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STEIN’S METHOD, PALM THEORY AND POISSON
PROCESS APPROXIMATION1

BY LOUIS H. Y. CHEN AND AIHUA XIA

National University of Singapore and University of Melbourne

The framework of Stein’s method for Poisson process approximation is
presented from the point of view of Palm theory, which is used to construct
Stein identities and define local dependence. A general result (Theorem 2.3)
in Poisson process approximation is proved by taking the local approach.
It is obtained without reference to any particular metric, thereby allowing
wider applicability. A Wasserstein pseudometric is introduced for measuring
the accuracy of point process approximation. The pseudometric provides
a generalization of many metrics used so far, including the total variation
distance for random variables and the Wasserstein metric for processes as
in Barbour and Brown [Stochastic Process. Appl. 43 (1992) 9–31]. Also,
through the pseudometric, approximation for certain point processes on a
given carrier space is carried out by lifting it to one on a larger space,
extending an idea of Arratia, Goldstein and Gordon [Statist. Sci. 5 (1990)
403–434]. The error bound in the general result is similar in form to that
for Poisson approximation. As it yields the Stein factor 1/λ as in Poisson
approximation, it provides good approximation, particularly in cases where
λ is large. The general result is applied to a number of problems including
Poisson process modeling of rare words in a DNA sequence.

1. Introduction. Poisson approximation was developed by Chen (1975)
as a discrete version of Stein’s normal approximation (1972). It involves the
solution of a first-order difference equation, which we call a Stein equation. In
extending Poisson approximation to higher dimensions and to Poisson process
approximation, Barbour (1988) converted the first-order difference equation into
a second-order difference equation and solved it in terms of an immigration-death
process. This work was further extended by Barbour and Brown (1992), who
introduced a Wasserstein metric on point processes and initiated a program to
obtain error bounds of similar order to that on the total variation distance in Poisson
approximation. This has been achieved for some special cases by Xia (1997, 2000),
and a general result with error bounds of the desired order has been obtained by
Brown, Weinberg and Xia (2000).
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In this paper, another general result on Poisson process approximation is proved
by taking the local approach. It is obtained without reference to any particular
metric, thereby allowing wider applicability. In proving this result, the framework
of Stein’s method is first presented from the point of view of Palm theory, which
is used to construct Stein identities and define local dependence. Although the
connection between Stein’s method and Palm theory has been known to others
[see, e.g., Barbour and Månsson (2002)], little of it has been exploited.

In applying the general result, a Wasserstein pseudometric is introduced
for measuring the accuracy of point process approximation. The pseudometric
provides a generalization of many metrics used so far, including the total variation
distance for random variables and the Wasserstein metric for processes as in
Barbour and Brown (1992). Also, through the pseudometric, approximation for
certain point processes on a given carrier space is carried out by lifting it to one
on a larger space, extending an idea of Arratia, Goldstein and Gordon [(1990),
Section 3.1], which was refined by Chen [(1998), Section 5].

The error bound in the general result is similar in form to that for Poisson
approximation [see, e.g., Arratia, Goldstein and Gordon (1989), Theorem 1]. It
is simpler and easier to apply than that in Brown, Weinberg and Xia (2000).
As it yields the Stein factor 1/λ as in Poisson approximation, it provides good
approximation, particularly in cases whereλ is large.

The general result is applied to prove approximation theorems for Matérn hard-
core processes and for marked dependent trials. The latter is in turn applied to
the classical occupancy problem and rare words in biomolecular sequences. The
last application, in fact this paper, is motivated by an interest in modeling the
distribution of palindromes in a herpesvirus genome by a Poisson process. In
Leung, Choi, Xia and Chen (2002), the Poisson process model is used to provide
a mathematical basis for usingr-scans in determining nonrandom clusters of
palindromes in herpesvirus genomes [see also Leung and Yamashita (1999)].

2. From Palm theory to Stein’s method. Let � be a fixed locally compact
second countable Hausdorff topological space. Such a space is also a Polish space,
that is, a space for which there exists a separable and complete metric in�

which generates the topology. DefineH to be the space of nonnegative integer-
valued locally finite measures on�, and letB be the smallestσ -algebra inH
making the mappingsξ �→ ξ(C) measurable for all relatively compact Borel sets
C ⊂ �. Recall that a point process on� is a measurable mapping of some fixed
probability space into(H,B) [Kallenberg (1983), page 5]. For a point process
� on � with locally finite mean measureλ, the point process�α is said to
be a Palm process associated with� at α ∈ � if, for any measurable function
f :� × H → R+ := [0,∞),

E

(∫
�

f (α,�)�(dα)

)
= E

(∫
�

f (α,�α)λ(dα)

)
(2.1)
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[Kallenberg (1983), Chapter 10]. Intuitively,

P(�α ∈ B) = E[�(dα);1�∈B]
E�(dα)

for all B ∈ B.

An important characterization of Poisson process in the language of Palm theory
is that� is a Poisson process if and only ifL(�α) = L(�+δα) λ-a.s., whereδα is
the Dirac measure atα. This highlights an idea of Poisson process approximation:
if we define

Df (ξ) :=
∫
�

f (x, ξ)ξ(dx) −
∫
�

f (x, ξ + δx)λ(dx),

then L(�) is close to the Poisson process distribution over� with mean
measureλ, denoted as Po(λ), in terms of a certain metric if, for the set of suitable
corresponding test functionsf :� × H → R := (−∞,∞),

EDf (�) ≈ 0.(2.2)

In other words, for a functiong :H → R, if we can find a solutionfg to the
equation

g(ξ) − Po(λ)(g) = Df (ξ),(2.3)

then the distance between the distribution of� and Po(λ) is achieved by
the supremum of|EDfg(�)| over the class ofg which defines the metric.
Equation (2.3) is known as a Stein equation. If there exists a functionh :H → R

such thatf (x, ξ) = h(ξ − δx) − h(ξ), then

Df (ξ) =
∫
�
[h(ξ + δx) − h(ξ)]λ(dx) +

∫
�
[h(ξ − δx) − h(ξ)]ξ(dx) := Ah(ξ).

It is known thatA is the generator of anH -valued immigration-death process
Zξ (t) with immigration intensityλ and unit per capita death rate, whereZξ (0) = ξ .
This fact was noted by Barbour (1988), who developed a probabilistic approach to
Stein’s method for multivariate Poisson and Poisson process approximations. The
equilibrium distribution ofZξ is a Poisson process with mean measureλ. The idea
of introducing a Markov point process is to exploit the probabilistic properties of
the Markov process for obtaining bounds on the metrics of interest [see Barbour
and Brown (1992) and Brown and Xia (2000)].

Forξ ∈ H and a Borel setB ⊂ �, we defineξ |B as the restriction ofξ to B, that
is, ξ |B(C) = ξ(B ∩ C) for Borel setsC ⊂ �. Let � be a point process on� with
Palm processes{�α}. Assume that for eachα there is a Borel setAα ⊂ � such that
α ∈ Aα and the mapping

� × H → � × H : (α, ξ) �→ (
α, ξ (α)

)
(2.4)

is product measurable, whereξ (α) := ξ |Ac
α
. Note thatξ (α) does not refer to the

Palm measure. As the measurability of (2.4) is often hard to check, we give a
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sufficient condition for (2.4) to hold:A = {(x, y) :y ∈ Ax,x ∈ �} is a measurable
set of the product space�2 := � × �. We give a brief proof for the sufficiency.
By the monotone class theorem, it suffices to show that the mappingMA(α, ξ) :=
(α, ξ (α)) is measurable for rectangular setsA = B1 × B2, whereB1 andB2 are
measurable subsets of�. Indeed,

MB1×B2(x, ξ) =
{(

x, ξ |Bc
2

)
, if x ∈ B1,

(x, ξ), if x /∈ B1,

is measurable.
The requirement ofA being measurable in�2 is almost necessary. To see

this, let � = [0,1], A = B1 × B2, where B1 ⊂ � is not Borel measurable
[Nielsen (1997), page 128, 9.16(h)] andB2 ⊂ � is a Borel set. DefineC =
{ξ : ξ(B2) �= 0}; thenM−1

A (� × C) = Bc
1 × C is not a measurable set of� × H .

REMARK 2.1. In Barbour and Brown [(1992), page 15], it is proved that if
Aα is a ball of fixed radius, then the mapping in (2.4) is measurable.

We define� to belocally dependent with neighborhoods (Aα;α ∈ �) if

L
(
(�α)(α)

) = L
(
�(α)

)
, λ-a.s.

LEMMA 2.2. The following statements are equivalent:

(a) E
∫
� f (α,�(α) + δα)�(dα) = E

∫
� f (α,�(α) + δα)λ(dα) for all measur-

able f :� × H → R+.
(b) L((�α)(α)) = L(�(α)),λ-a.s.

PROOF. By the definition of Palm process, we have

E

∫
�

f
(
α,�(α) + δα

)
�(dα) = E

∫
�

f
(
α, (�α)(α) + δα

)
λ(dα).(2.5)

Hence, (b) implies (a). Now assume (a). With the vague topology,H is a Polish
space [see Kallenberg (1983), page 95], so there exists a sequence of bounded
uniformly continuous functions(fj ; j ≥ 1) onH which form a determining class
[Billingsley (1968), page 15]: for every two probability measuresQ1 andQ2 on
H , if

∫
fj dQ1 = ∫

fj dQ2 for all j ≥ 1, thenQ1 = Q2 [see Parthasarathy (1967),
Theorem 6.6]. By takingf (α, ξ + δα) = k(α)fj (ξ), it follows from (2.5) that∫

�
k(α)

[
Efj

(
�(α))]λ(dα) =

∫
�

k(α)
[
Efj

(
(�α)(α))]λ(dα)

for all bounded measurable functionsk :� → R+ andfj . Fixingfj and allowingk
to vary, we haveEfj (�

(α)) = Efj ((�α)(α)), λ-a.s. Now varyfj and (b) follows.
�
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In general, a point process is not necessarily locally dependent, but Lemma 2.2
suggests that, in a loose sense,

L
(
(�α)(α)) ≈ L

(
�(α)), λ-a.s.(2.6)

if and only if

E

∫
�

f
(
α,�(α) + δα

)
�(dα)

(2.7)
≈ E

∫
�

f
(
α,�(α) + δα

)
λ(dα) for suitablef.

This will be our guiding principle in proving Theorem 2.3 using the local approach,
as follows [an extension of the approach of Chen (1975) which was elaborated by
Barbour and Brown (1992)]:

E

∫
�

f (α,�)�(dα)

= E

∫
�

[
f (α,�) − f

(
α,�(α) + δα

)]
�(dα)

+ E

∫
�

f
(
α,�(α) + δα

)[�(dα) − λ(dα)]

+ E

∫
�

[
f

(
α,�(α) + δα

) − f (α,� + δα)
]
λ(dα)

+ E

∫
�

f (α,� + δα)λ(dα),

which implies

EDf (�) = E

∫
�

[
f (α,�) − f

(
α,�(α) + δα

)]
�(dα)

+ E

∫
�

f
(
α,�(α) + δα

)[�(dα) − λ(dα)](2.8)

+ E

∫
�

[
f

(
α,�(α) + δα

) − f (α,� + δα)
]
λ(dα).

Hence, a bound onEDfg(�) can be obtained by bounding the right-hand side
of (2.8).

There are two ways to handle the second term in (2.8): one uses coupling and
the other involves Janossy densities [Janossy (1950) and Daley and Vere-Jones
(1988)]. For a finite point process�, that isP(|�| < ∞) = 1, there exist measures
(Jn)n≥1 such that, for measurable functionsf :H → R+,

Ef (�) = ∑
n≥0

∫
�n

1

n!f
(

n∑
i=1

δxi

)
Jn(dx1, . . . , dxn).
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The term(n!)−1Jn(dx1, . . . , dxn) can be intuitively explained as the probability of
� havingn points and these points being located near(x1, . . . , xn). The measures
(Jn)n≥1 are calledJanossy measures by Srinivasan (1969).

Suppose there is a reference measureν on � such that, for eachn ≥ 1, Jn is
absolutely continuous with respect toνn. Then, by the Radon–Nikodym theorem,
the derivativesjn of Jn with respect toνn exist, so that

Ef (�) = ∑
n≥0

∫
�n

1

n!f
(

n∑
i=1

δxi

)
jn(x1, . . . , xn)ν

n(dx1, . . . , dxn).

The derivatives(jn)n≥1 are calledJanossy densities.
The density of the mean measureλ of a finite point process� with respect toν

can be expressed by its Janossy densities(jn)n≥1 as

φ(x) = ∑
m≥0

∫
�m

1

m!jm+1(x, x1, . . . , xm)νm(dx1, . . . , dxm),

where the term withm = 0 is interpreted asj1(x) [Daley and Vere-Jones (1988),
page 133].

When the point process is simple, the Janossy densities can also be used
to describe the conditional probability density of a point being atα, given the
configuration�(α) of � outsideAα. More precisely, letm ∈ N be fixed and
β = (β1, . . . , βm) ∈ (Ac

α)m, and define

G(α,β) :=
∑

r≥0
∫
Ar

α
jm+r+1(α,β,γ )(r!)−1νr (dγ )∑

s≥0
∫
As

α
jm+s(β,η)(s!)−1νs(dη)

,(2.9)

where the term withr = 0 is interpreted asjm+1(α,β) and the term withs = 0
asjm(β). ThenG(α,β) is the conditional density of a point being nearα given
that�(α) is

∑m
i=1 δβi

. Direct verification gives that, for any bounded measurable
functionf overH,

E

(∫
�

f
(
α,�(α))�(dα)

)
= E

(∫
�

f
(
α,�(α))G(

α,�(α))ν(dα)

)
.(2.10)

For eachf :� × H → R+, ξ ∈ H , write ξ(Ax) = m and define

(δf )(x, ξ) = sup
{z1,...,zm}⊂�

max
0≤j≤m−1

∣∣∣∣∣f
(
x, ξ (x) + δx +

j∑
i=1

δzi

)

− f

(
x, ξ (x) + δx +

j+1∑
i=1

δzi

)∣∣∣∣∣,
where the right-hand side is interpreted as 0 ifm = 0. Combining (2.3) and (2.8)
gives:
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THEOREM 2.3. For each bounded measurable function g :H → R+,

|Eg(�) − Po(λ)(g)|
≤ E

∫
α∈�

(δfg)(α,�)
(
�(Aα) − 1

)
�(dα) + min{ε1(g,�), ε2(g,�)}(2.11)

+ E

∫
α∈�

(δfg)(α,�)λ(dα)�(Aα),

where

ε1(g,�) = E

∫
α∈�

∣∣fg

(
α,�(α) + δα

)∣∣∣∣G(
α,�(α)

) − φ(α)
∣∣ν(dα),(2.12)

which is valid if � is a simple point process, and

ε2(g,�) = E

∫
α∈�

∣∣fg

(
α,�(α) + δα

) − fg

(
α, (�α)(α) + δα

)∣∣λ(dα).(2.13)

REMARK 2.4. How judicious(Aα;α ∈ �) are chosen is reflected in the upper
bound in (2.11), and (2.13) suggests that(Aα;α ∈ �) should normally be chosen
such that (2.6) holds.

3. Poisson process approximation in Wasserstein pseudometric. We now
look at special test functionsg which define metrics of our interest. We begin with
a pseudometricρ0 on � bounded by 1 [cf. Barbour and Brown (1992)]. In order
for Theorem 2.3 to be applicable, we assume that the topology generated byρ0
is weaker than the given topology of�. Let K stand for the set ofρ0-Lipschitz
functionsk :� → [−1,1] such that|k(α) − k(β)| ≤ ρ0(α,β) for all α,β ∈ �. The
first Wasserstein pseudometricρ1 is defined onH by

ρ1(ξ1, ξ2) =



1, if |ξ1| �= |ξ2|,
|ξ1|−1 sup

k∈K

∣∣∣∣
∫

k dξ1 −
∫

k dξ2

∣∣∣∣, if |ξ1| = |ξ2| > 0,

where|ξi | is the total mass ofξi . A pseudometricρ′′
1 equivalent toρ1 can be defined

as follows [cf. Brown and Xia (1995)]: for two configurationsξ1 = ∑n
i=1 δyi

and
ξ2 = ∑m

i=1 δzi
with m ≥ n,

ρ′′
1(ξ1, ξ2) = min

π

n∑
i=1

ρ0
(
yi, zπ(i)

) + (m − n),

whereπ ranges all permutations of(1, . . . ,m).
LetF denote the set ofρ1-Lipschitz functions onH such that|f (ξ1)−f (ξ2)| ≤

ρ1(ξ1, ξ2) for all ξ1 andξ2 ∈ H . The second Wasserstein pseudometric is defined
on probability measures onH with respect toρ1 by

ρ2(Q1,Q2) = sup
f ∈F

∣∣∣∣
∫

f dQ1 −
∫

f dQ2

∣∣∣∣.
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The use of a pseudometricρ0 provides not only generality but also wider
applicability. For example, if we chooseρ0(x, y) ≡ 0, then

ρ2(Q1,Q2) = dTV
(
L(|X1|),L(|X2|)),

the total variation distance betweenL(|X1|) andL(|X2|), whereXi has distribu-
tion Qi , i = 1,2. It is known that, forg = 1B with B ⊂ Z+ := {0,1,2, . . .},

(δfg)(x, ξ) ≤ 1− e−λ

λ
, |fg | ≤ 1∧

√
2

eλ
,

where, and throughout this paper,λ is the total mass ofλ and is assumed to
be finite [see Barbour, Holst and Janson (1992) and Brown and Xia (2001)]. So
Theorem 2.3 gives:

THEOREM 3.1. We have

dTV
(
L(�(�)),Po(λ)

) ≤ 1− e−λ

λ
E

∫
α∈�

(
�(Aα) − 1

)
�(dα) + min{ε1, ε2}

+ 1− e−λ

λ

∫
α∈�

λ(Aα)λ(dα),

where

ε1 = 1∧
√

2

eλ

∫
α∈�

E
∣∣G(

α,�(α)
) − φ(α)

∣∣ν(dα),

which is valid for � simple, and

ε2 = 1− e−λ

λ

∫
α∈�

E
∣∣ ∣∣�(α)

∣∣ − ∣∣(�α)(α)
∣∣ ∣∣λ(dα).

Theorem 3.1 withε1 is a generalization of Chen (1975) [see also Barbour and
Brown (1992)] and withε2 allows the use of the coupling approach [see Barbour
and Brown (1992)].

Another example is in Section 4, where it is possible to introduce an index space
so that the results also include the approximation in distribution by a Poisson
process to discrete sums of the form

∑n
i=1 XiδYi

, whereYi is a random mark
associated withXi , as in Arratia, Goldstein and Gordon (1989).

We now establish a general statement of this section. As the arguments in
Barbour and Brown (1992) and Brown and Xia (2001) never rely on the property
that ρ0(x, y) = 0 implies x = y, the results are still valid forρ0 and the
pseudometricsρ1 andρ2 generated fromρ0. The following two lemmas are taken
from Barbour and Brown (1992) and Brown and Xia (2001).
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LEMMA 3.2. For each ρ1-Lipschitz function g ∈ F , x, y ∈ � and ξ ∈ H with
|ξ | = n, the solution fg of (2.3)satisfies

|fg(x, ξ + δx + δy) − fg(x, ξ + δx)| ≤ 5

λ
+ 3

n + 1
,(3.1)

|fg(y, ξ + δy)| ≤ 1∧ 1.65λ−1/2.(3.2)

LEMMA 3.3. For each g ∈ F , ξ, η ∈ H and x ∈ �,

|fg(x, ξ + δx) − fg(x, η + δx)|
≤ 2

|η| ∧ |ξ | + 1

[
ρ′′

1(ξ, η) − ∣∣|η| − |ξ |∣∣] +
(

5

λ
+ 3

|η| ∧ |ξ | + 1

)∣∣|η| − |ξ |∣∣
≤

(
5

λ
+ 3

|η| ∧ |ξ | + 1

)
ρ′′

1(ξ, η).

With the above two lemmas, we write another version of Theorem 2.3.

THEOREM 3.4. We have

ρ2
(
L�,Po(λ)

)
≤ E

∫
α∈�

(
5

λ
+ 3

|�(α)| + 1

)(
�(Aα) − 1

)
�(dα) + min{ε1, ε2}(3.3)

+ E

∫
α∈�

∫
β∈Aα

(
5

λ
+ 3

|(�β)(α)| + 1

)
λ(dα)λ(dβ),

where

ε1 = (
1∧ (1.65λ−1/2)

) ∫
α∈�

E
∣∣G(

α,�(α)
) − φ(α)

∣∣ν(dα),(3.4)

ε2 = E

∫
α∈�

(
5

λ
+ 3

|(�α)(α)| ∧ |�(α)| + 1

)
ρ′′

1
(
(�α)(α),�(α)

)
λ(dα).(3.5)

In many applications, we can obtain the Stein factor 1/λ from the terms(∣∣�(α)
∣∣ + 1

)−1
,

(∣∣(�α)(α)
∣∣ ∧ ∣∣�(α)

∣∣ + 1
)−1

,
(∣∣(�β)(α)

∣∣ + 1
)−1

,

by applying Lemma 3.5.

LEMMA 3.5 [Brown, Weinberg and Xia (2000), Lemma 3.1].For a random
variable X ≥ 1,

E

(
1

X

)
≤

√
κ(1+ κ/4) + 1+ κ/2

E(X)
,

where κ = Var(X)/E(X).
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COROLLARY 3.6. If � is a locally dependent point process with neighbor-
hoods (Aα;α ∈ �), then

ρ2
(
L�,Po(λ)

) ≤ E

∫
α∈�

(
5

λ
+ 3

|�(α)| + 1

)(
�(Aα) − 1

)
�(dα)

(3.6)

+
∫
α∈�

∫
β∈Aα

(
5

λ
+ E

3

|�(αβ)| + 1

)
λ(dα)λ(dβ),

where ξ (αβ) = ξ |Ac
α∩Ac

β
.

REMARK 3.7. Since∫
α∈�

�(Aα)

|�(α)| + 1
�(dα) =

∫
α∈�

∫
β∈Aα

1

|�(α)| + 1
�(dβ)�(dα)

≤
∫
α∈�

∫
β∈Aα

1

|�(αβ)| + 1
�(dβ)�(dα),

to simplify the first term of (3.6) using the assumption of local dependence, it is
tempting to ask whether

E
1

|�(αβ)| + 1
�(dβ)�(dα) = E

1

|�(αβ)| + 1
E�(dβ)�(dα).

The answer is generally negative, although it might be true in many applications, as
shown in Section 5. To see this, letP(Bi) = q = 0.1 for i = 1,2,3, P(BiBj ) = q2

for 1 ≤ i �= j ≤ 3 andP(B1B2B3) = 2q3. Set� = {1,2,3}, �({i}) = 1Bi
, 1 ≤

i ≤ 3, andA1 = A2 = {1,2} andA3 = {1,3}; then� is locally dependent with
neighborhoods(Ai; i ∈ �). However, direct calculation gives

E
1

�({3}) + 1
�({1})�({2}) = q2 − q3

and

E
1

�({3}) + 1
E�({1})�({2}) = (1− 0.5q)q2,

so

E
1

�({3}) + 1
�({1})�({2}) �= E

1

�({3}) + 1
E�({1})�({2}).

4. Sums of marked dependent trials. The case of Poisson process approxi-
mation for sums of marked dependent trials is of particular interest as it has appli-
cations in computational biology, occupancy and random graphs. We devote this
section to this case.

Let Ii, i ∈ I, be dependent indicators withI a finite or infinitely countable
index space and

P(Ii = 1) = 1− P(Ii = 0) = pi, i ∈ I.
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Let Ui , i ∈ I, be S-valued independent random elements, whereS is a locally
compact second countable Hausdorff space with metricd0 bounded by 1. Assume
that {Ui , i ∈ I} is independent of{Ii, i ∈ I}. Our interest is to approximate the
distribution ofM := ∑

i∈I IiδUi
by that of a Poisson process.

Let H(S) be the space of nonnegative integer-valued locally finite measures
on S. The metricd0 will generate the first Wasserstein metricd1 on H(S) and
second Wasserstein metricd2 on probability measures onH(S) as in Section 3 [see
also Barbour and Brown (1992)]. For eachi ∈ I, let Ai ⊂ I such thati ∈ Ai . Let
µi = L(Ui ), the law ofUi , i ∈ I, and letλ = ∑

i∈I piµi . DefineVi = ∑
j /∈Ai

Ij .

THEOREM 4.1. We have λ = ∑
i∈I pi and

d2
(
LM,Po(λ)

) ≤ E

∑
i∈I

∑
j∈Ai\{i}

(
5

λ
+ 3

Vi + 1

)
IiIj + min{ε1, ε2}

(4.1)

+ ∑
i∈I

∑
j∈Ai

(
5

λ
+ E

[
3

Vi + 1

∣∣∣Ij = 1
])

pipj ,

where

ε1 = (1∧ 1.65λ−1/2)
∑
i∈I

E
∣∣E(Ii|Ij , j /∈ Ai) − pi

∣∣,
ε2 = E

∑
i∈I

(
5

λ
+ 3

Vi ∧ ∑
j /∈Ai

Jji + 1

) ∑
j /∈Ai

|Jji − Ij |pi,

and (Jji; j ∈ I) and (Ij ; j ∈ I) are defined on the same probability space with

L(Jji; j ∈ I) = L(Ij ; j ∈ I|Ii = 1).

REMARK 4.2. The bound in (4.1) does not depend on the distribution of the
marks(Ui )i∈I, since the mean measure of the approximating Poisson process has
been chosen to reflect the contribution of the marks.

REMARK 4.3. SinceM is in general not asimple point process, the Janossy
density approach via (2.9) is not applicable. Also, due to the structure ofM, the
neighborhoods{Aα,α ∈ S} cannot be determined. By introducing a pseudometric
and by lifting the processM from S to a larger carrier space� = S × I, the lifted
process becomessimple and the neighborhoods{Aα,α ∈ �} determinable.

PROOF OFTHEOREM 4.1. We consider the approximation on the lifted space
� = S × I with pseudometricρ0((s, i), (t, j)) = d0(s, t). For eachξl ∈ H(�)

(l means lifted), defineξ ∈ H(S) by ξ(ds) = ∑
i∈I ξl(ds, {i}). Let Ml(ds, {i}) =

IiδUi
(ds) and letλl(ds, {i}) = piµi(ds). ThenMl is a simple point process on�,

M(ds) = ∑
i∈I Ml(ds, {i}), λ(ds) = ∑

i∈I λl(ds, {i}), and

ρ2
(
LMl,Po(λl)

) = d2
(
LM,Po(λ)

)
.
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For each(s, i) ∈ �, defineA(s,i) := S × Ai . Then|M((s,i))
l | = Vi .

The first term in the upper bound of (3.3) becomes

E

∫
(s,i)∈�

(
5

λ
+ 3

Vi + 1

)(
Ml

(
A(s,i)

) − 1
)
IiδUi

(ds)

= E

∑
i∈I

(
5

λ
+ 3

Vi + 1

)( ∑
j∈Ai

Ij − 1

)
Ii,

which gives the first term of the bound (4.1). Referring to (3.4), if we take the
reference measureν(ds, {i}) = µi(ds), thenφ((s, i)) = pi and fori1, . . . , ik ∈ I,
wherei1, . . . , ik are all different,

jk

(
(s1, i1), . . . , (sk, ik)

) = P
(
Ci1,...,ik

)
,

where

Ci1,...,ik := {Il = 1 for l = i1, . . . , ik andIl = 0 for l �= i1, . . . , ik}.
For α = (s, i), β = ((s1, i1), . . . , (sk, ik)) ∈ (Ac

(s,i))
k , the numerator of (2.9)

becomes

∑
r≥0

1

r!
∑

{j1,...,jr}⊂Ai\{i}
P

(
Ci,i1,...,ik,j1,...,jr

)

= P(Ij = 1 for j = i, i1, . . . , ik andIj = 0 for j ∈ Ac
i \ {i1, . . . , ik});

and the denominator of (2.9) is reduced to

∑
r≥0

1

r!
∑

{j1,...,jr }⊂Ai

P
(
Ci1,...,ik,j1,...,jr

)

= P(Ij = 1 for j = i1, . . . , ik andIj = 0 for j ∈ Ac
i \ {i1, . . . , ik}).

It follows that

G
(
(s, i),

(
(s1, i1), . . . , (sk, ik)

))
= P(Ii = 1|Ij = 1 for j = i1, . . . , ik andIj = 0 for j ∈ Ac

i \ {i1, . . . , ik}).
Therefore,

G
(
(s, i),M((s,i))

l

) = E(Ii |Ij ; j /∈ Ai)

and∫
(s,i)∈�

E
∣∣G(

(s, i),M((s,i))
l

) − φ
(
(s, i)

)∣∣ν(ds, {i}) = ∑
i∈I

E
∣∣E(Ii|Ij , j /∈ Ai) − pi

∣∣,
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which givesε1 of Theorem 4.1. On the other hand, in view ofε2 in (3.5), we can
write the Palm process associated withMl at (s, i) as

M(s,i)(dt, {j}) =



JjiδUj
(dt), if j �= i,

0, if j = i andt �= s,

δt (dt), if j = i andt = s.

With this coupling, we have|(M(s,i))
((s,i))| = ∑

j /∈Ai
Jji and|M((s,i))

l | = Vi. So,

1

|(M(s,i))((s,i))| ∧ |M((s,i))
l | + 1

= 1

Vi ∧ ∑
j /∈Ai

Jji + 1

and

ρ′′
1
((

M(s,i)

)((s,i))
,M((s,i))

l

) ≤ ∑
j /∈Ai

|Jji − Ij |,

which yieldsε2 of Theorem 4.1. Finally, since

λ(ds, {i})λ(dt, {j}) = pipjµi(ds)µj(dt),

the last term of (4.1) follows from the last term of (3.3).�

Bounds onE[ 1
Vi+1|Ij = 1] and E[ 1

Vi+1|Ij = Ii = 1] may be obtained by
applying Lemma 3.5. Sharper bounds can be achieved if additional information
about the relationship ofIi ’s is available, for example, ifIi ’s are independent.

REMARK 4.4. If Ii, i ∈ I, are locally dependent with neighborhoods(Ai;
i ∈ I), then

E

[
1

Vi + 1

∣∣∣Ij = 1
]

≤ E

[
1

Vij + 1

]
,

whereVij = ∑
k /∈Ai∪Aj

Ik.

Random indicators(Ij ; i ∈ I) are said to benegatively related (resp.positively
related) if, for eachi, (Jji, j ∈ I) can be constructed in such a way thatJji ≤
(resp. ≥) Ij for j ∈ I, j �= i [see Barbour, Holst and Janson (1992), page 24].

PROPOSITION 4.5. Suppose (Ij ; j ∈ I) are negatively related, and let λ =
E

∑
i∈I Ii ; then

E
1∑

i∈I Ii + 1
≤ 1− e−λ

λ
.



2558 L. H. Y. CHEN AND A. XIA

PROOF. Indeed, since(Ij ; j ∈ I) are negatively related, for decreasing
function�,

E

(
�

( ∑
i∈I\{j }

Ii

)∣∣∣Ij = 1

)
≥ E

(
�

( ∑
i∈I\{j }

Ii

)∣∣∣Ij = 0

)
,

so for fixed 0< z < 1, E(z
∑

i∈I\{j } Ii |Ij ) is increasing inIj andzIj is a decreasing
function inIj , giving

Ez
∑

i∈I Ii = E
[
E

(
z

∑
i∈I\{j } Ii |Ij

)
zIj

]
≤ E

[
E

(
z

∑
i∈I\{j } Ii |Ij

)]
E[zIj ] = E

(
z

∑
i∈I\{j } Ii

)
EzIj ,

[see Liggett (1985), page 78]. SinceI is a finite or infinitely countable index set,
by mathematical induction,

Ez
∑

i∈I Ii ≤ ∏
i∈I

EzIi .

Hence

E
1∑

i∈I Ii + 1
= E

∫ 1

0
z

∑
i∈I Ii dz ≤

∫ 1

0

∏
i∈I

(1− pi + piz) dz

≤
∫ 1

0

∏
i∈I

e−pi(1−z) dz = 1− e−λ

λ
.

�

COROLLARY 4.6. With the same setup as in Theorem 4.1,suppose (Ij ; j ∈ I)

are negatively related; then

d2
(
LM,Po(λ)

) ≤ E

∑
i∈I

(
5

λ
+ 3∑

j �=i Jj i + 1

)[
p2

i + pi

∑
j �=i

[Ij − Jji]
]
.(4.2)

PROOF. By Theorem 4.1 withAi = {i} andε2, the first term of (4.1) vanishes
and the last two terms of (4.1) can be rewritten as (4.2).�

As we need to boundE[(Vi + 1)−1|Ii = Ij = 1], it is relevant to ask whether
(Jki, k ∈ I) are also negatively (resp. positively) related if(Ij ; j ∈ I) are
negatively (resp. positively) related. The answer is generally negative, as the
following counterexample shows.

COUNTEREXAMPLE 4.7. Choose four setsBi , 1≤ i ≤ 4, so thatP(Bi) = q,

P(BiBj ) = bq2, P(BiBjBk) = bq3, for all different 1 ≤ i, j, k ≤ 4; and
P(B1B2B3B4) = bq4 with b ≤ 2 andq sufficiently small (e.g.,≤ 0.01) so that
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the sets are properly defined. SetIi = 1Bi
. Then for any increasing function� on

{0,1}3 [see Barbour, Holst and Janson (1992), page 27], we have

E[�(I1, I2, I3)|I4 = 1] − E�(I1, I2, I3)

= q(b − 1)[�(1,0,0) + �(0,1,0) + �(0,0,1) − 3�(0,0,0)].
Hence, by Theorem 2.D of Barbour, Holst and Janson (1992), if we chooseb >

(resp.<) 1, then(Ii;1≤ i ≤ 4) are positively (resp. negatively) related. But

P(J31 = J41 = 1|J21 = 1) = P(I3 = I4 = 1|I1 = I2 = 1) = q2

and

P(J31 = J41 = 1) = P(I3 = I4 = 1|I1 = 1) = bq2,

so

P(J31 = J41 = 1|J21 = 1) < (resp.>) P(J31 = J41 = 1),

which implies that(Jk1, k = 1, . . . ,4) are not positively (resp. negatively) related.

5. Applications. In this section, we apply the main results in Sections 3 and 4
to the Matérn hard-core process, an occupancy problem and rare words in DNA
sequences, all of which are different in nature. The results in Section 4 can also be
applied to random graphs, for example, to the isolated vertices resulting from the
deletion with small probability of each of the edges of a connected graph, where
the resulting isolated vertices may remain in their original positions or may be
distributed independently and randomly in a carrier space. Since this random graph
problem is similar in nature to that of rare words in DNA sequences, it will not be
discussed further in this section. A special case of this problem which involves
counting the number of isolated vertices has been considered by Roos (1994) and
Eichelsbacher and Roos (1999).

5.1. Matérn hard-core process. Consider a Poisson number, with meanµ, of
points placed independently and uniformly at random in�, where� is a compact
subset ofRd with volumeV (�) �= 0. A Matérn hard-core process� is produced
by deleting any point within distancer of another point, irrespective of whether the
latter point has itself already been deleted [see Cox and Isham (1980), page 170].
More precisely, let{α′

n} be a realization of points of the Poisson process. Then the
points deleted are

{α′′
n} = {

x ∈ {α′
n} : |x − y| < r for somey �= x, y ∈ {α′

n}
}
,

and{αn} := {α′
n} \ {α′′

n} constitutes a realization of the Matérn hard-core process�

[see Daley and Vere-Jones (1988)].
The Matérn hard-core process is one of the hard-core processes introduced

in statistical mechanics to model the distribution of particles with repulsive
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interactions [see Ruelle (1969), page 6]. It is a special case of the distance models
[see Matérn (1986), page 37] and is also a model for underdispersion [see Daley
and Vere-Jones (1988), page 366].

Let X1, X2, . . . be independent uniform random variables on�, and letN be
a Poisson random variable with meanµ and independent of{Xi; i ≥ 1}. Then
the Poisson process for the arrival points in� is Z = ∑N

i=1 δXi
. LetB(x, r) = {y ∈

� : 0 < d0(y, x) < r}, ther-neighborhood ofx, whered0(x, y) = |x −y|∧1. Then
the Matérn hard-core process� can be written as� = ∑N

i=1 δXi
1{Z(B(Xi,r))=0}.

Also,

�(dα) =
N∑

i=1

δXi
(dα)1{Z(B(Xi,r))=0} = 1{Z(B(α,r))=0}Z(dα).

Let κd be the volume of the unit ball inRd and letd2 be the second Wasserstein
metric generated fromd0 as in Section 3.

THEOREM 5.1. The mean measure of � is λ(dα) = e−µV (α,r)/V (�)µ ×
V (�)−1 dα, and

d2
(
L�,Po(λ)

) ≤ 10ϑ + 6ϑ
[
3+ (

1− e−2−dϑ
)
ϑ

]/(
1+ (1− 2ϑ)/λ

)
,

where V (α, r) is the volume of B(α, r) and ϑ = µκd(2r)d/V (�).

PROOF. The Poisson property ofZ implies that the counts of points in disjoint
sets are independent. So

λ(dα) = E(�(dα)) = E1{Z(B(α,r))=0}EZ(dα) = e−µV (α,r)/V (�)µV (�)−1dα.

Also, whether a point outsideB(α,2r)∪{α} is deleted or not is independent of the
behavior ofZ in B(α, r) ∪ {α}. Hence, we chooseAα = B(α,2r) ∪ {α} so that�
is locally dependent with neighborhoods(Aα;α ∈ �) and

E
1

|�(αβ)| + 1
�(dα)�(dβ) = E

1

|�(αβ)| + 1
E�(dα)�(dβ).

Applying Corollary 3.6 gives

d2
(
L�,Po(λ)

) ≤
∫
α∈�

∫
β∈Aα\{α}

(
5

λ
+ E

3

|�(αβ)| + 1

)
E�(dα)�(dβ)

(5.1)

+
∫
α∈�

∫
β∈Aα

(
5

λ
+ E

3

|�(αβ)| + 1

)
λ(dα)λ(dβ).

Now,

E
∣∣�(αβ)

∣∣ =
∫
�αβ

e−µ�V (x,r)µ� dx,
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where�αβ = � \ (Aα ∪ Aβ) andµ� = µ/V (�). On the other hand,

E�(dα)�(dβ)

=




e−µ�(V (α,r)+V (β,r))µ2
� dα dβ, if |α − β| ≥ 2r,

e−µ�(V (α,r)+V (β,r)−V (α,β,r))µ2
� dα dβ, if r ≤ |α − β| < 2r,

0, if 0 < |α − β| < r,

e−µ�V (α,r)µ� dα, if α = β,

whereV (α,β, r) is the volume ofB(α, r) ∩ B(β, r). Hence,

E
[∣∣�(αβ)

∣∣2] = E

∫ ∫
x,y∈�αβ

�(dx)�(dy)

=
∫
�αβ

e−µ�V (x,r)µ� dx

+
∫ ∫

x,y∈�αβ,|x−y|≥2r
e−µ�(V (x,r)+V (y,r))µ2

� dx dy

+
∫ ∫

x,y∈�αβ,r≤|x−y|<2r
e−µ�(V (x,r)+V (y,r)−V (x,y,r))µ2

� dx dy.

Writing

[
E

∣∣�(αβ)
∣∣]2 =

∫ ∫
x,y∈�αβ

e−µ�(V (x,r)+V (y,r))µ2
� dx dy,

we have

Var
(∣∣�(αβ)

∣∣) =
∫
�αβ

e−µ�V (x,r)µ� dx

+
∫ ∫

x,y∈�αβ,r≤|x−y|<2r
e−µ�(V (x,r)+V (y,r)−V (x,y,r))µ2

� dx dy

−
∫ ∫

x,y∈�αβ,|x−y|<2r
e−µ�(V (x,r)+V (y,r))µ2

� dx dy

≤
∫
�αβ

e−µ�V (x,r)µ� dx

+
∫ ∫

x,y∈�αβ,|x−y|<2r
e−µ�V (x,r)

[
1− e−µ�V (y,r)

]
µ2

� dx dy

≤ {
1+ (

1− e−µ�κdrd )
µ�κd(2r)d

} ∫
�αβ

e−µ�V (x,r)µ� dx.

Thus,

κ = Var(|�(αβ)| + 1)

E(|�(αβ)| + 1)
≤ Var(|�(αβ)|)

E(|�(αβ)|) ≤ 1+ (
1− e−µ�κdrd )

µ�κd(2r)d,
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which, together with Lemma 3.5, yields

E
1

|�(αβ)| + 1
≤ 2+ κ∫

�αβ
e−µ�V (x,r)µ� dx + 1

≤ 3+ (1− e−µ�κdrd
)µ�κd(2r)d

λ + 1− 2µ�κd(2r)d
.

Finally,∫
α∈�

∫
β∈Aα\{α}

E�(dα)�(dβ) ≤
∫
α∈�

∫
β∈Aα

e−µ�V (α,r)µ2
� dα dβ ≤ µ�κd(2r)dλ

and ∫
α∈�

∫
β∈Aα

λ(dα)λ(dβ) ≤ µ�κd(2r)dλ.

Applying these inequalities to the relevant terms in (5.1) gives Theorem 5.1.�

5.2. Occupancy problem. Supposes balls are dropped independently inton

urns with probabilitypk of going into thekth urn. Two cases of the distribution of
urns with given content have been studied in the literature. They are urns with
at mostm balls (right-hand domain) and urns with at leastm balls (left-hand
domain), wherem is a fixed nonnegative integer [see Kolchin, Sevast’yanov and
Chistyakov (1978) and also Barbour, Holst and Janson (1992), Chapter 6]. In this
section, we consider the right-hand domain. So far, the focus in the literature has
been on the total number of urns [see Arratia, Goldstein and Gordon (1989) and
Barbour, Holst and Janson (1992), and references therein] and little attention has
been paid to the locations of the urns.

We assume the urns are numbered from 1 ton and letXi be the number of balls
in theith box, 1≤ i ≤ n. Define a point process� on� = [0,1] as follows:

� =
n∑

i=1

1{Xi≤m}δi/n.

The mean measure of� is thenµ = ∑n
i=1 πiδi/n, whereπi = ∑m

j=0
(s
j

)
p

j
i ×

(1 − pi)
s−j and µ = ∑n

i=1 πi. Set λ(dt) = nπi dt for (i − 1)/n < t ≤ i/n,

i = 1,2, . . . , n andd0(t1, t2) = |t1 − t2| for t1, t2 ∈ �. Let

µ′ = min
i �=j,1≤i,j≤n

∑
k �=i,j,1≤k≤n

P(Xk ≤ m|Xi = Xj = 0)

and

µ′′ = min
1≤i≤n

∑
j �=i,1≤j≤n

P(Xj ≤ m|Xi = 0) ≥ µ′.

If s min1≤i≤n pi is large, then we would expect good Poisson process approxima-
tion.
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THEOREM 5.2. With the above setup,

d2
(
L�,Po(λ)

)
≤ 1

2n
+

(
5

µ
+ 3

µ′
)
[E(|�|) − Var(|�|)](5.2)

≤ 1

2n
+ C

{
π∗ + s

µ

(
ln s + m ln ln s + 5m

s − ln s − m ln ln s − 4m
µ + 4

s

)2}
,(5.3)

where (5.3) is valid for s > ln s + m ln ln s + 4m,

C = 5+ 3
(

1− 3p∗ + 2p2∗
1− 3p∗

)s(
1− 2π∗

µ

)−1

,

with π∗ = max1≤i≤n πi and p∗ = max1≤i≤n pi < 1/3.

PROOF. By the triangle inequality,d2(L�,Po(λ)) ≤ d2(L�,Po(µ)) +
d2(Po(µ),Po(λ)), so the term 1/(2n) follows immediately from estimating
d2(Po(µ),Po(λ)) [see Brown and Xia (1995), (2.8)]. For each 1≤ i ≤ n,
let Ii = 1{Xi≤m}, then (Ii;1 ≤ i ≤ n) are negatively related. Indeed, ifXi ≤ m,
takeYji = Xj for all j . If Xi > m, take a random variablẽXi which is indepen-
dent of{X1, . . . ,Xn} and has distributionL(Xi |Xi ≤ m) and takeXi − X̃i balls
from urn i and redistribute them to the other urns with probabilitiespj/(1 − pi)

for j �= i. Let Yji be the number of balls in urnj after the redistribution and
setJji = 1{Yji≤m}. This coupling(Jji;1≤ j ≤ n) satisfies

L(Jji;1≤ j ≤ n) = L(Ij ;1≤ j ≤ n|Ii = 1), Jji ≤ Ij for all j �= i

[see Barbour, Holst and Janson (1992), page 122].
We have from Corollary 4.6 that

d2
(
L�,Po(µ)

) ≤ E

n∑
i=1

(
5

µ
+ 3∑

j �=i Jj i + 1

)(∑
k �=i

(Ik − Jki)πi + π2
i

)
.(5.4)

Now, the above coupling can be modified to show that, forl ≥ 1,(
Ij ; j �= i1, . . . , il|Xi1 = · · · = Xil = 0

)
are also negatively related. In fact, denotei = (i1, . . . , il). If Xi1 = · · · = Xil = 0,
take Z′

j i = Xj for all j �= i1, . . . , il . If one of Xi1, . . . ,Xil is not 0, take all
balls in urnsi1, . . . , il and relocate them to the other urns with probabilities
p′

j := pj/(1−pi1 −· · ·−pil ) for j �= i1, . . . , il . After the relocation, letZ′
j i be the

number of balls in urnj andJ ′
j i = 1{Z′

j i≤m}. Next, for k �= i1, . . . , il , if Z′
ki ≤ m,

take J ′′
jki = J ′

j i. If Z′
ki > m, take a random variablẽZ′

ki which is independent

of {Z′
1i, . . . ,Z

′
ni} and has distributionL(Z′

ki|Z′
ki ≤ m). RemoveZ′

ki − Z̃′
ki balls

from urnk and redistribute them to the other urns with probabilitiesp′
j /(1− p′

k),
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j �= k, i1, . . . , il . After this, let J ′′
jki = 1 if there are at mostm balls in urnj ;

otherwise, letJ ′′
jki = 0. These couplings satisfy

L(J ′
j i; j �= i1, . . . , il) = L

(
Ij ; j �= i1, . . . , il|Xi1 = · · · = Xil = 0

)
,

L(J ′′
jki; j �= i1, . . . , il) = L(J ′

j i; j �= i1, . . . , il|J ′
ki = 1),

J ′′
jki ≤ J ′

j i for all j �= k, i1, . . . , il,

J ′
j i ≤ Ij for all j �= i1, . . . , il .

In particular, ifi = i, thenJ ′
j i ≤ Jji for j �= i.

By these couplings and Proposition 4.5, we have

E
1∑

j �=i Jj i + 1
≤ E

1∑
j �=i J

′
j i + 1

≤ 1∑
j �=i EJ ′

j i

≤ 1

µ′ .(5.5)

On the other hand, fork �= i, denotek = (i, k), we have

E
Ik − Jki∑
j �=i Jj i + 1

≤ E
Ik − Jki∑

j �=i,k Jji + 1

=
m∑

l1=0

s∑
l2=m+1

E

[
1∑

j �=i,k 1{Yji≤m} + 1

∣∣∣Xk = l1, Yki = l2

]
P(Xk = l1, Yki = l2)

≤ E
1∑

j �=i,k 1{Z′
jk≤m} + 1

m∑
l1=0

s∑
l2=m+1

P(Xk = l1, Yki = l2)

= E
1∑

j �=i,k J ′
jk + 1

P(Ik = 1, Jki = 0)

≤
[ ∑

j �=i,k

EJ ′
jk

]−1

P(Ik = 1, Jki = 0)

≤ P(Ik = 1, Jki = 0)

µ′ = E(Ik − Jki)

µ′ .

Hence,

E

(∑
k �=i Ik − ∑

k �=i Jki∑
j �=i Jj i + 1

)
≤ 1

µ′ E
[∑

k �=i

(Ik − Jki)

]
,

which, combined with (5.4) and (5.5), yields

d2
(
L�,Po(µ)

) ≤
(

5

µ
+ 3

µ′
)

E

n∑
i=1

[(∑
k �=i

Ik − ∑
k �=i

Jki

)
πi + π2

i

]
.
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On the other hand, since fork �= i, E(Jki)πi = P(Ik = Ii = 1) = E(IkIi), we
have

E

n∑
i=1

[(∑
k �=i

Ik − ∑
k �=i

Jki

)
πi + π2

i

]

= ∑
1≤i,k≤n

E(Ik)E(Ii) − ∑
i �=k,1≤i,k≤n

E(IiIk)

= E(|�|) − Var(|�|).
Therefore, (5.2) follows. To prove (5.3), we note from Theorem 6.D of Barbour,
Holst and Jonson [(1992), page 122] that

1− Var(|�|)
E(|�|) ≤ π∗ + s

µ

(
ln s + m ln ln s + 5m

s − ln s − m ln ln s − 4m
µ + 4

s

)2

.

So, it remains to show that

µ

µ′ ≤
(

1− 3p∗ + 2p2∗
1− 3p∗

)s(
1− 2π∗

µ

)−1

.(5.6)

To prove (5.6), notice that, for 1≤ i, j ≤ n with i �= j ,

∑
k �=i,j

P(Xk ≤ m|Xi = Xj = 0)

= ∑
k �=i,j

∑
0≤l≤m

(
s

l

)(
pk

1− pi − pj

)l(
1− pk

1− pi − pj

)s−l

≥ ∑
k �=i,j

∑
0≤l≤m

(
s

l

)
pl

k(1− pk)
s−l

(
1− pi − pj − pk

(1− pk)(1− pi − pj )

)s

≥
(

1− 3p∗
1− 3p∗ + 2p2∗

)s ∑
k �=i,j

∑
0≤l≤m

(
s

l

)
pl

k(1− pk)
s−l

≥
(

1− 3p∗
1− 3p∗ + 2p2∗

)s

(µ − 2π∗).

Hence

µ′ ≥
(

1− 3p∗
1− 3p∗ + 2p2∗

)s

(µ − 2π∗),

which implies (5.6). �
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5.3. Rare words in biomolecular sequences. One of the important problems
in biomolecular sequence analysis is the study of the distribution of words in
a DNA sequence. A DNA sequence may be regarded as a sequence of letters
taken from the alphabet {A, C, G, T}. The letters A, C, G, T represent the four
nucleotides: adenine, cytosine, guanine and thymine, respectively. They form two
complementary pairs, namely {A, T} and {C, G}.

It is known that repetition of a given word or a group of words or occurrences
of unusually large clusters of words are known to have biological functions.
For example, unusually large clusters of palindromes are known to contain such
significant sites as origins of replication and gene regulators. Here palindromes are
symmetrical words of DNA in the sense that they read exactly the same as their
reverse complementary sequences. In Leung and Yamashita (1999), palindromes
of certain lengths are assumed to be independent and uniformly distributed in
herpesvirus genomes, and ther-scan statistic is used to identify unusually large
clusters of palindromes.

It is commonly assumed that the bases of DNA are independent random
variables taking values in the set {A, C, G, T}. Under this assumption, if each word
of a particular type is represented by a point, then the points representing these
words form a locally dependent point process. Theorem 4.1 in this paper provides
an error bound for approximating such a point process by a Poisson process. The
error bound can be used to find conditions for which the approximation is good.
In general, the approximation is good if the words are rare in the sense that the
probabilities of their occurrences are small. However, the error bound can be made
more explicit only when the words are specified.

As an application, Theorem 4.1 provides a mathematical basis for Poisson
process modeling of rare words in a biomolecular sequence, and in particular of
palindromes in a DNA sequence. A consequence of this is that the observed rare
words may be regarded as a realization of i.i.d. random variables, thus providing
a mathematical basis for the assumption in Leung and Yamashita (1999) that the
points representing the palindromes are independent and uniformly distributed in
the herpesvirus genomes.

In Leung, Xia and Chen (2002) Poisson process approximation for palindromes
in sixteen herpesvirus genomes is studied. The centers of palindromes in each
herpesvirus genome are represented by the point process on{0,1/n,2/n, . . . , (n−
1)/n,1}:

� =
n∑

i=1

Iiδi/n,(5.7)

where the length of genome (number of base pairs) is denoted byM , those
palindromes considered are of length at least 2L (the length must be even) and
called 2L-palindromes, the center of a palindrome of length 2K is the K th
base in the palindrome from the left, and the number of possible centers of
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2L-palindromes isM − 2L + 1, denoted byn. Also, Ii is the indicator random
variable for the occurrence of a 2L-palindrome centered at basei + L − 1 of the
DNA sequence. The palindromes are represented by their centers because the latter
are fixed irrespective of the lengths of the former, whereas the first base pair of a
palindrome of at least a certain length is random and will give rise to complications
in the analysis if it is used to represent the palindrome.

Since 2L-palindromes with centers sufficiently far apart (more specifically,
further than 2L − 1 bases apart) occur independently, the point process (5.7) is a
sequence of marked locally dependent trials as described in Section 4 of this paper,
to which Theorem 4.1 is applicable. Here(Ii;1≤ i ≤ n) are locally dependent with
neighborhoods

Ai = {j : i − 2L + 1 ≤ j ≤ i + 2L − 1} ∩ {1,2, . . . , n}, i = 1,2, . . . , n.

Take� = [0,1] andd0(x, y) = |x − y|. Let pi = P(Ii = 1) andpij = P(Ii =
Ij = 1). It can be shown thatpi = θL, whereθ = 2(pApT + pCpG) andpA, pT ,
pC , pG are the probabilities of A, T, C, G, respectively.

Suppose

pA = pT , pC = pG and 4≤ L ≤ n

500
.(5.8)

Then the next theorem follows from Theorem 4.1 withUi = i/n, Lemma 3.5
and a two-step approximation as in Section 5.2; namely, first approximate� by a
Poisson process with the same mean measure as that of� and then approximate
the latter by a Poisson process on [0, 1] with intensity measureλdx.

THEOREM 5.3. We have

d2
(
L�,Po(λ)

) ≤ 26

λ
(b1 + b2) + 1

2n
≤ 131LθL/2,(5.9)

where λ = ∑n
i=1 pi = nθL, b1 = ∑n

i=1
∑

j∈Ai
pipj ≤ n(4L − 1)θ2L,

b2 =
n∑

i=1

∑
j∈Ai,j �=i

pij ≤ n(4L − 2)θ3L/2

and λ(dx) = λdx.

Since a proof of Theorem 5.3 is given in Leung, Choi, Xia and Chen (2002),
we will not give one here. It suffices to mention that the explicit bound on the
overlap probabilities in (5.9) is due to the explicit nature of the palindrome. In
order for Po(λ) to be nondegenerate in the limit,λ = nθL must converge to a
positive number asn → ∞. This means thatL = lnn/ ln(1/θ) + d , whered is
bounded. For such anL, the assumption (5.8) is satisfied for sufficiently largen,
Theorem 5.3 holds and the upper bound in (5.9) tends to 0 asn → ∞.
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A significant feature of the bound in (5.9) is that it has the Stein factor 1/λ.
This is crucial for accuracy, as the value ofλ ranges from about 100 to 300 for the
sixteen herpesvirus genomes under study.

In Leung, Choi, Xia and Chen (2002), a direct proof of a special case
of Theorem 4.1 withUi = i/n is given (see Theorem 1 and the Appendix).
Also given are the details of deducing Theorem 5.3 from the special case of
Theorem 4.1 and the proof of the upper bound 131LθL/2 (see Lemmas 1 and 2
and Propositions 1 and 2). This upper bound is then used as a guide to choose
optimal lengths of palindromes for the approximation. The scan statistics is then
applied to identify unusually large clusters of palindromes for each of the sixteen
herpesviruses.
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