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We consider the (unoriented) long-range percolatiorZénin dimen-
sionsd > 1, where distinct sites, y € 74 get connected with probabil-
ity pxy € [0, 1]. Assumingpyy = |x — y| 75D as|x — y| — oo, where
s > 0 and| - | is a norm distance ofi, and supposing thahé resulting ran-
dom graph contains an infinite connected compor@égt, we letD(x, y) be
the graph distance betweerandy measured of6. Our main result is that,
fors € (d, 2d),

A+o(1)

D(x,y) = (log|x — y|) X,y € oo, |X —y| = o0,

whereA~1is the binary logarithm of 2/s ando(2) is a quantity tending to

zero in probability asx — y| — oco. Besides its interest for general percolation
theory, this result sheds some light on a question that has recently surfaced
in the context of “small-world” phenomena. As part of the proof we also
establish tight bounds onefprobability that the lgrest connected component

in a finite box contains a positive fraction of all sites in the box.

1. Introduction.

1.1. Mativation. Percolation is a simple but versatile model with applications
ranging from the study of phase transitions in mathematical physics to opinion
spreading in social sciences. The most well-understood questions of percolation
theory are those concerning the appearance and uniqueness of the infinite
component [10], uniqueness of the critical point [1, 16, 20], decay of connectivity
functions [11, 12], and the scaling properties at the critical point in dimensions
d =2 [24, 25] andd large enough [17, 18]. Less well understood remain natural
questions about the qualitative structural and geometrical properties of the infinite
connected component, especially below the upper critical dimension. In particular,
this includes the tantalizing open problem concerning the absence of percolation
at the percolation threshold.

Long-range versions of the percolation model have initially been introduced
in order to study the effect of long-range interaction on the onset of phase
transition in one-dimensional systems. @n the most common setup is that,

Received April 2003; revised September 2003.

AMS 2000 subject classifications. Primary 60K35; secondary 82B43, 82B28.

Key words and phrases. Long-range percolation, chemical distance, renormalization, small-world
phenomena.

2938



CHEMICAL DISTANCE IN LONG-RANGE PERCOLATION MODELS 2939

in addition to random nearest-neighbor connections with probahility(0, 1),
a bond betweernx,y € Z is added with probability - exp{—p8|x — y|~*},
whereg € (0, co) ands > 0. In dimension 1, the interesting ranges of values of
ares < 1, where the resulting graph is almost surely connected [23]s k 2,
where an infinite component appears onees large enough [22], and the
critical cases = 2, where the infinite component appears “discontinuously” for
somep < 1 sufficiently large if and only if8 > 1 [2] and where the truncated
connectivity function decays with g-dependent exponent [19] fg8 in the
interval (1,2). The cases > 2 are qualitatively very much like the nearest-
neighbor case (in particular, there is no percolationgot 1 andg < oco). In
dimensions! > 1, the insertion of long-range connections is not essential for the
very existence of percolation—the main problem of interest there is to quantify the
effect of such connections on the critical behavior.

In this paper we study the global scaling properties of the infinite component
in long-range percolation models & for arbitraryd. We focus on the scaling
of the graph distance (akehemical distance) in the cases when the probability
that a bond is occupied falls off with exponent (d, 2d). More precisely, we
let distinctx, y € Z¢ be connected independently with probability, that has the
asymptoticp,, = 1 —exp{—|x —y| D} as|x — y| — co. Assuming that there
is a unigue infinite connected compon&it almost surely, we leD (x, y) be the
distance between the sitesandy measured of¥,. Then we prove thab (x, y)
scales with the Euclidean distanae— y| as

(1.1)  D(x,y)=(oglx —yD2TD x 'y € b, Ix —y| = o0,
whereA = A(s, d) is given by
log 2
1.2 A ==
(1-2) D)= 15a2d)s)

This result should be contrasted with those of [5-7, 14] (see also [4]), where
various (other) regimes of decay @dng-range bond prolidities have been
addressed. We refer to Section 1.3 for further discussion of related work and
an account of the current state of knowledge about the asymptotic behaviors
of D(x, y).

The nonlinear scaling (1.1) is a manifestation of the fact that adding sparse
(but dense-enough) long edges to a “Euclidean” graph may substantially alter the
graph geometry and, in particular, its scaling properties. This is exactly what has
recently brought long-range percolation renewed attention in the studies of the so-
called “small-world” phenomena; see [26] for an initial work on these problems.
This connection was the motivation of the work by Benjamini and Berger [6],
who studied how the (graph) diameter of a finite ringNofsites changes when
long connections are added in. On the basis of a polylogaritiupger bound,
the authors of [6] conjectured (cf. Conjecture 3.2 in [6]) that in the regime
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whens € (d, 2d), the diameter scales a®gN)¥, wherey = y(s) > 1. The
present paper provides a polylogarithroerer bound in this conjecture. However,

at presentit is not clear whether the exponent for the diameter growth matches that
for the typical distance between two remote points. We refer to Section 1.4 for
further discussion of “small-world” phenomena.

The remainder of this paper is organized as follows. In Section 1.2 we
define precisely the long-range percolation model and state our main theorem
(Theorem 1.1). In Section 1.3 we proceed by summarizing the previous results
concerning the behavior ab(x, y)—and graph diameter—for various regimes
of 5. In Section 1.4 we discuss the relation to “small-world” phenomena. Section 2
is devoted to a heuristic explanation of the proof of Theorem 1.1. The proof
requires some preparations, particularly an estimate on the size of the largest
connected componentin large but finite boxes. This is the content of Theorem 3.2
in Section 3. The actual proof of our main result comes in Sections 4.1 (upper
bound) and 4.2 (lower bound).

1.2. The model and main result. Consider thed-dimensional hypercubic
latticeZ¢ and let(x, y) — |x — y| denote a norm distance @¢. For definiteness,
we can take - | to be the usual?-norm; however, any other equivalent norm will
do. Letg : Z¢ — [0, co) be a function satisfying

logg(x) _
lx|—>oco log|x|

’

(1.3)

wheres > 0. (Here we set log& —o0.) For each (unordered) pair ofstinct
sitesx, y € 74, we introduce an independent random variable € {0, 1} with
probability distribution given by(w.y, = 1) = py,, where

(1.4) Pry=1—e 157V,

Note thatp,, = p,_, 0 so the distribution ofw,,) is translation invariant.

Let% be the random graph with vertices G and a bond between any pair of
distinct sitesx andy, wherew,, = 1. Given a realization o¥, let us callr =
(z0, 21, ..., zn) @ path, providedz; are alldistinct sites inZ¢ and wy 4, =1
for eachi € {1, 2, ..., n}. Define the lengths| of = to be the number of bonds
constitutingsr (i.e., the number above). Usingl1(x, y) to denote the (random)
set of all pathsr with zg = x andz;| =y, we let

(1.5) D(x,y) =inf{|z|:7 € [1(x, y)}, x,yeZd.

[In particular, we haveD(x,y) = oo if TI(x,y) = @.] The random vari-
able D(x, y) is the chemical distance betweenx and y, that is, the distance
measured on the graph

Throughout the rest of the paper, it will be assumed that the random @faph
contains an infinite connected component. We will focus on the cases when
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s €(d,2d) in (1.3), in which percolation can be guaranteed, for instance, by
requiring that the minimal probdlly of a nearest-nighbor connectionp, is
sufficiently close to 1. (Indeed, i > 2, it suffices thap exceeds the percolation
threshold for bond percolation drr, while in d = 1, this follows by the classic
result of [22].) Moreover, by an extension of Burton—Keane’s uniqueness argument
due to [15], the infinite component is unique almost surely. We will dseto
denote the set of sites in the infinite componertof

Our main result is as follows:

THEOREM1.1. Supposethat (1.3)holdswithans € (d, 2d) and assume that,
P-almost surely, the random graph ¢ contains a unique infinite component 4.
Thenfor all ¢ > 0,

log D(0, x)

(1.6) lim P(A—g§7§A+e
[x|—00 loglog|x|

where A = A(s, d) isasin (1.2).

O,xe‘goo) =1,

Formula (1.6) is a precise form of the asymptotic expression (1.1). The fact
that A—1 is the binary logarithm of 2//s is a consequence of the fact that the
longest bonds in the shortest path(s) between two distant sites,aéxhibit a
natural binary hierarchical structure; see Section 2 for more explanation. Note
thats — A(s, d) is increasing throughoutl, 2d) and, in particularA(s,d) > 1
forall s € (d, 2d) with lim 4 A(s,d) =1 and limyy2q A(s, d) = oo.

REMARK 1.1. The requirement of translation invariance is presumably not
crucial for (the essence of) the above result. Indeed, most of our proofs should
carry through under the weaker assumption of approximate homogeneity on large
spatial scales. Notwithstanding, some of our arguments in Section 3 are based on
previous results that require translation invariance and so we stick with the present
setting for the rest of this paper.

1.3. Discussion. As already alluded to, several different asymptotic behaviors
are possible in the above problem depending on the value of the expondat
proceed by reviewing the known (and conjectured) results. Throughout, we will
focus on the specific distribution

(1.7) Pxy =1—eXp{—ﬂ(1+|x—y|)_s},

where 8 € [0, o). (Some of the results also required that all nearest-neighbor
connection be a priori present.) We will concentrate on the asymptotic of two
quantities: Theypical graph distance D (x, y)—the focus of this paper—and the
diameter Dy of the graph obtained by “decorating” a box 8fx --- x N sites

in Z4 by the bonds i with both endpoints therein. There are five distinct regimes
marked by the position of relative to the numberg and 2/.
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The cases of < d fall into the category of problems that can be analyzed using
the concept of stochastic dimension introduced in [7]. The result is the almost-sure
equality

(1.8) sup D(x,y) = IVL—‘,
x,yeZd d—s
see Example 6.1 in [7]. A similar asymptotic statement holds fodMhe oo limit
of Dy; see Theorem 4.1 of [6].
For s = d, Coppersmith, Gamarnik and Sviridenko [14] study the asymptotic
of Dy. The resulting scaling is expressed by the formula

logN

1.9 Dy=01)———
(1.9) N ()IoglogN’

N — o0,

where® (1) is a quantity bounded away from 0 and. Since the typical distance
is always less than the diameter, this shows thdk, y) will grow at most
logarithmically with |[x — y|. However, at present the appropriate lower bound
on D(x, y) is missing.

In the cased < s < 2d, Benjamini and Berger [6] and Coppersmith, Gamarnik
and Sviridenko [14] proved polylogarithmic upper bounds Br [and hence
on D(x,y) for |[x — y| = N]. However, the best lower bound these references
gave was proportional to lag. The present paper provides a sharp leading-
order asymptotic forD(x,y) which constrainsDy to grow at least as fast
as (logN)2+°®  Unfortunately, neither the bounds from [6] and [14] nor those
derived forD(x, y) in the present paper are sharp enough to make any definitive
asymptotic statements abolity. We hope to return to this question in a future
publication.

The critical casess = 24 are at present not very well understood. Here
Benjamini and Berger [6] conjectured that

(1.10) Dy = N9B+oD, N — oo,

with 6(8) € (0, 1), and we expect a similar asymptotic to be valid for the typical
distanceD(x, y). A general upper bound on the abaug) was derived in [14].
The corresponding—hbut not sharp—Ilower bounds were derived in [6] and [14]
under the restriction to the “nonpercolative” regimie= 1 and 8 < 1. (This
restriction appears because the proof relies heavily on the notion of a cut-point;
see [22].) Surprisingly, similarly open are the cases 2d where we expect
that Dy scales linearly withiv. The latter seems to have been proved only #a 1
[6], or for the case of the supercritical nearest-neighbor percolatiadn=r [5];
see also [4].

An important technical resource for this paper has been the recent work of
Berger [8] on long-range percolation with exponedits s < 24. Employing a
variant of the renormalization scheme of [22], Berger proved among other things
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theabsence of critical percolationand, whenever theigpercolation, the existence

of a cluster of at leasv?—°" sjtes in any box of volum&/? (see Theorem 3.1).

An extension of this result (see Theorem 3.2) establishing tight bounds on the
probability that the largest connected component in a finite box contgiostae
fraction of all sites is essential for the proof of the upper bound in (1.6).

1.4. Relation to “small-world” phenomena. As already mentioned, long-
range percolation has been recently used in the study of “small-world” phenomena.
The catchy term “small worlds” originates in the old but still-fun-to-read article by
Milgram [21], who observed through an ingenious experiment that two typical
Americans are just six acquaintances (or six “handshakes”) away from each
other. With the rise of the overall world connectivity in recent years due to the
massive expansion of air traffic, electronic communications and particularly the
internet, and so on, the “small-world” phenomena experienced a fair amount of
new interest. Novel examples emerged in physics and biology, particularly after
the publication of [26]. Several mathematical models were devised and studied
using both rigorous and nonrigorous techniques. A brief overview of the situation
from the perspective of the theory of random graphs (and additional references)
can be found in Section 10.6 of [9].

While we will not attempt to summarize the content of the publication boom
following the appearance of [26], let us mention that a major deficiency of many
models introduced so far seems to be—at least to the author of the present
paper—the unclear status of theaétevance to the actual (physical, biological or
sociological) systems of interest. In particular, a large fraction of studied models
seem to unjustly ignore the underlying spatial structure present in the practical
problem of interest. (The reason for that is most likely the reduced complexity—as
in statistical mechanics, models without underlying geometry, the so-cadiaat
field models, are often exactly solvable.) With this problem in mind, Benjamini
and Berger [6] proposed a new class of “small-world” models based on long-
range percolation on Euclidean graphs. More precisely, as an underlying graph
they consider an a priori connected ringMéfsites to which long edges are added
with probability as described in (1.7).

One of the questions discussed by Benjamini and Berger was how the diameter
of the resulting random graph depends @rfor various ranges of values of
As detailed in Section 1.3, this behavior depends rather sensitively on the value
of the exponent. In particular, “phase transitions” occur at= d, which is the
borderline of the region with finite diameters, ané= 24, which separates the
regions of linear and sublinear scaling. Each of the resulting behaviors may be
useful in different contexts. For instance, if we believe Milgram’s assertion that
six is the typical graph distance between two average Americans regardless of the
population size, the exponenshould be within the regime described by (1.8).
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2. Main ideas of the proof. The proof of Theorem 1.1 consists of two parts
where we separately prove the upper and lower bounds in (1.6). Both parts will
be based on the concept of certhierarchies of sites whose definition is given
below. In this definition—and elsewhere in this paper—the symabdenotes a
hierarchical indexg € {0, 1}¥, which can be viewed as a parametrization of the
leaves of abinary tree of depthk. Thus, for instanceg = 01101 means that,
starting from the root, we “go” left, right, right, left and right to reach the leaf
represented by . Adding digits behind» denotes index concatenation.

DEFINITION 2.1. Given an integer > 1 and distinct sites, y € Z¢, we say
that the collection

(2.1) Ho(x,y) ={(zs):0€{0, 1%, k=1,2,....,n; z, € 2}

is ahierarchy of depth n connecting x and y if:

1. zo=xandzy1 =y.

2. 72500 = zo0 @ndzy11=2zo1 forall k=0,1,...,n — 2 and allo € {0, 1}*.

3. Forallk=0,1,...,n — 2 and allo € {0, 1}¥ such thatz,01 # z410, the bond
between;, o1 andz, 10 iS occupied, that iSiz,01, z010) € ¥.

4. Each bondz,o1, zo10) as specified in part 3 appears only oncep(x, y).

In the following, the pairs of site&,00, zo01) and(z,10, zo11) Will be referred to
as “gaps.”

REMARK 2.1. By assumption 2, a hierarchy of deptlis uniquely specified
by itsnth level. Note that we do not require thiges of the hierarchy to be distinct
and, if two points of the form, 109 andz,11 coincide, we do not insist on having a
bond between them. The phrase “connectiramdy” in the definition of #,, (x, y)
is not to imply that#, (x, y) is an occupied path from to y. Instead #, (x, y)
should be thought of as a framework of large-scale bonds which can be turned into
a path by connecting the “gaps” in an appropriate way; see Figure 1.

Our strategy in both the upper and lower bound will be to identify a hierarchy
of sufficient depth from within a given path. In an idealized situation, this
hierarchy between sites at Euclidean distaivcerould be such that the primary
bond (zo1, z10) has length (approximately)s/?)  the secondary bonds have
length N¢/2? "and so on. The principal difficulty is to “make” the hierarchy
deep enough so that it already contains “most of” the bonds in the underlying
path. In particular, we will have to guarantee that the “gaps”—which may still be
rather spread out in the Euclidean distance—can be spanned without substantially
affecting the overall length.
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FiG. 1. A schematic picture of a hierarchy of depth 5 connecting x = zg and y = z1. The straight
line represents a path between x and y and the arches stand for the bonds between pairs of
sites (z,01, Zo10)- The arrows indicate the sites on levels 1-4 of the hierarchy; the fifth level has
been omitted for brevity. Note that, by part 2 of Definition 2.1, we have z100= z10, and so on.

2.1. Upper bound. To outline the proof of the upper bound on the graph
distance, it is convenient to start by analyzing the cases when all pairs of nearest
neighbors orZ? are a priori connected. In these situations one can (essentially)
construct a path connecting two distant sites which uses about the optimal number
of distinct occupied bonds.

Let y € (s/(2d),1). The construction is based on the following observation:

If x andy are two sites at distandge — y| = N > 1, and if By, respectivelyB1,

are boxes of sidéV? centered aftx, respectively,y, then Bo and B; are with
overwhelming probality connectedby a bond in%. Indeed, there arev4?

ways to place each endpoint of such a bond while its Euclidean length has to
be essentially equal t&y. Hence, the probability thaBg and B, arenot directly
connected by an occupied bond is

(22) P(Bg «» B1) = exp{ — Z Z q(z — Z/) — eXp{—NZdV_H_O(l)}.

z€Boz7/€By

Since 2y > s, the right-hand side tends rapidly to zerods~> co.
Once the bond betweeBy and B1 has been selected, a similar argument

shows that the boxeByg and By of side NVZ, centered ak and the “nearer”
endpoint of the primary bond, respectively, will typically be connected by an
occupied bond. Continuing the process for a while, the endpoints of the family
of bonds thus identified give rise to a hierarchy of sites in the above sense: First we
letzo = x andzy = y, then we let;p; andz1g be the endpoints of the primary bond
connectingBp and B. Next, the endpoints of the secondary bonds connecting the
boxesBgg and Bo1, respectively,B1o and B11, will be denoted byzgo1 andzo1o,
respectivelyz101 andzi1o. The higher levels will be denoted similarly. Note that,

in order to have each level of the hierarchy completely defined, we need to use
part 2 of Definition 2.1 to identifygg with zg, and so on.
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Of course, the most pertinent question is now for how long we can continue
developing such a hierarchy. Proceeding as in our previous estimates, the
probability thatnot all pairs of boxesB,o and B,1 with o € {0, 1} will be
connected by a bond i is bounded by

(2.3) 2k exp{_Nyk(Zdy—s-i—o(l))}’

where 2 counts the number of bonds we are trying to control at this step and the
factor N7' 247=5) in the exponent originates from the fact that we are connecting
boxes of sidev”*™ which are at Euclidean distanc¢é”" from each other. This
estimate shows that, as long A% 7= > loglogN, the probability that the
identification procedure fails is negligible. However, this allows us to reach the
level when the pairs of sites constituting the “gaps” are no farther tdn=

(log N)°®D from each other. This happens for K, where

_ loglogN
- log(1/y)’

Now, a hierarchy of depttk consists of roughly # bonds and # “gaps.” Using
nearest-neighbor paths to span each “gap,” the total number of bonds needed to
connect all “gaps” will thus be at most2log V)Y, Hence, the graph distance
betweenx and y cannot exceed 2(logN)°®. Plugging the value oK and
passing to the limi | s/(2d), the latter is no more thagiog N)2 oD,

Performing the above argument without the luxury of an a priori connected
graph involves quite some extra work. Indeed, we need to ensure that the sites
identified in the process are connectedvt@nd y (and, therefore, &) and
that the bonds lie in a “backbone”—rather than a “dead-end”—of the connection
betweent andy. Our solution to this nonlocal optimization problem is to construct
the hierarchy so that each sitg for o € {0, 1}* is connected to a positive
fraction of all sites in thev”* neighborhood ot, . Since the distance between

the endpoints of the “gaps” in such a hierarchy is at most of the dm’ekfl,
the connected components of these endpoints are still with a large probability

connected by a bond frof. Now, if k ~ K, we haveN?"" = (logN)°® and
we need no more thaflog N)°D steps to connect the endpoints of each “gap.”
This allows us to proceed as before.

To ensure the connectivity property, we will introduce the concept ddrae
site which is a sitex that is connected to at least a (prescribed) fraction of all
sites in a sufficiently large box centered.at Then we need to establish two
additional facts: First, any site € % is with overwhelming probability dense.
Second, any sufficiently large box contains a positive fraction of dense sites.
These statements—which come as Corollaries 3.3 and 3.4—wiill allow us to look
for hierarchies containing only dense sites, for which the above argument easily
carries through. The proof of the two corollaries in turn requires showing that the

(2.4)
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largest connected componentin any box contains a (uniformly) positive fraction of
all sites. To maintain generality, this statement—which comes as Theorem 3.2—
has to be proved under very modest assumptions; essentially, we only assume the
asymptotic (1.3) and the fact that there is percolation.

2.2. Lower bound. The argument for the upper bound shows that there exists
a path that connects to y in about(log|x — y|)® steps. The goal of the lower
bound is to show that, among the multitude of paths possibly connectmgl y,
no path will be substantially shorter.

In an idealized situation, our reasoning would go as follows: WeévVset|x — y|
and pick a path fronTI(x, y) that connects: with y in less than(log N)°®
steps. [HereO (1) represents a fixed number whose value is irrelevant in the
following.] Next we will attempt to identify a hierarchy from. The primary bond
(zo01, z10) is chosen simply as (one of ) the longest bonds itsince|x — y| = N
but|| = (logN)°®, this bond must be longer thav/(log N)°™D. But in order
for this bond to exist with a reasonable probability, a similar argument as used in
the upper bound shows that the distan®¥gs= |x — zo1| and Ny = |z10 — y| must
be such that

(2.5) NEN{ > Ns+oD,

Supposing (without any good reason) thily is comparable withNy, the
removal of (zo1, z10) from 7 would leave us with two paths that connect sites
at distancevs/2)+e@ in g polylogarithmic number of steps. The argument could
then be iterated which would eventually allow us to categorize the whole path into
a hierarchical structure, with one bond of lengthtwo bonds of lengthvs/ @),

four bonds of lengthV /@) and so on.

It is easy to check that the hierarchy thus identified would involve rougfily 2
bonds, where&X is as in (2.4) withy = s/(2d), and|x| would thus have to be at
least(log N)2 oD Of course, the main problem with the above argument is that
the assumptioVg ~ N1 is not justified and presumably fails in a large number of
places. Extreme ways to violate the conditidg~ N1 are not so hard to dismiss.
For instance, in the case of a “gap” collapse, for example, Wiga: N°D, the
bound (2.5) forces that; > N*/4+°M . N implying that(zo1, z10) was not the
longest bond after all. But, since we are dealing with an exponentially growing
number of bonds, even “soft” violations of this condition could make the whole
argument crumble to pieces. As we will describe below, the solution is to work
with (2.5)—and its generalizations—the way it stands without trying to extract
any information about the particulafy andNy.

Here is what we do. We pickjasatisfyingy < s/(2d) and show thagvery path
connectinge andy in less thanlog N)?® steps, whereV = |x — y|, contains a
hierarchy#, (x, y) of depthn < K—with K as in (2.4)—such that the following
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holds with overwhelming probability: The length of the “gaps” is comparable with
the length of the bonds that “fill” them; that is, for &l=1,...,n — 1, we have

(2.6) 2001 — Zo10l = |200 — 2017, o e {0, 1) L.

Moreover, theaverage size of the “gaps” on théth level is aboutv”": that is, the
quantitiesN, = |z50 — 251/ Satisfy

2.7) [T No=N®'
oef0, 1)k

forallk=1,...,n — 1. Obviously, fork = 1 this is a more precise form of (2.5).
Part (2.6) is a consequence of the fact that, in order to connect two sites at
distanceN”" in less than(logN)°® steps, at least one bond in the path must
be longer thav”* /(log N) 0D, This equalsV? =) as long a% < K. As to

the proof of (2.7), le€,, be the event that the inequality in (2.7) holds fo£ 1,
2...,n — 1. We will sketch the derivation of an upper bound IB(E,SH N &)

which can then be iterated into a bound®(E ;).

Fix a collection of numbersN, ) representing the distances between various
“gaps” in the hierarchy, and let us estimate the probability that a hierarchy
with these(N,) occurs. In light of (2.6), the primary bond will cogt—s+°®
of probability, but there are of the ordeiVoN1)?~! ways to choose the
endpoints. (Remember thafy and Ny are fixed.) Similarly, the two secondary
bonds cost(NgN1)~*+°® of probability and their edpoints contribute of the
order (NooNo1N1oN11)4~1 of entropy. Applying this to the collectionéN,)
compatible withe” , N &,, we get

P(ES, 1 N &)
(2.8) -y (NoN1)4~1 (NooNo1N1oN11)4 1 Moco.a N&T1
= — — . —o(1)’
vy N0 (NoNyy' =@ Moco.n-2No™ "

where the sum goes over &V,) for which &7, N &, holds.

To evaluate the right-hand side of (2.8), we need to observe that the numera-
tor (NogN1)¢~1 can be combined with the denominator of the next quotient into a
term which bys > d is summable on botiVg and N1; using (2.7), the resulting
sum overNg and N1 is bounded byV ~¢~® @)+ The other numerators will
be handled analogously; the upshot is that, fokalln — 1, the sum over alN,
with o € {0, 1}¥ is bounded byN—¢~9@)*+o() The |ast numerator has no de-
nominator to be matched with, but here we can use that, since (2.% xarfails
on 8,f+1 N &,, the product oV, ’s is now bounded from above! Consequently, the

relevant sum does not exceatf )" +o() pytting all these estimates together,
and applying the inequality
n—1

(2.9) s—d@y)"+(s—d) Y (2y)* = (s —2dy)2y)" T,
k=1
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the right-hand side of (2.8) is bounded by ¢—24)@"™ [The inequality in

(2.9) can be derived either by direct computation or by a repeated application of
the inequalitys + (s — d)(2y) > s(2y) to the first and the third term on the left-
hand side.] Summing the obtained bound ovghe probabilityP(&,,) is shown to

be essentially one as long ass K.

Once we have established that (2.6) and (2.7) hold, we will use a similar
estimate to find a lower bound di(x, y). Here we simply have to prove that, even
though the hierarchy is already rather large, the lower bound (2.7) requires that at
least as many bonds be used to connect all of the “gaps.” To avoid some unpleasant
combinatorial estimates, we will continue under the simplifying assumption that
all of the 2—1 “gaps” of the hierarchy are nontrivial.

Let 7, be the event that every hierarchy of deptlsatisfying (2.6) and (2.7)
requires more than”2! extra steps to connect all of its “gaps.” In light of our
bound onP(&€°), it suffices to estimate the probability 8f° N &, . Since all “gaps”
are nontrivial, the only wayF,¢ can occur is that each “gap” is spanned by a
single bond. Now the bond spanning the “gdp:o, zo1) costsN;””(l) amount
of probability and s®(F,° N &,) can be bounded by

P(F,’ N &)
(2.10) (NoNp)4—1 [Toeqo,1n-1 Ngt 1

=2 Ni—oD [N =

. oD
(No) 1_106{0,1}”*2 No oel0,1)-1 No

where the(N,)’s now obey (2.7) forll k =0,1,...,n — 1. The last product on
the right-hand side makes the entire sum convergent an@(forl) small. Thus,
with overwhelming probability,7, occurs for alln < K, which means that the
shortest path(s) betweanandy must contain at least’21 = 2K(A—o(1) distinct
bonds. FoiK asin (2.4), we have®2= (logN)2', where YA’ = log,(1/y). From
here the lower bound in (1.6) follows by letting?t s/(2d).

3. Percolation in finite boxes.

3.1. Sze of the largest connected component.  In this section we will prove an
estimate showing that the largest connected component in large but finite boxes
contains a positive fraction of all sites whenever there is percolation. This estimate
will be essential for the proof of the upper bound in (1.6). Throughout this section,
the original meaning of the quantity from (1.3) will be substituted by a weaker
form (3.1) below. We will return to the original definition in Section 4.

We begin by quoting a result from [8]. Let us say that the collection of
probabilities (pxy), yeze IS percolating, if the associated i.i.d. measure has an
infinite cluster almost surely. Ldt > 1 be an integer and let; be a box inZ4
of side L containingL¢ sites. Consider the percolation problem restricted to the
sites of A1 (and, of course, only the bonds with both endpointa ji) and let| %7 |
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denote the size of the largest connected component inin [8], Berger proved
that once(pyy), yez¢ are percolatingA, contains a large cluster. The precise
formulation is as follows:

THEOREM 3.1 ([8], Lemma 2.3). Letd > 1 and supposethat the collection of
probabilities (pxy), yeze, Where p,y = 1— =72, ispercolating. Supposethat,
for somes € (d, 2d),

(3.1) Ilim inf [x|* (1 — e 7%) > 0.

x|—o00
Then for each ¢ > 0 and each ¢ € (0, 0c0), there exists an L such that
(3.2) P(€;| <tL?) <e.

We note that once (3.1) holds for somgethen it holds also for any’ > s.
Therefore, Theorem 3.1 actually guarantees that the largest connected component
in Az will contain at leastL¢—°( sites. (Note that the statement forbids us to
takes = 2d, and an inspection of Lemma 2.3 in [8] reveals that this is nontrivially
rooted in the proof.) However, for our purposes we need to work with the event
that |4, | is proportional to L¢ and, in addition, we also need a more explicit
estimate on the probability of such an event. Our extension of Berger's result
comes in the following theorem:

THEOREM 3.2. Letd > 1 and consider the probabilities (pyy), yeze Such
that (3.1) holds for some s € (d, 2d). Suppose that (pxy), ez« are percolating.
For each s’ € (s,2d) there exist numbers p > 0 and Lg < oo such that for
each L > Ly,

(3.3) P(%L| < plAL)) <ePL*

In particular, once L is sufficiently large, the largest connected component in A ;.
typically contains a positive fraction of all sitesin Ay .

Theorem 3.2 alone would allow us to establish the existence of a hierarchy
between two sites, but it would not ensure that the “gaps” are properly connected
(which is what we need to turn the hierarchy into a path). Fortunately, the structure
of the proof of Theorem 3.2 allows us to make this conclusion anyway. To state
the relevant mathematical claims, for each Z¢ and any odd integek > 1, let
A (x) be the box of sidd. centered at and let% (x) be the set of sites in ; (x)
that are connected toby an occupied path in; (x). Then we have:

COROLLARY 3.3. Under the conditions of Theorem 3.2, there exists a
constant p > 0 such that

(3.4) lim P(%(0)] < plAL ()], x € %o) =0

holds for each x € Z4.
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COROLLARY 3.4. Givent < L, let @Ep’@ bethe set of sitesx € A such that
|€e(x)] > p|A¢(x)|. Under the conditions of Theorem 3.2, for each s’ € (s, 2d)
there are constants £g < oo and p > 0 such that

L2d—s,

(3.5) P20 < p|AL]) <€
holds for any £ with £g < £ < L/{.

Theorem 3.2 and the two corollaries are what this section contributes to the
proof of the main result of this paper. An impatient (or otherwise uninterested)
reader should feel free to skip the rest of this section on a first reading and pass
directly to Sections 4.1 and 4.2. For those who stay put, we proceed by discussing
the main ideas of the proof and a breakdown of its steps into the corresponding
technical lemmas. The actual proofs appear in Section 3.5.

3.2. Outline of the proof. Our strategy of the proof of Theorem 3.2 is as
follows. First we combine a one-step renormalization with Theorem 3.1 to convert
the problem into a similar question faite-bond percolation. An important feature
of this reformulation is that the occupation probability of sites and bonds can be
made as close to 1 as we wish.

Given an odd integek > 1, Iet%}(") denote the largest connected component
in Ag(x); in the case of a tie we will choose the component containing the
site that is minimal in the standard lexicographic order Zsh For any two
distinctx, y € Z4, we will say thatA g (K x) and A g (K y) aredirectly connected
if there is an occupied bond connecting a site ffé;ﬁﬁ(") to a site frorrfﬁl((K”. We
will use {Ag(Kx) <+ Ag(Ky)} to denote the event thatx (Kx) and Ax (Ky)
are not directly connected. Then we have:

LEMMA 3.5. Under the assumptions of Theorem 3.1, for any s € (d, 2d) the
following is true: For each 8 < oo and r < 1 there exist a number § > 0 and an
odd integer K < oo, such that

(3.6) P16 < 8|Ak(Kx)) <1—r
and
(3.7) P(Ax (Kx) & Ag(Ky)) <e PF=1

hold for all distinct x, y € Z4.

Regarding boxes of sid& as new sites and the pairs of maximal-connected
components connected by a bond fréfnas new bonds, Lemma 3.5 allows us
to set up a renormalization scheme of [22]. Clearly, by (3.6) and (3.7), a site is
occupied with probability at leastand two occupied sites andy are connected
with probability at least - e #1*=YI""_(For the sites that are not occupied such a
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connection will not be relevant, so we will often assume that the latter holds for all
sites.) This puts us into a position where we can apply the following “idealized”
version of the desired claim:

LEMMA 3.6. Letd > 1 and consider the site-bond percolation model on Z4
with sites being occupied with prabability » € [0, 1] and the bond between sites x
and y being occupied with probability

(3.8) Pxy =1—exp—Blx -y},

where s € (d,2d) and B > 0. Let |%y| denote the size of the largest connected
component of occupied sites and occupied bonds in A . For each s’ € (s, 2d)
there exist numbers Ng < oo, © > 0 and Bg < oo such that

(3.9) Ps.(1En| < O|AN]) < e 2PN

holdstruefor all N > Ngwhenever 8 > Boandr > 1 — e 78,

REMARK 3.1. The fact that the exponentin (3.9) is proportiona will not
be needed for the proofs in this paper. The additiog o€presents only a minor
modification of the proof and the stronger result will (hopefully) facilitate later
reference.

Once Lemma 3.6 is inserted into the game, the proof of Theorem 3.2 will be
easily concluded. To prove Lemma 3.6, we will invoke a combination of coarse-
graining, stochastic domination and a corresponding estimate focotnplete
graph. (Let us recall that a complete graphofvertices is a graph containing a
bond for each unordered pair of distinct numbers fidn®, ..., n}.) The relevant
complete-graph statement is extracted into the following lemma:

LEMMA 3.7. Consider a complete graph of n vertices. Let each site be
occupied with probability » and each bond be occupied with probability p. Let P2
betheresultingi.i.d. measureand let | %), | denote the number of sitesin the largest
connected component of occupied sites and occupied bonds. For each g, ¢’ € [0, 1]
with ¢’ < ¢, there exists a number vy (¢’, q) > 0 such that for each r’ € [0, r),
each p’ € [0, p) andall n > 1,

(3.10)  PPT(1%,| < p'r'n) < e V) 4 o= Q2N mu () p),

Moreover, for each a € [0, 1), there exists a constant C = C(«) < oo such that
1

(3.11) ¥ )= A=) g)|log =~ C|

holds truefor all ¢, ¢’ € [0, 1] satisfying the bound (1 — ¢) > (1 — ¢)“.
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REMARK 3.2. While Lemma 3.6 can presumably be proved without reference
to the complete graph, in our case the passage through Lemma 3.7 has the
advantage of easily obtained quantitative estimates. As mentioned before, the
present proof of Theorem 3.2 invokes a renormalization scheme for which
Theorem 3.1—whose proof is based on a similar renormalization scheme—serves
as a starting point. It would be of some conceptual interest to see whether a more
direct proof of Theorem 3.2 based on a single renomalization is possible.

REMARK 3.3. Ind > 2, the decay rate in (3.9)—and, consequently, in (3.3)—
is not always optimal. The reason is that, fo5> 1 and 1— r « 1, the site-bond
percolation problem dominates the nearest-neighbor percolati@d dor which
it is expected (and essentially proved, see [3, 13]) that the probability in (3.9)
should decay exponentially witN?—2. [For s € (d, 2d), this is sometimes better
and sometimes worse tha¥??—*.] This alternative decay rate is not reflected in
our proofs because, to apply equally well in all dimensi@ns1, they consistently
rely only on long-range connections.

Having outlined the main strategy and stated the principal lemmas, we can
plunge into the proofs. First we will prove technical Lemmas 3.5 and 3.7. Then
we will establish the site-bond percolation Lemma 3.6. Once all preparatory
statements have been dispensed with, we will assemble the ingredients into the
proofs of Theorem 3.2 and Corollaries 3.3 and 3.4.

3.3. Preparations. Here we will prove Lemmas 3.5 and 3.7. First we will
attend to the one-step renormalization from Lemma 3.5 whose purpose is to wash
out the short-range irregularities of thg,’s and to ensure that the constagts
andr in Lemma 3.6 can be chosen as large as required.

PrROOF OFLEMMA 3.5. The principal task before us is to chod§eso large
that both bounds follow from Theorem 3.1 and the assumption (3.1)d et
and letp < oo andr < 1. Lete =1 — r and pick ad’ € (s/2,d) such that
d —(d -1 >d—d. By Theorem 3.1 and the paragraph that follows, for
each¢ > 0, there exists & = K (e,d’, ¢) such that|%x | > ;Kd/ occurs with
probability exceeding + ¢. Since Theorem 3.1 allows us to makKearbitrarily
large (indeed, the constraiffx | < K¢ forcesK to exceed a positive power ¢j,
we can also assume that, for some constastO,

(3.12) poy=1—e @Y7 oncelx — y| > K¢,

Here we rely on (3.1).
Let b > 0 be a constant such thalk exceeds the diameter afx in the

| - |-norm for all K. We will show that (3.6) and (3.7) hold onégis large enough

and, in particular, so large that

1az?2 .
ol K2~

(3.13) A2y

S > B.
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(Note that 2’ > s so the left-hand side increases with) Consider a partitioning
of Z¢ into disjoint boxes of sid&X; that is, let us writeZ? = | J, .« Ak (Kx).
We will call a box Ax(Kx) occupied if the bond configuration restricted
to A g (K x) contains a connected component larger th&H . By the choice o,
eachAk (Kx) is occupied independently with probability exceeding & = r.
This proves (3.6) witls = ¢ K44,

To prove also (3.7), we need to ensure that sufficient portions of the components
in the two K -blocks are so far from each other that (3.12) can safely be applied.
To this end, we note that, sinw,(fxﬂ > ¢K?, at least half of the sites Fﬁ’,&K")
will be farther fromZ? \ Ak (Kx) thanng = at K¢ ~@=Y wherea is a constant
depending only on the norin | and the dimension. Moreover, an easy argument
shows that ifx,y € Z¢ are distinct anct € €5 and 7’ € € are such
that distz, Z? \ Ax(Kx)) > ng and distz’, Z¢ \ Ax(Ky)) > nk, then

(3.14) nklx —y|<l|lz—7|<2bK|x —y|.

Now our choice ofd’ guarantees that, iK is sufficiently large, we will have
nk > K97¢" and the inequality on the left-hand side shows that (3.12)pfor
is in power. The bound on the right-hand side of (3.14) then allows us to write

(K™ /2)2 }
(Ix — y[2bK)*
where we used (3.13) to derive the last inequality. This completes the praof.

— —y|
<e Blx—yl ,

(3.15) P(Akx(Kx)+» Ag(Ky)) < exp{—a

Next we will focus on the proof of Lemma 3.7, which concerns the complete
graph. This lemma will be used to drive the induction argument in the next section.

PROOF OFLEMMA 3.7. The proof starts by estimating the total number of
occupied sites. Once that number is known to be sufficiently large, the desired
bound is a result of conditioning on occupied sites combined with straightforward
estimates concerning occupied bonds.

Fix r' € (0,r) and p’ € [0, p), and letp = p'r’. Note that we can assume
that r'n > 1, because otherwise the right-hand side of (3.10) exceeds 1. Let
A, denote the (random) number of occupied vertices of the complete graph. Since
A, can be represented as a sum of independent random variables with ntlean
event{A,, < r'n} forcesA, to deviate substantially from its mean and the standard
Chernoff bound implies

(3.16) PP (A, <r'n) <e VUM,
where
(3.17) v(q',q) =sud—log(1—q +ge™) —rq'l.

2>0
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As is easy to show) (¢, q) > O forallg’ <gq.

The bound (3.16) is responsible for the first term on the right-hand side of (3.10).
It remains to show that the conditional probability givép > r'n is bounded by
the second term. Thus suppose that> r'n and letV,, denote the total number
of unordered pairs of occupied sitest connected by an occupied bond. The
principal observation is that if6,| < pn, thenV,, has to be rather large. More
precisely, we claim thal%,| < pn implies V,, > %(A,Zl — pnA,). Indeed, if we
label the connected components of occupied sites and bonds byiiadeduse;
to denote the number of sites in tith occupied component, then the number of
vacant bonds certainly exceeds

2
(3.18) > kik; :%(Zk,-) - 33 k2
i<j i i
On{|¢,| < pn} we havek; < pn for eachi and since als@_; k; = A,, the second
sum can be bounded by, pn. The desired inequality,, > %(A,% —pnA,) follows.

In light of our previous reasoning, we are down to estimating the probability

(3.19) PP (V, > S(AZ — pnAy)|Ay > r'n).
The estimate will be performed by conditioning on the set of occupied sites.
Once the set of occupied sites has been fiXgédcan be represented as a sum
of N = %(A,% — A,) independent random variables, each of which has meap.1
Now, assumingA, > r'n and recalling thap = p’r’ <r’ andr’n > 1, we can
estimate
(3.20) (A2 A)—N(l 'On_l)>N<1 'On_l)>N(l )

) oM T PR = A,—1)° 1) = p)-

r'n —

n
(In the cases whemn < 1, we just skip the intermediate inequality.) Now,
sincep’ < p, the event{V, > %(A,Zl — pnAy,)} constitutes a large deviation for
the random variablé/,. Invoking again the Chernoff bound and a little algebra,
we thus get

(3.21) PE7(Vy = 3(A2 — pnA,)|A, = 1'n, 3(A2 — A,) = N) < e NV0'P),

From here (3.10) follows by noting that ¢#,, > r'n} we haveN > (n2(r')%— n).
To verify the bound (3.11), we need to find the minimizingn (3.17) and use
it to find an explicit expression fap (¢’, ¢). A computation gives

/

(3.22) V@) =1-q) Iog(1 L) ~q'1og( L),

1-¢ q
The second term—including the minus sign—can be split into two parts: the
term ¢’logq’, which is bounded below by-1/¢, and the term—¢’logg, which
is always positive. Moreover, i’ — 1, then(q’logqg’)/(1 — q¢') — 1. From
here we infer that the second term is bounded belowlby «)(1 — ¢')-times
a (negativelx-dependent constant. Using the bound 4’ > (1 — ¢)% in the first
term, (3.11) is proved.
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3.4. Ste-bond percolation lemma. Now we are ready to start proving
Lemma 3.6. The essential part of the proof relies on induction along a series of
scales defined as follows. Fix ahe (s, 2d), let £o be a positive integer and con-
sider an increasing sequen@g) of integers such that, > ¢g for all n > 1. Let
No be another positive integer and let

n
(3.23) Np=No [] -
k=1
Suppose that, tend to infinity so fast that
(3.24) Yl <o and Y NS <00
n>1 n>1

but moderate enough that also

P R
(325) Cozrlgggs,— Hﬁk § > 0
n+1 k=1
Next, let us define the sequenggg) and(p,) by puttingr, = 1—6¢¢=* andp, =
1-— N,f—"', let us fix a constantg € (0, 1) and let

(3.26) pn=po [ [ xpe)-
k=1

Clearly, by (3.24) we havg,, — p > 0 asn — oo.

REMARK 3.4. An extreme example of a sequen@g) satisfying these
constraints is

(3.27) Oy =" s

wherea = (2d — s')/s’. Herea has been tuned in such a way that the term in the
infimum in (3.25) is independent af Sincea > 0, the bounds (3.24) immediately
follow.

The proof of Lemma 3.6 is based on the fact that a bound (3.9y ferNV,, can
be used to prove the same bound for (essentially)dryetweeny, and N1 1.
The proof works as soon ag andp,, are bounded away from zero afigland Ng
are sufficiently large; the precise form @f,) is not important. [In particular, we
do not makexplicit use of (3.24).] The induction step is isolated into the following
claim:

LEMMA 3.8. Supposethe assumptionsof Lemma 3.6hold andlet s’ € (s, 2d),
cp > 0 and 79 > 0. Then there exist two numbers £; < oo and Ny < oo and a
constant ¢1 € (0, oo) such that for any No > N, and any sequence (¢,) with
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£o = £y and ¢o > ¢, the following holds: If 7 € [, cl,ogoﬂ] and if k is a
nonnegative integer such that

(3.28) Po(€n] < ) < e
istrue, then
(3.29) Pp,([ons| < praa(ENg)T) < e TEND*

holdsfor all £ € {£g, ..., €xy1}.

PROOF The proof is based on the “complete-graph” Lemma 3.7. Our
preliminary task is to set up all the constants so that the bounds emerging from
this lemma are later easily converted to that on the right-hand side of (3.29). Let
s’ € (s,2d), c;; > 0 andrg > O be fixed. First we will address the choice of the
constantg,, Nj andc1. We will assume that, is so large that

(3.30) (1—6e97)2¢2 — ¢? > 102

holds for all¢ > ¢;. Then we choos&/ so large that, for allVo > N} and all
T = 70,

(3.31) 604~ > ¢~ (12N
holds for all¢ > ¢ and that
(3.32) TN~ > max3c, log2},

whereC is the constant from Lemma 3.7 far= 1/2. Moreover, we leb be the
constant such thaVb bounds the diameter af y in the metric| - | forall N > 1
and choose1 = »7*/16. Then we also require thaf) be so large that for any
No = Nj,

(3.33) Bb™ pENZ=5¢=5 — C > 8t N2=5¢~s
and
(3.34) (EN,) ™ > e W/2BL7 oINS

hold for all T < cl,ogoﬁ, alln >0 and all¢ € {{g, ..., £¢,+1}. The first bound is
verified for sufficiently largeVg by noting the inequalitieﬁb—sp,f > 219 and

n+1 n+1
k<n

s/s'
(335) N;d—SE—s > Nr?d—SE—s > Ngd—s (E_S’ 1—[ E]%d—y) > Ngd—scé/s .

As to (3.34), we note thal/24=*¢=% /(¢N,)* = = N2='¢-%" which again can
be made arbitrarily large by boosting Wy. The factors% in the exponents of
(3.31) and (3.34) have been inserted for later convenience.
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Now we are ready to prove (3.29) from (3.28). Lt> £; and No > Nj,.
Suppose that (3.28) holds for somec [1o, cl,ogoﬁ] and somek > 0. Pick an
¢ e{lo, ..., L1} Viewing Ay, as the disjoint union of/ translates\ ) of Ay,

@d
(3.36) Aoy, = A®,
i=1

let us call A®) occupied if it contains a connected component of size at
leastpx | Nx|?. Choosing one such connected component in each occupief
necessary, employing lexicographic orderZshto resolve potential ties), we will
call A© andAY) with i # j connected if their respective connected components
are directly connected by an occupied bond. Let

(3.37) r=1—e™'"" and p=1—e RN

and note that (3.28) implies thats a lower bound on the probability that?) is
occupied. Moreover, a simple calculation shows tha$ a uniform lower bound
on the probability that two distinct @ andAY) are connected.

Let us introduce the quantities

(3.38) F=1-60" and p' =1- (N

and let A; , be the event that the largest connected component of the occu-
pied A®’s comprises more thap’r’¢¢ individual boxes. The assumption (3.31)
shows that’ < r, while (3.34) in turn guarantees that < p. Invoking the fact

that A ¢ is an increasing event, the probability ﬂf,;"e is bounded by the prob-
ability that, for site-bond percation on a complete graph wittf vertices and
parameters andp, the largest connected component involves at rpost? ver-

tices:

(3.39) Pp r (AL ) < PR (16| < p'r'e?).

Since the factor% in the exponents in (3.31) and (3.34) ensure that A >
(1—-rY2and 1— p’ > (1 — p)¥/2, the right-hand side can be estimated using
Lemma 3.6 withe = % andC = C(%). To evaluate the first term on the right-hand
side of (3.10), we estimate

(3.40) ey r) = 260475 (e N2 - €) = 20 (eNpE

Here we used that, by our choice@fwe havet? (1 — a)(1—r') = %662"“ and
then invoked (3.32) to show thatv2¢~" > t N2~ > 3C. Similarly, we get
SN2 =ty (p', p) = G ENY T (BT N T — O)

(3.41) .
> 2t (LN
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for the exponent in the second term in (3.10). Here we first used (3.30) to reduce
the complicated’-dependence on the extreme left and then we inserted (3.11)
and the definitions ofp’ and p to produce the intermediate inequality. Finally,
we invoked (3.33).

By putting the bounds (3.10), (3.11) and (3.40), (3.41) together and recalling
that log2< rNgd‘s/, the probabilityP . (47 ,) does not exceed the term on
the right-hand side of (3.29). But oA ¢, the boxA,y, contains a connected
component comprising (strictly) more thaf’¢¢ disjoint connected components,
each of which involves at leagi N{ sites. Using that’ > r1 and p’ > py1,
we have

(3.42) Cone| > P'r' 0 ok Nl = prsa(ENDT on g,
and thus(|on, | < pr+1lAen, |} C Af .. From here (3.28) follows. O
Lemma 3.8 encapsulates the induction step. However, we will also need an

estimate that allows us to start the induction. This is provided in the following
lemma.

LEMMA 3.9. Under the conditions of Lemma 3.6, for each ¢ € (0, 00), there
exist numbers Ng < oo and g € (0,1) and, for each ¢ < ¥, there exists a
number Bg < oo such that

(3.43) P, (1%n] < L Ay]) < e 2PN
holdsonce N > Ng, B> Boandr > 1 — e~ 7P,

PrRooOr We will again apply the “complete-graph” Lemma 3.7. Lgt=
r' =3, let b be a constant such thaiv exceeds the diameter ofy for any N
and pickdg > 0 such that 12&99 < b~°. Fix a numbery € (0, ¥p). Then the
left-hand side of (3.43) is bounded by the left-hand side of (3.10) with N¢,

p=1—exp—B(bN)*}andr =1— "8, We will estimate the right-hand side
of (3.10) under the conditions whe¥y is so large that

(3.44) N"?>16c; and N*(')?—N=N*/8

are true for allV > Ng and, given such aw, the constangg is so large that for
all B> Bo, we have -+ > (1—r)¥2and 1- p' > (1 — p)¥/2, and

(3.45) 9B >2C and B(N)™* —C=>128BN".

Here, as before( is the constant from Lemma 3.7 far= %

In conjunction with these bounds, (3.11) with= % shows that

(3.46) Y (', r)= 2B —C) > 3vp
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and
(3.47) Y (p',p) = 2(B(N)™ — C) > 32c208N .

Using the bounds in (3.44), we find that both exponents on the right-hand side of
(3.10) exceed &9BN2—5. This impliesPg . (|En| < ®|AN|) < 2eXHd—2c20 x
BN24=5} Increasing if necessary, the latter is no more than gxp9 S N24—5}.

O

Equipped with the induction machinery from Lemmas 3.8 and 3.9, the proof of
the main site-bond percolation lemma is now easily concluded.

PrROOF OFLEMMA 3.6. First we will adjust the parameters so that Lem-
mas 3.8 and 3.9 can directly be applied. k'et (s, 2d) and letcy > 0 andro > 0
be fixed. Let¢), N(’, and c1 be the constants from Lemma 3.8 and pick a se-
quence({g) such thatlg > £; andcg > ¢ are satisfied. Pick a numbaéi > N,

so large that Lemma 3.9 holds foy = (20)%?—5" and N > Ny, and letd be the
corresponding constant from this lemma. lggte (O, %1] and definep, and p
as in (3.26). Lety > 0 be such thatr < 9o, (200)?9 < ps andca? < c102..
Choosesg so large that Lemma 3.9 holds for gli> 8o and such that,9 8o > 10.
Note thatr = c298 necessarily satisfiese [1o, clpgoﬁ] as long ag > Bo, which
is needed in Lemma 3.8.

Now we are ready to run the induction argument: Sipge< %1 and? < 9,
Lemma 3.9 ensures that (3.28) holds foe= ¢ and k = 0. Applying the
induction step from Lemma 3.8, we recursively show that (3.29) is true for all
k>0 and all¢ € {€o,...,4+1}. Let N be a general integer and létbe a
nonnegative integer such thaf1 > N > N;. Let ¢ be the maximal number
in {1, £, ..., £Lr1} such that¢ Ny < N. A simple calculation now shows that
[An| < ma><(2£0)d|AgNk| and, if we positionA y and Ay, so thatA,y, C Ay,

(3.48) (16n] < 91AN1) C |G, | < (200)79 | Aen, |}

By our previous conclusions and the fact thi@ég)?9 < pr,1, the probability
of the event on the right-hand side is bounded by{exg¢Ny)%~*'}. From
here, (3.9) for a generaV follows by noting that, by our choice af;, we
haver (ENy)2 " > 9gN2—s'. O

3.5. Proofs of Theorem 3.2 and Corollaries 3.3and 3.4. Now we are finally
ready to prove Theorem 3.2. After some preliminary arguments, the proof follows
a line of reasoning similar to the one just used to prove Lemma 3.6.

PROOF OF THEOREM 3.2. Lets’ € (s,2d) and let®, Bp and Ng be as in
Lemma 3.6. Pick numberg > g andr > 1 — ¢~ 7 and letk and$ be the
corresponding constants from Lemma 3.5. First we will prove the claimL_for
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of the formL = KN, whereN is a positive integer. To that end, let us viewy
as the disjoint union oiV? translatesA g (Kx) of Ag, wherex € Z%. We will
again callA x (K x) occupied if| €| > 8| Ak | and, similarly, we will call two
distinct Ax(Kx) and Ag(Ky) connected if the connected compone‘*ﬁig”)

and %IEKy)—chosen with the help of lexicographic order in case of a tie—are
directly connected by a bond froffi.

By Lemma 3.5 and our choice df and K, the box Agx(x) is occupied
with probability exceeding:, while Ag(Kx) and Ag(Ky) are connected with
probability exceeding,, in (3.8). LetAy x be the eventthat the bax; contains
a connected componefaty of boxesA g (Kx) such that at leas#|A y| of the
connected components in these boxes get join&ginBy Lemma 3.6, we know
that

(3.49) Pp(AS £) <e PPV
On the other hand, os y ¢ we have
(3.50) €Ll = @IANDSIAK]) =DFS|ALI

and thus{|€.| < p|ALl} C A x Oncep < B6. If p is also less tha BK* ~24,
this finishes the proof fok. of the formN K . The general values df are handled
by noting that ifNK < L < (N + 1)K, then|Ar| <2¢|Ank | and, ifAyx C AL,
thenalsdéyg| <|6.|. O

PROOF OF COROLLARY 3.3. Fix s’ € (s,2d), let No, 9 and By be the
constants from Lemma 3.6, and |gt> 8o andr > 1 — e 7P, Let¢ > 3Np be an
odd integer and leK be the constant from Lemma 3.5 for our choice3adindr .
Clearly, it suffices to show that (3.4) holds farof the form L, = K¢" and p
proportional to the product of constaiteind? from Lemmas 3.5 and 3.6. All of
the volumesA ;, below are centered atso we omit that fact from the notation.

Our strategy is as follows: We pick an> 0 and show that, with probability
at least 1- ¢ and some integet, the largest connected componéfit, in Ar,
is connected to at leagtjAy ,| sites inAg ,, for everyn’ > n. (Note that this
guarantees tha¥,, C %.) Once this has been established, we observe that
|€L,, (X)| < plAL,| implies thatx cannot be connected te7, within Ay .
Assuming thatx € ¢, the box A, then contains at least two distinct sites
X,y € ¢~ Which are not connected within;, ,. By the uniqueness of the infinite
cluster, the probability of the latter event can be made smallertrmakingn’
sufficiently large. But then the limit in (3.4) must be less tharad, since was
arbitrary, it must equal to zero.

To make the proof complete, it remains to establish the first claim in the previous
paragraph. Namely, we must show that the probability #igtis not connected
to at Ieast,o|ALn,| sites in AL, for some n’ > n is less thane, providedn is
sufficiently large. To that end, l&;, with £ > 0, be a sequence of boxes (generally
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not centered at) such thatBy = A, and thatB is the maximal box inA,,,,
that is centered on thel, 1, ..., 1) half-axis, disjoint from all the previousy’s
and with side a multiple oK. Since¢ > 3, it is easy to see thdiB;| grows
proportionally to|Ay,, | (in fact, | Bx|/|AL,. | > 3~4). Our goal is to show that
the largest connected components inRlls are with overwhelming probability
connected.

Invoking Lemmas 3.5 and 3.6 and choosingufficiently large, the probability
that each boxB;,—viewed as the disjoint union of translates &k —contains a

component comprising at leastB; |/ K¢ maximal connected componeﬁ;‘f")
of size at leas§ K¢ is bounded by /2. On the other hand, the probability that the
corresponding components By and B 1 arenot connected is bounded by

(3.51) exp{—ﬁ 9% |Bil|Biral }Sexp{_ﬁ/g(Zd—s)(n—i-k)}’
K2 (bLpyk41/K)*

where b is a constant such thdtL, /K bounds the distanck — y| for any

translates\ x (K x) and A g (Ky) contained inAz,, and wheres’/g is a constant

that depends only ohiand K. The right-hand side is summable band the sum

can be made smaller thayi2 by increasing:. Thus with probability as least-1¢,

for eachk > 0 the componertt,, is connected to at leadt}|By| sites inA

Choosinge < 89374, the above claim follows. [J

n+k*

PROOF OFCOROLLARY 3.4. Let¢ > 1 be an odd integer. Clearly, it suffices
to prove the result forz\”*" instead of 2\”" and L a multiple of 3.
Viewing A, as a disjoint union of boxes z,(3¢x) with x € Z4, let %(3“) be
a maximal connected component ik, (3¢x). For p’ > 0, let A,(x) be the
event thau‘@(?’“)l > p/|A¢| is true. LetNy , denote the number of € Z¢ with
A3¢(3¢x) C Ay such that4,(x) occurs.

The eventsA,(x) are independent and, if is large enough ang’ > 0 is
sufficiently small, Theorem 3.2 shows thag (x) occurs with probability at least
r=1—exp{—p'¢2?=5"}. This allows us to invoke the Chernoff bound once again
with the result

(3.52) P(NL¢ <r'LY/(30)%) < R AGRIAVICOM
wherey (', ) is as in (3.17). Choosing = 1, & = 3 andC = C(3) and taking¢
so large thap’¢%—" > 2C, (3.11) gives us

(3.53) Y@ r) = 300~ C) = Fp' 0¥
On the other hand, ofiv, ¢ > r'L?/(3¢)¢} we have
(3.54) 12¢029| = (p'eH(r' LY/ (30)%) = p'r'37LY,

and so{|@£’)’2€)| < pL% c {Np ¢ <r'L?/(30)¢} oncep < p'r'37¢. Invoking
(3.52) and (3.53) and choosingsuch that als@ < %S—dp/, the desired estimate
follows. O
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4. Proof of main result. In this section we will provide the proof of
Theorem 1.1. The arguments closely follow the outline presented in Sections
2.1 and 2.2. The reader may consider skimming through these sections once again
before plunging into the ultimate details of the proofs.

4.1. Upper bound. The principal goal of this section is to establish the upper
bound in (1.6). By the continuity of — A(s, d) it suffices to prove the upper
bound for any number exceeding the limit (1.3), so we will instead assume that
obeys (3.1). The desired claim is then formulated as follows:

PrRoOPOSITION 4.1. Let s € (d,2d) be such that (3.1) holds and let A =
A(s,d) beasin (1.2).For each A’ > A and each ¢ > 0, there exists an Ng < oo
such that

(4.1) P(D(x,y) = (log|x — y)*, x,y € Gos) <&

holdsfor all x, y € Z¢ with |x — y| > Np.

As discussed in Section 2.1, the proof is conceptually rather simple: For each
pair of sitesx and y we will construct a hierarchy of an appropriate depth
connectinge andy, such that pair$z,o01, zo10) With o € {0, 1}¥=2 are connected
by paths of lengtfilog |x — y|)°?. The main difficulty stems from the requirement
that the bonds constituting the hierarchy be connected in a prescribed (linear)
order. This will be ensured by the condition that all sites constituting the hierarchy
are surrounded by a sufficiently dense connected component.

Recall our notation that ;, (x) is a box of side. centered at and¥%}, (x) is the
set of sites inA, (x) connected toc by a path inA (x). We will require that the
sitesz, are dense points according to the following definition:

DEFINITION 4.1. Given a numbep € (0,1) and an odd integef > 1, we
will call x € Z4 a(p, £)-dense (or, simply,dense) point if |6, (x)| > p|A¢(x)].

For any realL > 0 sufficiently large, let.* be the minimal odd integer larger
thanL and letL~ be the minimal odd integer larger th@n2. Let
(4.2) Br(x) = Ap+(x) \ Ap-(x).

Given a numberp € (0,1) and an odd integet > 1, let .@ip’g)(x) denote the

set of all (p, £)-dense points inB; (x). The input needed from Section 3 then
comes directly from Corollaries 3.3 and 3.4. By Corollary 3.4 and the fact that
B (x) contains a box of side at leaky 3, we know that

(4.3) P20 ()] < pL) < e PE*
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oncep is sufficiently smalls’ € (s, 2d) and¢g < £ < L/£o. Corollary 3.3 in turn
shows that ifx, y € %, then bothx andy are dense points in the sense that for
eache > 0 there exists af; = £1(¢) < oo such that

(4.4) P(10(x)| < pt?,x € Coo) <

is true whenevet > ¢1. A similar statement holds for.

Now we can define the principal events: Let (s/(2d), 1) and letx andy
be two sites inZ?. Let N = |x — y| and defineN, = N”". For eachn > 1,
let B, = JB,Sf’f)(x, v) be the event that there exists a hierar@hy(x, y) of depthn
connectinge andy subject to the following constraints: For &al=0,1,...,n —2
and allo € {0, 1}*,

. Y
(4.5) 2001 € 74 ) (z50) and zo10€ 241 (zo1).

The eventB,, ensures that all sites of the hierarchgxeept perhaps x and y—are
(p, £)-dense points. To cover these exceptions, we also introduce the Bvent
7 (-0 (x, y) that bothx andy are(p, £)-dense in the above sense. In the following,
we will regard the numbes as fixed—such that (4.3) and (4.4) hold—IBwtndy
will be adjustable.
The requirements (4.5) become appreciated in the proof of the following bound:

LEMMA 4.2. Foreache € (0,1),eachy € (s/(2d), 1) and each A’ satisfying
log2
log(1/y)’

there exists a constant N = N’ (¢, ¥, A") < oo such that the following is true for
all x,y e Z¢ with N = |x — y| > N': Let n be the maximal positive integer such
that

(4.6) A >

4.7) nlog(l/y) <loglogN — elogloglogN.

If £ in the definition of the events B,, = :8,5{3’,@)(% y)and 7 =7 ®9(x, y) isan
odd integer between N,, and 2N,,, then

(4.8) P({D(x,y) = (logN)*} N B, NT) <e.
The reason why we chooseas in (4.7) can be seen from the following bounds:
(49) " < (|Og N)IOg 2/log(1/y) and e(l/y)(loglogN)E > Nyn > e(IOQIOQN)E.

These bounds will be important in the upcoming proof.

PrROOF OFLEMMA 4.2. The main reason why has to exceed a certain
constant is because we need the scales corresponding to successive levels of the
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hierarchy to be clearly separated. To that end we observe that for<all and
Ny = NVk, we have

(4.10) log—— > (1— y)(loglog )",
Ni+1
which tends to infinity agv — oo.

Introduce the abbreviatio,, = 7 N B,,. If B, occurs, then there exists at least
one hierarchy, (x, y) of depthrn connectingr andy such that (4.5) is satisfied.
Then (4.10) guarantees the existence of numiérs oo andb € (0, 1) such that
the following is true for any such hierarchy:dfe {0, 1} with k =0,1,...,n—2,
then

(4.11) |z001 — Zo 10l = DNk,

while if z € By, ,,(z00) andz’ € By, ,(z501), then
(4.12) b N1 > |z — 27| = bNiga,

wheneverN > N’. Similar statements hold for paitse By, ,(z51) andz’ €
Bn,.,(z510)- Moreover,N' can be chosen so large that also the bounds

(4.13) b~IN,_1<bN,_» and bN,_1>diamA,

hold true for all¢ betweer?g and 2V, and alln satisfying (4.7).

Let .4, be the event that, for any hierarchy that would make satisfied, at
least one of the “gaps” of the hierarchy, sayo, z,01) Whereo € {0, 1}"2, fails
to have the component; (z,0) and%;(z,01) connected by an occupied bond.
(Note that these components are quite large becauserbetmdz,o1 are dense
points.) We claim that

(4.14) {D(x,y) > (logN)*'} N8B, C A, N B,.

Indeed, if all “gaps”do have the corresponding components connected, then
eachz,o is connected ta,o1 by a path of no more than 4+ 2¢¢ bonds [note
that ¢¢ bonds should be enough to get out €f(z,0)], and similarly for the
pairsz,1 andz,10. Noting that a hierarchy of depthinvolves only 2—1 “gaps”

and 2-1 — 1 bonds, we can use< 2N, and (4.9) to write

(4.15) .
< 2d+2(|og N)Iog2/Iog(1/y)e(d/y)(log logN) )

In light of (4.6), this is not compatible witb (x, y) > (log MY if Nis sufficiently
large.

To finish the proof, we thus need to estimate the probability4gfn B,,.
The above estimates show that the occurrencg,pfis determined by looking
only at the bonds longer thanv,,_» (to ensure the existence of a hierarchy) or
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shorter than diam, [to ensure that all sites in the hierarchy &ge ¢)-dense].
Explicitly, let .# denote ther-algebra generated by the random varialites )
with |z — /| > bN,_2 or |z — /| < diamA,. Then (4.11) and (4.13) show that
B, € .Z. This allows us to prove (4.8) by conditioning: Letbe a number such
that p,.» > 1 — exp{—B|z — Z/|~*} for any pair(z, ) of sites with|z — z'| > N,,.
Then we have

N2d
n
(Nn—l/b)s

Here we used that, o, the component$;(z,0) and%;(z,01) are both larger
thanp¢d > pN?, while (4.12) dictates that the longest bond that can connect them
is not longer tharnv,,_1/b. The prefactor represents the number of “gaps” in the
hierarchy, which is the number of places whetg can fail. Inserting the upper
bound o from (4.7), the estimate (4.8) follows ondéis sufficiently large. (I

(4.16) P(A,|.F) < 2”_1exp{—ﬂ,o2 } on B,,.

Our next goal is to show that the eveBf is quite unlikely to occur:

LEMMA 4.3. Lety e(s/(2d),1) andlets’ € (s,2dy).Let N =|x — y| > N’
where N’ isasin Lemma 4.2 and define N, = N"*. Thenthereisa constant c3>0
such that if £ in the definition of 8B, isan odd integer between »,, and 2N,,, then

(4.17) P(BF, 1 N Br) < 2T Lexp(—caN27 ™),
for all k < n, wheren isasin Lemma4.2.In particular,

(4.18) P(BS) < 2" exp{—caN2r =)

PrRoOF Clearly, (4.18) is a result of summing (4.17), so we just need to
prove (4.17) for allk =0, 1,...,n. By the fact thatN > N’, we can assume
that the scale®/; and Ny, 1 are clearly separated in the sense of the inequalities
(4.11) and (4.13). LeB,, be the event that there exists a hierarciiy (x, y) of
depthm connectinge andy such that for each < m — 2 and eacls < {0, 1},

(4.19) 72601 € By, (zo0) and zg10€ By, (201)-
A comparison with (4.5) shows tha&, C 8, . Consider also the following events:

1. The eventA; that, for any hierarchy#; (x, y) that would makeB; satisfied,
we have|@](\}i’€)(zg)| < pN¢ for someo € {0, 1}*.

2. The event4; that, for any hierarchy that would malg, satisfied, there exists
a pair of sites(z, z’) of the type(z,0, z501) OF (zo1, Z510) With & € {0, 1}—2
such that there is no occupied bond between the@k‘j{t’? (z) and@](\;;’e) @).
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Now on 8; N B, , there exists a hierarchy that would maig satisfied, but
such that for some pair of sites as in the definitionAgf the sets@,(v’,’c’g)(z) and
.@,(V’,’C’Z)(z’) are not connected by an occupied bond. It follows #Bat £1f+1 C
B, N Az. The eventa; will be used to writeA as the union of41 andA$ N Ao,
whose probabilities are more convenient to estimate.

The proof now mimics the argument from the proof of Lemma 4.2. By the
fact thatV > N’, the eventB, is determined by looking only at the bonds that are
longertharb Ny _». Let.#’ denote ther-algebra generated by the random variables
(w;y) With |z — Z'| = bN;_». Then 8; € .#’. On the other hand, conditional
on .#’, the eventA is only determined by looking at the bonds that are shorter
than diamA,. By (4.3), we have

(4.20) P(A1.7") < Xexp{—pNZ~"}  ons;.

Here Z counts the number of pairs whesg can go wrong.

Concerning the event,, we note that conditional om‘l’ N B, the event
A is determined by the bonds of length betwee¥y_; and 5~1N,_1, which
by (4.13) must be either longer than diaw or shorter thab Ny _». Let.# be the
o-algebra generated biy,./) with |z — z'| > bNy_» or |z — Z’| < diamA,. Then
AJ N By, € F and Ay is determined by bonds independent®t Let 8 be the
same constant as in the proof of Lemma 4.2. Then we have
4.21 P(A2.F) < 28 2 N ASN B
@21)  PAdF) <2enp|—pri] onafna
Putting thesebounds together and choosirg appropriately, (4.17) directly
follows. [J

Lemmas 4.2 and 4.3 finally allow us to prove Proposition 4.1.

PROOF OF PROPOSITION4.1. LetA’ > A and lete € (0,1). Choosey €
(s/(2d), 1) such that (4.6) holds true and pick &re (s, 2dy). SupposeV > N’,
whereN’ is the constant from Lemmas 4.2 and 4.3, andIbé as in Lemma 4.2.
Fix an odd integer betweenN, and 2V, and letcz be the constant from
Lemma 4.3.

Invoking the inclusion

{D(x.,y) = (logN)*'}
(4.22) )
c ({D@x,y)>(logM)* N8B, NT)UBSUTE,
we just need to estimate the probability of the three events on the right-hand side.
Lemma 4.2 shows that the probability of the first event is less thaemma 4.3
in conjunction with the bounds (4.9) shows that

(4.23) P(B,) < 2exp A’ (loglogN) — ¢3¢ty —s)(loglogh)™1.
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which can also be made less thaby choosingV sufficiently large. Finally, the
probability P(7 ) is estimated from (4.4) where we assume thids so large that
also¢ > N,, > £1. From here the desired claim follows(]

4.2. Lower bound. The goal of this section is to prove the lower bound
in (1.6). As in Section 4.1, we formulate the relevant claim as a separate
proposition:

PrROPOSITION4.4. Supposethat (1.3)holdswithan s € (d, 2d) and let A =
A(s,d) beasin (1.2).For each A’ < A and each ¢ > 0, there exists an Ng < oo
such that

(4.24) P(D(x,y) < (loglx — yD*) <&
holds for all x, y € Z¢ with |x — y| > No.

In conjunction with Proposition 4.1, this result immediately implies Theo-
rem1.1.

PROOF OF THEOREM 1.1. Lete > 0 and letD.(x) be the event in (1.6).
Choosing A’ such that|A — A’| < ¢, Propositions 4.1 and 4.4 ensure that
liM x| 00 P(De(x)° N {0, x € 6}) = 0. Then (1.6) follows by noting that, by
FKG inequality and translation invariance, we h&(@, x € $x) > P(0 € €x)?,
which is positive by our assumption that there is percolatian.

The remainder of this section will be spent on the proof of Proposition 4.4. As
discussed in Section 2.2, our strategy will be to show that each path connecting
x andy in less thanlog|x — y|)” steps contains a hierarchy whose “gaps” obey
the conditions (2.7). (As far as this claim is concerned, the specific choice of the
exponent plays no essential role; any positive number will do.) This will be used
to control the combined length of the paths needed to span the “gaps” and show
that it will eventually exceedog|x — y|)2" for any A’ < A.

We begin by defining the relevant events. Lety € Z¢ be distinct (and
distant) sites and levV = |x — y|. Fix a numbery € (0, s/(2d)) and, for each
integern > 2, let§, = &, , (x, y) be the event thatvery hierarchy#,(x, y) of
depthn connectinge andy such that

(4.25) 12601 — Zo 10| = 1200 — Zo1|(IOgN) ™2

holds for allk =0, 1, ...,n — 2 and allo € {0, 1} will also satisfy the bounds

(4.26) [] lze0—201l V1= N@
oef0, 1}k

forallk=1,2,...,n — 1. Here “v" is a shorthand for maximum.
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REMARK 4.1. Since we allow the possibility of “site collapse” in our
definition of a hierarchy (e.g., we do not forbid thalyo = z,01), we must use
a “v” on the left-hand side of (4.26). Note that (4.26) is a precise from of (2.7)
while (4.25) is a precise from of (2.6).

Our first goal is to estimate the probability &f:

LEMMA 4.5. Lety € (0,5/(2d)) and let s" € (2dy, s) be such that s" > d.
Let &, = &,,, (x,y) be as above. Then there exists a constant c4 € (0, oo) such
that for all x, y € Z¢ with N = |x — y| satisfying y" logN > 2(s’ — d),

(4.27) P(8;+1 Né&,) < (log N)C42"N—(S/—2dy)(2y)”.

The proof of Lemma 4.5 requires certain combinatorial estimates whose precise
statements and proofs have been deferred to Lemmas A.1 and A.2 in the Appendix.
We encourage the reader to skim through the statements of these lemmas before
plunging into the forthcoming proof.

PROOF OFLEMMA 4.5. On 8,f+1 N &,, there exists a hierarchy¢, (x, y)
such that the bound (4.26) holds for &l=1,...,n — 1 but doesot hold for
k = n. In order to estimate the probability of such an event,@&k) be the
collection of all Z-tuples(z,) of sites such that (4.25) holds for ail € {0, 1}*
with k =0,1,...,n — 1, while (4.26) is true only fok = 1,...,n — 1 but not
for k =n. Then we can write

n—1
C
. n S (e L) (e £
(4.28) PEc ne)< > JI JI prioor 2010
(z0)€®(n) k=05¢€(0, 1}k

wherep(z, 7/) = 1— e 7@~ for z # 7/—see (1.4)—whilep(z, 7/) = 1 forz = 7.
As specified in the definition of the hierarchy, none of the bagags:, z,10) may
appear more than once, whence (4.28) follows by invoking inclusion—exclusion
and independence.

In order to estimate the right-hand side of (4.28), we will introduce a convenient
change of variables: For eakh=0, 1, ..., n and eaclr € {0, 15, let

(4.29) lo =260 — 201

(Thus,ty is justx — y, while g represents the “gapfoo — zo1 andz represents
the “gap”z10 — z11- Note that theN,’s from Section 2.2 are related to thg's
via N, = |t,|.) Clearly, oncex andy are fixed and, are defined for aly € {0, 1}¢
andallk=1,...,n,all of z, with o € {0, 1}’”rl can be reconstructed from (4.29).
In terms of the,, s, the conditions (4.26) can be written as

(4.30) [T ltlvi=N@,
oel0, 1}
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which on &7, N €, is required to hold for alk = 1,2,...,n — 1 and to fail
fork =n, whlle (4.25) can be rewritten as

(4.31) 2001 — Zo10] = |t |(lOgN) ™2,

which is required to hold forat =0,1,...,n — 1 and allo € {0, 1}".

The latter condition—(4.31)—allows us to recast (4.28) entirely in terms of
thez,’s. Indeed, le2 (k) be the set of all collectiong, ), o € {0, 1}*, of elements
from Z¢ such that (4.30) holds true and I€te (0, co) be a constant so large that

(4.32) p(z,7) < ;
lz =2l
is true for all distinctz, z’ € Z¢. Then (4.32) and (4.30) allow us to write
P(ES, 1N &)
@33 v
C(logN)s'2
< ... ,
— Z Z Z 1_[ 1_[ (|t0'| vV 1)s’

(10)eQ1)  (10)€R(n—1) (t;)¢2(n) k=05€{0,1}*

wherery; = x — y and where we assumed thatis so large that the last fraction
exceeds 1 whenevéy | < 1.

The right-hand side of (4.33) is now estimated as follows: First we will extract
the termsC(log N)*'2 and write the sequence of sums as a product by grouping
the corresponding;’s with their sum (and noting thats| = N). This gives

P(EC, 1 N &)

(434) [C(Iog N)s A]Z
N¢

2 1>H< 2 1l <|rg|v1)S)

(te)¢Q(n) / k=1 \t5)€R(k) 0 {0,1}¥

Now s’ > d, which implies that the sum in the second parentheses can be estimated
using Lemma A.1. Explicitly, noting that{iz € Z¢:n < |z| v1<n + 1}| <
c(dn?=1 for all n > 1 and some fixed constari{d) < oo, we introduce a
collection of positive integersn,) and first sum over allz,) subject to the
constraintz, < |t,| vV 1 < n, + 1. Then we are in a position to apply Lemma A.1

witha =s' —d, b= N*" andk = 2¢, which yields

1 C’logN)%
(4.39) 2 1 (Jto| v 1)¥ = E\r(s gxz;k’
(te)EQ(K) gefo, 13k "7

for someC’ < oo independent oV andn. (Here we used that® < 1 to bound
log N by logN.) The sum in the first parentheses can be estimated in a similar
fashion; the result of application of Lemma A.2 with=d, b = N?" andkx = 2"
is
(4.36) Y. 1=(C"logN)* N/&)"
(1o)¢2(n)
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for some C” < co. Combining these estimates with (4.34) and invoking the
identity (2.9), the desired bound (4.27) is proved]

Lemma 4.5 will be used to convert the evdi(x, y) < (IogN)A’} into a
statement about the total number of bonds needed to span the “gaps” of a hierarchy
identified within (one of ) the shortest paths conneciliramdy. Let ¥, = %, (x, y)
be the event that, favery hierarchy of deptlx connectinge andy and satisfying
(4.25), every collection of (bond) self-avoiding and mutually (bond) avoiding
pathsm, with o € {0, 1}"~1, such thatr, connects,o With z51 without using
any bond from the hierarchy, will obey the bound

(4.37) > mel =2
oe{0,1)n-1

Then we have the following claim:

LEMMA 4.6. Let A’ < A.If N = |x — y| issufficiently large and

/

4. log|

(4.38) n> g2 oglogNn,

then

(4.39) {D(x,y) < (logN)*'} N F, = @.

ProOOF  We will show that on{D(x, y) < (log N)A'} there exists a hierarchy
of a depth satisfying (4.38) such that (4.25) is true, and a collection of pgths
“spanning” the “gaps” of this hierarchy such that (4.37) is violated. ;Ldie a
path saturating the distand®(x, y) betweenx andy. The pathr is necessarily
(bond) self-avoiding. Sincér| < (logN)»—by our restriction to{D(x, y) <
(logN)2 }—and sincer, y — |x — y| satisfies the triangle inequality, the path
must contain a bond whose length exceSdglog N)2. Let zo1 be the endpoint of
this bond on the:-side and let ;o denote the endpoint on theside of the bond.
Denotingzp = x andz1 = y, we thus have

(4.40) |zo1 — z10l > |z0 — z1|(log N) ™4,

that is, (4.25) fow = 2.

Similarly, we will identify the next level of the hierarchy. Lep be the portion
of = betweenzgo = x andzo1, and letry, be the portion ofr betweenzi; =y
and z10. (Note that this agrees with our notation used in the definition of the
event¥,.) Again, we haverg|, |71| < (log N)? and thus bottrg ands; contain at
least one bond of length exceedilago — zo1|/(log N)* and|z10— z11//(log N) 2,
respectively. The endpoints of this bondsf identify the siteszgg1 and zo1o,
and similarly for the endpoints of the bond in. (If =g is empty, which can
only happen ifzp1 = zo, we letzoo1 = zo10= z0, and similarly forz1.) The very
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construction of these bonds implies (4.25) o= 0, 1. Proceeding in a similar
way altogethen-times, we arrive at a hierarchy of deptltonnectinge andy and
satisfying (4.25).

The construction implicitly defines a collection of paths with o € {0, 1}*~1
such thatr, is the portion ofr connecting the endpoints of the “ga@,0, zo1)-
Now we are ready to prove (4.39). Indeed{(x, y) < (IogN)A’} occurs, the
combined length of alt,’s must be less thaflog N)2', which by (4.37) is strictly
less than 2. But then there exists a hierarchy of depttand self-avoiding and
mutually avoiding pathsr, “spanning” its “gaps” such that (4.37) is violated.
Consequently, we must hay® (x, y) < (logN)2'} C Fe O

In light of Lemma 4.6, to prove Proposition 4.4, we will need a bound on the
probability of ,° for somen obeying (4.38). However, invoking also Lemma 4.5,
we can as well focus just on the evefif N &,,.

LEMMA 4.7. Lety € (0,s/(2d)) and let s' € (2dy, s) be such that s’ > d.
Let &, = §&,,,(x,y) and F, = F,(x,y) be as above. Then there exists a
constant s € (0, oo) suchthat for all distinct x, y € Z? with N = |x — y| satisfying
y"logN > 2(s" — d),

(4.41) P(FENE,) < (log )2 N~ @),

PrROOFE  The proof will closely follow that of Lemma 4.5 so we will stay rather
brief. In fact, the only essential difference is that, instead of (4.36)—which we
cannot use because we are no longer in the complemeft.af—the necessary
decay for the last sum will have to be provided on the basis of the containment
in F°.

We begin by noting that off,° N &,, the following events must occur:

1. There exists a hierarchif, (x, y) such that (4.25) and (4.26) hold.

2. There exists a collection of self-avoiding and mutually avoiding paghsvith
o € {0,1})"1, such thatr, connects,o with z51 without using any bonds
from J¢,(x, y).

3. The bound (4.37) fails.

As in Lemma 4.5, we will use brute force: First we will fix a hierarchy satisfying
the desired condition and try to estimate the probability that, for some collection of
nonnegative integer@, ), the length of the path, is m, for eacho € {0, 1}* 1.

The fact that the paths and the hierarchy are all disjoint then allows us to write

(442) P(‘(Fnc occurs and|7T6|) = (ma)lﬂn()ﬁ y)) =< 1_[ ng (260, 201),
oe{0,1)n-1
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where

m—1
(4.43) Om(z,2) = Z I
7=(2Q,.. m) i=0
20=2,Zm =2
Here the sum runs over self-avoiding pathef lengthm andC’ is so large that the
last quotient is an upper bound on the probability tha&ndz;,1 are connected
by an occupied bond.
To estimate (4.42), we first need a bound®@p(z, z’). To that end we note that,
in light of the inequalitys” > d, there exists a constaate (1, co) such that for
allx,yeZz4,

C/
(Izi —zival VD)

1 1
(4.44) 3 . < S
ot (lx=z[vDS (Jy—zIvD® = (x —ylVD*
From here we conclude that
(C'a)™
4.45 —
( ) Onm(z, Z)_ |z — Z|\/1)S/

that is, up to a multiplicative factor,, (z, z’) acts similarly ag(z, z'). The paths
still carry some entropy in the choice of the integérs,) which amounts to
counting the number (#:, n) of ordered partitions of a nonnegative integer

into 2'~1 nonnegative integers. A simple estimate shows tltat #) < om+2'
and, noting that or¥,° we only need to consider < 2",

1
(1260 — Zo1| V 1)

(4.46)  P(FHa(x,y) < @aCH? ]
oe{0,1)n-1

because",, _o #(m,n) < 42",

Having dispensed with the paths, we now start estimating the probability
of £ N &,. Let ®*(n) be the set of all collection&,), o € {0, 1}", obeying
(4.25) fork =0,1,...,n — 2 and (4.26) foik = 1, ...,n — 1. The bounds (4.32),
(4.25) and (4.46) then give

(ClogN)*'?'
(lzo0 — 21| V 1)S/ .

wan) BEenen=dac? Y T 1

(20)€0*(n) k=05 €{0,1}*

Here C is the same constant as in (4.33) and the product still goes only up to
(n — 1)—despite the insertion of the terms from (4.46)—because we are now
looking only at a hierarchy of depth(and not: + 1 as in the proof of Lemma 4.5).
Passing again to the variablgs= z,0 — z,1 and recalling the definition ai (k)

from the proof of Lemma 4.5, we now get

[C”(logN)* 41" "—1< )
4.48) P(FSNE,) < ;
@48) Porine) =——y—I1{ 2 H}kqmvl)s

(t:)eR(k) 0€{0,1
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whereC” < co. Each term in the product can now be estimated by (4.35). Using

n—1
(4.49) S+ —d)Y @k =s@y)t
k=1

instead of (2.9), the estimate (4.41) directly follows.

Having assembled all necessary ingredients, we can now finish the proof of
Proposition 4.4.

PROOF OF PROPOSITION 4.4. Let A’ < A and, recalling that 2l/a —
s/(2d), choose an’ € (d, s) such that 2Y/2 < §'/(2d). Pick a numbety such
that

/

4.50 2~ >
(4.50) <y <

and lets = 3(s' — 2dy).
By Lemma 4.6, we havg¢D(x,y) < (IogN)A/} C ¥, oncen satisfies the
bound (4.38). On the other handpifalso obeys the bound

(4.51) nlog(1/y) <loglogN — 2logloglogn,

which is possible for larg&’ by (4.50), then we have” log N > (loglogN)Z2. This
shows that, fotv large enough, the right-hand side of the bound from Lemma 4.5
is less thar—%@)" and similarly for the bound in Lemma 4.7. Consequently,
both bounds are summable arand, increasingv if necessary, the result can be
made smaller than any number initially prescribed. Hence, forsanyd and N
sufficiently large, we will have

(4.52) P(F) <P(&S) +P(F N &) <2¢
oncen satisfies both (4.38) and (4.51). By the inclus{@(x, y) < (IogN)A’} C
F.C, this finishes the proof.

APPENDIX

Here we establish the bounds needed in the proof of Lemmas 4.5 and 4.7. To
that end, lek be a positive integer and, fér> 0O real, let

K
(A.1) Ec(b)={(n) eNn; =1, [[ni =b"}.
i=1

We will also usegj (») to denote a (formal) complement of this set, that is, the set
of all collections(n;) € N“ of positive integers such th@f; n; < b*.
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LEMMA A.l. For each ¢ > O there exists a constant g1 = g1(¢) < oo such
that

o1
(A.2) > 155 =< (g1 logh)

(n))eB (k) i=1"i

istruefor all « > 0,all » > 1 and all positiveintegers « satisfying
k—1
klogb

(A.3) o —

> ¢,

PRoOOE As is common for this kind of estimates, we will turn the sum
into an integral. With eaclin;) € E,(b), we will associate a unique hypercube
h(ni) = (n;) + [—3, 3)° in R< and note that whenever;) € h(n;), we have
xi >n; —1/2>n;/2 andx; <n; + % <2n; foralli=1,...,«. This implies
that the product on the left-hand side of (A.2) can be bounded by the product of
(x;/2)~ A+ and

K
(A.4) U b c {(xi)ERK:Z’Ci zl,ﬂ(zxi)zb“}.
(ni)€Ex (b) i=1
Noting that theh(n;) are disjoint, we can now bound the sum in (A.2) by the
integral over the set on the right-hand side. Relabelind® x;, we thus get
K
l_[ 1
xl+o¢ :

(A5) lefthand side of (A2 22 [ ... [ dxy.. dx,
i P i=1"

x;>1i=1,...,
To evaluate the integral, we introduce the substitutisns= ¢ followed by
zj=y1+---+yjforj=1,...,«. Sincey; > 0, thez;’s are ordered and since
the integrand depends only ap, the integrals overs, ..., z,—1 can readily be
performed. The result is
00 k—1
(6)  righthand side of (A5} 27042 [ © gz L7,

clogh (kK —1)!
where we have now dropped the subscrigtfrom z. Now the assumption (A.3)
ensures that for > « logb, the functionz — ¥ lemat s strictly decreasing and,
in fact, its logarithm is concave. Applying (A.3), we easily derive that for any
z>«logbh,

(A7) 77 1e™% < (i logh)* ~Lp K g—e(zK10gb)

Substituting this into (A.6), the integral is now easily performed. The calculation
is concluded by using Stirling’s formula to cancel the fagtor! coming from the
previous estimation against the leading ordefxof- 1)! in the denominator. (J

Our next claim concerns a similar sum over the indice8jita):
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LEMMA A.2. Thereexistsa constant g» < oo such that for each o > 1, each
b > e/4 and any positive integer «,

K
(A.8) Yo [In¢ ™t < (s26™logh)*.
(nj)eBr () i=1

PROOF A moment’s thought reveals that we only have to address the case
a = 1. We will call upon the argument from Lemma A.1. Indeed, replacing (A.4)

by
K
(A.9) U bowc [(x,-)eR":Zx,- >1 [[x S(Zb)K},
(n))€E%(a) i=1
we easily find out that

(A.10) Y o1<2* // dxy- - dx,.

(ni)€Ex(a) xp=Li=1,..k
[16_q xi <@b)<

Invoking the same substitutions as before, we then get that the right-hand side of
(A.10) equals

« log(4b) Z/c—l 1
a1y 2+ [ a ¢t <27 (Ab)“ =

0 (x — 1! K!
Here we used the bourdd < (4b)* to get rid of the exponential in the integral
and then integrated out. Invoking Stirling’s formula, the desired bound directly
follows. O

(« log(4b))”.
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