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CONDITIONING AND INITIAL ENLARGEMENT OF FILTRATION
ON A RIEMANNIAN MANIFOLD?

By FABRICE BAUDOIN

Université Paul Sabatier

We extend to Riemannian manifolds the theory of conditioned stochastic
differential equations. We also provide some enlargement formulas for the
Brownian filtration in this nonflat setting.

1. Introduction. In this paperwe develop the theory of conditioned stochastic
differential equations (CSDEs) on a Riemannian manifold. In the flat case, this
theory was initiated in [1] and further used in [3] and [4]. In [1] and [3], we gave an
application of the CSDEs to the mathematical finance topic of informed insiders.
In [4], from the drift of the CSDEs we first constructed some martingales (called
Newton’s martingales) which generalize the stochastic Newton equation for the
so-called reciprocal processes (see [28]). Then we studied the symmetries of the
CSDEs, that is, the transformations on the flat path space which preserve the set
of CSDEs constructed from a given functional. From this we constructed some
martingales called Noether's martingales, by analogy with the classical Noether
theorem. This paper can be read independently of the articles cited above.

In the present paper, we study a Riemannian Brownian motion with drift
for which one functional of the trajectories is conditioned (in Doob’s sense) to
follow a given law. The conditioned process, which generalizes naturally the
conditional diffusion (see [5]) that Bismut used extensively in his probabilistic
proof of Atiyah—Singer theorems (see [6, 7]), is shown to be a semimartingale
in its own filtration. It is also shown that it is semimartingale in the Brownian
filtration initially enlarged by the conditioned functional until each time smaller
than the revelation time of the functional. Furthermore, this decomposition does
not depend on the law of the conditioning. Then we study the case of conditioning
of a marginal law for Riemannian Brownian motion with drift. Finally, we are
interested in the conditioning of hitting times for small geodesic spheres, and we
give a probabilistic characterization of rank 1 symmetric spaces which is derived
from [2] and [26].

As will be seen, actually, it appears that most of the results presented in [1] can
be extended to Riemannian manifolds. Roughly speaking, this extension can be
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explained by the fact that the horizontal lifting commutes with the conditioning. In
other words, if we condition a Brownian motion by a functional and if we lift this
conditioned process, then we obtain a horizontal Brownian motion conditioned by
the lifted functional.

2. Framework and assumptions. We now turn to the notations which are
used throughout the paper. L&Y, ¢g) be ad-dimensional connected complete
Riemannian manifold. We denote ldy the Laplace—Beltrami operator & (for
us, A is negative). The tangent bundlel¥bis denoted’M andT7,,M is the tangent
space ain: we have, hencel'M = | J,, T,M. The orthonormal frame bundle of
M is denoted by (M). Hence,(® (M), M, @,(R)) is a principal bundle ofv
with structure group®,(R) of d x d orthogonal matrices. The transpose of a
matrix M is denoted M. We denote byr the canonical surjectio®® (M) — M.
The horizontal fundamental vector fields @{M) are denotedH;);—1
Bochner horizontal Laplacian, that is, the lift af is then given by

.....

d
Aoan =Y HE.
i=1

The symbolV denotes the covariant differentiation & associated with the
torsion-free connection oM (the Levi—Civita connection). In additiorRic
denotes the Ricci curvature tensor dRid denotes its equivariant representation.
Foru € ©(M), Ric, is hence an applicatidR? — R¢. For a smooth vector fiele
on M, the equivariant representation of ttle 1) tensorvVV is denotedvV, and
VV (u) is thus also an applicatidR? — R?.

Let us now considem € M, and a smooth vector fieltf. We associate the
stochastic differential equation @n(M),

' d .t ,
Z,*=U0+/O V*(z;‘)ds+2/0 H;(Z*) o dB',
i=1

where:

Upe OM) is such thatr Ug = m;

V*isthe lift of V;

o denotes the integration in a Stratonovitch sense;
(B:):>0 Is ad-dimensional standard Brownian motion.

We assume that this equation has, for ang M, a unique strong nonexplosive
solution in the sense that there exists@(@V) a unique proces&Z;);>o whose
natural filtration is equal to the natural filtration @8;),>0 and such that for any
C* bounded functiory : O (M) — R,

t d . _
f(ZF) = f(Uo) +/(; (V*f)(Z;k)dS-FZ/O (H; f)(Z]) o dBy, t>0.
i=1



2288 F. BAUDOIN

Consider the space of continuous paths
CrM) ={w:Ry - M, w(0) =m, o continuous.

From the previous assumption there exists a unique probability me&sure
on G, (M) such that for any"*° boundedf : M — R, the process

t t
2.1) (f(Xz)—f(m)—% [@anaas- [ (Vf)(Xs)dS)

t>0

is, underP,,, an ¥-adapted martingale null at 0. HeK&,);>0 denotes the
coordinate process o@,, (M) and(¥;);>0 denotes its natural filtration. In other
words, the law of the process = 7 Z* is the unique solution of the martingale
problem with initial conditionn associated with the elliptic operator

1
SA+V.

We refer to [24] and [25] for the general theory of the so-called martingale
problems.
The transition function ofZ;);>o is denoted;;, hence we have, for < ¢,

P(Z; e dy|Fs) = qi—s(Zs, y) dy,

where dy is the Riemannian volume measure ofi. The existence of the
functiong; and its smoothness comes from Hérmander’s theorem. Moreover, we
assume thag;, is positive.

3. Conditioning and pinning classin the nonflat Wiener space. We fix now
once and for alln andUyp. For the sake of simplicity, we denote simply Bythe
probability measuré,, on C,, (M) described in the previous section. Since we
mainly focus our attention on the laws df-valued processes, we work in the
stochastic basis

(Cn (M), (X1)i=0, (F1)i=0, P).

For this, we have to transfer the assumptions of the previous section into this
stochastic basis. Namely, there are a unique proc¥$s-o on @(M) and a
uniqued-dimensional standard Brownian moti()ﬁ,)tzo such that

t d_ -
Xt*=U0+/ V*(X;“)ds—l- E / Hi(X:)odX;, t>0 7 X*=X.
0 : 0
i=1

We consider now o, (M) a random variabl& -valued in some Polish spade,
endowed with Borelo-algebra 8(#), and measurable with respect to the
o-algebrafF7 with T € Ry U {+00}. We assume the existence of a regular
disintegration ofY with respect to the filtratiort . Namely, we assume that there
exists a jointly measurable, continuous iand ¥ -adapted process

(3.1 n, 0<t<T,ye®,
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satisfying, fordt ® Py almostevery <t < T andy € P,
P(Y € dy|F;) = n Py (dy),

wherePy denotes the law of underP.

REMARK 1. For the sake of presentation, we restrict ourselves to the case
of a deterministic horizon timg'. Nevertheless the contents contained in this
section and the next one (excepted what deals with Malliavin calculus) are easily
extended by taking fof" a stopping time of the filtratiolf” and taking forY an
Fr-measurable functional. In that case, we have to work under the assumption that
there exists a jointly measurable procégs 0 <1 < T, y € #) satisfying, for all
bounded and measurable functign

E(f(V)|Firt <T) = /P FOILPy(dy).

Actually, to include the case of a random horizon in our presentation, it would
suffice to work in the filtration(#; N {r < T'});>0 (such a “trick” is well known in
the theory of enlargement of filtrations and can, e.g., be found in [29]).

One of our main objects of study is the so-called pinning class (see [4]) of the
measureP with respect to the functiondl, that is, the setRy (P) of probability
measures o, (M) defined by

Ry () ={Q~P,Q(|Y) =P(|V)}.

To explicate the semimartingale decomposition¥ofunderQ € Ry (P), we
need the following nonflat version of the so-called Jacod lemma in the theory
of initial enlargement of filtration (see [18]). In what follow®,(¥) denotes the
predictables -field associated with the filtratiofr .

LEMMA 2. There exists & (F) ® 8(5) measurable process

[0, T[ xCp(M) x P — TM,
t, w,y) = o] ()
such that

1. ForPy-ae yeP andforO<t <T,a; € Ty,M.
2. ForPy-ae.ye P andforO<t < T,

t
]P’(/ Nl 1% du < +oo) =1
0

3. For Py-a.e. y € # and for all 1-forms6 on M,

t
<77y,/ 0> =/ m,0(a,) du, O0<r<T.
X[0,-] [t 0
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_Proor  From the predictable representation property of the Brownian motion
(X1)r>0 and from [18], there exists & (¥) ® B(S) measurable process
[0, T[ XCp(M) x P — RY,
(tv w, y) - &t (C())
such that:

1. ForPy-a.e.ye P andforO0<r < T,

IP’(/ 1@ |2 du < +oo) ~1

2. ForPy-a.e.ye P andforO<t<T,1<i <d,
X1y, = fnua“du
Then we set
= X;&;

and it is easy to verify that it satisfies the conditions of the lemma. In particular, let
us show that it satisfies the fourth condition. For a 1-férion M, we have

d .
v, 0 =< Y, /ex’fe- odX'l),
<n/x[o"1> ngo(“) 5>

t t

« 1S the canonical base &“. However,

. . ¢ .
<77y,/0 9(X:‘e,)odX;> :/0' nze(X:ei)&g’,lds'
t

Where(e,-),-zl

.....

Thus,

t
<77y,/ 9> 2/ m6(a)) du, O0<r<T. 0
X[0,-] [t 0

On« we furthermore make the following integrability assumption: For almost
everyr € [0, T), it holdsP-almost surely that

t
(3.2) / E(lla) ||| F,)2 du < +o00.
0
We can now deduce the following proposition.

PrROPOSITION 3. Let Q eRy(P). Then underQ, the coordinate process
(X1)o</<r Is a semimartingale in the filtratio#; )o<; <7 . Moreoverthe process
/ X )_1/1, ns a3 Qy (dy)
» 1 Qy (dy)
is a Brownian motion unde, wherer is the law ofY under@Q.

ds, t<T,




CSDEs ON A MANIFOLD 2291

PROOFE LetQ eRy(P) and denote by the Radon—Nikodym densiyQy /
dPy which is well defined becaus® ~ P. We have, for anyFr-measurable
positive and bounded random varialie

EQ(F) = /f EC(F|Y = y)5(»)Py (dy).
However, sinc&) e Ry (P) and

[ E2EIY = 0)e0Pray) = [ E(FIY = )Py (dy) =EEW)P).
we conclude that
Q7 =EMP) %,
From this and from
P(Y € dy|F:) =n; Py (dy)

we deduce that for < T,

Q5 = ( f? n;vf(y)IP’y(dy))Pz; = ( /JO n;vQy(dy))P%.

Now, we can conclude with Girsanov’s theorem, because from the proof of
Lemma 1, folPy-a.e.ye # andforO<r < T, 1<i <d,

~ t N .
(i, X'y, = /O nla du

with
& = (X)) .

Because of the assumption (3.2) we can apply Fubini’'s theorem

</=7>”?QY("y“~"'>t = [ [ mariarana,

which leads to the expected result]

In the next theorem, under further regularity assumptions we try to compute
more explicitly the compensator &f underQ € Ry (P) by means of the Clark—
Ocone-Bismut formula (see [15]; [21], Theorem 6.4, and [5], Theorem 2.2, pages
61 and 62). In particular, we see a Bakry—Emery curvature type term which appears
in the computations and which measures exactly the difference with the flat case.
This term stems from Weitzenbdck formula on 1-forms. Before we state our
formula, let us recall some basic facts about Malliavin calculus on a nonflat space.
For a cylindrical functional,

F == f(th, ...,th),
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where f:M" — R is a smooth function and the directional derivativeFofilong
the Cameron—Martin vector fielB, is given by

n
DyF =Y (V'f(Xy..... Xy,). X} h),
i=1

wherer is anR?-valued adapted process with a derivativeé.fisuch that

o) (&))<

Now, the Malliavin derivative ofF is defined by the representation formula

T dh
DhF=/ <DSF, —)a’s.
0 ds

It is shown in the same way as in the flat case (see [22], page 26Dihat —
LP (G, (M), P) is closable forp > 1, where4 is the set of cylindrical functionals.
Finally, we denote by the field of linear application®? — R? defined by

Q= lRic-T vV

and we assume that it is bounded.

PrROPOSITION4. LetQ eRy(P) and assumanoreoverthaté := dQy /dPy
has a version such thgi(Y) andIn&(Y) e Dom(D). Then

(x*)~1 [p 17 ] Qy (dy)

63) ' » 17 Qy (dy)
) T

:E@<D,|ng(Y)_A;1/ Asszx;ﬂ(Dslns(Y))dsm), t<T,
t

whereA is an ¥ -adapted process valued in the spacé of d invertible matrices
and solves the equation

t
A +/ ARx+ds=1,.
0 s

PROOF From the proof of Proposition 3, evknow that fora probability
Q eRy (P) we have
Q=§X)P.
Now, from the Clark—Ocone—Bismut formula,

T -
5<Y>=1+f0 (©y,dX,),
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where® is given by

T
0, =E(D(r) — A7 [ 8,246 1) dul ).
N
Girsanov’s theorem gives hence

y_.y
A1 [p i % Qy (dy)
%) S m Qy (dy)
_EDEY) — AT Ak (DE(Y)) ds|F)
B EEX)|F)

T
= EQ <D, In&(Y) — A,—lf AsQxx(DsINE(Y)) ds|$',).
t

The last equality stems from the Bayes formulal

By comparing Propositions 3 and 4, we deduce hence, thanks to Bayes formula,
the following very general integration by parts formula, which also characterizes
our process.

COROLLARY 5. Under the assumptions of Propositicliand4, we have

fj} G ENBY € dy|F)

(3.4) .

- X,*E(Dts(Y) - A;lf AsszXf(Dsg(Y))dsm), ‘<T.
t

REMARK 6. Let us mention here an interesting point. If we use, formally, the
formula (3.4) with =4, y € &, then we obtain

T
(X5) ) B(Y € dy|F) = E(Dtay _ At f Asszx;«Dsay)dsm)(dy).

In the flat case @ = 0), this formula can be found in [17], Proposition A.1,
where a Malliavin calculus for measure-valued random variables is developed.

We can now give a precise definition of Brownian motion conditioned by the
functional Y and show how it can be constructed from a stochastic differential
equation on@ (M) that is called a conditioned stochastic differential equation

(cf. [1]).

DEFINITION 7. A process oM whose law belongs taRy (P) is called a
Brownian motion with driftV conditioned byy.
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Let us consider a probability measuveon the Polish space? which is
equivalent toPy. Then there exists a predictable functional @p(M), say F",
such that

[J ’h O‘t V(d)’)

t, (Xs)o<s<
i =) = [pnividy)

DEFINITION 8. On a filtered probability spac&€2, (#;)o<:<7, (B:)o<t<T» P)
which satisfies the usual conditions, whéris an#¢-adapted/-dimensional linear
Brownian motion, the stochastic differential equation@®gI),

t
U =Up +/ V*(Uys)ds
0

(3.5) )

t
+§j£Iﬂwoo«my4ﬁﬁmnwmggym+mx s<T,

is called the conditioned stochastic differential equation associated with the
conditioning(T, Y, v).

We conclude this section with the following proposition, which is a consequence
of the Yamada—Watanabe theorem (see [23], page 368) which asserts that
the pathwise uniqueness property for a stochastic differential equation implies
uniqueness in law.

PROPOSITION9. Assume that3.5) enjoys the pathwise uniqueness property
Then(w U;)o<:<7 IS the unique Brownian motion with drift conditioned byy
such that

P(Y(xU) € dy) = v(dy).

PROOF First, we note that there exists a unique probability meaguee
Ry (P) such thatQ(Y € dy) = v(dy). This probabilityQ is given by

@=Lﬁﬂ¥=ww@»

Now, actually, by means of Proposition 3 we have constructed a weak solution
of (3.5) on the stochastic basi€®,, (M), (¥:)o<:<7, (Wi)o<i<r, Q), where

y
W= %, / (x )_1fJ B t;esz(dy) s
Ns QY(dy)
Since, thanks to the Yamada—Watanabe theorem, the pathwise uniqueness property
implies uniqueness in law, we conclude that the lawot;)o<;<7 is Q, which
exactly means thatr U, )o<; <7 is the unique Brownian motion conditioned By
such that

P(Y (xU) e dy) = v(dy). O
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4. Initial enlargement of 1td&’'s filtration in the nonflat Wiener space.
In this short section, we study, under a probability measgreRy (P), the
semimartingale decomposition of the coordinate proc&sg<; -7 in the initially
enlarged filtration¥ ¥, where ' is the P-completion of(,.o(Fr+e V o (¥)).
This decomposition generalizes theatwiated Jacod theam (see [1, 18-20]) in
our nonflat setting.

PrROPOSITION 10. Let Q eRy(P). Then underQ, the coordinate process
(X1)o</ <7 is @ semimartingale in the filtratioF ¥ . Moreoverthe process

- t
X, —/ xHtalas, 1<T,
0
is a Brownian motion ir? ¥ under each) e Ry (P).

PrROOE For almost every € £, let us consider the disintegrated probability
measureéP? = P(-|Y = y). By the very definition of(n,0<t < T,y € #), the
following absolute continuity relationship holds for almost every #:

Py =m Qg  1<T.
Thus, as a consequence of Girsanov’s theorem, the process
X, — /OI(X;‘)_lasyds, t<T,
is a standard Brownian motion under the probabifity which implies that
X, — /OZ(X;")_lo(},/ ds, t<T,

is a standard Brownian motion und@rin the enlarged filtratior ¥ (it suffices

to apply Lévy’s characterization of Brownian motion). Now, we note that if
Q eRy(P), thenQ andP coincide on the events which aPendependent of. It
implies that

B t
X,—/ XH taYds, 1<T,
0

is also a Brownian motion under the probabilily because undéf this process
is independent of, which means that its law und@randQ is the same. [

REMARK 11. It would be interesting to have conditions Brwhich ensure
that the proceséX;)o<;<r (i.€., considered up to tim&) is a semimartingale in
the filtration #Y . For this, we need to show th@ta.s.,

T
/ el | ds < +oc.
0

This requires an estimate farwhich seems to be hard to obtain in all generality.
For instance, it is a direct consequence from [5], page 86, thatifX 7, then the
semimartingale property holds in the enlarged filtration up to tfme
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What is really interesting in the previous proposition is that the process
» t
X, - / xHYalas, 1<T,
0

is a Brownian motion inF¥ underany Q € Ky (P). As shown in the following
proposition, this property characteriz@y (P).

PrROPOSITION12. LetQ be a probabilitymeasure or¥7 which is equivalent
to P. If the process

_ t
M, =X, — / (X Yok das, t<T,
0
is a standard Brownian motion und@r in the filtration ¥, thenQ € Ry (P).

PROOF ForPy-a.e.y € £, we denote))” to be the conditional probability
Q(|Y = y). From our assumption, the proceas is, under@Q”, a standard
Brownian motion. Hence, by Girsanov's theorem,

dQjs, =n/dP/s,  1<T.
Since we also have
dPg =n)dP;s,,  1<T,
whereP” is the conditional probabilit(-|Y = y), we immediately deduce
Q' =P
and hencd) e Ry (P). O

5. Examples.

5.1. The case¥Y = X7 and the infinite pinning class.The first example we
can think of is the exampl& = Xy, T > 0. It means that we condition the law
at T of the Brownian motion with driftV. In what follows, for a smooth function
f(x,y),x,y eM,the vector fieldvV f denotes the gradient computed with respect
to the first variable and@, denotes the semigroup associated with the transition
functiong;, (cf. Section 2 for the notations).

In this special case, it is easily seen that the assumption (3.1) is satisfied with

vy qr—(X:, y)
N =
qr(m,y)
Moreover, a direct computation based on It6’s formula shows that

, t<T,yeM.

ol =Vingr_(X;,y), t<T,yeM
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The formula for the compensatorﬁfunder@ € Rx,(P) is hence
1 o Q (dy)
Sy Qy (dy)

where& := dQy/dPy. Notice that from this, we deduce, by rewriting Proposi-
tion 4, that forQ € Rx, (P),

(X~ =(XHVInQor_&X,), t<T,

(5.1) VInQr_&(X,) =E¥(X A A7 (X5 "X VIng)(Xp)|F),  t<T,
and that formula (3.4) reads, in this case,
VOr_i£(X) =E(X;AIAT (X3 TH(VE)YXDIF),  t<T,

which is a fairly well-known formula (see e.g., [8] and [27]).
Let us mention a corollary to this. In [4], it was shown that4 )o<; <7 denotes
the solution of the stochastic differential equation

~ t ~
Z,:/b(Zs)ds+B,, O0<t<T,
0

whereB is one-dimensional linear Brownian motion ahds a smooth function,
then the process

t ~ ~ ~
(exp( Ji b’(zsms)i NGr_.(Z:, zn)
0 dx O<t<T

is a martingale in the natural filtration @finitially enlarged byZr; §r—, denotes
here the transition function af. In our nonflat setting, we have the following
analogue of this result.

COROLLARY 13. The process
(A (X)) TVINGr— (Xe, XT)) ooy o7

is a martingale in the enlarged filtratio X7 under each probabilitQ) e R, (P).

PrROOFE Itis enough to show that und®? the process
(A:(XH TV INgr . (Xe, ¥)ozy o1
is a martingale, wher@” is the disintegrated probabili(-| Xy = y), because for
Q eRx, (P),
Q= [ POx ).
M

Let&, be a sequence of smooth positive and normalized functions such that

ki
En(x)qr(m, x)dx Vﬂy%,
n——+00
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whered, denotes the Dirac measure yatAs a direct consequence of (5.1) we
deduce that

<A[(X*)_1fM VqT—t(Xl‘v )’)Sn(y) dy)
t
O<r<T

fM qar—+(Xs, Y)6n(y) dy
is a martingale unde@” =&, (Yr) P. Since

weakly
—

Q" P,

n—4o00

we conclude that

(A XHTIVINGr— (X0, ))oss o7

is a martingale undép”. O

Notice that the previous martingale can be used to recover the generalization
from [10] (see also [8]) of the celebrated Bismut formula (see [5], formula 2.80,
page 283), which expresgIn pr_;(X;, y) as the expectation of a stochastic
integral, wherep, denotes the heat transition function. Indeed, since the process

(AXH ™V INgr— (Xi, X1))goy 7
is martingale in the enlarged filtration, we deduce
Vingrm, Xr) =EQ(A (X)) IVIngr_ (X;, X1)IX7).
By taking the expectation und&r on the both sides of the equality, we deduce
Vin Qré(m) =EQ(A, (X)) VIngr_(X;, X1)).

Now, it suffices to note that

1 Q ! X 1 Q r xy—1
—E (/0 Asts):7E (/O A (XF) VIan_S(XS,XT)dS)

to obtain
T
VInQTs<m>=1E@(f Asdxs),
T 0

which is Theorem 3.1 of [10] (see also [8] and [27]).
Now, we are interested in the infinite pinning class of the Brownian motion with
drift V. We define this set of probabilities @, (M) by

R® = () Rx, (P).
>0

Notice that a probability which belongs 8> is not necessarily equivalent or
even absolutely continuous with respecPtoA process Z;);>o0 on M whose law
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belongs toR*° is a nonhomogeneous diffusion which has the same bridges as
(Z;)>0 (this process is defined in Section 2). Precisely for Zny 0 andn € M,

P(-|Zr =n) =P(-|Zr =n).

In the caséVl = R, these processes were characterized in [13] (see also [1]).

Let us recall that a Borel functiop:R, x M — R is called alP-space—
time harmonics if the proces® (7, X;));>o is P-martingale. The following easy
proposition shows that there is a bijection betw&H and the set of continuous
P-space—time positive and normalized harmonics.

PROPOSITION 14. Let ¢ be continuoudP-space—time positive harmonics
Then there is a uniqu® € R such that for anyi” > 0,

¢(T,XT)]P) _
$©0,m) /T

Converselyif Q € R, then there is a unique continuolfsspace—time positive
harmonicsp such that for anyl’ > 0,

Q7 =T, X7)P/ 7.

Q/TT =

We deduce the following corollary.

COROLLARY 15. Assume thaM is compact and that there exists a constant
k > 0 such that for any vector field onM such that| Z|| <1,

(52) JRIC(Z, 2) = (V2V, 2) = k|1 Z|.
ThenR>® = {P}.

PROOFE LetQ eR*°. There exists a unique continuoBisspace—time positive
harmonicsp such that for any” > 0,

Q7 = (T, X7)P)g;.
Being aP-space-time harmonicg is a weak solution of the backward heat
equation

dp 1

—+=A Ve =0.

ot + 2 v+Ve

Moreover it is bounded ofD, T'] x M by the compactness 8. Thus, actuallyy
is smooth and is a strong solution.

ForT > 0, the process

(A(XHTVINGr—(Xe, X7)) ooy o1



2300 F. BAUDOIN

is a martingale in the enlarged filtratidhX” under the probabilit{). This implies
that fors > O,

A(XH TV INg(s, Xg) =EX(@,(X) 'V Inga(X,, Xi11)|F).
Now, the assumptior(b.2) implies, thanks to Gronwall’s lemma, that
Al < e .

Hence, sincé’ Ing; is bounded becaudd is compact, there exists a constént
such that

1A NIV Ing(s, Xl < Ke™™
by letting t — +o0o. We deduce|VIng(s, X,)| = 0, which impliesp = 1 and
Q=P. O

5.2. Conditioning the first hitting time of a small geodesic spheie. this
section, we assume th® is compact and tha¥ = 0. In this caseP is simply
the Wiener measure. We consider here the small geodesic sphere withrradius
and centered at:. By small, we mean that is lower than the injectivity radius
atm. We denote this sphere I8y (m). Although the random variable

T, =inf{t > 0, X; € S, (m)}
does not satisfy the assumpti@l), there exists a process
/.t <T,t>0)
such that
P(T, edt|F:,t < T,) =n/P(T, €dr).
Namely we have
ny =w(, Xy),

where¥®, T € R%, is the solution on the open ball centeredmatvith radiusr of
the terminal value problem

Loy, 2V
2 o1

wr(0,m) =1,

=0,

Ws, (m) = Or»

wheres; is the Dirac distribution at. This allows us to use the results of Sections
2 and 3 (cf. Remark 1) up to the stopping tiffie in particular, a process

(af,t <Tr,t>0)
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can be defined in the same way as in Lemma 2. Precisely, we have
of =VInWr@, X,).

The formula for the compensator & underQ R, (P) is hence

Jrx nfof Qy (d7)
(X 1= = (X WVIne@, X,), t<T,,
' Jrer ni Qy (d7) ! ' '
whereg is the solution of the terminal value problem
1 k1)
—A — =0,
2 v+ ot
®O,m) =1,
B dQr,
@/Sr(m) - d]P;Tr .

By space-time duality foMarkov processes, it is faresting to note that we
also have a martingale associated with the pinning cRgsP). Actually, this
martingale is constructed exactly as in Corollary 13, but by reasoning up t@time

PROPOSITION16. The process

(@, (XHIVInwT (@, X))

0<t<T;

is a martingale in the enlarged filtratiof 7 under each probability) e Rz, (P),
where® is an adapted process valued in the space@ of d invertible matrices
and solves the equation

r__
cb,+%/o O Ricxsds =15,  t<T,.

To conclude this paper, we show now that the pinning clagggs m € M,
characterize the isotropy of the manifold (the compactnes4 i necessary).

PROPOSITION17. Letus assume thdtl is simply connected and that for all
m € M there exists a sma#l > 0 such that

() REM®) 2 {Pul.

O<r<e

Then M is isometric to a compact rank 1 symmetric space

PrROOF The assumption of the nontriviality of the pinning classes

M R%®

O<r<e
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implies that for alln € M, there exists a harmonic radial function~> ¢(8(m, n))
defined on a neighborhood af (§ denotes the Riemannian distancelMiin From

the Lichnerowicz—Szabo theorem (see [26]; we also refer to [2] for a probabilistic
understanding and proof of this theorem), this implies ats isometric to a
compact rank 1 symmetric space.]

6. Opening. In the linear case, it was shown in [4] that the one-parameter
group of the translations on the path space

Ty : Co(RY) — Co(RY),
w — (0 +at)=0

acts naturally on the pinning clag®yx, (). This action is closely related to the
gquasi-invariance of the Wiener measure by the translations. So, it seems to us that it
would be interesting to study the one-parameter groups of adapted transformations
which act naturally on the nonflat pinning class.
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