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p-VARIATION OF STRONG MARKOV PROCESSES

BY MARTYNAS MANSTAVICIUS
University of Connecticut

Let&, ¢t € [0, T], be a strong Markov process with values in a complete
separable metric spaceéX, p) and with transition probability function
Pst(x,dy), 0<s <t <T,xeX.Foranyh € [0,T] anda > 0O, consider
the function

ah,a)=sup{ P ;(x,{y:p(x,y) >a}):ix€eX,0<s <t <(s+h) AT}

It is shown that a certain growth condition emis, a), asa | 0 andh stays
fixed, implies the almost sure boundedness ofghariation of;, wherep
depends on the rate of growth.

1. Introduction. Let &, r € [0, T], be a strong Markov process defined
on some complete probability spa¢@, ¥, P) and with values in a complete
separable metric spac#, o). Denote the transition probability function &f by
Psi(x,dy), 0<s <t <T,xe€X.Foranyh e[0,T] anda > 0, consider the
function

a(h,a) =sup Py (x,{y:p(x,y) >a})ixeX,0<s <t <(s+h)AT}.

The behavior ot (4, a) as a function of: gives sufficient conditions for regularity
properties of the trajectories of the procésdAs Kinney (1953) showed; has an
almost surely cadlag versiondf(i, a) — 0 ash — 0 for any fixeda > 0, and an
almost surely continuous versiondfx, a) = o(h) ash — 0 for any fixeda > 0.
Dynkin (1952) obtained the same result but under slightly stronger conditions.
The main goal of this paper is to establish a connection between the arguments of
a(h, a) and variational properties of paths&f in particular,p-variation which in
many instances is very useful, as discussed in Dudley (1992), Dudley and NorvaiSa
(1998, 1999), Mikosch and NorvaiSa (2000), Lyons (1998) and so on.

For ap € (0,00) and a functionf defined on the intervdl0, 7] and taking
values in(X, p), its p-variation isv,(f) := SUHZZZol,O(f(tkH), f@)P:0=
o<t <--<tp,=T,m=12,...}. FOr many important processes, conditions
for the almost sure boundedness pivariation of sample paths on bounded
intervals are already known: Lévy (1940) showed that, for Brownian motion, the
p-variation is bounded iffp > 2, a result which was refined by Taylor (1972).
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Later, Monroe (1978) proved that every semimartingale is equivalent to a time
change of a Brownian motion. In particular, this implies that continuous-time
martingales also have almost surely boungedriation for anyp > 2. In the case

of martingales with nonconstant sample paths, this result is sharp [e.g., Dudley and
NorvaiSa (1998), Theorem 5.6].

The p-variation of Gaussian processes was investigated by Jain and Monrad
(1983). The same problem for Lévy processes was addressed in the papers
by Fristedt and Taylor (1973) and Bretagnolle (1972). Jacob and Schilling
(2001) considered more general Feller processes generated by pseudodifferential
operators with uniformly bounded coefficients.

Feller processes and, in particular, Lévy processes are Markov but the methods
used to establish the boundedness ofithariation of their paths differ from paper
to paper and do not extend to general strong Markov processes; for example, Jacob
and Schilling [001), Theorem 2.13] req a strong assumptign< 1.

We, on the other hand, rely on the properties of general strong Markov processes
and their transition probabilities. Thelfowing definition wll be used throughout.

DEFINITION 1.1. Letg >1 andy > 0. We say that a Markov process
&,t € [0, T], belongsto the class((8, y) (M for Markov) if there exist constants
ap > 0 andK > 0 such that, for alk € [0, T] anda € (O, ag],

hh
(1.1 alh,a) < K—.
aY

REMARK 1.2. The functionx(h, a) is nonincreasing i for eachi. Thus,
a processs,t € [0, T], belongs to the class((8, y) iff there exist constants
ag > 0 andK > 0 such that, for alk € [0, T] anda > 0,
1.2 i
. h,a) < K——,
(1.2) alha) S Ko
because if (1.2) holds far = ag, it will also hold for anya > ag.

Note that condition (1.2) and Kinney’s result allow us to choose a versign of
with cadlag paths. We will use this version throughout. Moreover, there exists a
random variablé (w) such that

sup p(éo(w), & (w)) < M(w) < o0 a.s.
te[0,T]

Our main result is
THEOREM1.3. Let&,t € [0, T], beastrong Markov processwith valuesin a

complete separable metric space (X, p). Suppose &, belongsto theclass M (8, y).
Then for any p > y /B, the p-variation v, (&) of & isfinite almost surely.
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REMARK 1.4. For symmetric stable Lévy processes of index (0, 2], the
condition p > y /B8 will be shown in Section 4, at the end of the paper, to apply
with y /8 = a. Moreover, by results of Lévy (1940) and Blumenthal and Getoor
(1960), the paths of such processes have unboupdediation forp = «. Hence,
the condition orp in Theorem 1.3 is sharp.

As condition (1.2) indicates, we will concentrate on the “small” oscillations of
the trajectories. Let

vp(@) :=suplk: {6} . 1 <tr <13 <+ <ton, p(Eiyy - 61y y) (@) > b, j <k},

that is, v, is the random number of oscillations of size b of & over
nonoverlapping intervals.

REMARK 1.5. The paths of, are chosen to be cadlag, so the supremum
in the definition of v, can be taken over;’s from some countable dense
subsetl” C [0, T]; thusv, is a measurable random variable. Moreovgr< oo
almost surely. Hence the contribution #9((w)) of oscillations> b is at most
(2M)*Pvp) (w) < oo with probability 1; that is, “large” oscillations can be handled
easily.

The abundance of “small” oscillations will be handled via stopping-time
techniques in Section 2.

Later we will need an Ottaviani-type inequality. Recall the following result from
Gikhman and Skorohod [(1974), page 420]. Similar inequalities can be found in
Blumenthal [(1957), Lemmas 2.1 and 2.2].

LEMMA 1.6. Leté&,r € [0, T], be aseparable Markov processtaking values
in a complete separable metric space (X, p). Then for any 2 > 0 and M > 0 such
that w(h, M/2) < 1,andfor anyr € [0, T],

P(p(&, S(z+h)/\T) > M/2)
1—a(h,M/2)

(1.3) P( sup p<s,,ss>>M)s
se(t,(t+h)AT]

2. Markov times and related results. Consider the natural filtratior?$
generated by the processthat is, ¢ = {?é,t e [0, T1}, where?’f =0(§,,0<
u <1) C F. Recall that a random variable: 2 — [0, co] is an F¢-Markov
time iff, for all u € [0,T], {t < u} € }‘f. If 7 is an F5-Markov time, define
Fo={A:AN{t <u) e Ff ucl0T]. Also setFy := (@, Q). Furthermore,
foranyO<a <b <T,let

R(a,b):= sup p(&, &)= sup P (s, &),

a<s<t<b s,t€(QN[a,b])U{b}
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sinceé&; has cadlag paths. Hend¥&a, b) is ¥, § _measurable. Moreover, for any
sequence &k a, L a<b<T, we haveR(a,,,b) 1 R(a,b) asn — oo since the
intervals[a,, b] are expanding ang is right-continuous.

For anyr =0,41,42, ..., defineM, :=2~"~! and let{r;,}, [ =0,1,2,...,
be the sequence of random times defined as follows:

- {inf{t €lt—1,, T1:R(ti—1,, 1) > M,},
=

70, :=0, T +1, if the set above is empty

Each(z; ,} is anF ¢ -Markov time. This is obvious faf= 0. Suppose that we have
shown that{z; .} are #-Markov times for alll =0, 1, ..., k. Now assume for a
moment thatry , < s < T and we have a sequen{m,,}OO 1 such thata, | 7, as

n — oo. ThenR(ay, s) 1 R(tx,,, s) asn — oo and so

x o0
(R(tr.$) > M) = () {R@n,5) > My}.
n=1m=n
This observation helps to justify the second equality in the following: for any
t <T,we have

{trrr <tt= |J ({r <s}N{R(kr,5) > M,})

s<t,s€Q

oo oo 2"-1

U U N U (r €lai—tm am)} N {R(apm, 5) > M,}),

s<t,s€eQn=1m=n [=0
whereq; ,, :=s(l +1)27" and the aforementioneg is defined by

ain, if w,€lai—1n,a1,) forsomel=0,1,...,2" —1,
n T+1, if 7, >s.

Moreover,{tx , € [aj—1.m,a1.m)} € fFf, C ff"f sincery , is an F&-Markov time

by assumption andR(a; n,s) > M,} € F “f sincea; , < s for all I = 1,2,
L2 —1andm =1,2,.... Thus {tx41, <t} € }‘f; that is, tx+1, IS an
“5 Markov time.
Let¢, =1, —ti—1,fori =1,2,... and letigp be the smallest integérsuch
thatt; . > T if at least one suchexists; otherwise sép = +o0. Sinceg; is taken
to be right-continuous, we have two cases:

Caseig <+oo. ThenO=1g, <71, < - <Tjp—1,r <T < Tigr < Tig+Lr =
7;, =T+ 1for j > ip+ 1 almost surely. Furthermorg,, > 0 fori <ip, ¢;, =0
fori >ip+1and

] _ 1, if tl'OJ’ :T,
glo-ﬁ-l,r — 1o, if Tigr = T+1,

almost surely.
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Caseig =+00. ThenO=r1o, <11, <--- <7j, <---and¢;, > 0 for all
j =1 almost surely.

Before proceeding any further, let us clarify that for any random variables
X andY and a measurable sdt, the expressionX < Y almost surely on the
set A” will mean P{X <Y} N A) = P(A). If P(A) > 0, this is equivalent to
P(X<Y|A)=1.

The next lemma is the first step towards bounding the average number of
oscillations of a given “small” size that a trajectory can have.

LEmMMA 2.1. Let r be any integer and let ug € [0, T A 1] be such that
a(uo, My42) < 1. Thenfor anyi =1,2,... and u € [0, ug], almost surely on the
%t {ri—l,i’ < T}!

a(u, My12)
Pl . <ulF. 1 au M
(fz,r <u| r,_l,r) ~—1—o(u, M, 42)

PrROOF  First of all, notice that forany=1, 2, ..., ig andu € [0, 1],

{{i,r Su,Ti-1y < T}

c sup R(ti—1,,1) = My, %1, < T}
71, <t=<(ti—1,+uWAT

2.1)
= Sup p(§S7El)ZMr, ri_l’r <T

s,te [fifl,r s (Tifl,r +u)AT]

C sup P(Sri,l,,, EZ‘) > M1, Ti—-1r < T}
IG[T,‘,]_J,(‘E,‘,]_J—FM)AT]

Take any setd € #7,_,,. Then the definition of conditional expectation, the
strong Markov property, (2.1) and Lemma 1.6 imply

P{¢i, <ultnANn{ri1,<T})

= P(gir <ul¥Fy ,,)dP
Am{fl’—l,r<T}

Py <ulti—1,)P(Alti—1,)dP
{7i71,/'<T}

: / P< SUp 'O(Sfi—l,r’ SS) = Mr+1
{ti—1r<T}

Ti—1,r <S<(Ti—1,r AT

ri—l,r)

x P(A|ti—1,)dP
a(uv Mr+2)

———PAN{1i_1, < T},
S 1, M, ( {Ti 1r < 1))
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providedu < ug. Now, for eache > 0, let

, M
Ag:=Ag(i,r,u>:={P(;i,rsmﬁ,_l,,) ot Mri2) >s}.

1o M)
ObviouslyA, € ¥, _, ,, and the argument above with. in place ofA shows that

P({, <u)N ANty < T)) < 200 M2
oo ) T T 1-a(u, Myy2)

On the other hand, from the definition af we get

P(A: N {ti—1, <T)).

P({gi,r <ujNAgN {Ti—l,r <T})

= P(¢ir <ul¥y_,,)dP
Aé‘m{fi—l,r<T}
. (8 n a(u, My 2)
1-—a(u, Myy2)
Combining inequalities yield® (A, N {ti_1, < T}) =0 for all ¢ > 0. Thus, for
all e > 0, almost surely on the sét;_1 , < T},

)P, <T).

O[(ua Mr+2)
1—a(u, M)

Now lete | O to get the desired inequality]

P(;i,r = ulj:’ti_l,r) <&+

REMARK 2.2. For anyw such thatr;_1 ,(w) = T, we always have; , (w) =
T 4+ 1 and¢; »(w) = 1. Hence on the sét;_1, =T},

1, if u>1,

P&, < Ml?r,;l,r) = { 0 otherwise.

REMARK 2.3. Similarly, if w is such thatr;_1,(w) = T + 1, then also
Tir(w) =T +1andg »(w) =0. Thus on the sdt;;_1 , = T + 1}, we have, for all
u >0,

P(;i,r S ul\r]:"[i_]_,r) = 1
Here is a bound for the conditional expectation of the desired quantity.

LEMMA 2.4. Letr beanyinteger. Foranyi=1,2,...and Tp € (0, T A 1]
suchthat «(Tp, M,+2) < 1/2,we have

To
—Tp —X .
E(e_gi”?n_l,r) < { e 04 2[0 alx, M,y12)e *dx, as.on{ri_1, <T},
17 on {Ti—l,r Z T}
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PROOF By Remarks 2.2 and 2.3, on the det_1, > T}, ¢, =0 or 1,
hence trivially e~%r < 1. So consider what happens ¢f_1, < T}. Using
Theorem 10.2.5 of Dudley (2002), integration by parts, Lemma 2.1 and the
assumptionx (To, M, 12) < 1/2,

A T+1
E(e™|Fyy,) = /0 e dP (i <x|Fy )

T+1 To
<e THD 4 e_xdx+/0 P(gir <x|Fy_y,)e " dx
To

To
<e oy 2/0 a(x, M, 2)e “dx. 0

The form of condition (1.2) and the bound of Lemma 2.4 indicate that we need
to deal with the incomplete gamma function which, for any 0 andx > 0, is
defined as

X
y(a, x) :=/ ute " du.
0
Here are some needed facts abput, x).

LEMMA 2.5. (i) Foranya >0andx >0,
00 (_1)kxk+a

y(a,x) 21§7k!(k+a) )

(i) f0<x<3B+a)(2+a)" 1, then
x4 a a
) - 1_ 2)5
v(a x)5a< it T 2u12)"

with strict inequality holding for x > 0.
(i) 1fa > 1,then

< (—DF 7
O<ay(@ D= 2:: Kk+a+1) 24

PrRoor (i) This series is well known [e.g., Davis (1970), equations
(6.5.4) and (6.5.29), pages 260 and 262].

(i) For k > 2 andx as specified, the ratio of absolute values of the successive
terms in the series of part (i) is

x(k+a)
<
k+1Dk+a+1)

Since the series alternates and the third term is negative, we can discard all terms
starting with the third to get the needed inequality.
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(i) From the absolute convergence of the seriegfar, x) and fore™*,

1_ & (Da S (=D
ay(a’l)_;_kg%k!(k—i-a)_kzo k!

_i<—1>k -k & =D
= K kta Zklkta+ 1)

Since the series alternates plus, minus, and so on, and the terms decrease in
absolute value, two terms provide a lower bound, whereas three terms give an
upper bound:

1 1 1 1
ay(a,l)—;> a+1_ 2+a - 14+a)2+a) e
and fora > 1,
1 1 1 1 1 7
@D S T Dat2 (2a+d 68 24 0

Combining the last two lemmas, we get

COROLLARY 2.6. Assume that a strong Markov process &,t € [0, T1,
belongs to the class M (8, y) and satisfies the conditions of Lemma 2.4. Then
almost surelyon {t;_1, < T},

)< ByB.THT P, i T, <1,
—1r) =

E(e 5|5,
1% ety L, if 7, =1,

where T, = min{((M,2 A ag)’ /(2K)YP, T, 1}.

PROOF  First notice that condition (1.2) implies
a(Ty, My42) < KTP (M2 Aag)™" < 1/2.
Thus, we can apply Lemma 2.4 wiffy = 7, to obtain, on{t;_1, < T},
2K I;
2.2 E(e”5ir | . <e T4 7/ xPe* dx.
22) (e, ) < (My42 Aag)? Jo
Now integration by parts yields

T,
O<y(B+1T,) :/ xPe > dx
0

T
(2.3) = —xPe™* |gr + ,3/ P le* ax
0

=-TPe T + By (B, T)),

andy (1, ;) = 1 — e~ r. Now consider three cases.
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Case l. T,’B =1<(M,42A1a0)”/(2K). Thenfrom (2.2), (2.3) and part (iii) of
Lemma 2.5, we have

2K 7
E(e by ) <e bt ———— (-7t 1)) <e 4+ — <0660
(1) S (e By (B D) e g <

Case 2. T,ﬁ = (M,4+2 A ap)” /(2K). Then from (2.2) and (2.3),

. —_ - 1 - B
E(e 5| Fy,,) <e ™ +F(—Tfe "+ By (B, 1) = By (B, THT, .

r

Case 3. T/ = TP < min{l, (M,+2 A ag)” /(2K)}. Then by (2.2) and (2.3)
again,

. 1
E(e 5|, , ) <e T+ ﬁ(—Tﬂe—T +By(B. 7)) =By (B, T)TF.
And so in all cases we have the stated bounds.

Now we are ready to state and prove the following crucial lemma.

LEMMA 2.7. Letr beanyinteger. Forany j=1,2,...,

(ﬂy(ﬂv Tr)Tr_ﬁ)j, if 7, <1,

P(tj, <T)<el :
o (e 1+ L), it 7, =1.

PrROOF Properties of conditional expetions, Markov’s inequality and
Corollary 2.6 applied times yield, for any- such that7, < 1,

P(tj,<T)=P(tj,<T,tj-1,<T)
=E(lz;_y, <1y P(tjr =T|F,4,))
= E(Lg; 1, <1\ Pl z 7|7y, ))
< e E(lygy,<nyE(e77" %y y,)

-1
=eTE(l_[(1{n,r<T}e_§””')E(e_g“|3‘ij1,r))

i=1

i—2

( ) T) g —6i Y F

< e”%#/;(]_[(lm,rd}e “)E (e C””'ij—z,r))
r i=1

J

- SeT(ﬂy(ﬂ, Tr>> '
7P

The proof of the second case is analogous.
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3. Proof of Theorem 13. Let PP :={k:x ={;;0=100 < < --- <
tm, = T}} be the set of all point partitions ¢0, T']. Forp > 1, f:[0,T] — X,
where as befor€X, p) is a complete separable metric space, and«fer PP,
k= {610, et fie i= p(f(8), f(ti—1) i =1, ....me,ands,(f, &) == S0 fF.
In such notation the-variation of f is v, (f) = SUR.cpp 5 (f, &).

We now classify oscillations of a strong Markov procéss < [0, T'], which
belongs to the class\((B, y). For any integerr, recall M, = 2~"~1 and let
k € PP,k = {1;}]*, be an arbitrary point partition. Define the random sets

Ki() =K (w,k)={k:1<k<me, M, <&, <M _1}.

Letrq be the largest integer less than or equatttg, ag + 3), so thatM, 2 > ag
for all r < r1. Let B be the set of such € Q that & (w) is cadlag. Then our
assumptions imphP (B) = 1.

Now recall v, as defined before Remark 1.5. For anye B, let vp(w) :=
Vao/2(w), SO thatvg counts all oscillations- ag/2, including all those> ag. Then
write

vpE@)N <D sup Y g (@+sup)y. > & ()

r>r1k€PP ek (w) KPPy <11 keK, (w)
(3.1) <Y 2sup ) 1+4(2M)"v)(w)
r>rq KEPP ek ()
=: 51+ ((2M)Pvp)(w).

To establish that, (§) is bounded almost surely fqr > /B, it is sufficient to
bound

Esup > 1= EY,
KEPPkEKr(w)

for r > r1, and to show tha$; converges fop > y /8.

LEMmA 3.1. Let r be any integer and let «(x,a) and 7, be as in
Corollary 2.6. Supposethat > r1. Then

-1,T i
EY, < 4T e’ !f T, <1,
1.95€T, if T, =1.
PROOF  First write EY, = > 52, P(Y, > j). Since r > r1, we have

M, > < ag andT, = min{(Mj’+2/(2K))1/ﬁ, T,1} <1.So by Lemma 2.7, we get

By (B, T) }’

P(Y, > j) SP(TjrST)SeT{
, Trﬂ
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Now Lemma 2.5(ii) yieldgy (8, T,) < 7, and, sincel, < 1, we also have
1 1 2(8+1) 4
< < < .
—By(B.T) ~ B/(B+DTIT —prp+2prf? T prftt Tt
Thus for7, < 1,

(ﬂT)
e = Y

_ Br@ T){ By (B, Ty) }—1
7’ T,ﬁ
< e By (B, T))
i T
If T, =1, then Lemma 2.7 gives, for eagh
P(Y,>j)<P(tj,<T)<e (et + L) <’ (0.66).
Thus in this case

o0
EY, <e” Y (0.66) = 385 <1957,
j=1 O
Returning to the proof of Theorem 1.3, recall the definitiomofit satisfies the
following inequalities:
(3.2) r1 <—(logyap+3) <r1+ 1.
Now choose any > 0 and letN > 0. Then from (3.1) we get
P(vp(é) > N) = P({vp(g-‘) >N}nN B) < P14+ P>+ P3,

where, using Markov’s inequality and Lemma 3.1,

N 2

Pp:=P — )<= 27PEY,
! (Sl ~ ) S

2 r>rq

— Z 27PLAT M 1y 4 (1951 (7,—1y ).

r>rq

If r > r1, thenM, .o = 27" =3 < ag and T, = min{(M}_,/(2K))*/#, T, 1}. And so

MY \1/B -1
o= o (45) 1)

1 2K)VF
=max1, —, (2K)
T )///3
r+2

< 1+ % + (K21+y(r+3))1//3.
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Hence
2eT

4 oo o0
N {(64—?) Z 277P 4 gYB2+@r+1)/p Z 2—”(P—V//3)}

r=r1+1 r=r1+1

2¢eT {( 4\ 2—(+Dp K1/822+@y+1)/B—(ri+D(p—v/B)
_ ?) }

N a—2n " 1_2- G /P
_.GK.T.p.B.y.a0) _¢
N =3

forall N > N1 :=[3C1(K, T, p, B, y,ao)s_l] + 1 andp > y/B. Moreover, for
N > N»(g) large enough,

Py = P<(2M(a)))p > \/§> <

Similarly, for N > N3(¢) large enough,

P3:= P vo(w) \/E <&
2= P | vg(w) > > =<3

Combining the obtained bounds and recalling Remark 1.5, faNal max{ N1,

N2, N3} andp > y/B, we haveP(v,(§) > N) < ¢. This implies that, forp >
y/B, vp(&) is bounded almost surely. This completes the proof of the main
theorem.

wl ™

4. Examples. In this section we show how Theorem 1.3 can be applied to
real-valued symmetrie-stable Lévy processes.

Let X1 be a real-valued symmetrécstable random variable with a characteris-
tic functiong (1) = e—<I"I* for t € R, « € (0, 2] and some constant> 0. Consider
the temporally homogeneous symmetristable Lévy motion X,, ¢+ > 0} started
atx = 0 and with increments having distribution:

X, — Xg~ |t —s|Y*Xq, t,s>0.

[For more on Lévy processes and their properties, see, e.g., Sato (2000).]
It is well known [e.g., Feller (1971), page 448] that, for some constant
b € (0, c0),

x*P(X1>x)—>b asx — 4o00.
Thus there exists ary € (0, co) such that
P(X1>x)<2bx“ for all x > xq.

For x € (0, xp), we trivially have P(X1 > x) < xfx~“. By assumptionX; is
symmetric, and so combining the above bounds, we have

P(|X1| > x) <2maxxg, 2b}x ™% =: Kx~ .
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Therefore forh > 0 anda > 0,
h
(4.1) P(|Xin — Xi| > a) = P(1X1| > ah ") < K—.
a

Denote A,(x) = {y € R:|x — y| > a} for a > 0. From the spatial homo-
geneity of transition probability funains of Lévy processes [e.g., Sato (2000),
Theorem 10.5] and (4.1), we get, for afiy> 0,k € (0, T] anda > O,

a(h,a) =sup Ps;(x,Ay(x)):x eR,0<s <t <(s+h) AT}
=Sup Ps+(0,4,(0)):0<s <t <(s+h) AT}
(4.2) =sugP(|X; — X;|>a):0<s<t<(s+h) AT}

Kv h
ssup{a—a:OSUShgT} =Ka_“'
Now Theorem 1.3 implies that-stable Lévy motion has boundggvariation
on every interval[0, T] for p > «. This reestablishes the “positive” parts of
Theorem 9 of Lévy (1940) fox = 2 and Theorem 4.1 of Blumenthal and Getoor
(1960) fora € (0, 2). Moreover, this example shows that the conditipn= /8"

of Theorem 1.3, in general, cannot be replacegbyy /8 by the aforementioned
theorems, fop = y/B = «, the p-variation of anx-stable Lévy motion is infinite
almost surely for all intervalf0, T'].
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