e−|�̄(u)| − e−ū(u)) du depends only on(Bt ◦ θs)t≥0. It follows, as in the

derivation of “exit systems” in [13], that iff is a function of the lens only and is
independent of the particular form ofX··(θs), thenQX·

s (f ) does not depend onX·
s

and we denote itQ(f ). The normalization given in Theorem 1.6(ii) corresponds
to the following normalization of̃A andQ in the present context,

Ãt = 1− β

1+ β

(
−min

u≤t
Bu

)
+ max

u≤t
Bu

andQ(l > v) = 1/v, wherel is the maximal opening of the lens.

The Williams decomposition of the Brownian excursion can be presented as
follows. Fix someb > 0. Let R1

t andR2
t be two independent Brownian motions

starting from 0 and conditioned to go to infinity before returning to 0 (i.e., they
are three-dimensional Bessel processes). KillR1

t andR2
t when they hitb, call the

resulting processes̃R1
t and R̃2

t , time-reverseR̃2
t to obtain R̂2

t , and concatenate
R̃1

t and R̂2
t . The result is a process with the same distribution as the Brownian

excursion conditioned to have heightb. A very similar construction ofZt underQ,
conditioned to have heightb, can be given. The following is an informal version
of the argument given in the next proof, with minor changes. LetV 1

t and V 2
t

be two independent processes with the same transition probabilities as those
of Zt underQx,y , except that|V 1

t − V 2
t | is conditioned to go to infinity before

returning to 0, and assume thatV 1
t andV 2

t start from 0. Kill V 1
t andV 2

t when
|V 1

t − V 2
t | = b, call the resulting processes̃V 1

t and Ṽ 2
t , time-reverseṼ 2

t to
obtain V̂ 2

t , and concatenatẽV 1
t and V̂ 2

t . This construction yields a process with
the same distribution asZt underQ, conditioned to have heightb.

PROOF OF THEOREM 1.6. (vi) We will use Nagasawa’s theorem on time
reversal (see [14] or [17]). In order to do that, we need to calculate generators
and potentials for some processes and find a reference measure under which the
processes are dual.

Fix any b > 0, let Tb = inf{t :Zt = b}, and recall the generatorA and a
harmonic functionh from the statement of Proposition 3.1 and part (ii) of
its proof. Let (Z(0,b)

t , J
(0,b)
t ) denote the process(Zt , Jt ) killed when Zt exits

(0, b), and let(Z(0,b),h
t , J

(0,b),h
t ) be(Z

(0,b)
t , J

(0,b)
t ) conditioned byh. The process

(Z
(0,b),h
t , J

(0,b),h
t ) is (Zt , Jt ) conditioned by{Tb < ∞}.

Let h−(x,1) = 1 − x/b, h−(x,0) = 1 − (x/b)(1 − β)/(1 + β) and note that
h− is harmonic forA, with the boundary value 0 at(b,1) and 1 at(0, j).

Let (Z
(0,b),h−
t , J

(0,b),h−
t ) be (Z

(0,b)
t , J

(0,b)
t ) conditioned byh− and note that

(Z
(0,b),h−
t , J

(0,b),h−
t ) is (Zt , Jt ) conditioned by{Tb = ∞}.
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Consider(Zt , Jt ) underQ conditioned by{supt≥0 Zt = b} and note that the
distribution of {(Zt , Jt ), t ∈ [0, Tb]} underQ is the same as the distribution of
(Z

(0,b),h
t , J

(0,b),h
t ) starting from (0, · ), while the distribution of{(Zt , Jt ), t ∈

[Tb,T0]} is that of the process(Z(0,b),h−
t , J

(0,b),h−
t ) starting from(b,0). It will

suffice to show that the time reversal ofZ
(0,b),h−
t starting fromb is the same, in

distribution, asZ(0,b),h
t starting from 0.

By Proposition 3.1(i), and using conditioning byh, the generator of(Z(0,b),h
t ,

J
(0,b),h
t ) is equal to

Ah
βf (z,1) = β

∂

∂z
f (z,1) − 1− β

2z
f (z,1) + 1− β

2z
f (z,0),(3.9)

Ah
βf (z,0) = −β

∂

∂z
f (z,0) − 1+ β

2z
f (z,0) + 1+ β

2z
f (z,1).(3.10)

Consider a process(Ẑt , Ĵt ) defined in the same manner as(Zt , Jt ), except that
the skewness parameter should be−β instead ofβ. Recall thatJt is the indicator
function of the intervals whereZt is increasing. The procesŝJt is the indicator
function of the intervals wherêZt is decreasing. We writeAβ instead ofA to
emphasize the dependence of the generatorA, defined in Proposition 3.1, on the
parameterβ. By that result,Â = A−β . The functionĥ(z,0) = z, ĥ(z,1) = 1−β

1+β
z

is harmonic for(Ẑt , Ĵt ), and the generator̂Aĥ of the ĥ-transform(Ẑĥ
t , J ĥ

t ) of

(Ẑt , Ĵt ) satisfiesÂĥ = Ah−β . This differs from (3.9) and (3.10) only in that the
roles of the states 0 and 1 ofJt have been reversed. This means that the distribution
of Z

(0,b),h
t starting from 0 and the distribution of̂Zĥ

t starting from 0 and killed atb

are identical. It remains to show that the time reversal ofZ
(0,b),h−
t starting fromb

has the same distribution asẐĥ
t starting from 0 and killed atb.

In view of Proposition 3.1(i), the generator of(Z
(0,b),h−
t , J

(0,b),h−
t ) is equal to

Ah−
f (z,1) = β

∂

∂z
f (z,1) − 1

2z

(
1+ β

b + z

b − z

)
f (z,1)

+ 1

2z

(
1+ β

b + z

b − z

)
f (z,0),

Ah−
f (z,0) = −β

∂

∂z
f (z,0) − 1− β2

2z

b − z

b − z + β(b + z)
f (z,0)

+ 1− β2

2z

b − z

b − z + β(b + z)
f (z,1).



SKEW BROWNIAN FLOW 3111

Let m be defined by

m(dz,1) = 1− β

2β2

(
1− z

b

)
dz,

m(dz,0) =
(

1+ β

2β2 − 1− β

2β2

z

b

)
dz,

and (f, g)m = ∫
fg dm. Note that m depends onb. We want to show that

Âĥ andAh−
are in duality with respect tom, that is,(

Âĥg, f
)
m = (

g,Ah−
f

)
m,(3.11)

for all C1-functionsf,g with compact support in(0, b). We omit tedious but
completely elementary calculations which show that the last formula is, indeed,
true.

Next we will show that the duality measurem is the potential of(Ẑĥ
t , Ĵ ĥ

t )

starting at(0,0) (or rather whenẐĥ
0 = 0) and killed whenẐĥ

t exits(0, b).
Recall the functionu defined in Proposition 3.1(ii). We will make its depen-

dence onβ explicit by writing uβ . When we apply Proposition 3.1(ii) with−β in
place ofβ, we see that the potential densityû((x, j), (z, k)) of (Ẑt , Ĵt ) is given by
û = u−β . Sinceĥ(z,0) = z, ĥ(z,1) = 1−β

1+β
z, this implies that the potential density

ûĥ((x, j), (z, k)) of (Ẑĥ
t , Ĵ ĥ

t ) is equal to

ûĥ
(
(x,0), (z,0)

) =


1− β

2β2

z

x
, z ≤ x,

1+ β

2β2 , z > x,

ûĥ
(
(x,0), (z,1)

) =


1− β

2β2

z

x
, z ≤ x,

1− β

2β2
, z > x,

ûĥ
(
(x,1), (z,0)

) =


1+ β

2β2

z

x
, z ≤ x,

1+ β

2β2
, z > x,

ûĥ
(
(x,1), (z,1)

) =


1+ β

2β2

z

x
, z ≤ x,

1− β

2β2 , z > x.

Let (Ẑ(0,b),ĥ
t , Ĵ

(0,b),ĥ
t ) denote the process(Ẑĥ

t , Ĵ ĥ
t ) killed whenẐĥ

t exits(0, b), and

let û(0,b),ĥ((x, j), (z, k)) denote the corresponding potential density. Forx < b, the
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process(Ẑĥ
t , Ĵ ĥ

t ) hits (b,1) with probability 1, so by the strong Markov property
applied at the hitting time of(b,1), for x, z ∈ (0, b),

û(0,b),ĥ
(
(x, j), (z, k)

) = ûĥ
(
(x, j), (z, k)

) − ûĥ
(
(b,1), (z, k)

)
.

It is now straightforward to verify that

m(dz,1) = 1− β

2β2

(
1− z

b

)
dz = û(0,b),ĥ(

(0,0), (z,1)
)
dz,

m(dz,0) =
(

1+ β

2β2
− 1− β

2β2

z

b

)
dz = û(0,b),ĥ

(
(0,0), (z,0)

)
dz.

This completes the proof that the duality measurem is the potential of

(Ẑ
(0,b),ĥ
t , Ĵ

(0,b),ĥ
t ) starting at(0,0). We have already shown thatÂĥ andAh−

are

dual [see (3.11)], so Nagasawa’s theorem implies that the time reversal ofZ
(0,b),h−
t

starting fromb has the same distribution aŝZ(0,b),ĥ
t starting from 0. We have

already shown that the laws ofZ
(0,b),h
t and ofẐ(0,b),ĥ

t are the same. This completes
the proof of part (vi) of Theorem 1.6.

(vii) Recall the argument in part (i) of the proof of Proposition 3.1 and the
notation in the paragraph following the statement of Theorem 1.6. Suppose that
Zt is increasing whenXt is hitting 0 (this depends on the sign ofβ). After time
reversal,Zt is decreasing when (the time-reversal of )Xt is hitting 0. SinceZL̂t

is adapted to the filtration generated by(Xt , X̃t ), we see thatQ-lenses are not
invariant under time reversal.

(v) We will discuss only the caseβ > 0. Forx < y, let

V (x, y) = inf{z > y :x + βLx
t = y + βL

y
t = z for somet}

and let Z
x,y
t be defined relative toXx

t and X
y
t in the same way asZs

t in
Theorem 1.6. It has been shown in the proof of Theorem 1.1 in [4] that ifx < y < z,
thenV (x, y) is independent ofV (y, z). The proof is based on the following idea.
The value ofV (x, y) is determined by the excursions ofX

y
t above 0, and the

value ofV (y, z) is determined by excursions ofX
y
t below zero. The two excursion

processes are independent, soV (x, y) and V (y, z) are independent. The same
argument shows that the processesZx,y· andZy,z· are independent, forx < y < z,
whereZx,y· is the process defined at the beginning of the proof. We can generalize
this as follows. Ifx1 < x2 < · · · < xn, then the processes{Zxk,xk+1· }1≤k≤n−1 are
jointly independent.

For any integern, let An be the collection of pairs(k2−n, {Zk2−n,(k+1)2−n

· })k∈Z.
The independence ofZk2−n,(k+1)2−n

· ’s and (3.7) and (3.8) imply easily that the
point processesAn converge weakly to a Poisson point process on the space
R × C[0,∞) and intensity

1(−∞,0](x) dx × 1− β

1+ β
QZ + 1(0,∞)(x) dx × QZ,(3.12)
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whereQZ is theQ-distribution ofZ.
Let C�[0,∞) be the set of functionsf ∈ C[0,∞) for which inf{t > 0 :f (t) =

0} ≥ �. We will show thatAn’s converge almost surely onR × C�[0,∞) for
every � > 0. Let An(�) be the number of points ofAn in [0,1) × C�[0,∞).
It was noticed in [4] that forx < y < z, we have max(V (x, y),V (y, z)) =
V (x, z). This implies thatAn+1(� − 2−n−1) ≥ An(�) and so the limitA(�) =
limn→∞ An(� + 2−n) is well defined, a.s. We also have another monotonicity

property, namely,Z2k2−n−1,(2k+1)2−n−1

t ≤ Z
k2−n,(k+1)2−n

t for all t and, similarly,

Z
(2k+1)2−n−1,(2k+2)2−n−1

t ≤ Z
k2−n,(k+1)2−n

t . It is not hard to deduce from this that
for some point processA, the processesAn’s converge almost surely toA on
[0,1) × C�[0,∞). Clearly, A is a Poisson point process whose distribution is
given by (3.12) restricted to[0,1) × C�[0,∞). An extension to[0,∞) × C[0,∞)

is routine. The extra factor in the formula for the intensity on(−∞,0] × C[0,∞)

can be justified as in the proof of Theorem 1.6(iii) [see (3.7) and (3.8)].
Recall that the equation (1.3) has unique strong solutions for all rationals

and x simultaneously, a.s. Hence, there are no anticipated bifurcation timess

with Bs rational. If x is irrational then for everyn > 1, it belongs to an interval
(k2−n, (k + 1)2−n). It follows easily from the definition of a bifurcation time

and that ofZk2−n,(k+1)2−n

t that there exists an anticipated bifurcation times with
Bs = −x if and only if (x, f ) ∈ A for somef ∈ C�[0,∞) with � > 0.

(iv) This part of the theorem is not much more than a “soft” remark so we
will only sketch the proof. The idea of the argument is that different lenses
corresponding to anticipated bifurcation times overlap on the time scale and so
they cannot be independent because Brownian paths generated independently
cannot have the same shape.

Recall that Bt denotes a one-dimensional Brownian motion. The three-
dimensional Brownian motion does not hit a fixed straight line, a.s. This and
standard arguments easily imply that for any fixeds1, s2 > 0 and x1, x2 ∈ R,
there are not1, t2, t3 ≥ 0 such thatt2 − t1 = s1, t3 − t2 = s2, Bt2 − Bt1 = x1,
andBt3 − Bt2 = x2. Let B ′

t be a Brownian motion independent ofBt . It follows
by conditioning on the values ofB ′

t2
− B ′

t1
andB ′

t3
− B ′

t2
that if t1, t2, t3 ≥ 0 are

fixed, then with probability 1, there is nou such thatB ′
t2

− B ′
t1

= Bt2+u − Bt1+u

and B ′
t3

− B ′
t2

= Bt3+u − Bt2+u. This holds for all rational tripletst1, t2, t3 ≥ 0
simultaneously, a.s.

Suppose thatB is a Poisson process, that is, anticipated lenses are generated
independently. It is easy to see that the upper part of some anticipated lens agrees
with the lower part of some other anticipated lens on a nonempty open interval.
Since such an interval contains a nonempty subinterval on which neither process
visits 0, we see that two Brownian paths generated independently agree on a
nondegenerate interval. This contradiction shows thatB is not Poisson. �

PROOF OFTHEOREM 1.5(ii). Fix an integern > 1, letε = 1/n andsk = k/n

for k = 0,1, . . . , n. Note that if four different solutions to (1.3) start at(s, x),
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then necessarilyx = 0. Fix α ∈ (2,3). Suppose without loss of generality that
β > 0 and for a lens{(Xs,0−

t ,X
s,0+
t ), t ∈ [s, u]}, let χ(s) = βLs,0+

u = βLs,0−
u .

Suppose that four distinct solutions start at a point(s,0). We will write χ1(s) for
the quantity analogous toχ(s), but defined relative to the lowest two solutions
starting at(s,0). Similarly, χ2(s) will correspond to the middle two solutions, and
χ3(s) to the upper two. Fix some integerk. Let Ak be the event that four different
solutions start at(s,0) with s ∈ [sk, sk+1) andχj (s) > 1 for j = 1,2,3. We will
partition Ak into two events,A1

k andA2
k . The eventA1

k is whenAk occurs and
supt∈[sk−1,sk] |Bt − Bsk−1| ≥ ε1/α. By (2.8),

P (A1
k) ≤ c3ε

1/α−1/2 exp
(−1

2ε2/α−1).(3.13)

We let A2
k = Ak \ A1

k. Let x1, x2, x3 and x4 be the values of the four solutions
starting at(s,0), at the timesk+1. Since the points(sk+1, xj ), j = 1,2,3,4,
lie on some solutions to (1.3), away from their starting points, they actually lie
on some solutions to (1.3) with rational coordinates of starting points. Hence,
X

sk+1,xj −
· ≡ X

sk+1,xj+
· and we will denote these processesX

sk+1,xj

· . If A2
k holds,

then |xk| ≤ 2ε1/α for k = 1,2,3,4, by the definition ofA1
k and Proposition 2.1.

Recall from the proof of Proposition 2.1 that{βL
t1,x
u , t1 ≤ u ≤ t2} has the same

modulus of continuity as{Bu, t1 ≤ u ≤ t2}, for any t1 < t2. Assume thatε is so
small thatε1/α < 1

4. Sinceχj(s) > 1 for everyj , it follows thatxj + βL
sk+1,xj·

must increase by at least1
2 before it meets any otherxm+βLsk+1,xm· , m �= j . Hence,

there exist (at least) three anticipated bifurcation times withχ > 1
2, relative to time

sk+1 rather than time 0, that is, for somey1 < y2 < y3, and everyj = 1,2,3,
we have inf{z : z = yj + βL

sk+1,yj−
t = yj + βL

sk+1,yj +
t for somet} ≥ yj + 1

2.
Theorem 1.6 can be applied to processes starting fromsk+1 by shift invariance
of the Brownian motion. Note that|yj | ≤ 2ε1/α, because a similar bound holds
for xj ’s. We see that ifA2

k occurs, then there are three anticipated bifurcation
times corresponding to solutions of (1.3), starting at timesk+1, at space points
within 2ε1/α of 0. It is easy to see thatQ(χ > 1) < ∞. Note thatχ is a function
of Z, so by part (v) of Theorem 1.6, the “χ ” point process is Poisson and,
therefore, the probability ofA2

k is bounded byc1(2ε1/α)3. Hence, the probability
of

⋃
0≤k≤n−1 A2

k is bounded byc2(2ε1/α)3ε−1 = c3ε
3/α−1. Sinceα ∈ (2,3), this

goes to zero asε → 0. This combined with (3.13) yieldsP (
⋃

0≤k≤n−1 Ak) → 0
asn = 1/ε → ∞. We conclude that there are nos ∈ [0,1), where four different
solutions start withχj(s) > 1 for everyj . The same argument shows that for every
integerm ≥ 1, there are nos ∈ [−m,m), where four different solutions start with
χj (s) > 1/m for everyj , a.s. Sincem is arbitrarily large, the proof is complete.

�
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