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CONDITIONING AND INITIAL ENLARGEMENT OF FILTRATION
ON A RIEMANNIAN MANIFOLD1

BY FABRICE BAUDOIN

Université Paul Sabatier

We extend to Riemannian manifolds the theory of conditioned stochastic
differential equations. We also provide some enlargement formulas for the
Brownian filtration in this nonflat setting.

1. Introduction. In this paper we develop the theory of conditioned stochastic
differential equations (CSDEs) on a Riemannian manifold. In the flat case, this
theory was initiated in [1] and further used in [3] and [4]. In [1] and [3], we gave an
application of the CSDEs to the mathematical finance topic of informed insiders.
In [4], from the drift of the CSDEs we first constructed some martingales (called
Newton’s martingales) which generalize the stochastic Newton equation for the
so-called reciprocal processes (see [28]). Then we studied the symmetries of the
CSDEs, that is, the transformations on the flat path space which preserve the set
of CSDEs constructed from a given functional. From this we constructed some
martingales called Noether’s martingales, by analogy with the classical Noether
theorem. This paper can be read independently of the articles cited above.

In the present paper, we study a Riemannian Brownian motion with driftV

for which one functional of the trajectories is conditioned (in Doob’s sense) to
follow a given law. The conditioned process, which generalizes naturally the
conditional diffusion (see [5]) that Bismut used extensively in his probabilistic
proof of Atiyah–Singer theorems (see [6, 7]), is shown to be a semimartingale
in its own filtration. It is also shown that it is semimartingale in the Brownian
filtration initially enlarged by the conditioned functional until each time smaller
than the revelation time of the functional. Furthermore, this decomposition does
not depend on the law of the conditioning. Then we study the case of conditioning
of a marginal law for Riemannian Brownian motion with drift. Finally, we are
interested in the conditioning of hitting times for small geodesic spheres, and we
give a probabilistic characterization of rank 1 symmetric spaces which is derived
from [2] and [26].

As will be seen, actually, it appears that most of the results presented in [1] can
be extended to Riemannian manifolds. Roughly speaking, this extension can be
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explained by the fact that the horizontal lifting commutes with the conditioning. In
other words, if we condition a Brownian motion by a functional and if we lift this
conditioned process, then we obtain a horizontal Brownian motion conditioned by
the lifted functional.

2. Framework and assumptions. We now turn to the notations which are
used throughout the paper. Let(M, g) be ad-dimensional connected complete
Riemannian manifold. We denote by� the Laplace–Beltrami operator onM (for
us,� is negative). The tangent bundle toM is denotedT M andTmM is the tangent
space atm: we have, hence,T M = ⋃

n TnM. The orthonormal frame bundle of
M is denoted byO(M). Hence,(O(M),M,Od(R)) is a principal bundle onM
with structure groupOd(R) of d × d orthogonal matrices. The transpose of a
matrix M is denotedTM . We denote byπ the canonical surjectionO(M) → M.
The horizontal fundamental vector fields ofO(M) are denoted(Hi)i=1,...,d . The
Bochner horizontal Laplacian, that is, the lift of�, is then given by

�O(M) =
d∑

i=1

H 2
i .

The symbol∇ denotes the covariant differentiation onM associated with the
torsion-free connection onM (the Levi–Civita connection). In addition,Ric
denotes the Ricci curvature tensor andRic denotes its equivariant representation.
Foru ∈ O(M), Ricu is hence an applicationRd → Rd . For a smooth vector fieldV
on M, the equivariant representation of the(1,1) tensor∇V is denoted∇V , and
∇V (u) is thus also an applicationRd → Rd .

Let us now considerm ∈ M, and a smooth vector fieldV . We associate the
stochastic differential equation onO(M),

Z∗
t = U0 +

∫ t

0
V ∗(Z∗

s ) ds +
d∑

i=1

∫ t

0
Hi(Z

∗
s ) ◦ dBi

s,

where:

• U0 ∈ O(M) is such thatπU0 = m;
• V ∗ is the lift of V ;
• ◦ denotes the integration in a Stratonovitch sense;
• (Bt )t≥0 is ad-dimensional standard Brownian motion.

We assume that this equation has, for anym ∈ M, a unique strong nonexplosive
solution in the sense that there exists onO(M) a unique process(Z∗

t )t≥0 whose
natural filtration is equal to the natural filtration of(Bt )t≥0 and such that for any
C∞ bounded functionf :O(M) → R,

f (Z∗
t ) = f (U0) +

∫ t

0
(V ∗f )(Z∗

s ) ds +
d∑

i=1

∫ t

0
(Hif )(Z∗

s ) ◦ dBi
s, t ≥ 0.
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Consider the space of continuous paths

Cm(M) = {ω :R+ → M, ω(0) = m, ω continuous}.
From the previous assumption there exists a unique probability measurePm

onCm(M) such that for anyC∞ boundedf :M → R, the process(
f (Xt) − f (m) − 1

2

∫ t

0
(�f )(Xs) ds −

∫ t

0
(Vf )(Xs) ds

)
t≥0

(2.1)

is, underPm, an F -adapted martingale null at 0. Here(Xt )t≥0 denotes the
coordinate process onCm(M) and(Ft )t≥0 denotes its natural filtration. In other
words, the law of the processZ = πZ∗ is the unique solution of the martingale
problem with initial conditionm associated with the elliptic operator

1
2� + V.

We refer to [24] and [25] for the general theory of the so-called martingale
problems.

The transition function of(Zt )t≥0 is denotedqt , hence we have, fors < t,

P(Zt ∈ dy|Fs) = qt−s(Zs, y) dy,

where dy is the Riemannian volume measure onM. The existence of the
functionqt and its smoothness comes from Hörmander’s theorem. Moreover, we
assume thatqt is positive.

3. Conditioning and pinning class in the nonflat Wiener space. We fix now
once and for allm andU0. For the sake of simplicity, we denote simply byP the
probability measurePm on Cm(M) described in the previous section. Since we
mainly focus our attention on the laws ofM-valued processes, we work in the
stochastic basis (

Cm(M), (Xt )t≥0, (Ft )t≥0,P
)
.

For this, we have to transfer the assumptions of the previous section into this
stochastic basis. Namely, there are a unique process(X∗

t )t≥0 on O(M) and a
uniqued-dimensional standard Brownian motion(X̃t )t≥0 such that

X∗
t = U0 +

∫ t

0
V ∗(X∗

s ) ds +
d∑

i=1

∫ t

0
Hi(X

∗
s ) ◦ dX̃i

s, t ≥ 0, πX∗ = X.

We consider now onCm(M) a random variableY -valued in some Polish spaceP ,
endowed with Borelσ -algebra B(P ), and measurable with respect to the
σ -algebraFT with T ∈ R+ ∪ {+∞}. We assume the existence of a regular
disintegration ofY with respect to the filtrationF . Namely, we assume that there
exists a jointly measurable, continuous int andF -adapted process

η
y
t , 0 ≤ t < T, y ∈ P ,(3.1)
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satisfying, fordt ⊗ PY almost every 0≤ t < T andy ∈ P ,

P(Y ∈ dy|Ft ) = η
y
t PY (dy),

wherePY denotes the law ofY underP.

REMARK 1. For the sake of presentation, we restrict ourselves to the case
of a deterministic horizon timeT . Nevertheless the contents contained in this
section and the next one (excepted what deals with Malliavin calculus) are easily
extended by taking forT a stopping time of the filtrationF and taking forY an
FT -measurable functional. In that case, we have to work under the assumption that
there exists a jointly measurable process(η

y
t ,0 ≤ t < T,y ∈ P ) satisfying, for all

bounded and measurable functionf ,

E
(
f (Y )|Ft , t < T

) =
∫
P

f (y)η
y
t PY (dy).

Actually, to include the case of a random horizon in our presentation, it would
suffice to work in the filtration(Ft ∩ {t < T })t≥0 (such a “trick” is well known in
the theory of enlargement of filtrations and can, e.g., be found in [29]).

One of our main objects of study is the so-called pinning class (see [4]) of the
measureP with respect to the functionalY , that is, the setRY (P) of probability
measures onCm(M) defined by

RY (P) = {Q ∼ P,Q(·|Y ) = P(·|Y )}.
To explicate the semimartingale decomposition ofX underQ ∈ RY (P), we

need the following nonflat version of the so-called Jacod lemma in the theory
of initial enlargement of filtration (see [18]). In what follows,P (F ) denotes the
predictableσ -field associated with the filtrationF .

LEMMA 2. There exists aP (F ) ⊗ B(P ) measurable process

[0, T [×Cm(M) × P → T M,

(t,ω, y) → α
y
t (ω)

such that:

1. For PY -a.e. y ∈ P and for0 ≤ t < T , α
y
t ∈ TXt M.

2. For PY -a.e. y ∈ P and for0 ≤ t < T,

P

(∫ t

0
‖αy

u‖2 du < +∞
)

= 1.

3. For PY -a.e. y ∈ P and for all 1-formsθ onM,〈
ηy,

∫
X[0,·]

θ

〉
t

=
∫ t

0
ηy

uθ(αy
u) du, 0 ≤ t < T .
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PROOF. From the predictable representation property of the Brownian motion
(X̃t )t≥0 and from [18], there exists aP (F ) ⊗ B(P ) measurable process

[0, T [×Cm(M) × P → Rd,

(t,ω, y) → α̃
y
t (ω)

such that:

1. ForPY -a.e.y ∈ P and for 0≤ t < T,

P

(∫ t

0
‖α̃y

u‖2 du < +∞
)

= 1.

2. ForPY -a.e.y ∈ P and for 0≤ t < T, 1 ≤ i ≤ d ,

〈ηy, X̃i〉t =
∫ t

0
ηy

uα̃y,i
u du.

Then we set

α
y
t = X∗

t α̃
y
t

and it is easy to verify that it satisfies the conditions of the lemma. In particular, let
us show that it satisfies the fourth condition. For a 1-formθ onM, we have〈

ηy,

∫
X[0,·]

θ

〉
t

=
〈
ηy,

d∑
i=1

∫ ·

0
θ(X∗

s ei) ◦ dX̃i
s

〉
t

,

where(ei)i=1,...,d is the canonical base ofRd . However,〈
ηy,

∫ ·

0
θ(X∗

s ei) ◦ dX̃i
s

〉
t

=
∫ t

0
ηy

s θ(X∗
s ei)α̃

y,i
s ds.

Thus, 〈
ηy,

∫
X[0,·]

θ

〉
t

=
∫ t

0
ηy

uθ(αy
u) du, 0 ≤ t < T . �

On α we furthermore make the following integrability assumption: For almost
everyt ∈ [0, T ), it holdsP-almost surely that∫ t

0
E(‖αY

u ‖|Fu)
2 du < +∞.(3.2)

We can now deduce the following proposition.

PROPOSITION 3. Let Q ∈RY (P). Then underQ, the coordinate process
(Xt )0≤t≤T is a semimartingale in the filtration(Ft )0≤t≤T . Moreover, the process

X̃t −
∫ t

0
(X∗

s )−1
∫
P η

y
s α

y
s QY (dy)∫

P η
y
s QY (dy)

ds, t < T,

is a Brownian motion underQ, whereQY is the law ofY underQ.
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PROOF. Let Q ∈RY (P) and denote byξ the Radon–Nikodym densitydQY /

dPY which is well defined becauseQ ∼ P. We have, for anyFT -measurable
positive and bounded random variableF ,

EQ(F ) =
∫
P

EQ(F |Y = y)ξ(y)PY (dy).

However, sinceQ ∈RY (P) and∫
P

EQ(F |Y = y)ξ(y)PY (dy) =
∫
P

E(F |Y = y)ξ(y)PY (dy) = E(ξ(Y )F ),

we conclude that

Q/FT
= ξ(Y )P/FT

.

From this and from

P(Y ∈ dy|Ft ) = η
y
t PY (dy)

we deduce that fort < T ,

Q/Ft =
(∫

P
η

y
t ξ(y)PY (dy)

)
PFt =

(∫
P

η
y
t QY (dy)

)
PFt .

Now, we can conclude with Girsanov’s theorem, because from the proof of
Lemma 1, forPY -a.e.y ∈ P and for 0≤ t < T, 1 ≤ i ≤ d ,

〈ηy, X̃i〉t =
∫ t

0
ηy

uα̃y,i
u du

with

α̃
y
t = (X∗

t )
−1α

y
t .

Because of the assumption (3.2) we can apply Fubini’s theorem〈 ∫
P

ηy· QY (dy), X̃i

〉
t

=
∫ t

0

∫
P

ηy
uα̃y,i

u QY (dy) du,

which leads to the expected result.�

In the next theorem, under further regularity assumptions we try to compute
more explicitly the compensator of̃X underQ ∈ RY (P) by means of the Clark–
Ocone–Bismut formula (see [15]; [21], Theorem 6.4, and [5], Theorem 2.2, pages
61 and 62). In particular, we see a Bakry–Emery curvature type term which appears
in the computations and which measures exactly the difference with the flat case.
This term stems from Weitzenböck formula on 1-forms. Before we state our
formula, let us recall some basic facts about Malliavin calculus on a nonflat space.
For a cylindrical functional,

F = f
(
Xt1, . . . ,Xtn

)
,
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wheref :Mn → R is a smooth function and the directional derivative ofF along
the Cameron–Martin vector fieldDh is given by

DhF =
n∑

i=1

(∇if
(
Xt1, . . . ,Xtn

)
,X∗

ti
h
)
,

whereh is anRd -valued adapted process with a derivative inL2 such that

E

(∫ T

0

(
dh

dt

)2)
< +∞.

Now, the Malliavin derivative ofF is defined by the representation formula

DhF =
∫ T

0

(
DsF,

dh

ds

)
ds.

It is shown in the same way as in the flat case (see [22], page 26) thatDh :S →
Lp(Cm(M),P) is closable forp ≥ 1, whereS is the set of cylindrical functionals.

Finally, we denote by� the field of linear applicationsRd → Rd defined by

� := 1
2Ric −T ∇V

and we assume that it is bounded.

PROPOSITION4. Let Q ∈RY (P) and assume, moreover, that ξ := dQY /dPY

has a version such thatξ(Y ) and ln ξ(Y ) ∈ Dom(D). Then

(X∗
t )

−1
∫
P η

y
t α

y
t QY (dy)∫

P η
y
t QY (dy)

(3.3)
= EQ

(
Dt ln ξ(Y ) − 	−1

t

∫ T

t
	s�X∗

s

(
Ds ln ξ(Y )

)
ds|Ft

)
, t < T,

where	 is anF -adapted process valued in the space ofd × d invertible matrices
and solves the equation

	t +
∫ t

0
	s�X∗

s
ds = Id .

PROOF. From the proof of Proposition 3, we know that fora probability
Q ∈RY (P) we have

Q = ξ(Y )P.

Now, from the Clark–Ocone–Bismut formula,

ξ(Y ) = 1+
∫ T

0
(
s, dX̃s),
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where
 is given by


s = E

(
Dsξ(Y ) − 	−1

s

∫ T

s
	u�X∗

u

(
Duξ(Y )

)
du|Fs

)
.

Girsanov’s theorem gives hence

(X∗
t )−1 =

∫
P η

y
t α

y
t QY (dy)∫

P η
y
t QY (dy)

= E(Dt ξ(Y ) − 	−1
t

∫ T
t 	s�X∗

s
(Dsξ(Y )) ds|Ft )

E(ξ(Y )|Ft )

= EQ
(

Dt ln ξ(Y ) − 	−1
t

∫ T

t
	s�X∗

s

(
Ds ln ξ(Y )

)
ds|Ft

)
.

The last equality stems from the Bayes formula.�

By comparing Propositions 3 and 4, we deduce hence, thanks to Bayes formula,
the following very general integration by parts formula, which also characterizes
our processα.

COROLLARY 5. Under the assumptions of Propositions3 and4, we have∫
P

α
y
t ξ(y)P(Y ∈ dy|Ft )

(3.4)
= X∗

t E

(
Dt ξ(Y ) − 	−1

t

∫ T

t
	s�X∗

s

(
Dsξ(Y )

)
ds|Ft

)
, t < T .

REMARK 6. Let us mention here an interesting point. If we use, formally, the
formula (3.4) withξ = δy , y ∈ P , then we obtain

(X∗
t )−1α

y
t P(Y ∈ dy|Ft ) = E

(
Dt δY − 	−1

t

∫ T

t
	s�X∗

s
(DsδY ) ds|Ft

)
(dy).

In the flat case (� = 0), this formula can be found in [17], Proposition A.1,
where a Malliavin calculus for measure-valued random variables is developed.

We can now give a precise definition of Brownian motion conditioned by the
functionalY and show how it can be constructed from a stochastic differential
equation onO(M) that is called a conditioned stochastic differential equation
(cf. [1]).

DEFINITION 7. A process onM whose law belongs toRY (P) is called a
Brownian motion with driftV conditioned byY.
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Let us consider a probability measureν on the Polish spaceP which is
equivalent toPY . Then there exists a predictable functional onCm(M), sayFν ,
such that

Fν
(
t, (Xs)0≤s≤t

) =
∫
P η

y
t α

y
t ν(dy)∫

P η
y
t ν(dy)

, t < T .

DEFINITION 8. On a filtered probability space(�, (Ht )0≤t≤T , (βt)0≤t≤T , P̃)

which satisfies the usual conditions, whereβ is anH -adaptedd-dimensional linear
Brownian motion, the stochastic differential equation onO(M),

Ut = U0 +
∫ t

0
V ∗(Us) ds

(3.5)

+
d∑

i=1

∫ t

0
Hi(Us) ◦ (

(Us)
−1Fν

(
s, (πUu)0≤u≤s

)
ds + βs

)
, s ≤ T,

is called the conditioned stochastic differential equation associated with the
conditioning(T ,Y, ν).

We conclude this section with the following proposition, which is a consequence
of the Yamada–Watanabe theorem (see [23], page 368) which asserts that
the pathwise uniqueness property for a stochastic differential equation implies
uniqueness in law.

PROPOSITION9. Assume that(3.5) enjoys the pathwise uniqueness property.
Then(πUt )0≤t<T is the unique Brownian motion with driftV conditioned byY
such that

P̃
(
Y (πU) ∈ dy

) = ν(dy).

PROOF. First, we note that there exists a unique probability measureQ ∈
RY (P) such thatQ(Y ∈ dy) = ν(dy). This probabilityQ is given by

Q =
∫
P

P(·|Y = y)ν(dy).

Now, actually, by means of Proposition 3 we have constructed a weak solution
of (3.5) on the stochastic basis(Cm(M), (Ft )0≤t≤T , (Wt)0≤t≤T ,Q), where

Wt = X̃t −
∫ t

0
(X∗

s )−1
∫
P η

y
s α

y
s QY (dy)∫

P η
y
s QY (dy)

ds.

Since, thanks to the Yamada–Watanabe theorem, the pathwise uniqueness property
implies uniqueness in law, we conclude that the law of(πUt )0≤t≤T is Q, which
exactly means that(πUt )0≤t<T is the unique Brownian motion conditioned byY

such that

P̃
(
Y (πU) ∈ dy

) = ν(dy). �
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4. Initial enlargement of Itô’s filtration in the nonflat Wiener space.
In this short section, we study, under a probability measureQ ∈RY (P), the
semimartingale decomposition of the coordinate process(Xt )0≤t<T in the initially
enlarged filtrationF Y , whereF Y

t is the P-completion of
⋂

ε>0(Ft+ε ∨ σ(Y )).

This decomposition generalizes the celebrated Jacod theorem (see [1, 18–20]) in
our nonflat setting.

PROPOSITION 10. Let Q ∈RY (P). Then underQ, the coordinate process
(Xt )0≤t<T is a semimartingale in the filtrationF Y . Moreover, the process

X̃t −
∫ t

0
(X∗

s )−1αY
s ds, t < T,

is a Brownian motion inF Y under eachQ ∈RY (P).

PROOF. For almost everyy ∈ P , let us consider the disintegrated probability
measurePy = P(·|Y = y). By the very definition of(ηy

t ,0 ≤ t < T,y ∈ P ), the
following absolute continuity relationship holds for almost everyy ∈ P :

P
y
/Ft

= η
y
t Q

y
/Ft

, t < T .

Thus, as a consequence of Girsanov’s theorem, the process

X̃t −
∫ t

0
(X∗

s )−1αy
s ds, t < T,

is a standard Brownian motion under the probabilityPy, which implies that

X̃t −
∫ t

0
(X∗

s )−1αY
s ds, t < T,

is a standard Brownian motion underP in the enlarged filtrationF Y (it suffices
to apply Lévy’s characterization of Brownian motion). Now, we note that if
Q ∈RY (P), thenQ andP coincide on the events which areP independent ofY. It
implies that

X̃t −
∫ t

0
(X∗

s )−1αY
s ds, t < T,

is also a Brownian motion under the probabilityQ, because underP this process
is independent ofY, which means that its law underP andQ is the same. �

REMARK 11. It would be interesting to have conditions onY which ensure
that the process(Xt )0≤t≤T (i.e., considered up to timeT ) is a semimartingale in
the filtrationF Y . For this, we need to show thatQ-a.s.,∫ T

0
‖αY

s ‖ds < +∞.

This requires an estimate forα which seems to be hard to obtain in all generality.
For instance, it is a direct consequence from [5], page 86, that ifY = XT , then the
semimartingale property holds in the enlarged filtration up to timeT .
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What is really interesting in the previous proposition is that the process

X̃t −
∫ t

0
(X∗

s )
−1αY

s ds, t < T,

is a Brownian motion inF Y underany Q ∈ RY (P). As shown in the following
proposition, this property characterizesRY (P).

PROPOSITION12. LetQ be a probabilitymeasure onFT which is equivalent
to P. If the process

Mt = X̃t −
∫ t

0
(X∗

s )−1αY
s ds, t < T,

is a standard Brownian motion underQ in the filtrationF Y , thenQ ∈ RY (P).

PROOF. For PY -a.e.y ∈ P , we denoteQy to be the conditional probability
Q(·|Y = y). From our assumption, the processM is, underQy, a standard
Brownian motion. Hence, by Girsanov’s theorem,

dQ
y
/Ft

= η
y
t dP/Ft , t < T .

Since we also have

dP
y
/Ft

= η
y
t dP/Ft , t < T,

wherePy is the conditional probabilityP(·|Y = y), we immediately deduce

Qy = Py

and henceQ ∈ RY (P). �

5. Examples.

5.1. The caseY = XT and the infinite pinning class.The first example we
can think of is the exampleY = XT , T > 0. It means that we condition the law
at T of the Brownian motion with driftV . In what follows, for a smooth function
f (x, y), x, y ∈ M, the vector field∇f denotes the gradient computed with respect
to the first variable andQt denotes the semigroup associated with the transition
functionqt (cf. Section 2 for the notations).

In this special case, it is easily seen that the assumption (3.1) is satisfied with

η
y
t = qT −t (Xt , y)

qT (m,y)
, t < T,y ∈ M.

Moreover, a direct computation based on Itô’s formula shows that

α
y
t = ∇ lnqT −t (Xt , y), t < T,y ∈ M.
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The formula for the compensator ofX̃ underQ ∈ RXT
(P) is hence

(X∗
t )−1

∫
M η

y
t α

y
t QY (dy)∫

M η
y
t QY (dy)

= (X∗
t )−1∇ lnQT −t ξ(Xt ), t < T,

whereξ := dQY /dPY . Notice that from this, we deduce, by rewriting Proposi-
tion 4, that forQ ∈ RXT

(P),

∇ lnQT −t ξ(Xt ) = EQ(
X∗

t 	
−1
t 	T (X∗

T )−1(∇ ln ξ)(XT )|Ft

)
, t < T,(5.1)

and that formula (3.4) reads, in this case,

∇QT −t ξ(Xt ) = E
(
X∗

t 	
−1
t 	T (X∗

T )−1(∇ξ)(XT )|Ft

)
, t < T,

which is a fairly well-known formula (see e.g., [8] and [27]).
Let us mention a corollary to this. In [4], it was shown that if(Z̃t )0≤t≤T denotes

the solution of the stochastic differential equation

Z̃t =
∫ t

0
b(Z̃s) ds + Bt , 0 ≤ t ≤ T,

whereB is one-dimensional linear Brownian motion andb is a smooth function,
then the process(

exp
(∫ t

0
b′(Z̃s) ds

)
∂

∂x
ln q̃T −t (Z̃t , Z̃T )

)
0≤t<T

is a martingale in the natural filtration of̃Z initially enlarged byZ̃T ; q̃T −t denotes
here the transition function of̃Z. In our nonflat setting, we have the following
analogue of this result.

COROLLARY 13. The process(
	t(X

∗
t )−1∇ lnqT −t (Xt ,XT )

)
0≤t<T

is a martingale in the enlarged filtrationF XT under each probabilityQ ∈RXT
(P).

PROOF. It is enough to show that underPy the process(
	t(X

∗
t )

−1∇ lnqT −t (Xt , y)
)
0≤t<T

is a martingale, wherePy is the disintegrated probabilityP(·|XT = y), because for
Q ∈RXT

(P),

Q =
∫

M
PyQXT

(dy).

Let ξn be a sequence of smooth positive and normalized functions such that

ξn(x)qT (m,x) dx
weakly−→
n→+∞ δy,
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whereδy denotes the Dirac measure aty. As a direct consequence of (5.1) we
deduce that (

	t(X
∗
t )

−1
∫
M ∇qT −t (Xt , y)ξn(y) dy∫
M qT −t (Xt , y)ξn(y) dy

)
0≤t<T

is a martingale underQn = ξn(YT ) P. Since

Qn weakly−→
n→+∞ Py,

we conclude that (
	t(X

∗
t )−1∇ lnqT −t (Xt , y)

)
0≤t<T

is a martingale underPy . �

Notice that the previous martingale can be used to recover the generalization
from [10] (see also [8]) of the celebrated Bismut formula (see [5], formula 2.80,
page 283), which express∇ lnpT −t (Xt , y) as the expectation of a stochastic
integral, wherept denotes the heat transition function. Indeed, since the process(

	t(X
∗
t )

−1∇ lnqT −t (Xt ,XT )
)
0≤t<T

is martingale in the enlarged filtration, we deduce

∇ lnqT (m,XT ) = EQ(
	t(X

∗
t )

−1∇ lnqT −t (Xt ,XT )|XT

)
.

By taking the expectation underQ on the both sides of the equality, we deduce

∇ lnQT ξ(m) = EQ(
	t(X

∗
t )−1∇ lnqT −t (Xt ,XT )

)
.

Now, it suffices to note that

1

T
EQ

(∫ T

0
	s dX̃s

)
= 1

T
EQ

(∫ T

0
	s(X

∗
s )−1∇ lnqT −s(Xs,XT ) ds

)

to obtain

∇ lnQT ξ(m) = 1

T
EQ

(∫ T

0
	s dX̃s

)
,

which is Theorem 3.1 of [10] (see also [8] and [27]).
Now, we are interested in the infinite pinning class of the Brownian motion with

drift V . We define this set of probabilities onCm(M) by

R∞ = ⋂
T >0

RXT
(P).

Notice that a probability which belongs toR∞ is not necessarily equivalent or
even absolutely continuous with respect toP. A process(Z̃t )t≥0 on M whose law
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belongs toR∞ is a nonhomogeneous diffusion which has the same bridges as
(Zt )t≥0 (this process is defined in Section 2). Precisely for anyT > 0 andn ∈ M,

P(·|Z̃T = n) = P(·|ZT = n).

In the caseM = R, these processes were characterized in [13] (see also [1]).
Let us recall that a Borel functionφ :R+ × M → R is called aP-space–

time harmonics if the process(φ(t,Xt ))t≥0 is P-martingale. The following easy
proposition shows that there is a bijection betweenR∞ and the set of continuous
P-space–time positive and normalized harmonics.

PROPOSITION 14. Let φ be continuousP-space–time positive harmonics.
Then there is a uniqueQ ∈ R∞ such that for anyT > 0,

Q/FT
= φ(T ,XT )

φ(0,m)
P/FT

.

Conversely, if Q ∈ R∞, then there is a unique continuousP-space–time positive
harmonicsφ such that for anyT > 0,

Q/FT
= φ(T ,XT )P/FT

.

We deduce the following corollary.

COROLLARY 15. Assume thatM is compact and that there exists a constant
k > 0 such that for any vector fieldZ onM such that‖Z‖ ≤ 1,

1
2Ric(Z,Z) − (∇ZV,Z) ≥ k‖Z‖2.(5.2)

ThenR∞ = {P}.

PROOF. LetQ ∈R∞. There exists a unique continuousP-space–time positive
harmonicsϕ such that for anyT > 0,

Q/FT
= ϕ(T ,XT )P/FT

.

Being a P-space–time harmonics,ϕ is a weak solution of the backward heat
equation

∂ϕ

∂t
+ 1

2
�ϕ + V ϕ = 0.

Moreover it is bounded on[0, T ] × M by the compactness ofM. Thus, actuallyϕ
is smooth and is a strong solution.

ForT > 0, the process(
	t(X

∗
t )−1∇ lnqT −t (Xt ,XT )

)
0≤t<T
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is a martingale in the enlarged filtrationF XT under the probabilityQ. This implies
that for t ≥ 0,

	s(X
∗
s )

−1∇ lnϕ(s,Xs) = EQ(
�t(X

∗
t )

−1∇ lnq1(Xt ,Xt+1)|Fs

)
.

Now, the assumption(5.2) implies, thanks to Gronwall’s lemma, that

‖	t‖ ≤ e−kt .

Hence, since∇ lnq1 is bounded becauseM is compact, there exists a constantK

such that

‖	s‖‖∇ lnϕ(s,Xs)‖ ≤ Ke−kt

by letting t → +∞. We deduce‖∇ lnϕ(s,Xs)‖ = 0, which impliesϕ = 1 and
Q = P. �

5.2. Conditioning the first hitting time of a small geodesic sphere.In this
section, we assume thatM is compact and thatV = 0. In this case,P is simply
the Wiener measure. We consider here the small geodesic sphere with radiusr > 0
and centered atm. By small, we mean thatr is lower than the injectivity radius
atm. We denote this sphere bySr (m). Although the random variable

Tr = inf{t > 0,Xt ∈ Sr(m)}
does not satisfy the assumption(3.1), there exists a process

(ητ
t , t < Tr, τ > 0)

such that

P(Tr ∈ dτ |Ft , t < Tr) = ητ
t P(Tr ∈ dτ).

Namely we have

ητ
t = �τ (t,Xt ),

where�τ , τ ∈ R∗+, is the solution on the open ball centered atm with radiusr of
the terminal value problem

1

2
��τ + ∂�τ

∂t
= 0,

�τ (0,m) = 1,

�τ
/Sr (m) = δτ ,

whereδτ is the Dirac distribution atτ. This allows us to use the results of Sections
2 and 3 (cf. Remark 1) up to the stopping timeTr ; in particular, a process

(ατ
t , t < Tr, τ > 0)
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can be defined in the same way as in Lemma 2. Precisely, we have

ατ
t = ∇ ln�τ (t,Xt ).

The formula for the compensator ofX̃ underQ ∈ RTr (P) is hence

(X∗
t )

−1

∫
R∗+ ητ

t ατ
t QY (dτ )∫

R∗+ ητ
t QY (dτ )

= (X∗
t )−1∇ lnϕ(t,Xt ), t < Tr,

whereϕ is the solution of the terminal value problem

1

2
�ϕ + ∂ϕ

∂t
= 0,

ϕ(0,m) = 1,

ϕ/Sr (m) = dQTr

dPTr

.

By space–time duality for Markov processes, it is interesting to note that we
also have a martingale associated with the pinning classRTr (P). Actually, this
martingale is constructed exactly as in Corollary 13, but by reasoning up to timeTr .

PROPOSITION16. The process(
�t(X

∗
t )

−1∇ ln�Tr (t,Xt )
)
0≤t<Tr

is a martingale in the enlarged filtrationF Tr under each probabilityQ ∈RTr (P),
where� is an adapted process valued in the space ofd × d invertible matrices
and solves the equation

�t + 1
2

∫ t

0
�sRicX∗

s
ds = Id, t < Tr .

To conclude this paper, we show now that the pinning classesRm
Tr

, m ∈ M,
characterize the isotropy of the manifold (the compactness ofM is necessary).

PROPOSITION17. Let us assume thatM is simply connected and that for all
m ∈ M there exists a smallε > 0 such that⋂

0<r<ε

Rm
Tr

(P) � {Pm}.

Then, M is isometric to a compact rank 1 symmetric space.

PROOF. The assumption of the nontriviality of the pinning classes⋂
0<r<ε

Rm
Tr

(P)
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implies that for allm ∈ M, there exists a harmonic radial functionn → ϕ(δ(m,n))

defined on a neighborhood ofm (δ denotes the Riemannian distance onM). From
the Lichnerowicz–Szabo theorem (see [26]; we also refer to [2] for a probabilistic
understanding and proof of this theorem), this implies thatM is isometric to a
compact rank 1 symmetric space.�

6. Opening. In the linear case, it was shown in [4] that the one-parameter
group of the translations on the path space

Tα :C0(R
d) → C0(R

d),

ω → (ωt + αt)t≥0

acts naturally on the pinning classRXT
(P). This action is closely related to the

quasi-invariance of the Wiener measure by the translations. So, it seems to us that it
would be interesting to study the one-parameter groups of adapted transformations
which act naturally on the nonflat pinning class.
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