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We consider the (unoriented) long-range percolation onZ
d in dimen-

sions d ≥ 1, where distinct sitesx, y ∈ Z
d get connected with probabil-

ity pxy ∈ [0,1]. Assumingpxy = |x − y|−s+o(1) as |x − y| → ∞, where
s > 0 and| · | is a norm distance onZd , and supposing that the resulting ran-
dom graph contains an infinite connected componentC∞, we letD(x,y) be
the graph distance betweenx andy measured onC∞. Our main result is that,
for s ∈ (d,2d),

D(x,y) = (log |x − y|)�+o(1), x, y ∈ C∞, |x − y| → ∞,

where�−1 is the binary logarithm of 2d/s ando(1) is a quantity tending to
zero in probability as|x−y| → ∞. Besides its interest for general percolation
theory, this result sheds some light on a question that has recently surfaced
in the context of “small-world” phenomena. As part of the proof we also
establish tight bounds on the probability that the largest connected component
in a finite box contains a positive fraction of all sites in the box.

1. Introduction.

1.1. Motivation. Percolation is a simple but versatile model with applications
ranging from the study of phase transitions in mathematical physics to opinion
spreading in social sciences. The most well-understood questions of percolation
theory are those concerning the appearance and uniqueness of the infinite
component [10], uniqueness of the critical point [1, 16, 20], decay of connectivity
functions [11, 12], and the scaling properties at the critical point in dimensions
d = 2 [24, 25] andd large enough [17, 18]. Less well understood remain natural
questions about the qualitative structural and geometrical properties of the infinite
connected component, especially below the upper critical dimension. In particular,
this includes the tantalizing open problem concerning the absence of percolation
at the percolation threshold.

Long-range versions of the percolation model have initially been introduced
in order to study the effect of long-range interaction on the onset of phase
transition in one-dimensional systems. OnZ, the most common setup is that,
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in addition to random nearest-neighbor connections with probabilityp ∈ (0,1),
a bond betweenx, y ∈ Z is added with probability 1− exp{−β|x − y|−s},
whereβ ∈ (0,∞) ands > 0. In dimension 1, the interesting ranges of values ofs

are s < 1, where the resulting graph is almost surely connected [23], 1< s < 2,
where an infinite component appears oncep is large enough [22], and the
critical cases = 2, where the infinite component appears “discontinuously” for
somep < 1 sufficiently large if and only ifβ > 1 [2] and where the truncated
connectivity function decays with aβ-dependent exponent [19] forβ in the
interval (1,2). The casess > 2 are qualitatively very much like the nearest-
neighbor case (in particular, there is no percolation forp < 1 andβ < ∞). In
dimensionsd > 1, the insertion of long-range connections is not essential for the
very existence of percolation—the main problem of interest there is to quantify the
effect of such connections on the critical behavior.

In this paper we study the global scaling properties of the infinite component
in long-range percolation models onZd for arbitraryd . We focus on the scaling
of the graph distance (akachemical distance) in the cases when the probability
that a bond is occupied falls off with exponents ∈ (d,2d). More precisely, we
let distinctx, y ∈ Z

d be connected independently with probabilitypxy that has the
asymptoticspxy = 1−exp{−|x −y|−s+o(1)} as|x −y| → ∞. Assuming that there
is a unique infinite connected componentC∞ almost surely, we letD(x,y) be the
distance between the sitesx andy measured onC∞. Then we prove thatD(x,y)

scales with the Euclidean distance|x − y| as

D(x,y) = (log |x − y|)�+o(1), x, y ∈ C∞, |x − y| → ∞,(1.1)

where� = �(s, d) is given by

�(s, d) = log2

log(2d/s)
.(1.2)

This result should be contrasted with those of [5–7, 14] (see also [4]), where
various (other) regimes of decay oflong-range bond probabilities have been
addressed. We refer to Section 1.3 for further discussion of related work and
an account of the current state of knowledge about the asymptotic behaviors
of D(x,y).

The nonlinear scaling (1.1) is a manifestation of the fact that adding sparse
(but dense-enough) long edges to a “Euclidean” graph may substantially alter the
graph geometry and, in particular, its scaling properties. This is exactly what has
recently brought long-range percolation renewed attention in the studies of the so-
called “small-world” phenomena; see [26] for an initial work on these problems.
This connection was the motivation of the work by Benjamini and Berger [6],
who studied how the (graph) diameter of a finite ring ofN sites changes when
long connections are added in. On the basis of a polylogarithmicupper bound,
the authors of [6] conjectured (cf. Conjecture 3.2 in [6]) that in the regime
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when s ∈ (d,2d), the diameter scales as(logN)γ , whereγ = γ (s) > 1. The
present paper provides a polylogarithmiclower bound in this conjecture. However,
at present it is not clear whether the exponent for the diameter growth matches that
for the typical distance between two remote points. We refer to Section 1.4 for
further discussion of “small-world” phenomena.

The remainder of this paper is organized as follows. In Section 1.2 we
define precisely the long-range percolation model and state our main theorem
(Theorem 1.1). In Section 1.3 we proceed by summarizing the previous results
concerning the behavior ofD(x,y)—and graph diameter—for various regimes
of s. In Section 1.4 we discuss the relation to “small-world” phenomena. Section 2
is devoted to a heuristic explanation of the proof of Theorem 1.1. The proof
requires some preparations, particularly an estimate on the size of the largest
connected component in large but finite boxes. This is the content of Theorem 3.2
in Section 3. The actual proof of our main result comes in Sections 4.1 (upper
bound) and 4.2 (lower bound).

1.2. The model and main result. Consider thed-dimensional hypercubic
latticeZ

d and let(x, y) �→ |x − y| denote a norm distance onZd . For definiteness,
we can take| · | to be the usual�2-norm; however, any other equivalent norm will
do. Letq :Zd → [0,∞) be a function satisfying

lim|x|→∞
logq(x)

log |x| = −s,(1.3)

where s ≥ 0. (Here we set log0= −∞.) For each (unordered) pair ofdistinct
sitesx, y ∈ Z

d , we introduce an independent random variableωxy ∈ {0,1} with
probability distribution given byP(ωxy = 1) = pxy , where

pxy = 1− e−q(x−y).(1.4)

Note thatpxy = px−y,0 so the distribution of(ωxy) is translation invariant.
Let G be the random graph with vertices onZ

d and a bond between any pair of
distinct sitesx andy, whereωxy = 1. Given a realization ofG , let us callπ =
(z0, z1, . . . , zn) a path, providedzi are all distinct sites in Z

d and ωzi−1zi
= 1

for eachi ∈ {1,2, . . . , n}. Define the length|π | of π to be the number of bonds
constitutingπ (i.e., the numbern above). Using�(x,y) to denote the (random)
set of all pathsπ with z0 = x andz|π | = y, we let

D(x,y) = inf{|π | :π ∈ �(x,y)}, x, y ∈ Z
d .(1.5)

[In particular, we haveD(x,y) = ∞ if �(x,y) = ∅.] The random vari-
able D(x,y) is the chemical distance betweenx and y, that is, the distance
measured on the graphG .

Throughout the rest of the paper, it will be assumed that the random graphG
contains an infinite connected component. We will focus on the cases when
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s ∈ (d,2d) in (1.3), in which percolation can be guaranteed, for instance, by
requiring that the minimal probability of a nearest-neighbor connection,p, is
sufficiently close to 1. (Indeed, ind ≥ 2, it suffices thatp exceeds the percolation
threshold for bond percolation onZd , while in d = 1, this follows by the classic
result of [22].) Moreover, by an extension of Burton–Keane’s uniqueness argument
due to [15], the infinite component is unique almost surely. We will useC∞ to
denote the set of sites in the infinite component ofG .

Our main result is as follows:

THEOREM 1.1. Suppose that (1.3)holds with an s ∈ (d,2d) and assume that,
P-almost surely, the random graph G contains a unique infinite component C∞.
Then for all ε > 0,

lim|x|→∞ P

(
� − ε ≤ logD(0, x)

log log|x| ≤ � + ε
∣∣∣0, x ∈ C∞

)
= 1,(1.6)

where � = �(s, d) is as in (1.2).

Formula (1.6) is a precise form of the asymptotic expression (1.1). The fact
that �−1 is the binary logarithm of 2d/s is a consequence of the fact that the
longest bonds in the shortest path(s) between two distant sites ofC∞ exhibit a
natural binary hierarchical structure; see Section 2 for more explanation. Note
that s �→ �(s, d) is increasing throughout(d,2d) and, in particular,�(s, d) > 1
for all s ∈ (d,2d) with lims↓d �(s, d) = 1 and lims↑2d �(s, d) = ∞.

REMARK 1.1. The requirement of translation invariance is presumably not
crucial for (the essence of ) the above result. Indeed, most of our proofs should
carry through under the weaker assumption of approximate homogeneity on large
spatial scales. Notwithstanding, some of our arguments in Section 3 are based on
previous results that require translation invariance and so we stick with the present
setting for the rest of this paper.

1.3. Discussion. As already alluded to, several different asymptotic behaviors
are possible in the above problem depending on the value of the exponents. We
proceed by reviewing the known (and conjectured) results. Throughout, we will
focus on the specific distribution

pxy = 1− exp{−β(1+ |x − y|)−s},(1.7)

whereβ ∈ [0,∞). (Some of the results also required that all nearest-neighbor
connection be a priori present.) We will concentrate on the asymptotic of two
quantities: Thetypical graph distance D(x,y)—the focus of this paper—and the
diameter DN of the graph obtained by “decorating” a box ofN × · · · × N sites
in Z

d by the bonds inG with both endpoints therein. There are five distinct regimes
marked by the position ofs relative to the numbersd and 2d .
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The cases ofs < d fall into the category of problems that can be analyzed using
the concept of stochastic dimension introduced in [7]. The result is the almost-sure
equality

sup
x,y∈Zd

D(x, y) =
⌈

d

d − s

⌉
;(1.8)

see Example 6.1 in [7]. A similar asymptotic statement holds for theN → ∞ limit
of DN ; see Theorem 4.1 of [6].

For s = d , Coppersmith, Gamarnik and Sviridenko [14] study the asymptotic
of DN . The resulting scaling is expressed by the formula

DN = 	(1)
logN

log logN
, N → ∞,(1.9)

where	(1) is a quantity bounded away from 0 and∞. Since the typical distance
is always less than the diameter, this shows thatD(x,y) will grow at most
logarithmically with |x − y|. However, at present the appropriate lower bound
onD(x,y) is missing.

In the casesd < s < 2d , Benjamini and Berger [6] and Coppersmith, Gamarnik
and Sviridenko [14] proved polylogarithmic upper bounds onDN [and hence
on D(x,y) for |x − y| ≈ N ]. However, the best lower bound these references
gave was proportional to logN . The present paper provides a sharp leading-
order asymptotic forD(x,y) which constrainsDN to grow at least as fast
as (logN)�+o(1). Unfortunately, neither the bounds from [6] and [14] nor those
derived forD(x,y) in the present paper are sharp enough to make any definitive
asymptotic statements aboutDN . We hope to return to this question in a future
publication.

The critical casess = 2d are at present not very well understood. Here
Benjamini and Berger [6] conjectured that

DN = Nθ(β)+o(1), N → ∞,(1.10)

with θ(β) ∈ (0,1), and we expect a similar asymptotic to be valid for the typical
distanceD(x,y). A general upper bound on the aboveθ(β) was derived in [14].
The corresponding—but not sharp—lower bounds were derived in [6] and [14]
under the restriction to the “nonpercolative” regimed = 1 and β < 1. (This
restriction appears because the proof relies heavily on the notion of a cut-point;
see [22].) Surprisingly, similarly open are the casess > 2d where we expect
thatDN scales linearly withN . The latter seems to have been proved only ind = 1
[6], or for the case of the supercritical nearest-neighbor percolation ind ≥ 2 [5];
see also [4].

An important technical resource for this paper has been the recent work of
Berger [8] on long-range percolation with exponentsd < s < 2d . Employing a
variant of the renormalization scheme of [22], Berger proved among other things
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theabsence of critical percolation and, whenever thereis percolation, the existence
of a cluster of at leastNd−o(1) sites in any box of volumeNd (see Theorem 3.1).
An extension of this result (see Theorem 3.2) establishing tight bounds on the
probability that the largest connected component in a finite box contains apositive
fraction of all sites is essential for the proof of the upper bound in (1.6).

1.4. Relation to “small-world” phenomena. As already mentioned, long-
range percolation has been recently used in the study of “small-world” phenomena.
The catchy term “small worlds” originates in the old but still-fun-to-read article by
Milgram [21], who observed through an ingenious experiment that two typical
Americans are just six acquaintances (or six “handshakes”) away from each
other. With the rise of the overall world connectivity in recent years due to the
massive expansion of air traffic, electronic communications and particularly the
internet, and so on, the “small-world” phenomena experienced a fair amount of
new interest. Novel examples emerged in physics and biology, particularly after
the publication of [26]. Several mathematical models were devised and studied
using both rigorous and nonrigorous techniques. A brief overview of the situation
from the perspective of the theory of random graphs (and additional references)
can be found in Section 10.6 of [9].

While we will not attempt to summarize the content of the publication boom
following the appearance of [26], let us mention that a major deficiency of many
models introduced so far seems to be—at least to the author of the present
paper—the unclear status of theirrelevance to the actual (physical, biological or
sociological) systems of interest. In particular, a large fraction of studied models
seem to unjustly ignore the underlying spatial structure present in the practical
problem of interest. (The reason for that is most likely the reduced complexity—as
in statistical mechanics, models without underlying geometry, the so-calledmean-
field models, are often exactly solvable.) With this problem in mind, Benjamini
and Berger [6] proposed a new class of “small-world” models based on long-
range percolation on Euclidean graphs. More precisely, as an underlying graph
they consider an a priori connected ring ofN sites to which long edges are added
with probability as described in (1.7).

One of the questions discussed by Benjamini and Berger was how the diameter
of the resulting random graph depends onN for various ranges of values ofs.
As detailed in Section 1.3, this behavior depends rather sensitively on the value
of the exponents. In particular, “phase transitions” occur ats = d , which is the
borderline of the region with finite diameters, ands = 2d , which separates the
regions of linear and sublinear scaling. Each of the resulting behaviors may be
useful in different contexts. For instance, if we believe Milgram’s assertion that
six is the typical graph distance between two average Americans regardless of the
population size, the exponents should be within the regime described by (1.8).
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2. Main ideas of the proof. The proof of Theorem 1.1 consists of two parts
where we separately prove the upper and lower bounds in (1.6). Both parts will
be based on the concept of certainhierarchies of sites whose definition is given
below. In this definition—and elsewhere in this paper—the symbolσ denotes a
hierarchical index,σ ∈ {0,1}k, which can be viewed as a parametrization of the
leaves of abinary tree of depthk. Thus, for instance,σ = 01101 means that,
starting from the root, we “go” left, right, right, left and right to reach the leaf
represented byσ . Adding digits behindσ denotes index concatenation.

DEFINITION 2.1. Given an integern ≥ 1 and distinct sitesx, y ∈ Z
d , we say

that the collection

Hn(x, y) = {
(zσ ) :σ ∈ {0,1}k, k = 1,2, . . . , n; zσ ∈ Z

d
}

(2.1)

is ahierarchy of depth n connecting x and y if:

1. z0 = x andz1 = y.
2. zσ00 = zσ0 andzσ11 = zσ1 for all k = 0,1, . . . , n − 2 and allσ ∈ {0,1}k.
3. For allk = 0,1, . . . , n − 2 and allσ ∈ {0,1}k such thatzσ01 
= zσ10, the bond

betweenzσ01 andzσ10 is occupied, that is,(zσ01, zσ10) ∈ G .
4. Each bond(zσ01, zσ10) as specified in part 3 appears only once inHk(x, y).

In the following, the pairs of sites(zσ00, zσ01) and(zσ10, zσ11) will be referred to
as “gaps.”

REMARK 2.1. By assumption 2, a hierarchy of depthn is uniquely specified
by itsnth level. Note that we do not require thesites of the hierarchy to be distinct
and, if two points of the formzσ10 andzσ11 coincide, we do not insist on having a
bond between them. The phrase “connectingx andy” in the definition ofHn(x, y)

is not to imply thatHn(x, y) is an occupied path fromx to y. Instead,Hn(x, y)

should be thought of as a framework of large-scale bonds which can be turned into
a path by connecting the “gaps” in an appropriate way; see Figure 1.

Our strategy in both the upper and lower bound will be to identify a hierarchy
of sufficient depth from within a given path. In an idealized situation, this
hierarchy between sites at Euclidean distanceN would be such that the primary
bond (z01, z10) has length (approximately)Ns/(2d), the secondary bonds have
lengthN(s/(2d))2

, and so on. The principal difficulty is to “make” the hierarchy
deep enough so that it already contains “most of” the bonds in the underlying
path. In particular, we will have to guarantee that the “gaps”—which may still be
rather spread out in the Euclidean distance—can be spanned without substantially
affecting the overall length.
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FIG. 1. A schematic picture of a hierarchy of depth 5 connecting x = z0 and y = z1. The straight
line represents a path between x and y and the arches stand for the bonds between pairs of
sites (zσ01, zσ10). The arrows indicate the sites on levels 1–4 of the hierarchy; the fifth level has
been omitted for brevity. Note that, by part 2 of Definition 2.1,we have z100= z10, and so on.

2.1. Upper bound. To outline the proof of the upper bound on the graph
distance, it is convenient to start by analyzing the cases when all pairs of nearest
neighbors onZd are a priori connected. In these situations one can (essentially)
construct a path connecting two distant sites which uses about the optimal number
of distinct occupied bonds.

Let γ ∈ (s/(2d),1). The construction is based on the following observation:
If x andy are two sites at distance|x − y| = N � 1, and ifB0, respectively,B1,
are boxes of sideNγ centered atx, respectively,y, then B0 and B1 are with
overwhelming probability connectedby a bond inG . Indeed, there areNdγ

ways to place each endpoint of such a bond while its Euclidean length has to
be essentially equal toN . Hence, the probability thatB0 andB1 arenot directly
connected by an occupied bond is

P(B0 � B1) = exp

{
− ∑

z∈B0

∑
z′∈B1

q(z − z′)
}

= exp
{−N2dγ−s+o(1)

}
.(2.2)

Since 2dγ > s, the right-hand side tends rapidly to zero asN → ∞.
Once the bond betweenB0 and B1 has been selected, a similar argument

shows that the boxesB00 andB01 of side Nγ 2
, centered atx and the “nearer”

endpoint of the primary bond, respectively, will typically be connected by an
occupied bond. Continuing the process for a while, the endpoints of the family
of bonds thus identified give rise to a hierarchy of sites in the above sense: First we
let z0 = x andz1 = y, then we letz01 andz10 be the endpoints of the primary bond
connectingB0 andB1. Next, the endpoints of the secondary bonds connecting the
boxesB00 andB01, respectively,B10 andB11, will be denoted byz001 andz010,
respectively,z101 andz110. The higher levels will be denoted similarly. Note that,
in order to have each level of the hierarchy completely defined, we need to use
part 2 of Definition 2.1 to identifyz00 with z0, and so on.
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Of course, the most pertinent question is now for how long we can continue
developing such a hierarchy. Proceeding as in our previous estimates, the
probability thatnot all pairs of boxesBσ0 and Bσ1 with σ ∈ {0,1}k will be
connected by a bond inG is bounded by

2k exp
{−Nγ k(2dγ−s+o(1))},(2.3)

where 2k counts the number of bonds we are trying to control at this step and the
factorNγ k(2dγ−s) in the exponent originates from the fact that we are connecting
boxes of sideNγ k+1

which are at Euclidean distanceNγ k
from each other. This

estimate shows that, as long asNγ k(2dγ−s) � log logN , the probability that the
identification procedure fails is negligible. However, this allows us to reach the
level when the pairs of sites constituting the “gaps” are no farther thanNγ k =
(logN)o(1) from each other. This happens fork ≈ K , where

K = log logN

log(1/γ )
.(2.4)

Now, a hierarchy of depthK consists of roughly 2K bonds and 2K “gaps.” Using
nearest-neighbor paths to span each “gap,” the total number of bonds needed to
connect all “gaps” will thus be at most 2K(logN)o(1). Hence, the graph distance
betweenx and y cannot exceed 2K(logN)o(1). Plugging the value ofK and
passing to the limitγ ↓ s/(2d), the latter is no more than(logN)�+o(1).

Performing the above argument without the luxury of an a priori connected
graph involves quite some extra work. Indeed, we need to ensure that the sites
identified in the process are connected tox and y (and, therefore, toC∞) and
that the bonds lie in a “backbone”—rather than a “dead-end”—of the connection
betweenx andy. Our solution to this nonlocal optimization problem is to construct
the hierarchy so that each sitezσ for σ ∈ {0,1}k is connected to a positive
fraction of all sites in theNγ k

neighborhood ofzσ . Since the distance between
the endpoints of the “gaps” in such a hierarchy is at most of the orderNγ k−1

,
the connected components of these endpoints are still with a large probability
connected by a bond fromG . Now, if k ≈ K , we haveNdγ k = (logN)o(1) and
we need no more than(logN)o(1) steps to connect the endpoints of each “gap.”
This allows us to proceed as before.

To ensure the connectivity property, we will introduce the concept of adense
site which is a sitex that is connected to at least a (prescribed) fraction of all
sites in a sufficiently large box centered atx. Then we need to establish two
additional facts: First, any sitex ∈ C∞ is with overwhelming probability dense.
Second, any sufficiently large box contains a positive fraction of dense sites.
These statements—which come as Corollaries 3.3 and 3.4—will allow us to look
for hierarchies containing only dense sites, for which the above argument easily
carries through. The proof of the two corollaries in turn requires showing that the
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largest connected component in any box contains a (uniformly) positive fraction of
all sites. To maintain generality, this statement—which comes as Theorem 3.2—
has to be proved under very modest assumptions; essentially, we only assume the
asymptotic (1.3) and the fact that there is percolation.

2.2. Lower bound. The argument for the upper bound shows that there exists
a path that connectsx to y in about(log|x − y|)� steps. The goal of the lower
bound is to show that, among the multitude of paths possibly connectingx andy,
no path will be substantially shorter.

In an idealized situation, our reasoning would go as follows: We setN = |x −y|
and pick a path from�(x,y) that connectsx with y in less than(logN)O(1)

steps. [HereO(1) represents a fixed number whose value is irrelevant in the
following.] Next we will attempt to identify a hierarchy fromπ . The primary bond
(z01, z10) is chosen simply as (one of ) the longest bonds inπ . Since|x − y| = N

but |π | = (logN)O(1), this bond must be longer thanN/(logN)O(1). But in order
for this bond to exist with a reasonable probability, a similar argument as used in
the upper bound shows that the distancesN0 = |x − z01| andN1 = |z10 − y| must
be such that

Nd
0 Nd

1 � Ns+o(1).(2.5)

Supposing (without any good reason) thatN0 is comparable withN1, the
removal of(z01, z10) from π would leave us with two paths that connect sites
at distanceNs/(2d)+o(1) in a polylogarithmic number of steps. The argument could
then be iterated which would eventually allow us to categorize the whole path into
a hierarchical structure, with one bond of lengthN , two bonds of lengthNs/(2d),
four bonds of lengthN(s/(2d))2

, and so on.
It is easy to check that the hierarchy thus identified would involve roughly 2K

bonds, whereK is as in (2.4) withγ = s/(2d), and|π | would thus have to be at
least(logN)�+o(1). Of course, the main problem with the above argument is that
the assumptionN0 ≈ N1 is not justified and presumably fails in a large number of
places. Extreme ways to violate the conditionN0 ≈ N1 are not so hard to dismiss.
For instance, in the case of a “gap” collapse, for example, whenN0 = No(1), the
bound (2.5) forces thatN1 � Ns/d+o(1) � N , implying that(z01, z10) was not the
longest bond after all. But, since we are dealing with an exponentially growing
number of bonds, even “soft” violations of this condition could make the whole
argument crumble to pieces. As we will describe below, the solution is to work
with (2.5)—and its generalizations—the way it stands without trying to extract
any information about the particularN0 andN1.

Here is what we do. We pick aγ satisfyingγ < s/(2d) and show thatevery path
connectingx andy in less than(logN)O(1) steps, whereN = |x − y|, contains a
hierarchyHn(x, y) of depthn � K—with K as in (2.4)—such that the following
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holds with overwhelming probability: The length of the “gaps” is comparable with
the length of the bonds that “fill” them; that is, for allk = 1, . . . , n − 1, we have

|zσ01 − zσ10| = |zσ0 − zσ1|1−o(1), σ ∈ {0,1}k−1.(2.6)

Moreover, theaverage size of the “gaps” on thekth level is aboutNγ k
; that is, the

quantitiesNσ = |zσ0 − zσ1| satisfy∏
σ∈{0,1}k

Nσ ≥ N(2γ )k(2.7)

for all k = 1, . . . , n − 1. Obviously, fork = 1 this is a more precise form of (2.5).
Part (2.6) is a consequence of the fact that, in order to connect two sites at
distanceNγ k

in less than(logN)O(1) steps, at least one bond in the path must
be longer thanNγ k

/(logN)O(1). This equalsNγ k(1−o(1)) as long ask � K . As to
the proof of (2.7), letEn be the event that the inequality in (2.7) holds fork = 1,

2 . . . , n − 1. We will sketch the derivation of an upper bound onP(Ec
k+1 ∩ Ek)

which can then be iterated into a bound onP(Ec
n).

Fix a collection of numbers(Nσ ) representing the distances between various
“gaps” in the hierarchy, and let us estimate the probability that a hierarchy
with these(Nσ ) occurs. In light of (2.6), the primary bond will costN−s+o(1)

of probability, but there are of the order(N0N1)
d−1 ways to choose the

endpoints. (Remember thatN0 andN1 are fixed.) Similarly, the two secondary
bonds cost(N0N1)

−s+o(1) of probability and their endpoints contribute of the
order (N00N01N10N11)

d−1 of entropy. Applying this to the collections(Nσ )

compatible withEc
n+1 ∩ En, we get

P(Ec
n+1 ∩ En)

(2.8) ≤ ∑
(Nσ )

(N0N1)
d−1

Ns−o(1)

(N00N01N10N11)
d−1

(N0N1)s−o(1)
. . .

∏
σ∈{0,1}n Nd−1

σ∏
σ∈{0,1}n−1 N

s−o(1)
σ

,

where the sum goes over all(Nσ ) for whichEc
n+1 ∩ En holds.

To evaluate the right-hand side of (2.8), we need to observe that the numera-
tor (N0N1)

d−1 can be combined with the denominator of the next quotient into a
term which bys > d is summable on bothN0 andN1; using (2.7), the resulting
sum overN0 andN1 is bounded byN−(s−d)(2γ )+o(1). The other numerators will
be handled analogously; the upshot is that, for allk ≤ n − 1, the sum over allNσ

with σ ∈ {0,1}k is bounded byN−(s−d)(2γ )k+o(1). The last numerator has no de-
nominator to be matched with, but here we can use that, since (2.7) fork = n fails
onEc

n+1 ∩ En, the product ofNσ ’s is now bounded from above! Consequently, the
relevant sum does not exceedNd(2γ )n+o(1). Putting all these estimates together,
and applying the inequality

s − d(2γ )n + (s − d)

n−1∑
k=1

(2γ )k ≥ (s − 2dγ )(2γ )n−1,(2.9)
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the right-hand side of (2.8) is bounded byN−(s−2dγ )(2γ )n−1
. [The inequality in

(2.9) can be derived either by direct computation or by a repeated application of
the inequalitys + (s − d)(2γ ) ≥ s(2γ ) to the first and the third term on the left-
hand side.] Summing the obtained bound overn, the probabilityP(En) is shown to
be essentially one as long asn � K .

Once we have established that (2.6) and (2.7) hold, we will use a similar
estimate to find a lower bound onD(x,y). Here we simply have to prove that, even
though the hierarchy is already rather large, the lower bound (2.7) requires that at
least as many bonds be used to connect all of the “gaps.” To avoid some unpleasant
combinatorial estimates, we will continue under the simplifying assumption that
all of the 2n−1 “gaps” of the hierarchy are nontrivial.

Let �Fn be the event that every hierarchy of depthn satisfying (2.6) and (2.7)
requires more than 2n−1 extra steps to connect all of its “gaps.” In light of our
bound onP(Ec

n), it suffices to estimate the probability of�F c
n ∩En. Since all “gaps”

are nontrivial, the only way�F c
n can occur is that each “gap” is spanned by a

single bond. Now the bond spanning the “gap”(zσ0, zσ1) costsN−s+o(1)
σ amount

of probability and soP( �F c
n ∩ En) can be bounded by

P( �F c
n ∩ En)

(2.10)
≤ ∑

(Nσ )

(N0N1)
d−1

Ns−o(1)
. . .

∏
σ∈{0,1}n−1 Nd−1

σ∏
σ∈{0,1}n−2 N

s−o(1)
σ

∏
σ∈{0,1}n−1

1

N
s−o(1)
σ

,

where the(Nσ )’s now obey (2.7) forall k = 0,1, . . . , n − 1. The last product on
the right-hand side makes the entire sum convergent and (forN � 1) small. Thus,
with overwhelming probability,�Fn occurs for alln � K , which means that the
shortest path(s) betweenx andy must contain at least 2n−1 = 2K(1−o(1)) distinct
bonds. ForK as in (2.4), we have 2K = (logN)�

′
, where 1/�′ = log2(1/γ ). From

here the lower bound in (1.6) follows by lettingγ ↑ s/(2d).

3. Percolation in finite boxes.

3.1. Size of the largest connected component. In this section we will prove an
estimate showing that the largest connected component in large but finite boxes
contains a positive fraction of all sites whenever there is percolation. This estimate
will be essential for the proof of the upper bound in (1.6). Throughout this section,
the original meaning of the quantity from (1.3) will be substituted by a weaker
form (3.1) below. We will return to the original definition in Section 4.

We begin by quoting a result from [8]. Let us say that the collection of
probabilities(pxy)x,y∈Zd is percolating, if the associated i.i.d. measure has an
infinite cluster almost surely. LetL ≥ 1 be an integer and let�L be a box inZ

d

of sideL containingLd sites. Consider the percolation problem restricted to the
sites of�L (and, of course, only the bonds with both endpoints in�L) and let|CL|
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denote the size of the largest connected component in�L. In [8], Berger proved
that once(pxy)x,y∈Zd are percolating,�L contains a large cluster. The precise
formulation is as follows:

THEOREM 3.1 ([8], Lemma 2.3). Let d ≥ 1 and suppose that the collection of
probabilities (pxy)x,y∈Zd , where pxy = 1− e−q(x−y), is percolating. Suppose that,
for some s ∈ (d,2d),

lim inf|x|→∞ |x|s(1− e−q(x)) > 0.(3.1)

Then for each ε > 0 and each ζ ∈ (0,∞), there exists an L such that

P(|CL| < ζLs/2) ≤ ε.(3.2)

We note that once (3.1) holds for somes, then it holds also for anys′ > s.
Therefore, Theorem 3.1 actually guarantees that the largest connected component
in �L will contain at leastLd−o(1) sites. (Note that the statement forbids us to
takes = 2d , and an inspection of Lemma 2.3 in [8] reveals that this is nontrivially
rooted in the proof.) However, for our purposes we need to work with the event
that |CL| is proportional to Ld and, in addition, we also need a more explicit
estimate on the probability of such an event. Our extension of Berger’s result
comes in the following theorem:

THEOREM 3.2. Let d ≥ 1 and consider the probabilities (pxy)x,y∈Zd such
that (3.1) holds for some s ∈ (d,2d). Suppose that (pxy)x,y∈Zd are percolating.
For each s′ ∈ (s,2d) there exist numbers ρ > 0 and L0 < ∞ such that for
each L ≥ L0,

P(|CL| < ρ|�L|) ≤ e−ρL2d−s′
.(3.3)

In particular, once L is sufficiently large, the largest connected component in �L

typically contains a positive fraction of all sites in �L.

Theorem 3.2 alone would allow us to establish the existence of a hierarchy
between two sites, but it would not ensure that the “gaps” are properly connected
(which is what we need to turn the hierarchy into a path). Fortunately, the structure
of the proof of Theorem 3.2 allows us to make this conclusion anyway. To state
the relevant mathematical claims, for eachx ∈ Z

d and any odd integerL ≥ 1, let
�L(x) be the box of sideL centered atx and letCL(x) be the set of sites in�L(x)

that are connected tox by an occupied path in�L(x). Then we have:

COROLLARY 3.3. Under the conditions of Theorem 3.2, there exists a
constant ρ > 0 such that

lim
L→∞P

(|CL(x)| < ρ|�L(x)|, x ∈ C∞
) = 0(3.4)

holds for each x ∈ Z
d .
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COROLLARY 3.4. Given � < L, let D
(ρ,�)
L be the set of sites x ∈ �L such that

|C�(x)| ≥ ρ|��(x)|. Under the conditions of Theorem 3.2, for each s′ ∈ (s,2d)

there are constants �0 < ∞ and ρ > 0 such that

P
(∣∣D (ρ,�)

L

∣∣ < ρ|�L|) ≤ e−ρL2d−s′
(3.5)

holds for any � with �0 ≤ � ≤ L/�0.

Theorem 3.2 and the two corollaries are what this section contributes to the
proof of the main result of this paper. An impatient (or otherwise uninterested)
reader should feel free to skip the rest of this section on a first reading and pass
directly to Sections 4.1 and 4.2. For those who stay put, we proceed by discussing
the main ideas of the proof and a breakdown of its steps into the corresponding
technical lemmas. The actual proofs appear in Section 3.5.

3.2. Outline of the proof. Our strategy of the proof of Theorem 3.2 is as
follows. First we combine a one-step renormalization with Theorem 3.1 to convert
the problem into a similar question forsite-bond percolation. An important feature
of this reformulation is that the occupation probability of sites and bonds can be
made as close to 1 as we wish.

Given an odd integerK ≥ 1, let C (x)
K denote the largest connected component

in �K(x); in the case of a tie we will choose the component containing the
site that is minimal in the standard lexicographic order onZ

d . For any two
distinctx, y ∈ Z

d , we will say that�K(Kx) and�K(Ky) aredirectly connected
if there is an occupied bond connecting a site fromC (Kx)

K to a site fromC
(Ky)
K . We

will use {�K(Kx) � �K(Ky)} to denote the event that�K(Kx) and�K(Ky)

are not directly connected. Then we have:

LEMMA 3.5. Under the assumptions of Theorem 3.1, for any s ∈ (d,2d) the
following is true: For each β < ∞ and r < 1 there exist a number δ > 0 and an
odd integer K < ∞, such that

P
(∣∣C (Kx)

K

∣∣ < δ |�K(Kx)|) ≤ 1− r(3.6)

and

P
(
�K(Kx) � �K(Ky)

) ≤ e−β|x−y|−s

(3.7)

hold for all distinct x, y ∈ Z
d .

Regarding boxes of sideK as new sites and the pairs of maximal-connected
components connected by a bond fromG as new bonds, Lemma 3.5 allows us
to set up a renormalization scheme of [22]. Clearly, by (3.6) and (3.7), a site is
occupied with probability at leastr and two occupied sitesx andy are connected
with probability at least 1− e−β|x−y|−s

. (For the sites that are not occupied such a
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connection will not be relevant, so we will often assume that the latter holds for all
sites.) This puts us into a position where we can apply the following “idealized”
version of the desired claim:

LEMMA 3.6. Let d ≥ 1 and consider the site-bond percolation model on Z
d

with sites being occupied with probability r ∈ [0,1] and the bond between sites x

and y being occupied with probability

pxy = 1− exp{−β|x − y|−s},(3.8)

where s ∈ (d,2d) and β ≥ 0. Let |CN | denote the size of the largest connected
component of occupied sites and occupied bonds in �N . For each s′ ∈ (s,2d)

there exist numbers N0 < ∞, ϑ > 0 and β0 < ∞ such that

Pβ,r(|CN | < ϑ |�N |) ≤ e−ϑβN2d−s′
(3.9)

holds true for all N ≥ N0 whenever β ≥ β0 and r ≥ 1− e−ϑβ .

REMARK 3.1. The fact that the exponent in (3.9) is proportional toβ will not
be needed for the proofs in this paper. The addition ofβ represents only a minor
modification of the proof and the stronger result will (hopefully) facilitate later
reference.

Once Lemma 3.6 is inserted into the game, the proof of Theorem 3.2 will be
easily concluded. To prove Lemma 3.6, we will invoke a combination of coarse-
graining, stochastic domination and a corresponding estimate for thecomplete
graph. (Let us recall that a complete graph ofn vertices is a graph containing a
bond for each unordered pair of distinct numbers from{1,2, . . . , n}.) The relevant
complete-graph statement is extracted into the following lemma:

LEMMA 3.7. Consider a complete graph of n vertices. Let each site be
occupied with probability r and each bond be occupied with probability p. Let P

p,r
n

be the resulting i.i.d. measure and let |Cn| denote the number of sites in the largest
connected component of occupied sites and occupied bonds. For each q, q ′ ∈ [0,1]
with q ′ < q, there exists a number ψ(q ′, q) > 0 such that for each r ′ ∈ [0, r),
each p′ ∈ [0,p) and all n ≥ 1,

P
p,r
n (|Cn| ≤ p′r ′n) ≤ e−nψ(r ′,r) + e−(1/2)(n2(r ′)2−n)ψ(p′,p).(3.10)

Moreover, for each α ∈ [0,1), there exists a constant C = C(α) < ∞ such that

ψ(q ′, q) ≥ (1− α)(1− q ′)
[
log

1

1− q
− C

]
(3.11)

holds true for all q, q ′ ∈ [0,1] satisfying the bound (1− q ′) ≥ (1− q)α.
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REMARK 3.2. While Lemma 3.6 can presumably be proved without reference
to the complete graph, in our case the passage through Lemma 3.7 has the
advantage of easily obtained quantitative estimates. As mentioned before, the
present proof of Theorem 3.2 invokes a renormalization scheme for which
Theorem 3.1—whose proof is based on a similar renormalization scheme—serves
as a starting point. It would be of some conceptual interest to see whether a more
direct proof of Theorem 3.2 based on a single renomalization is possible.

REMARK 3.3. Ind ≥ 2, the decay rate in (3.9)—and, consequently, in (3.3)—
is not always optimal. The reason is that, forβ � 1 and 1− r � 1, the site-bond
percolation problem dominates the nearest-neighbor percolation onZ

d for which
it is expected (and essentially proved, see [3, 13]) that the probability in (3.9)
should decay exponentially withNd−1. [For s ∈ (d,2d), this is sometimes better
and sometimes worse thanN2d−s .] This alternative decay rate is not reflected in
our proofs because, to apply equally well in all dimensionsd ≥ 1, they consistently
rely only on long-range connections.

Having outlined the main strategy and stated the principal lemmas, we can
plunge into the proofs. First we will prove technical Lemmas 3.5 and 3.7. Then
we will establish the site-bond percolation Lemma 3.6. Once all preparatory
statements have been dispensed with, we will assemble the ingredients into the
proofs of Theorem 3.2 and Corollaries 3.3 and 3.4.

3.3. Preparations. Here we will prove Lemmas 3.5 and 3.7. First we will
attend to the one-step renormalization from Lemma 3.5 whose purpose is to wash
out the short-range irregularities of thepxy ’s and to ensure that the constantsβ

andr in Lemma 3.6 can be chosen as large as required.

PROOF OFLEMMA 3.5. The principal task before us is to chooseK so large
that both bounds follow from Theorem 3.1 and the assumption (3.1). Letd ≥ 1
and let β < ∞ and r < 1. Let ε = 1 − r and pick ad ′ ∈ (s/2, d) such that
d ′ − (d − 1) > d − d ′. By Theorem 3.1 and the paragraph that follows, for
eachζ > 0, there exists aK = K(ε, d ′, ζ ) such that|CK | ≥ ζKd ′

occurs with
probability exceeding 1− ε. Since Theorem 3.1 allows us to makeK arbitrarily
large (indeed, the constraint|CK | ≤ Kd forcesK to exceed a positive power ofζ ),
we can also assume that, for some constantα > 0,

pxy ≥ 1− e−α|x−y|−s

once|x − y| ≥ Kd−d ′
.(3.12)

Here we rely on (3.1).
Let b > 0 be a constant such thatbK exceeds the diameter of�K in the

| · |-norm for allK . We will show that (3.6) and (3.7) hold onceK is large enough
and, in particular, so large that

1

4

αζ 2

(2b)s
K2d ′−s ≥ β.(3.13)
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(Note that 2d ′ > s so the left-hand side increases withK .) Consider a partitioning
of Z

d into disjoint boxes of sideK ; that is, let us writeZd = ⋃
x∈Zd �K(Kx).

We will call a box �K(Kx) occupied if the bond configuration restricted
to �K(Kx) contains a connected component larger thanζKd ′

. By the choice ofK ,
each�K(Kx) is occupied independently with probability exceeding 1− ε = r .
This proves (3.6) withδ = ζKd ′−d .

To prove also (3.7), we need to ensure that sufficient portions of the components
in the twoK-blocks are so far from each other that (3.12) can safely be applied.
To this end, we note that, since|C (Kx)

K | ≥ ζKd ′
, at least half of the sites inC (Kx)

K

will be farther fromZ
d \ �K(Kx) thanηK = aζKd ′−(d−1), wherea is a constant

depending only on the norm| · | and the dimension. Moreover, an easy argument
shows that ifx, y ∈ Z

d are distinct andz ∈ C (Kx)
K and z′ ∈ C

(Ky)
K are such

that dist(z,Z
d \ �K(Kx)) ≥ ηK and dist(z′,Z

d \ �K(Ky)) ≥ ηK , then

ηK |x − y| ≤ |z − z′| ≤ 2bK|x − y|.(3.14)

Now our choice ofd ′ guarantees that, ifK is sufficiently large, we will have
ηK ≥ Kd−d ′

and the inequality on the left-hand side shows that (3.12) forpzz′
is in power. The bound on the right-hand side of (3.14) then allows us to write

P
(
�K(Kx) � �K(Ky)

) ≤ exp
{
−α

(ζKd ′
/2)2

(|x − y|2bK)s

}
≤ e−β|x−y|−s

,(3.15)

where we used (3.13) to derive the last inequality. This completes the proof.�

Next we will focus on the proof of Lemma 3.7, which concerns the complete
graph. This lemma will be used to drive the induction argument in the next section.

PROOF OFLEMMA 3.7. The proof starts by estimating the total number of
occupied sites. Once that number is known to be sufficiently large, the desired
bound is a result of conditioning on occupied sites combined with straightforward
estimates concerning occupied bonds.

Fix r ′ ∈ (0, r) and p′ ∈ [0,p), and letρ = p′r ′. Note that we can assume
that r ′n > 1, because otherwise the right-hand side of (3.10) exceeds 1. Let
An denote the (random) number of occupied vertices of the complete graph. Since
An can be represented as a sum of independent random variables with meanr , the
event{An < r ′n} forcesAn to deviate substantially from its mean and the standard
Chernoff bound implies

P
p,r
n (An < r ′n) ≤ e−ψ(r ′,r)n,(3.16)

where

ψ(q ′, q) = sup
λ≥0

[− log(1− q + qe−λ) − λq ′].(3.17)
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As is easy to show,ψ(q ′, q) > 0 for all q ′ < q.
The bound (3.16) is responsible for the first term on the right-hand side of (3.10).

It remains to show that the conditional probability givenAn ≥ r ′n is bounded by
the second term. Thus suppose thatAn ≥ r ′n and letVn denote the total number
of unordered pairs of occupied sitesnot connected by an occupied bond. The
principal observation is that if|Cn| ≤ ρn, thenVn has to be rather large. More
precisely, we claim that|Cn| ≤ ρn implies Vn ≥ 1

2(A2
n − ρnAn). Indeed, if we

label the connected components of occupied sites and bonds by indexi and useki

to denote the number of sites in theith occupied component, then the number of
vacant bonds certainly exceeds

∑
i<j

kikj = 1
2

(∑
i

ki

)2

− 1
2

∑
i

k2
i .(3.18)

On {|Cn| ≤ ρn} we haveki ≤ ρn for eachi and since also
∑

i ki = An, the second
sum can be bounded byAnρn. The desired inequalityVn ≥ 1

2(A2
n−ρnAn) follows.

In light of our previous reasoning, we are down to estimating the probability

P
p,r
n

(
Vn ≥ 1

2(A2
n − ρnAn)|An ≥ r ′n

)
.(3.19)

The estimate will be performed by conditioning on the set of occupied sites.
Once the set of occupied sites has been fixed,Vn can be represented as a sum
of N = 1

2(A2
n −An) independent random variables, each of which has mean 1−p.

Now, assumingAn ≥ r ′n and recalling thatρ = p′r ′ ≤ r ′ and r ′n > 1, we can
estimate

1

2
(A2

n − ρnAn) = N

(
1− ρn − 1

An − 1

)
≥ N

(
1− ρn − 1

r ′n − 1

)
≥ N(1− p′).(3.20)

(In the cases whenρn < 1, we just skip the intermediate inequality.) Now,
sincep′ < p, the event{Vn ≥ 1

2(A2
n − ρnAn)} constitutes a large deviation for

the random variableVn. Invoking again the Chernoff bound and a little algebra,
we thus get

P
p,r
n

(
Vn ≥ 1

2(A2
n − ρnAn)|An ≥ r ′n, 1

2(A2
n − An) = N

) ≤ e−Nψ(p′,p).(3.21)

From here (3.10) follows by noting that on{An≥ r ′n} we haveN ≥ 1
2(n2(r ′)2− n).

To verify the bound (3.11), we need to find the minimizingλ in (3.17) and use
it to find an explicit expression forψ(q ′, q). A computation gives

ψ(q ′, q) = (1− q ′) log
(

1− q ′

1− q

)
− q ′ log

(
q

q ′
)
.(3.22)

The second term—including the minus sign—can be split into two parts: the
term q ′ logq ′, which is bounded below by−1/e, and the term−q ′ logq, which
is always positive. Moreover, ifq ′ → 1, then (q ′ logq ′)/(1 − q ′) → 1. From
here we infer that the second term is bounded below by(1 − α)(1 − q ′)-times
a (negative)α-dependent constant. Using the bound 1− q ′ ≥ (1 − q)α in the first
term, (3.11) is proved.�
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3.4. Site-bond percolation lemma. Now we are ready to start proving
Lemma 3.6. The essential part of the proof relies on induction along a series of
scales defined as follows. Fix ans′ ∈ (s,2d), let �0 be a positive integer and con-
sider an increasing sequence(�n) of integers such that�n ≥ �0 for all n ≥ 1. Let
N0 be another positive integer and let

Nn = N0

n∏
k=1

�k.(3.23)

Suppose that�n tend to infinity so fast that∑
n≥1

�d−s
n < ∞ and

∑
n≥1

Ns−s′
n < ∞(3.24)

but moderate enough that also

c0 = inf
n≥1

1

�s′
n+1

n∏
k=1

�2d−s′
k > 0.(3.25)

Next, let us define the sequences(rn) and(pn) by puttingrn = 1−6�d−s
n andpn =

1− Ns−s′
n , let us fix a constantρ0 ∈ (0,1) and let

ρn = ρ0

n∏
k=1

(rkpk).(3.26)

Clearly, by (3.24) we haveρn → ρ∞ > 0 asn → ∞.

REMARK 3.4. An extreme example of a sequence(�n) satisfying these
constraints is

�n = e(1+a)n−1
, n ≥ 1,(3.27)

wherea = (2d − s′)/s′. Herea has been tuned in such a way that the term in the
infimum in (3.25) is independent ofn. Sincea > 0, the bounds (3.24) immediately
follow.

The proof of Lemma 3.6 is based on the fact that a bound (3.9) forN = Nn can
be used to prove the same bound for (essentially) anyN betweenNn andNn+1.
The proof works as soon asc0 andρ∞ are bounded away from zero and�0 andN0
are sufficiently large; the precise form of(�n) is not important. [In particular, we
do not makeexplicit use of (3.24).] The induction step is isolated into the following
claim:

LEMMA 3.8. Suppose the assumptions of Lemma 3.6hold and let s′ ∈ (s,2d),
c′

0 > 0 and τ0 > 0. Then there exist two numbers �′
0 < ∞ and N ′

0 < ∞ and a
constant c1 ∈ (0,∞) such that for any N0 ≥ N ′

0 and any sequence (�n) with
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�0 ≥ �′
0 and c0 ≥ c′

0, the following holds: If τ ∈ [τ0, c1ρ
2∞β] and if k is a

nonnegative integer such that

Pβ,r

(∣∣CNk

∣∣ ≤ ρkN
d
k

) ≤ e−τN2d−s′
k(3.28)

is true, then

Pβ,r

(∣∣C�Nk

∣∣ ≤ ρk+1(�Nk)
d ) ≤ e−τ(�Nk)

2d−s′
(3.29)

holds for all � ∈ {�0, . . . , �k+1}.

PROOF. The proof is based on the “complete-graph” Lemma 3.7. Our
preliminary task is to set up all the constants so that the bounds emerging from
this lemma are later easily converted to that on the right-hand side of (3.29). Let
s′ ∈ (s,2d), c′

0 > 0 andτ0 > 0 be fixed. First we will address the choice of the
constants�′

0, N ′
0 andc1. We will assume that�′

0 is so large that

(1− 6�d−s)2�2d − �d ≥ 1
2�2d(3.30)

holds for all � ≥ �′
0. Then we chooseN ′

0 so large that, for allN0 ≥ N ′
0 and all

τ ≥ τ0,

6�d−s > e−(1/2)τ(�N0)
2d−s′

(3.31)

holds for all� ≥ �′
0 and that

τN2d−s′
0 ≥ max{3C, log2},(3.32)

whereC is the constant from Lemma 3.7 forα = 1/2. Moreover, we letb be the
constant such thatNb bounds the diameter of�N in the metric| · | for all N ≥ 1
and choosec1 = b−s/16. Then we also require thatN ′

0 be so large that for any
N0 ≥ N ′

0,

βb−sρ2
nN2d−s

n �−s − C ≥ 8τN2d−s
n �−s(3.33)

and

(�Nn)
s−s′

> e−(1/2)βb−sρ2
nN2d−s

n �−s

(3.34)

hold for all τ ≤ c1ρ
2∞β, all n ≥ 0 and all� ∈ {�0, . . . , �n+1}. The first bound is

verified for sufficiently largeN0 by noting the inequalitiesβb−sρ2
n ≥ 2τ0 and

N2d−s
n �−s ≥ N2d−s

n �−s
n+1 ≥ N2d−s

0

(
�−s′
n+1

∏
k≤n

�2d−s′
k

)s/s′

≥ N2d−s
0 c

s/s′
0 .(3.35)

As to (3.34), we note thatN2d−s
n �−s/(�Nn)

s′−s ≥ N2d−s′
n �−s′

n+1, which again can
be made arbitrarily large by boosting upN0. The factors1

2 in the exponents of
(3.31) and (3.34) have been inserted for later convenience.
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Now we are ready to prove (3.29) from (3.28). Let�0 ≥ �′
0 and N0 ≥ N ′

0.
Suppose that (3.28) holds for someτ ∈ [τ0, c1ρ

2∞β] and somek ≥ 0. Pick an
� ∈ {�0, . . . , �k+1}. Viewing��Nk

as the disjoint union of�d translates�(i) of �Nk
,

��Nk
=

�d⋃
i=1

�(i),(3.36)

let us call �(i) occupied if it contains a connected component of size at
leastρk|Nk|d . Choosing one such connected component in each occupied�(i) (if
necessary, employing lexicographic order onZ

d to resolve potential ties), we will
call �(i) and�(j) with i 
= j connected if their respective connected components
are directly connected by an occupied bond. Let

r = 1− e−τN2d−s′
k and p = 1− e−βb−sρ2

kN2d−s
k �−s

(3.37)

and note that (3.28) implies thatr is a lower bound on the probability that�(i) is
occupied. Moreover, a simple calculation shows thatp is a uniform lower bound
on the probability that two distinct�(i) and�(j) are connected.

Let us introduce the quantities

r ′ = 1− 6�d−s and p′ = 1− (�Nk)
s−s′

(3.38)

and let Ak,� be the event that the largest connected component of the occu-
pied�(i)’s comprises more thanp′r ′�d individual boxes. The assumption (3.31)
shows thatr ′ < r , while (3.34) in turn guarantees thatp′ < p. Invoking the fact
that Ak,� is an increasing event, the probability ofAc

k,� is bounded by the prob-
ability that, for site-bond percolation on a complete graph with�d vertices and
parametersr andp, the largest connected component involves at mostp′r ′�d ver-
tices:

Pβ,r (A
c
k,�) ≤ P

p,r

�d (|C�d | ≤ p′r ′�d).(3.39)

Since the factors12 in the exponents in (3.31) and (3.34) ensure that 1− r ′ ≥
(1 − r)1/2 and 1− p′ ≥ (1 − p)1/2, the right-hand side can be estimated using
Lemma 3.6 withα = 1

2 andC = C(1
2). To evaluate the first term on the right-hand

side of (3.10), we estimate

�dψ(r ′, r) ≥ 1
26�2d−s

(
τN2d−s′

k − C
) ≥ 2τ (�Nk)

2d−s′
.(3.40)

Here we used that, by our choice ofα, we have�d(1− α)(1− r ′) = 1
26�2d−s and

then invoked (3.32) to show thatτN2d−s′
k ≥ τN2d−s′

0 ≥ 3C. Similarly, we get

1
2

(
�2d(r ′)2 − �d)

ψ(p′,p) ≥ 1
4�2d(�Nk)

s−s′
(βb−sρ2

kN2d−s
k �−s − C)

(3.41)
≥ 2τ (�Nk)

2d−s′
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for the exponent in the second term in (3.10). Here we first used (3.30) to reduce
the complicated�-dependence on the extreme left and then we inserted (3.11)
and the definitions ofp′ and p to produce the intermediate inequality. Finally,
we invoked (3.33).

By putting the bounds (3.10), (3.11) and (3.40), (3.41) together and recalling
that log2≤ τN2d−s′

0 , the probabilityPβ,r(A
c
k,�) does not exceed the term on

the right-hand side of (3.29). But onAk,�, the box��Nk
contains a connected

component comprising (strictly) more thanp′r ′�d disjoint connected components,
each of which involves at leastρkN

d
k sites. Using thatr ′ ≥ rk+1 andp′ ≥ pk+1,

we have ∣∣C�Nk

∣∣ > p′r ′�dρk|Nk|d ≥ ρk+1(�Nk)
d onAk,�,(3.42)

and thus{|C�Nk
| ≤ ρk+1|��Nk

|} ⊂ Ac
k,�. From here (3.28) follows. �

Lemma 3.8 encapsulates the induction step. However, we will also need an
estimate that allows us to start the induction. This is provided in the following
lemma.

LEMMA 3.9. Under the conditions of Lemma 3.6,for each c2 ∈ (0,∞), there
exist numbers N0 < ∞ and ϑ0 ∈ (0,1) and, for each ϑ < ϑ0, there exists a
number β0 < ∞ such that

Pβ,r

(|CN | < 1
4|�N |) ≤ e−c2ϑβN2d−s

(3.43)

holds once N ≥ N0, β ≥ β0 and r ≥ 1− e−ϑβ .

PROOF. We will again apply the “complete-graph” Lemma 3.7. Letp′ =
r ′ = 1

2, let b be a constant such thatbN exceeds the diameter of�N for anyN

and pickϑ0 > 0 such that 128c2ϑ0 < b−s . Fix a numberϑ ∈ (0, ϑ0). Then the
left-hand side of (3.43) is bounded by the left-hand side of (3.10) withn = Nd ,
p = 1 − exp{−β(bN)−s} andr = 1 − e−ϑβ . We will estimate the right-hand side
of (3.10) under the conditions whenN0 is so large that

Ns−d ≥ 16c2 and N2d(r ′)2 − N ≥ N2d/8(3.44)

are true for allN ≥ N0 and, given such anN , the constantβ0 is so large that for
all β ≥ β0, we have 1− r ′ ≥ (1− r)1/2 and 1− p′ ≥ (1− p)1/2, and

ϑβ ≥ 2C and β(bN)−s − C ≥ 128ϑβN−s.(3.45)

Here, as before,C is the constant from Lemma 3.7 forα = 1
2.

In conjunction with these bounds, (3.11) withα = 1
2 shows that

ψ(r ′, r) ≥ 1
4(ϑβ − C) ≥ 1

8ϑβ(3.46)
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and

ψ(p′,p) ≥ 1
4

(
β(bN)−s − C

) ≥ 32c2ϑβN−s.(3.47)

Using the bounds in (3.44), we find that both exponents on the right-hand side of
(3.10) exceed 2c2ϑβN2d−s . This impliesPβ,r (|CN | ≤ ϑ |�N |) ≤ 2 exp{−2c2ϑ ×
βN2d−s}. Increasingβ0 if necessary, the latter is no more than exp{−c2ϑβN2d−s}.

�

Equipped with the induction machinery from Lemmas 3.8 and 3.9, the proof of
the main site-bond percolation lemma is now easily concluded.

PROOF OF LEMMA 3.6. First we will adjust the parameters so that Lem-
mas 3.8 and 3.9 can directly be applied. Lets′ ∈ (s,2d) and letc′

0 > 0 andτ0 > 0
be fixed. Let�′

0, N ′
0 and c1 be the constants from Lemma 3.8 and pick a se-

quence(�0) such that�0 ≥ �′
0 andc0 ≥ c′

0 are satisfied. Pick a numberN0 ≥ N ′
0

so large that Lemma 3.9 holds forc2 = (2�0)
2d−s′

andN ≥ N0, and letϑ0 be the
corresponding constant from this lemma. Letρ0 ∈ (0, 1

4] and defineρn andρ∞
as in (3.26). Letϑ > 0 be such thatϑ ≤ ϑ0, (2�0)

dϑ ≤ ρ∞ and c2ϑ ≤ c1ρ
2∞.

Chooseβ0 so large that Lemma 3.9 holds for allβ ≥ β0 and such thatc2ϑβ0 > τ0.
Note thatτ = c2ϑβ necessarily satisfiesτ ∈ [τ0, c1ρ

2∞β] as long asβ ≥ β0, which
is needed in Lemma 3.8.

Now we are ready to run the induction argument: Sinceρ0 ≤ 1
4 andϑ ≤ ϑ0,

Lemma 3.9 ensures that (3.28) holds forτ = c2ϑβ and k = 0. Applying the
induction step from Lemma 3.8, we recursively show that (3.29) is true for all
k ≥ 0 and all � ∈ {�0, . . . , �k+1}. Let N be a general integer and letk be a
nonnegative integer such thatNk+1 > N ≥ Nk. Let � be the maximal number
in {1, �0, . . . , �k+1} such that�Nk ≤ N . A simple calculation now shows that
|�N | ≤ max(2�0)

d |��Nk
| and, if we position�N and��Nk

so that��Nk
⊂ �N ,

{|CN | ≤ ϑ |�N |} ⊂ {∣∣C�Nk

∣∣ ≤ (2�0)
dϑ

∣∣��Nk

∣∣}.(3.48)

By our previous conclusions and the fact that(2�0)
dϑ ≤ ρk+1, the probability

of the event on the right-hand side is bounded by exp{−τ (�Nk)
2d−s′ }. From

here, (3.9) for a generalN follows by noting that, by our choice ofc2, we
haveτ (�Nk)

2d−s′ ≥ ϑβN2d−s′
. �

3.5. Proofs of Theorem 3.2 and Corollaries 3.3 and 3.4. Now we are finally
ready to prove Theorem 3.2. After some preliminary arguments, the proof follows
a line of reasoning similar to the one just used to prove Lemma 3.6.

PROOF OF THEOREM 3.2. Let s′ ∈ (s,2d) and letϑ , β0 and N0 be as in
Lemma 3.6. Pick numbersβ ≥ β0 and r ≥ 1 − e−ϑβ and letK and δ be the
corresponding constants from Lemma 3.5. First we will prove the claim forL
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of the formL = KN , whereN is a positive integer. To that end, let us view�L

as the disjoint union ofNd translates�K(Kx) of �K , wherex ∈ Z
d . We will

again call�K(Kx) occupied if|C (Kx)
K | ≥ δ|�K | and, similarly, we will call two

distinct �K(Kx) and �K(Ky) connected if the connected componentsC (Kx)
K

and C
(Ky)
K —chosen with the help of lexicographic order in case of a tie—are

directly connected by a bond fromG .
By Lemma 3.5 and our choice ofδ and K , the box �K(x) is occupied

with probability exceedingr , while �K(Kx) and�K(Ky) are connected with
probability exceedingpxy in (3.8). LetAN,K be the event that the box�L contains
a connected componentCN of boxes�K(Kx) such that at leastϑ |�N | of the
connected components in these boxes get joined inCN . By Lemma 3.6, we know
that

Pβ,r(A
c
N,K) ≤ e−ϑβN2d−s′

.(3.49)

On the other hand, onAN,K we have

|CL| ≥ (ϑ |�N |)(δ|�K |) = ϑδ|�L|,(3.50)

and thus{|CL| ≤ ρ|�L|} ⊂ Ac
N,K onceρ < ϑδ. If ρ is also less thanϑβKs′−2d ,

this finishes the proof forL of the formNK . The general values ofL are handled
by noting that ifNK ≤ L < (N + 1)K , then|�L| ≤ 2d |�NK | and, if�NK ⊂ �L,
then also|CNK | ≤ |CL|. �

PROOF OF COROLLARY 3.3. Fix s′ ∈ (s,2d), let N0, ϑ and β0 be the
constants from Lemma 3.6, and letβ ≥ β0 andr ≥ 1 − e−ϑβ . Let � > 3N0 be an
odd integer and letK be the constant from Lemma 3.5 for our choice ofβ andr .
Clearly, it suffices to show that (3.4) holds forL of the formLn = K�n andρ

proportional to the product of constantsδ andϑ from Lemmas 3.5 and 3.6. All of
the volumes�Ln below are centered atx so we omit that fact from the notation.

Our strategy is as follows: We pick anε > 0 and show that, with probability
at least 1− ε and some integern, the largest connected componentCLn in �Ln

is connected to at leastρ|�Ln′ | sites in�Ln′ , for everyn′ ≥ n. (Note that this
guarantees thatCLn ⊂ C∞.) Once this has been established, we observe that
|CLn′ (x)| < ρ|�Ln′ | implies thatx cannot be connected toCLn within �Ln′ .
Assuming thatx ∈ C∞, the box�Ln then contains at least two distinct sites
x, y ∈ C∞ which are not connected within�Ln′ . By the uniqueness of the infinite
cluster, the probability of the latter event can be made smaller thanε by makingn′
sufficiently large. But then the limit in (3.4) must be less than 2ε and, sinceε was
arbitrary, it must equal to zero.

To make the proof complete, it remains to establish the first claim in the previous
paragraph. Namely, we must show that the probability thatCLn is not connected
to at leastρ|�Ln′ | sites in�Ln′ for some n′ ≥ n is less thanε, providedn is
sufficiently large. To that end, letBk , with k ≥ 0, be a sequence of boxes (generally
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not centered atx) such thatB0 = �Ln and thatBk is the maximal box in�Ln+k

that is centered on the(1,1, . . . ,1) half-axis, disjoint from all the previousBk ’s
and with side a multiple ofK . Since� > 3, it is easy to see that|Bk| grows
proportionally to|�Ln+k

| (in fact, |Bk|/|�Ln+k
| ≥ 3−d ). Our goal is to show that

the largest connected components in allBk ’s are with overwhelming probability
connected.

Invoking Lemmas 3.5 and 3.6 and choosingn sufficiently large, the probability
that each boxBk—viewed as the disjoint union of translates of�K—contains a
component comprising at leastϑ |Bk|/Kd maximal connected componentsC (Kx)

K
of size at leastδKd is bounded byε/2. On the other hand, the probability that the
corresponding components inBk andBk+1 arenot connected is bounded by

exp
{
−β

ϑ2

K2d

|Bk||Bk+1|
(bLn+k+1/K)s

}
≤ exp

{−β ′�(2d−s)(n+k)
}
,(3.51)

where b is a constant such thatbLn/K bounds the distance|x − y| for any
translates�K(Kx) and�K(Ky) contained in�Ln , and whereβ ′/β is a constant
that depends only on� andK . The right-hand side is summable onk and the sum
can be made smaller thanε/2 by increasingn. Thus with probability as least 1−ε,
for eachk ≥ 0 the componentCLn is connected to at leastδϑ |Bk| sites in�Ln+k

.
Choosingρ < δϑ3−d , the above claim follows. �

PROOF OFCOROLLARY 3.4. Let� > 1 be an odd integer. Clearly, it suffices
to prove the result forD (ρ,2�)

L instead of D (ρ,�)
L and L a multiple of 3�.

Viewing �L as a disjoint union of boxes�3�(3�x) with x ∈ Z
d , let C (3�x)

� be
a maximal connected component in��(3�x). For ρ′ > 0, let A�(x) be the
event that|C (3�x)

� | ≥ ρ′|��| is true. LetNL,� denote the number ofx ∈ Z
d with

�3�(3�x) ⊂ �L such thatA�(x) occurs.
The eventsA�(x) are independent and, if� is large enough andρ′ > 0 is

sufficiently small, Theorem 3.2 shows thatA�(x) occurs with probability at least
r = 1 − exp{−ρ′�2d−s′}. This allows us to invoke the Chernoff bound once again
with the result

P
(
NL,� < r ′Ld/(3�)d

) ≤ e−ψ(r ′,r)Ld/(3�)d ,(3.52)

whereψ(r ′, r) is as in (3.17). Choosingr ′ = 1
2, α = 1

2 andC = C(1
2) and taking�

so large thatρ′�2d−s′ ≥ 2C, (3.11) gives us

ψ(r ′, r) ≥ 1
4

(
ρ′�2d−s′ − C

) ≥ 1
8ρ′�2d−s′

.(3.53)

On the other hand, on{NL,� ≥ r ′Ld/(3�)d} we have∣∣D (ρ,2�)
L

∣∣ ≥ (ρ′�d)
(
r ′Ld/(3�)d

) = ρ′r ′3−dLd,(3.54)

and so{|D (ρ,2�)
L | < ρLd} ⊂ {NL,� < r ′Ld/(3�)d} onceρ ≤ ρ′r ′3−d . Invoking

(3.52) and (3.53) and choosingρ such that alsoρ ≤ 1
83−dρ′, the desired estimate

follows. �
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4. Proof of main result. In this section we will provide the proof of
Theorem 1.1. The arguments closely follow the outline presented in Sections
2.1 and 2.2. The reader may consider skimming through these sections once again
before plunging into the ultimate details of the proofs.

4.1. Upper bound. The principal goal of this section is to establish the upper
bound in (1.6). By the continuity ofs �→ �(s, d) it suffices to prove the upper
bound for any numbers exceeding the limit (1.3), so we will instead assume thats

obeys (3.1). The desired claim is then formulated as follows:

PROPOSITION 4.1. Let s ∈ (d,2d) be such that (3.1) holds and let � =
�(s, d) be as in (1.2).For each �′ > � and each ε > 0, there exists an N0 < ∞
such that

P
(
D(x,y) ≥ (log |x − y|)�′

, x, y ∈ C∞
) ≤ ε(4.1)

holds for all x, y ∈ Z
d with |x − y| ≥ N0.

As discussed in Section 2.1, the proof is conceptually rather simple: For each
pair of sitesx and y we will construct a hierarchy of an appropriate depthk

connectingx andy, such that pairs(zσ01, zσ10) with σ ∈ {0,1}k−2 are connected
by paths of length(log |x −y|)o(1). The main difficulty stems from the requirement
that the bonds constituting the hierarchy be connected in a prescribed (linear)
order. This will be ensured by the condition that all sites constituting the hierarchy
are surrounded by a sufficiently dense connected component.

Recall our notation that�L(x) is a box of sideL centered atx andCL(x) is the
set of sites in�L(x) connected tox by a path in�L(x). We will require that the
siteszσ are dense points according to the following definition:

DEFINITION 4.1. Given a numberρ ∈ (0,1) and an odd integer� > 1, we
will call x ∈ Z

d a (ρ, �)-dense (or, simply,dense) point if |C�(x)| ≥ ρ|��(x)|.

For any realL > 0 sufficiently large, letL+ be the minimal odd integer larger
thanL and letL− be the minimal odd integer larger thanL/2. Let

BL(x) = �L+(x) \ �L−(x).(4.2)

Given a numberρ ∈ (0,1) and an odd integer� > 1, let D (ρ,�)
L (x) denote the

set of all (ρ, �)-dense points inBL(x). The input needed from Section 3 then
comes directly from Corollaries 3.3 and 3.4. By Corollary 3.4 and the fact that
BL(x) contains a box of side at leastL/3, we know that

P
(∣∣D (ρ,�)

L (x)
∣∣ ≤ ρLd

) ≤ e−ρL2d−s′
(4.3)
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onceρ is sufficiently small,s′ ∈ (s,2d) and�0 ≤ � ≤ L/�0. Corollary 3.3 in turn
shows that ifx, y ∈ C∞, then bothx andy are dense points in the sense that for
eachε > 0 there exists an�1 = �1(ε) < ∞ such that

P
(|C�(x)| ≤ ρ�d, x ∈ C∞

) ≤ ε(4.4)

is true whenever� ≥ �1. A similar statement holds fory.
Now we can define the principal events: Letγ ∈ (s/(2d),1) and letx andy

be two sites inZ
d . Let N = |x − y| and defineNn = Nγ n

. For eachn ≥ 1,
let Bn = B

(ρ,�)
n,γ (x, y) be the event that there exists a hierarchyHn(x, y) of depthn

connectingx andy subject to the following constraints: For allk = 0,1, . . . , n − 2
and allσ ∈ {0,1}k,

zσ01 ∈ D
(ρ,�)
Nk+1

(zσ0) and zσ10 ∈ D
(ρ,�)
Nk+1

(zσ1).(4.5)

The eventBn ensures that all sites of the hierarchy—except perhaps x and y—are
(ρ, �)-dense points. To cover these exceptions, we also introduce the eventT =
T (ρ,�)(x, y) that bothx andy are(ρ, �)-dense in the above sense. In the following,
we will regard the numberρ as fixed—such that (4.3) and (4.4) hold—but� andγ

will be adjustable.
The requirements (4.5) become appreciated in the proof of the following bound:

LEMMA 4.2. For each ε ∈ (0,1), each γ ∈ (s/(2d),1) and each �′ satisfying

�′ > log2

log(1/γ )
,(4.6)

there exists a constant N ′ = N ′(ε, γ,�′) < ∞ such that the following is true for
all x, y ∈ Z

d with N = |x − y| ≥ N ′: Let n be the maximal positive integer such
that

n log(1/γ ) ≤ log logN − ε log log logN.(4.7)

If � in the definition of the events Bn = B
(ρ,�)
n,γ (x, y) and T = T (ρ,�)(x, y) is an

odd integer between Nn and 2Nn, then

P
({

D(x,y) ≥ (logN)�
′} ∩ Bn ∩ T

) ≤ ε.(4.8)

The reason why we choosen as in (4.7) can be seen from the following bounds:

2n ≤ (logN)log 2/log(1/γ ) and e(1/γ )(log logN)ε ≥ Nγ n ≥ e(log logN)ε .(4.9)

These bounds will be important in the upcoming proof.

PROOF OF LEMMA 4.2. The main reason whyN has to exceed a certain
constant is because we need the scales corresponding to successive levels of the
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hierarchy to be clearly separated. To that end we observe that for allk ≤ n and
Nk = Nγ k

, we have

log
Nk

Nk+1
≥ (1− γ )(log logN)ε,(4.10)

which tends to infinity asN → ∞.
Introduce the abbreviation�Bn = T ∩Bn. If �Bn occurs, then there exists at least

one hierarchyHn(x, y) of depthn connectingx andy such that (4.5) is satisfied.
Then (4.10) guarantees the existence of numbersN ′ < ∞ andb ∈ (0,1) such that
the following is true for any such hierarchy: Ifσ ∈ {0,1}k with k = 0,1, . . . , n−2,
then

|zσ01 − zσ10| ≥ bNk,(4.11)

while if z ∈ BNk+2(zσ0) andz′ ∈ BNk+2(zσ01), then

b−1Nk+1 ≥ |z − z′| ≥ bNk+1,(4.12)

wheneverN ≥ N ′. Similar statements hold for pairsz ∈ BNk+2(zσ1) and z′ ∈
BNk+2(zσ10). Moreover,N ′ can be chosen so large that also the bounds

b−1Nn−1 < bNn−2 and bNn−1 > diam��(4.13)

hold true for all� between�0 and 2Nn and alln satisfying (4.7).
Let An be the event that, for any hierarchy that would make�Bn satisfied, at

least one of the “gaps” of the hierarchy, say(zσ0, zσ01) whereσ ∈ {0,1}n−2, fails
to have the componentsC�(zσ0) andC�(zσ01) connected by an occupied bond.
(Note that these components are quite large because bothzσ0 andzσ01 are dense
points.) We claim that{

D(x,y) ≥ (logN)�
′} ∩ �Bn ⊂ An ∩ �Bn.(4.14)

Indeed, if all “gaps”do have the corresponding components connected, then
eachzσ0 is connected tozσ01 by a path of no more than 1+ 2�d bonds [note
that �d bonds should be enough to get out ofC�(zσ0)], and similarly for the
pairszσ1 andzσ10. Noting that a hierarchy of depthn involves only 2n−1 “gaps”
and 2n−1 − 1 bonds, we can use� ≤ 2Nn and (4.9) to write

D(x,y) ≤ 2n−1(1+ 2d+1Nd
n ) + 2n−2

(4.15)
≤ 2d+2(logN)log2/log(1/γ )e(d/γ )(log logN)ε .

In light of (4.6), this is not compatible withD(x,y) ≥ (logN)�
′
if N is sufficiently

large.
To finish the proof, we thus need to estimate the probability ofAn ∩ �Bn.

The above estimates show that the occurrence ofBn is determined by looking
only at the bonds longer thanbNn−2 (to ensure the existence of a hierarchy) or
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shorter than diam�� [to ensure that all sites in the hierarchy are(ρ, �)-dense].
Explicitly, let F denote theσ -algebra generated by the random variables(ωzz′)
with |z − z′| ≥ bNn−2 or |z − z′| ≤ diam��. Then (4.11) and (4.13) show that
�Bn ∈ F . This allows us to prove (4.8) by conditioning: Letβ be a number such
thatpzz′ ≥ 1 − exp{−β|z − z′|−s} for any pair(z, z′) of sites with|z − z′| ≥ Nn.
Then we have

P(An|F ) ≤ 2n−1 exp
{
−βρ2 N2d

n

(Nn−1/b)s

}
on �Bn.(4.16)

Here we used that, on�Bn, the componentsC�(zσ0) andC�(zσ01) are both larger
thanρ�d ≥ ρNd

n , while (4.12) dictates that the longest bond that can connect them
is not longer thanNn−1/b. The prefactor represents the number of “gaps” in the
hierarchy, which is the number of places whereAn can fail. Inserting the upper
bound onn from (4.7), the estimate (4.8) follows onceN is sufficiently large. �

Our next goal is to show that the eventBc
n is quite unlikely to occur:

LEMMA 4.3. Let γ ∈ (s/(2d),1) and let s′ ∈ (s,2dγ ). Let N = |x − y| ≥ N ′
where N ′ is as in Lemma 4.2and define Nk = Nγ k

. Then there is a constant c3 > 0
such that if � in the definition of Bk is an odd integer between Nn and 2Nn, then

P(Bc
k+1 ∩ Bk) ≤ 2k+1 exp

{−c3N
2dγ−s′
k

}
,(4.17)

for all k < n, where n is as in Lemma 4.2.In particular,

P(Bc
n) ≤ 2n+1 exp

{−c3N
2dγ−s′
n

}
.(4.18)

PROOF. Clearly, (4.18) is a result of summing (4.17), so we just need to
prove (4.17) for allk = 0,1, . . . , n. By the fact thatN ≥ N ′, we can assume
that the scalesNk andNk+1 are clearly separated in the sense of the inequalities
(4.11) and (4.13). LetB ′

m be the event that there exists a hierarchyHm(x, y) of
depthm connectingx andy such that for eachk ≤ m − 2 and eachσ ∈ {0,1}k,

zσ01 ∈ BNk+1(zσ0) and zσ10 ∈ BNk+1(zσ1).(4.19)

A comparison with (4.5) shows thatBk ⊂ B ′
k . Consider also the following events:

1. The eventA1 that, for any hierarchyHk(x, y) that would makeB ′
k satisfied,

we have|D (ρ,�)
Nk

(zσ )| ≤ ρNd
k for someσ ∈ {0,1}k.

2. The eventA2 that, for any hierarchy that would makeB ′
k satisfied, there exists

a pair of sites(z, z′) of the type(zσ0, zσ01) or (zσ1, zσ10) with σ ∈ {0,1}k−2

such that there is no occupied bond between the setsD
(ρ,�)
Nk

(z) andD
(ρ,�)
Nk

(z′).
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Now on Bk ∩ Bc
k+1 there exists a hierarchy that would makeB ′

k satisfied, but
such that for some pair of sites as in the definition ofA2, the setsD (ρ,�)

Nk
(z) and

D
(ρ,�)
Nk

(z′) are not connected by an occupied bond. It follows thatBk ∩ Bc
k+1 ⊂

B ′
k ∩ A2. The eventA1 will be used to writeA2 as the union ofA1 andAc

1 ∩A2,
whose probabilities are more convenient to estimate.

The proof now mimics the argument from the proof of Lemma 4.2. By the
fact thatN ≥ N ′, the eventB ′

k is determined by looking only at the bonds that are
longer thanbNk−2. LetF ′ denote theσ -algebra generated by the random variables
(ωzz′) with |z − z′| ≥ bNk−2. Then B ′

k ∈ F ′. On the other hand, conditional
on F ′, the eventA1 is only determined by looking at the bonds that are shorter
than diam��. By (4.3), we have

P(A1|F ′) ≤ 2k exp
{−ρN2d−s′

k

}
onB ′

k.(4.20)

Here 2k counts the number of pairs whereA1 can go wrong.
Concerning the eventA2, we note that conditional onAc

1 ∩ Bk, the event
A2 is determined by the bonds of length betweenbNk−1 and b−1Nk−1, which
by (4.13) must be either longer than diam�� or shorter thanbNk−2. Let F be the
σ -algebra generated by(ωzz′) with |z − z′| ≥ bNk−2 or |z − z′| ≤ diam��. Then
Ac

1 ∩ B ′
k ∈ F andA2 is determined by bonds independent ofF . Let β be the

same constant as in the proof of Lemma 4.2. Then we have

P(A2|F ) ≤ 2k exp
{
−βρ2 N2d

k

(Nk−1/b)s

}
onAc

1 ∩ Bk.(4.21)

Putting thesebounds together and choosingc3 appropriately, (4.17) directly
follows. �

Lemmas 4.2 and 4.3 finally allow us to prove Proposition 4.1.

PROOF OF PROPOSITION 4.1. Let �′ > � and letε ∈ (0,1). Chooseγ ∈
(s/(2d),1) such that (4.6) holds true and pick ans′ ∈ (s,2dγ ). SupposeN ≥ N ′,
whereN ′ is the constant from Lemmas 4.2 and 4.3, and letn be as in Lemma 4.2.
Fix an odd integer� betweenNn and 2Nn and let c3 be the constant from
Lemma 4.3.

Invoking the inclusion{
D(x,y) ≥ (logN)�

′}
(4.22)

⊂ ({
D(x,y) ≥ (logN)�

′} ∩ Bn ∩ T
) ∪ Bc

n ∪ T c,

we just need to estimate the probability of the three events on the right-hand side.
Lemma 4.2 shows that the probability of the first event is less thanε. Lemma 4.3
in conjunction with the bounds (4.9) shows that

P(Bn) ≤ 2 exp
{
�′(log logN) − c3e

(2dγ−s′)(log logN)ε
}
,(4.23)
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which can also be made less thanε by choosingN sufficiently large. Finally, the
probabilityP(T c) is estimated from (4.4) where we assume thatN is so large that
also� ≥ Nn ≥ �1. From here the desired claim follows.�

4.2. Lower bound. The goal of this section is to prove the lower bound
in (1.6). As in Section 4.1, we formulate the relevant claim as a separate
proposition:

PROPOSITION4.4. Suppose that (1.3)holds with an s ∈ (d,2d) and let � =
�(s, d) be as in (1.2).For each �′ < � and each ε > 0, there exists an N0 < ∞
such that

P
(
D(x,y) ≤ (log|x − y|)�′) ≤ ε(4.24)

holds for all x, y ∈ Z
d with |x − y| ≥ N0.

In conjunction with Proposition 4.1, this result immediately implies Theo-
rem 1.1.

PROOF OF THEOREM 1.1. Let ε > 0 and letDε(x) be the event in (1.6).
Choosing�′ such that|� − �′| ≤ ε, Propositions 4.1 and 4.4 ensure that
lim |x|→∞ P(Dε(x)c ∩ {0, x ∈ C∞}) = 0. Then (1.6) follows by noting that, by
FKG inequality and translation invariance, we haveP(0, x ∈ C∞) ≥ P(0 ∈ C∞)2,
which is positive by our assumption that there is percolation.�

The remainder of this section will be spent on the proof of Proposition 4.4. As
discussed in Section 2.2, our strategy will be to show that each path connecting
x andy in less than(log|x − y|)� steps contains a hierarchy whose “gaps” obey
the conditions (2.7). (As far as this claim is concerned, the specific choice of the
exponent plays no essential role; any positive number will do.) This will be used
to control the combined length of the paths needed to span the “gaps” and show
that it will eventually exceed(log|x − y|)�′

for any�′ < �.
We begin by defining the relevant events. Letx, y ∈ Z

d be distinct (and
distant) sites and letN = |x − y|. Fix a numberγ ∈ (0, s/(2d)) and, for each
integern ≥ 2, let En = En,γ (x, y) be the event thatevery hierarchyHn(x, y) of
depthn connectingx andy such that

|zσ01 − zσ10| ≥ |zσ0 − zσ1|(logN)−�(4.25)

holds for allk = 0,1, . . . , n − 2 and allσ ∈ {0,1}k will also satisfy the bounds∏
σ∈{0,1}k

|zσ0 − zσ1| ∨ 1 ≥ N(2γ )k(4.26)

for all k = 1,2, . . . , n − 1. Here “∨” is a shorthand for maximum.
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REMARK 4.1. Since we allow the possibility of “site collapse” in our
definition of a hierarchy (e.g., we do not forbid thatzσ00 = zσ01), we must use
a “∨” on the left-hand side of (4.26). Note that (4.26) is a precise from of (2.7)
while (4.25) is a precise from of (2.6).

Our first goal is to estimate the probability ofEc
n:

LEMMA 4.5. Let γ ∈ (0, s/(2d)) and let s′ ∈ (2dγ, s) be such that s′ > d .
Let En = En,γ (x, y) be as above. Then there exists a constant c4 ∈ (0,∞) such
that for all x, y ∈ Z

d with N = |x − y| satisfying γ n logN ≥ 2(s′ − d),

P(Ec
n+1 ∩ En) ≤ (logN)c42n

N−(s′−2dγ )(2γ )n.(4.27)

The proof of Lemma 4.5 requires certain combinatorial estimates whose precise
statements and proofs have been deferred to Lemmas A.1 and A.2 in the Appendix.
We encourage the reader to skim through the statements of these lemmas before
plunging into the forthcoming proof.

PROOF OF LEMMA 4.5. OnEc
n+1 ∩ En, there exists a hierarchyHn(x, y)

such that the bound (4.26) holds for allk = 1, . . . , n − 1 but doesnot hold for
k = n. In order to estimate the probability of such an event, let	(n) be the
collection of all 2n-tuples(zσ ) of sites such that (4.25) holds for allσ ∈ {0,1}k
with k = 0,1, . . . , n − 1, while (4.26) is true only fork = 1, . . . , n − 1 but not
for k = n. Then we can write

P(Ec
n+1 ∩ En) ≤ ∑

(zσ )∈	(n)

n−1∏
k=0

∏
σ∈{0,1}k

p(zσ01, zσ10),(4.28)

wherep(z, z′) = 1−e−q(z−z′) for z 
= z′—see (1.4)—whilep(z, z′) = 1 for z = z′.
As specified in the definition of the hierarchy, none of the bonds(zσ01, zσ10) may
appear more than once, whence (4.28) follows by invoking inclusion–exclusion
and independence.

In order to estimate the right-hand side of (4.28), we will introduce a convenient
change of variables: For eachk = 0,1, . . . , n and eachσ ∈ {0,1}k, let

tσ = zσ0 − zσ1.(4.29)

(Thus,t∅ is justx − y, while t0 represents the “gap”z00 − z01 and t1 represents
the “gap” z10 − z11. Note that theNσ ’s from Section 2.2 are related to thetσ ’s
via Nσ = |tσ |.) Clearly, oncex andy are fixed andtσ are defined for allσ ∈ {0,1}k
and allk = 1, . . . , n, all of zσ with σ ∈ {0,1}n+1 can be reconstructed from (4.29).
In terms of thetσ ’s, the conditions (4.26) can be written as∏

σ∈{0,1}k
|tσ | ∨ 1≥ N(2γ )k ,(4.30)
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which on Ec
n+1 ∩ En is required to hold for allk = 1,2, . . . , n − 1 and to fail

for k = n, while (4.25) can be rewritten as

|zσ01 − zσ10| ≥ |tσ |(logN)−�,(4.31)

which is required to hold for allk = 0,1, . . . , n − 1 and allσ ∈ {0,1}k.
The latter condition—(4.31)—allows us to recast (4.28) entirely in terms of

the tσ ’s. Indeed, let�(k) be the set of all collections(tσ ), σ ∈ {0,1}k, of elements
from Z

d such that (4.30) holds true and letC ∈ (0,∞) be a constant so large that

p(z, z′) ≤ C

|z − z′|s′(4.32)

is true for all distinctz, z′ ∈ Z
d . Then (4.32) and (4.30) allow us to write

P(Ec
n+1 ∩ En)

(4.33)

≤ ∑
(tσ )∈�(1)

. . .
∑

(tσ )∈�(n−1)

∑
(tσ )/∈�(n)

n−1∏
k=0

∏
σ∈{0,1}k

C(logN)s
′�

(|tσ | ∨ 1)s
′ ,

wheret∅ = x − y and where we assumed thatC is so large that the last fraction
exceeds 1 whenever|tσ | ≤ 1.

The right-hand side of (4.33) is now estimated as follows: First we will extract
the termsC(logN)s

′� and write the sequence of sums as a product by grouping
the correspondingtσ ’s with their sum (and noting that|t∅| = N ). This gives

P(Ec
n+1 ∩ En)

(4.34)
≤ [C(logN)s

′�]2n

Ns′

( ∑
(tσ )/∈�(n)

1

)
n−1∏
k=1

( ∑
(tσ )∈�(k)

∏
σ∈{0,1}k

1

(|tσ | ∨ 1)s
′

)
.

Now s′ > d , which implies that the sum in the second parentheses can be estimated
using Lemma A.1. Explicitly, noting that|{z ∈ Z

d :n ≤ |z| ∨ 1 < n + 1}| ≤
c(d)nd−1 for all n ≥ 1 and some fixed constantc(d) < ∞, we introduce a
collection of positive integers(nσ ) and first sum over all(tσ ) subject to the
constraintnσ ≤ |tσ | ∨ 1 < nσ + 1. Then we are in a position to apply Lemma A.1
with α = s′ − d , b = Nγ k

andκ = 2k, which yields

∑
(tσ )∈�(k)

∏
σ∈{0,1}k

1

(|tσ | ∨ 1)s
′ ≤ (C′ logN)2k

N(s′−d)(2γ )k
,(4.35)

for someC′ < ∞ independent ofN andn. (Here we used thatγ k ≤ 1 to bound
logNγ k

by logN .) The sum in the first parentheses can be estimated in a similar
fashion; the result of application of Lemma A.2 withα = d , b = Nγ n

andκ = 2n

is ∑
(tσ )/∈�(n)

1 ≤ (C′′ logN)2n

Nd(2γ )n(4.36)
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for someC′′ < ∞. Combining these estimates with (4.34) and invoking the
identity (2.9), the desired bound (4.27) is proved.�

Lemma 4.5 will be used to convert the event{D(x,y) ≤ (logN)�
′ } into a

statement about the total number of bonds needed to span the “gaps” of a hierarchy
identified within (one of ) the shortest paths connectingx andy. LetFn = Fn(x, y)

be the event that, forevery hierarchy of depthn connectingx andy and satisfying
(4.25), every collection of (bond) self-avoiding and mutually (bond) avoiding
pathsπσ with σ ∈ {0,1}n−1, such thatπσ connectszσ0 with zσ1 without using
any bond from the hierarchy, will obey the bound∑

σ∈{0,1}n−1

|πσ | ≥ 2n.(4.37)

Then we have the following claim:

LEMMA 4.6. Let �′ < �. If N = |x − y| is sufficiently large and

n >
�′

log 2
log logN,(4.38)

then {
D(x,y) ≤ (logN)�

′} ∩ Fn = ∅.(4.39)

PROOF. We will show that on{D(x,y) ≤ (logN)�
′} there exists a hierarchy

of a depth satisfying (4.38) such that (4.25) is true, and a collection of pathsπσ

“spanning” the “gaps” of this hierarchy such that (4.37) is violated. Letπ be a
path saturating the distanceD(x,y) betweenx andy. The pathπ is necessarily
(bond) self-avoiding. Since|π | ≤ (logN)�—by our restriction to{D(x,y) ≤
(logN)�

′ }—and sincex, y �→ |x − y| satisfies the triangle inequality, the pathπ

must contain a bond whose length exceedsN/(logN)�. Let z01 be the endpoint of
this bond on thex-side and letz10 denote the endpoint on they-side of the bond.
Denotingz0 = x andz1 = y, we thus have

|z01 − z10| ≥ |z0 − z1|(logN)−�,(4.40)

that is, (4.25) forσ = ∅.
Similarly, we will identify the next level of the hierarchy. Letπ0 be the portion

of π betweenz00 = x andz01, and letπ1 be the portion ofπ betweenz11 = y

and z10. (Note that this agrees with our notation used in the definition of the
eventFn.) Again, we have|π0|, |π1| ≤ (logN)� and thus bothπ0 andπ1 contain at
least one bond of length exceeding|z00− z01|/(logN)� and|z10− z11|/(logN)�,
respectively. The endpoints of this bond inπ0 identify the sitesz001 and z010,
and similarly for the endpoints of the bond inπ1. (If π0 is empty, which can
only happen ifz01 = z0, we letz001 = z010 = z0, and similarly forπ1.) The very
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construction of these bonds implies (4.25) forσ = 0,1. Proceeding in a similar
way altogethern-times, we arrive at a hierarchy of depthn connectingx andy and
satisfying (4.25).

The construction implicitly defines a collection of pathsπσ with σ ∈ {0,1}n−1

such thatπσ is the portion ofπ connecting the endpoints of the “gap”(zσ0, zσ1).
Now we are ready to prove (4.39). Indeed, if{D(x,y) ≤ (logN)�

′ } occurs, the
combined length of allπσ ’s must be less than(logN)�

′
, which by (4.37) is strictly

less than 2n. But then there exists a hierarchy of depthn and self-avoiding and
mutually avoiding pathsπσ “spanning” its “gaps” such that (4.37) is violated.
Consequently, we must have{D(x,y) ≤ (logN)�

′ } ⊂ F c
n . �

In light of Lemma 4.6, to prove Proposition 4.4, we will need a bound on the
probability ofF c

n for somen obeying (4.38). However, invoking also Lemma 4.5,
we can as well focus just on the eventF c

n ∩ En.

LEMMA 4.7. Let γ ∈ (0, s/(2d)) and let s′ ∈ (2dγ, s) be such that s′ > d.
Let En = En,γ (x, y) and Fn = Fn(x, y) be as above. Then there exists a
constant c5 ∈ (0,∞) such that for all distinct x, y ∈ Z

d with N = |x −y| satisfying
γ n logN ≥ 2(s′ − d),

P(F c
n ∩ En) ≤ (logN)c52n

N−s′(2γ )n−1
.(4.41)

PROOF. The proof will closely follow that of Lemma 4.5 so we will stay rather
brief. In fact, the only essential difference is that, instead of (4.36)—which we
cannot use because we are no longer in the complement ofEn+1—the necessary
decay for the last sum will have to be provided on the basis of the containment
in F c

n .
We begin by noting that onF c

n ∩ En, the following events must occur:

1. There exists a hierarchyHn(x, y) such that (4.25) and (4.26) hold.
2. There exists a collection of self-avoiding and mutually avoiding pathsπσ , with

σ ∈ {0,1}n−1, such thatπσ connectszσ0 with zσ1 without using any bonds
from Hn(x, y).

3. The bound (4.37) fails.

As in Lemma 4.5, we will use brute force: First we will fix a hierarchy satisfying
the desired condition and try to estimate the probability that, for some collection of
nonnegative integers(mσ ), the length of the pathπσ is mσ for eachσ ∈ {0,1}n−1.
The fact that the paths and the hierarchy are all disjoint then allows us to write

P
(
F c

n occurs and(|πσ |) = (mσ )|Hn(x, y)
) ≤ ∏

σ∈{0,1}n−1

Qmσ (zσ0, zσ1),(4.42)
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where

Qm(z, z′) = ∑
π=(z0,...,zm)

z0=z, zm=z′

m−1∏
i=0

C′

(|zi − zi+1| ∨ 1)s
′ .(4.43)

Here the sum runs over self-avoiding pathsπ of lengthm andC′ is so large that the
last quotient is an upper bound on the probability thatzi andzi+1 are connected
by an occupied bond.

To estimate (4.42), we first need a bound onQm(z, z′). To that end we note that,
in light of the inequalitys′ > d , there exists a constanta ∈ (1,∞) such that for
all x, y ∈ Z

d , ∑
z∈Zd

1

(|x − z| ∨ 1)s
′

1

(|y − z| ∨ 1)s
′ ≤ a

(|x − y| ∨ 1)s
′ .(4.44)

From here we conclude that

Qm(z, z′) ≤ (C′a)m

(|z − z′| ∨ 1)s
′ ;(4.45)

that is, up to a multiplicative factor,Qm(z, z′) acts similarly asp(z, z′). The paths
still carry some entropy in the choice of the integers(mσ ) which amounts to
counting the number #(m,n) of ordered partitions of a nonnegative integerm

into 2n−1 nonnegative integers. A simple estimate shows that #(m,n) ≤ 2m+2n−1

and, noting that onF c
n we only need to considerm < 2n,

P
(
F c

n

∣∣Hn(x, y)
) ≤ (4aC′)2n ∏

σ∈{0,1}n−1

1

(|zσ0 − zσ1| ∨ 1)s
′ ,(4.46)

because
∑

m<2n #(m,n) ≤ 42n
.

Having dispensed with the pathsπσ , we now start estimating the probability
of F c

n ∩ En. Let 	�(n) be the set of all collections(zσ ), σ ∈ {0,1}n, obeying
(4.25) fork = 0,1, . . . , n − 2 and (4.26) fork = 1, . . . , n − 1. The bounds (4.32),
(4.25) and (4.46) then give

P(F c
n ∩ En) ≤ (4aC′)2n ∑

(zσ )∈	�(n)

n−1∏
k=0

∏
σ∈{0,1}k

(C logN)s
′2n

(|zσ0 − zσ1| ∨ 1)s
′ .(4.47)

Here C is the same constant as in (4.33) and the product still goes only up to
(n − 1)—despite the insertion of the terms from (4.46)—because we are now
looking only at a hierarchy of depthn (and notn+1 as in the proof of Lemma 4.5).
Passing again to the variablestσ = zσ0 − zσ1 and recalling the definition of�(k)

from the proof of Lemma 4.5, we now get

P(F c
n ∩ En) ≤ [C′′(logN)s

′�]2n

Ns′
n−1∏
k=1

( ∑
(tσ )∈�(k)

∏
σ∈{0,1}k

1

(|tσ | ∨ 1)s
′

)
,(4.48)
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whereC′′ < ∞. Each term in the product can now be estimated by (4.35). Using

s′ + (s′ − d)

n−1∑
k=1

(2γ )k ≥ s′(2γ )n−1(4.49)

instead of (2.9), the estimate (4.41) directly follows.�

Having assembled all necessary ingredients, we can now finish the proof of
Proposition 4.4.

PROOF OF PROPOSITION 4.4. Let �′ < � and, recalling that 2−1/� =
s/(2d), choose ans′ ∈ (d, s) such that 2−1/�′

< s′/(2d). Pick a numberγ such
that

2−1/�′
< γ <

s′

2d
(4.50)

and letδ = 1
2(s′ − 2dγ ).

By Lemma 4.6, we have{D(x,y) ≤ (logN)�
′ } ⊂ F c

n once n satisfies the
bound (4.38). On the other hand, ifn also obeys the bound

n log(1/γ ) ≤ log logN − 2 log log logN,(4.51)

which is possible for largeN by (4.50), then we haveγ n logN ≥ (log logN)2. This
shows that, forN large enough, the right-hand side of the bound from Lemma 4.5
is less thanN−δ(2γ )n and similarly for the bound in Lemma 4.7. Consequently,
both bounds are summable onn and, increasingN if necessary, the result can be
made smaller than any number initially prescribed. Hence, for anyε > 0 andN

sufficiently large, we will have

P(F c
n ) ≤ P(Ec

n) + P(F c
n ∩ En) ≤ 2ε(4.52)

oncen satisfies both (4.38) and (4.51). By the inclusion{D(x,y) ≤ (logN)�
′ } ⊂

F c
n , this finishes the proof.�

APPENDIX

Here we establish the bounds needed in the proof of Lemmas 4.5 and 4.7. To
that end, letκ be a positive integer and, forb > 0 real, let

�κ(b) =
{
(ni) ∈ N

κ :ni ≥ 1,

κ∏
i=1

ni ≥ bκ

}
.(A.1)

We will also use��
κ(b) to denote a (formal) complement of this set, that is, the set

of all collections(ni) ∈ N
κ of positive integers such that

∏
i ni < bκ .
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LEMMA A.1. For each ε > 0 there exists a constant g1 = g1(ε) < ∞ such
that ∑

(ni)∈�κ(b)

κ∏
i=1

1

n1+α
i

≤ (g1 b−α logb)κ(A.2)

is true for all α > 0, all b > 1 and all positive integers κ satisfying

α − κ − 1

κ logb
≥ ε.(A.3)

PROOF. As is common for this kind of estimates, we will turn the sum
into an integral. With each(ni) ∈ �κ(b), we will associate a unique hypercube
h(ni) = (ni) + [−1

2, 1
2)κ in R

κ and note that whenever(xi) ∈ h(ni), we have
xi ≥ ni − 1/2 ≥ ni/2 andxi ≤ ni + 1

2 ≤ 2ni for all i = 1, . . . , κ . This implies
that the product on the left-hand side of (A.2) can be bounded by the product of
(xi/2)−(1+α) and

⋃
(ni)∈�κ(b)

h(ni) ⊂
{
(xi) ∈ R

κ : 2xi ≥ 1,

κ∏
i=1

(2xi) ≥ bκ

}
.(A.4)

Noting that theh(ni) are disjoint, we can now bound the sum in (A.2) by the
integral over the set on the right-hand side. Relabeling 2xi by xi , we thus get

left-hand side of (A.2)≤ 2κ(1+2α)
∫

· · ·
∫

xi≥1,i=1,...,κ∏κ
i=1 xi≥bκ

dx1 · · · dxκ

κ∏
i=1

1

x1+α
i

.(A.5)

To evaluate the integral, we introduce the substitutionsxi = eyi followed by
zj = y1 + · · · + yj for j = 1, . . . , κ . Sinceyi ≥ 0, thezj ’s are ordered and since
the integrand depends only onzκ , the integrals overz1, . . . , zκ−1 can readily be
performed. The result is

right-hand side of (A.5)= 2κ(1+2α)
∫ ∞
κ logb

dz
zκ−1

(κ − 1)!e
−αz,(A.6)

where we have now dropped the subscript “κ” from z. Now the assumption (A.3)
ensures that forz ≥ κ logb, the functionz �→ zκ−1e−αz is strictly decreasing and,
in fact, its logarithm is concave. Applying (A.3), we easily derive that for any
z ≥ κ logb,

zκ−1e−αz ≤ (κ logb)s−1b−ακe−ε(z−κ logb).(A.7)

Substituting this into (A.6), the integral is now easily performed. The calculation
is concluded by using Stirling’s formula to cancel the factorκκ−1 coming from the
previous estimation against the leading order of(κ − 1)! in the denominator. �

Our next claim concerns a similar sum over the indices in��
κ(a):
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LEMMA A.2. There exists a constant g2 < ∞ such that for each α ≥ 1, each
b ≥ e/4 and any positive integer κ ,

∑
(ni)∈��

κ(b)

κ∏
i=1

nα−1
i ≤ (g2 bα logb)κ.(A.8)

PROOF. A moment’s thought reveals that we only have to address the case
α = 1. We will call upon the argument from Lemma A.1. Indeed, replacing (A.4)
by

⋃
(ni)∈��

κ(a)

h(ni) ⊂
{
(xi) ∈ R

κ : 2xi ≥ 1,

κ∏
i=1

xi ≤ (2b)κ

}
,(A.9)

we easily find out that∑
(ni)∈��

κ(a)

1 ≤ 2−κ
∫

· · ·
∫

xi≥1,i=1,...,κ∏κ
i=1 xi≤(4b)κ

dx1 · · · dxκ.(A.10)

Invoking the same substitutions as before, we then get that the right-hand side of
(A.10) equals

2−κ
∫ κ log(4b)

0
dz

zκ−1

(κ − 1)! ez ≤ 2−κ(4b)κ
1

κ!
(
κ log(4b)

)κ
.(A.11)

Here we used the boundez ≤ (4b)κ to get rid of the exponential in the integral
and then integrated out. Invoking Stirling’s formula, the desired bound directly
follows. �
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