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p-VARIATION OF STRONG MARKOV PROCESSES

BY MARTYNAS MANSTAVI ČIUS

University of Connecticut

Let ξt , t ∈ [0, T ], be a strong Markov process with values in a complete
separable metric space(X,ρ) and with transition probability function
Ps,t (x, dy), 0 ≤ s ≤ t ≤ T , x ∈ X. For anyh ∈ [0, T ] anda > 0, consider
the function

α(h,a) = sup
{
Ps,t

(
x, {y :ρ(x, y) ≥ a}) :x ∈ X,0≤ s ≤ t ≤ (s + h) ∧ T

}
.

It is shown that a certain growth condition onα(h,a), asa ↓ 0 andh stays
fixed, implies the almost sure boundedness of thep-variation ofξt , wherep

depends on the rate of growth.

1. Introduction. Let ξt , t ∈ [0, T ], be a strong Markov process defined
on some complete probability space(�,F ,P ) and with values in a complete
separable metric space(X,ρ). Denote the transition probability function ofξt by
Ps,t (x, dy), 0 ≤ s ≤ t ≤ T , x ∈ X. For anyh ∈ [0, T ] and a > 0, consider the
function

α(h, a) = sup
{
Ps,t

(
x, {y :ρ(x, y) ≥ a}) :x ∈ X,0 ≤ s ≤ t ≤ (s + h) ∧ T

}
.

The behavior ofα(h, a) as a function ofh gives sufficient conditions for regularity
properties of the trajectories of the processξt . As Kinney (1953) showed,ξt has an
almost surely càdlàg version ifα(h, a) → 0 ash → 0 for any fixeda > 0, and an
almost surely continuous version ifα(h, a) = o(h) ash → 0 for any fixeda > 0.
Dynkin (1952) obtained the same result but under slightly stronger conditions.
The main goal of this paper is to establish a connection between the arguments of
α(h, a) and variational properties of paths ofξt , in particular,p-variation which in
many instances is very useful, as discussed in Dudley (1992), Dudley and Norvaiša
(1998, 1999), Mikosch and Norvaiša (2000), Lyons (1998) and so on.

For a p ∈ (0,∞) and a functionf defined on the interval[0, T ] and taking
values in(X,ρ), its p-variation isvp(f ) := sup{∑m−1

k=0 ρ(f (tk+1), f (tk))
p : 0 =

t0 < t1 < · · · < tm = T,m = 1,2, . . . }. For many important processes, conditions
for the almost sure boundedness ofp-variation of sample paths on bounded
intervals are already known: Lévy (1940) showed that, for Brownian motion, the
p-variation is bounded iffp > 2, a result which was refined by Taylor (1972).
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Later, Monroe (1978) proved that every semimartingale is equivalent to a time
change of a Brownian motion. In particular, this implies that continuous-time
martingales also have almost surely boundedp-variation for anyp > 2. In the case
of martingales with nonconstant sample paths, this result is sharp [e.g., Dudley and
Norvaiša (1998), Theorem 5.6].

The p-variation of Gaussian processes was investigated by Jain and Monrad
(1983). The same problem for Lévy processes was addressed in the papers
by Fristedt and Taylor (1973) and Bretagnolle (1972). Jacob and Schilling
(2001) considered more general Feller processes generated by pseudodifferential
operators with uniformly bounded coefficients.

Feller processes and, in particular, Lévy processes are Markov but the methods
used to establish the boundedness of thep-variation of their paths differ from paper
to paper and do not extend to general strong Markov processes; for example, Jacob
and Schilling [(2001), Theorem 2.13] require a strong assumptionp ≤ 1.

We, on the other hand, rely on the properties of general strong Markov processes
and their transition probabilities. The following definition will be used throughout.

DEFINITION 1.1. Let β ≥ 1 and γ > 0. We say that a Markov process
ξt , t ∈ [0, T ], belongs to the classM(β, γ ) (M for Markov) if there exist constants
a0 > 0 andK > 0 such that, for allh ∈ [0, T ] anda ∈ (0, a0],

α(h, a) ≤ K
hβ

aγ
.(1.1)

REMARK 1.2. The functionα(h, a) is nonincreasing ina for eachh. Thus,
a processξt , t ∈ [0, T ], belongs to the classM(β, γ ) iff there exist constants
a0 > 0 andK > 0 such that, for allh ∈ [0, T ] anda > 0,

α(h, a) ≤ K
hβ

(a ∧ a0)γ
,(1.2)

because if (1.2) holds fora = a0, it will also hold for anya > a0.

Note that condition (1.2) and Kinney’s result allow us to choose a version ofξt

with càdlàg paths. We will use this version throughout. Moreover, there exists a
random variableM(ω) such that

sup
t∈[0,T ]

ρ
(
ξ0(ω), ξt (ω)

) ≤ M(ω) < ∞ a.s.

Our main result is

THEOREM 1.3. Let ξt , t ∈ [0, T ], be a strong Markov process with values in a
complete separable metric space (X,ρ). Suppose ξt belongs to the class M(β, γ ).
Then for any p > γ/β, the p-variation vp(ξ) of ξt is finite almost surely.
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REMARK 1.4. For symmetric stable Lévy processes of indexα ∈ (0,2], the
conditionp > γ/β will be shown in Section 4, at the end of the paper, to apply
with γ/β = α. Moreover, by results of Lévy (1940) and Blumenthal and Getoor
(1960), the paths of such processes have unboundedp-variation forp = α. Hence,
the condition onp in Theorem 1.3 is sharp.

As condition (1.2) indicates, we will concentrate on the “small” oscillations of
the trajectories. Let

νb(ω) := sup
{
k :∃ {ti}2k

i=1, t1 < t2 ≤ t3 < · · · < t2k, ρ
(
ξt2j

, ξt2j−1

)
(ω) > b, j ≤ k

}
,

that is, νb is the random number of oscillations of size> b of ξt over
nonoverlapping intervals.

REMARK 1.5. The paths ofξt are chosen to be càdlàg, so the supremum
in the definition of νb can be taken overti ’s from some countable dense
subset	 ⊂ [0, T ]; thusνb is a measurable random variable. Moreover,νb < ∞
almost surely. Hence the contribution tovp(ξ(ω)) of oscillations> b is at most
((2M)pνb)(ω) < ∞ with probability 1; that is, “large” oscillations can be handled
easily.

The abundance of “small” oscillations will be handled via stopping-time
techniques in Section 2.

Later we will need an Ottaviani-type inequality. Recall the following result from
Gikhman and Skorohod [(1974), page 420]. Similar inequalities can be found in
Blumenthal [(1957), Lemmas 2.1 and 2.2].

LEMMA 1.6. Let ξt , t ∈ [0, T ], be a separable Markov process taking values
in a complete separable metric space (X,ρ). Then for any h > 0 and M > 0 such
that α(h,M/2) < 1, and for any t ∈ [0, T ],

P

(
sup

s∈[t,(t+h)∧T ]
ρ(ξt , ξs) > M

)
≤ P (ρ(ξt , ξ(t+h)∧T ) > M/2)

1− α(h,M/2)
.(1.3)

2. Markov times and related results. Consider the natural filtrationF ξ

generated by the processξ , that is,F ξ = {F ξ
t , t ∈ [0, T ]}, whereF

ξ
t = σ(ξu,0 ≤

u ≤ t) ⊂ F . Recall that a random variableτ :� → [0,∞] is an F ξ -Markov
time iff, for all u ∈ [0, T ], {τ < u} ∈ F

ξ
u . If τ is an F ξ -Markov time, define

Fτ := {A :A ∩ {τ < u} ∈ F
ξ
u , u ∈ [0, T ]}. Also setF0 := {∅,�}. Furthermore,

for any 0≤ a < b ≤ T , let

R(a, b) := sup
a≤s≤t≤b

ρ(ξs, ξt ) = sup
s,t∈(Q∩[a,b])∪{b}

ρ(ξs, ξt ),
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sinceξt has càdlàg paths. HenceR(a, b) is F
ξ
b -measurable. Moreover, for any

sequence 0< an ↓ a ≤ b ≤ T , we haveR(an, b) ↑ R(a, b) asn → ∞ since the
intervals[an, b] are expanding andξt is right-continuous.

For anyr = 0,±1,±2, . . . , defineMr := 2−r−1 and let{τl,r}, l = 0,1,2, . . . ,
be the sequence of random times defined as follows:

τ0,r := 0, τl,r :=
{

inf{t ∈ [τl−1,r , T ] :R(τl−1,r , t) > Mr},
T + 1, if the set above is empty.

Each{τl,r} is anF ξ -Markov time. This is obvious forl = 0. Suppose that we have
shown that{τl,r} areF ξ -Markov times for alll = 0,1, . . . , k. Now assume for a
moment thatτk,r < s ≤ T and we have a sequence{an}∞n=1 such thatan ↓ τk,r as
n → ∞. ThenR(an, s) ↑ R(τk,r , s) asn → ∞ and so

{R(τk,r, s) > Mr} =
∞⋃

n=1

∞⋂
m=n

{R(am, s) > Mr}.

This observation helps to justify the second equality in the following: for any
t ≤ T , we have

{τk+1,r < t} = ⋃
s<t,s∈Q

({τk,r < s} ∩ {R(τk,r , s) > Mr})

= ⋃
s<t,s∈Q

∞⋃
n=1

∞⋂
m=n

2m−1⋃
l=0

({τk,r ∈ [al−1,m, al,m)} ∩ {R(al,m, s) > Mr}),
whereal,m := s(l + 1)2−m and the aforementionedan is defined by

an :=
{

al,n, if τk,r ∈ [al−1,n, al,n) for some l = 0,1, . . . ,2n − 1,
T + 1, if τk,r ≥ s.

Moreover,{τk,r ∈ [al−1,m, al,m)} ∈ F ξ
al,m

⊂ F ξ
s sinceτk,r is anF ξ -Markov time

by assumption and{R(al,m, s) > Mr} ∈ F
ξ
s since al,m ≤ s for all l = 1,2,

. . . ,2m − 1 and m = 1,2, . . . . Thus {τk+1,r < t} ∈ F ξ
t ; that is, τk+1,r is an

F ξ -Markov time.
Let ζi,r := τi,r − τi−1,r for i = 1,2, . . . and leti0 be the smallest integeri such

thatτi,r ≥ T if at least one suchi exists; otherwise seti0 = +∞. Sinceξt is taken
to be right-continuous, we have two cases:

Case i0 < +∞. Then 0= τ0,r < τ1,r < · · · < τi0−1,r < T ≤ τi0,r ≤ τi0+1,r =
τj,r = T + 1 for j ≥ i0 + 1 almost surely. Furthermore,ζi,r > 0 for i ≤ i0, ζi,r = 0
for i > i0 + 1 and

ζi0+1,r =
{

1, if τi0,r = T ,
0, if τi0,r = T + 1,

almost surely.
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Case i0 = +∞. Then 0= τ0,r < τ1,r < · · · < τj,r < · · · andζj,r > 0 for all
j ≥ 1 almost surely.

Before proceeding any further, let us clarify that for any random variables
X andY and a measurable setA, the expression “X ≤ Y almost surely on the
set A” will mean P ({X ≤ Y } ∩ A) = P (A). If P (A) > 0, this is equivalent to
P (X ≤ Y |A) = 1.

The next lemma is the first step towards bounding the average number of
oscillations of a given “small” size that a trajectory can have.

LEMMA 2.1. Let r be any integer and let u0 ∈ [0, T ∧ 1] be such that
α(u0,Mr+2) < 1. Then for any i = 1,2, . . . and u ∈ [0, u0], almost surely on the
set {τi−1,r < T },

P
(
ζi,r ≤ u|Fτi−1,r

) ≤ α(u,Mr+2)

1− α(u,Mr+2)
.

PROOF. First of all, notice that for anyi = 1,2, . . . , i0 andu ∈ [0,1],
{ζi,r ≤ u, τi−1,r < T }

⊂
{

sup
τi−1,r≤t≤(τi−1,r+u)∧T

R(τi−1,r , t) ≥ Mr, τi−1,r < T

}

=
{

sup
s,t∈[τi−1,r ,(τi−1,r+u)∧T ]

ρ(ξs, ξt ) ≥ Mr, τi−1,r < T

}

⊂
{

sup
t∈[τi−1,r ,(τi−1,r+u)∧T ]

ρ
(
ξτi−1,r

, ξt

) ≥ Mr+1, τi−1,r < T

}
.

(2.1)

Take any setA ∈ Fτi−1,r
. Then the definition of conditional expectation, the

strong Markov property, (2.1) and Lemma 1.6 imply

P ({ζi,r ≤ u} ∩ A ∩ {τi−1,r < T })
=

∫
A∩{τi−1,r<T }

P
(
ζi,r ≤ u|Fτi−1,r

)
dP

=
∫
{τi−1,r<T }

P (ζi,r ≤ u|τi−1,r )P (A|τi−1,r ) dP

≤
∫
{τi−1,r<T }

P

(
sup

τi−1,r≤s≤(τi−1,r+u)∧T

ρ
(
ξτi−1,r

, ξs

) ≥ Mr+1

∣∣∣τi−1,r

)

× P (A|τi−1,r ) dP

≤ α(u,Mr+2)

1− α(u,Mr+2)
P (A ∩ {τi−1,r < T }),
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providedu ≤ u0. Now, for eachε > 0, let

Aε := Aε(i, r, u) :=
{
P

(
ζi,r ≤ u|Fτi−1,r

) − α(u,Mr+2)

1− α(u,Mr+2)
≥ ε

}
.

ObviouslyAε ∈ Fτi−1,r
, and the argument above withAε in place ofA shows that

P ({ζi,r ≤ u} ∩ Aε ∩ {τi−1,r < T }) ≤ α(u,Mr+2)

1− α(u,Mr+2)
P (Aε ∩ {τi−1,r < T }).

On the other hand, from the definition ofAε we get

P ({ζi,r ≤ u} ∩ Aε ∩ {τi−1,r < T })
=

∫
Aε∩{τi−1,r<T }

P
(
ζi,r ≤ u|Fτi−1,r

)
dP

≥
(
ε + α(u,Mr+2)

1− α(u,Mr+2)

)
P (Aε ∩ {τi−1,r < T }).

Combining inequalities yieldsP (Aε ∩ {τi−1,r < T }) = 0 for all ε > 0. Thus, for
all ε > 0, almost surely on the set{τi−1,r < T },

P
(
ζi,r ≤ u|Fτi−1,r

)
< ε + α(u,Mr+2)

1− α(u,Mr+2)
.

Now let ε ↓ 0 to get the desired inequality.�

REMARK 2.2. For anyω such thatτi−1,r (ω) = T , we always haveτi,r (ω) =
T + 1 andζi,r (ω) = 1. Hence on the set{τi−1,r = T },

P
(
ζi,r ≤ u|Fτi−1,r

) =
{

1, if u ≥ 1,
0, otherwise.

REMARK 2.3. Similarly, if ω is such thatτi−1,r (ω) = T + 1, then also
τi,r (ω) = T + 1 andζi,r (ω) = 0. Thus on the set{τi−1,r = T + 1}, we have, for all
u > 0,

P
(
ζi,r ≤ u|Fτi−1,r

) = 1.

Here is a bound for the conditional expectation of the desired quantity.

LEMMA 2.4. Let r be any integer. For any i = 1,2, . . . and T0 ∈ (0, T ∧ 1]
such that α(T0,Mr+2) ≤ 1/2, we have

E
(
e−ζi,r |Fτi−1,r

) ≤

 e−T0 + 2

∫ T0

0
α(x,Mr+2)e

−x dx, a.s. on {τi−1,r < T },
1, on {τi−1,r ≥ T }.
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PROOF. By Remarks 2.2 and 2.3, on the set{τi−1,r ≥ T }, ζi,r = 0 or 1,
hence trivially e−ζi,r ≤ 1. So consider what happens on{τi−1,r < T }. Using
Theorem 10.2.5 of Dudley (2002), integration by parts, Lemma 2.1 and the
assumptionα(T0,Mr+2) ≤ 1/2,

E
(
e−ζi,r |Fτi−1,r

) =
∫ T +1

0
e−x dP

(
ζi,r ≤ x|Fτi−1,r

)

≤ e−(T +1) +
∫ T +1

T0

e−x dx +
∫ T0

0
P

(
ζi,r ≤ x|Fτi−1,r

)
e−x dx

≤ e−T0 + 2
∫ T0

0
α(x,Mr+2)e

−x dx. �

The form of condition (1.2) and the bound of Lemma 2.4 indicate that we need
to deal with the incomplete gamma function which, for anya > 0 andx ≥ 0, is
defined as

γ (a, x) :=
∫ x

0
ua−1e−u du.

Here are some needed facts aboutγ (a, x).

LEMMA 2.5. (i) For any a > 0 and x ≥ 0,

γ (a, x) =
∞∑

k=0

(−1)kxk+a

k!(k + a)
.

(ii) If 0≤ x < 3(3+ a)(2+ a)−1, then

γ (a, x) ≤ xa

a

(
1− a

a + 1
x + a

2(a + 2)
x2

)
,

with strict inequality holding for x > 0.
(iii) If a ≥ 1, then

0< aγ (a,1) − 1

e
=

∞∑
k=0

(−1)k

k!(k + a + 1)
<

7

24
.

PROOF. (i) This series is well known [e.g., Davis (1970), equations
(6.5.4) and (6.5.29), pages 260 and 262].

(ii) For k ≥ 2 andx as specified, the ratio of absolute values of the successive
terms in the series of part (i) is

x(k + a)

(k + 1)(k + a + 1)
< 1.

Since the series alternates and the third term is negative, we can discard all terms
starting with the third to get the needed inequality.
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(iii) From the absolute convergence of the series forγ (a, x) and fore−x ,

aγ (a,1) − 1

e
=

∞∑
k=0

(−1)ka

k!(k + a)
−

∞∑
k=0

(−1)k

k!

=
∞∑

k=0

(−1)k

k!
−k

k + a
=

∞∑
k=0

(−1)k

k!(k + a + 1)
.

Since the series alternates plus, minus, and so on, and the terms decrease in
absolute value, two terms provide a lower bound, whereas three terms give an
upper bound:

aγ (a,1) − 1

e
>

1

a + 1
− 1

2+ a
= 1

(1+ a)(2+ a)
> 0,

and fora ≥ 1,

aγ (a,1) − 1

e
<

1

(a + 1)(a + 2)
+ 1

2(a + 3)
≤ 1

6
+ 1

8
= 7

24
. �

Combining the last two lemmas, we get

COROLLARY 2.6. Assume that a strong Markov process ξt , t ∈ [0, T ],
belongs to the class M(β, γ ) and satisfies the conditions of Lemma 2.4. Then
almost surely on {τi−1,r < T },

E
(
e−ζi,r |Fτi−1,r

) ≤
{

βγ (β,Tr)T
−β
r , if Tr < 1,

e−1 + 7
24, if Tr = 1,

where Tr = min{((Mr+2 ∧ a0)
γ /(2K))1/β, T ,1}.

PROOF. First notice that condition (1.2) implies

α(Tr,Mr+2) ≤ KT β
r (Mr+2 ∧ a0)

−γ ≤ 1/2.

Thus, we can apply Lemma 2.4 withT0 = Tr to obtain, on{τi−1,r < T },

E
(
e−ζi,r |Fτi−1,r

) ≤ e−Tr + 2K

(Mr+2 ∧ a0)γ

∫ Tr

0
xβe−x dx.(2.2)

Now integration by parts yields

0 ≤ γ (β + 1, Tr) =
∫ Tr

0
xβe−x dx

= −xβe−x
∣∣Tr

0 + β

∫ Tr

0
xβ−1e−x dx

= −T β
r e−Tr + βγ (β,Tr),

(2.3)

andγ (1, Tr) = 1− e−Tr . Now consider three cases.
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Case 1. T
β
r = 1≤ (Mr+2 ∧ a0)

γ /(2K). Then from (2.2), (2.3) and part (iii) of
Lemma 2.5, we have

E
(
e−ζi,r |Fτi−1,r

) ≤ e−1 + 2K

(Mr+2 ∧ a0)γ

(−e−1 + βγ (β,1)
) ≤ e−1 + 7

24
< 0.660.

Case 2. T
β
r = (Mr+2 ∧ a0)

γ /(2K). Then from (2.2) and (2.3),

E
(
e−ζi,r |Fτi−1,r

) ≤ e−Tr + 1

T
β
r

(−T β
r e−Tr + βγ (β,Tr)

) = βγ (β,Tr)T
−β
r .

Case 3. T
β
r = T β < min{1, (Mr+2 ∧ a0)

γ /(2K)}. Then by (2.2) and (2.3)
again,

E
(
e−ζi,r |Fτi−1,r

) ≤ e−T + 1

T β

(−T βe−T + βγ (β,T )
) = βγ (β,T )T −β.

And so in all cases we have the stated bounds.�

Now we are ready to state and prove the following crucial lemma.

LEMMA 2.7. Let r be any integer. For any j = 1,2, . . . ,

P (τj,r ≤ T ) ≤ eT




(
βγ (β,Tr)T

−β
r

)j
, if Tr < 1,(

e−1 + 7
24

)j
, if Tr = 1.

PROOF. Properties of conditional expectations, Markov’s inequality and
Corollary 2.6 appliedj times yield, for anyr such thatTr < 1,

P (τj,r ≤ T ) = P (τj,r ≤ T, τj−1,r < T )

= E
(
1{τj−1,r<T }P

(
τj,r ≤ T |Fτj−1,r

))
= E

(
1{τj−1,r<T }P

(
e−τj,r ≥ e−T |Fτj−1,r

))
≤ eT E

(
1{τj−1,r<T }E

(
e−τj,r |Fτj−1,r

))

= eT E

(j−1∏
i=1

(
1{τi,r<T }e−ζi,r

)
E

(
e−ζj,r |Fτj−1,r

))

≤ eT βγ (β,Tr)

T
β
r

E

(j−2∏
i=1

(
1{τi,r<T }e−ζi,r

)
E

(
e−ζj−1,r |Fτj−2,r

))

≤ · · · ≤ eT

(
βγ (β,Tr)

T
β
r

)j

.

The proof of the second case is analogous.�
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3. Proof of Theorem 1.3. Let PP := {κ :κ = {ti : 0 = t0 < t1 < · · · <

tmκ = T }} be the set of all point partitions of[0, T ]. For p ≥ 1, f : [0, T ] → X,
where as before(X,ρ) is a complete separable metric space, and forκ ∈ PP,
κ = {ti}mκ

i=0, letfi,κ := ρ(f (ti), f (ti−1)), i = 1, . . . ,mκ , andsp(f, κ) := ∑mκ

i=1 f
p
i,κ .

In such notation thep-variation off is vp(f ) = supκ∈PP sp(f, κ).
We now classify oscillations of a strong Markov processξt , t ∈ [0, T ], which

belongs to the classM(β, γ ). For any integerr , recall Mr = 2−r−1 and let
κ ∈ PP, κ = {ti}mκ

i=0 be an arbitrary point partition. Define the random sets

Kr(ω) := Kr(ω,κ) := {k : 1 ≤ k ≤ mκ,Mr ≤ ξk,κ < Mr−1}.
Let r1 be the largest integer less than or equal to−(log2a0+3), so thatMr+2 ≥ a0
for all r ≤ r1. Let B be the set of suchω ∈ � that ξt (ω) is càdlàg. Then our
assumptions implyP (B) = 1.

Now recall νb as defined before Remark 1.5. For anyω ∈ B, let ν0(ω) :=
νa0/2(ω), so thatν0 counts all oscillations> a0/2, including all those≥ a0. Then
write

vp(ξ(ω)) ≤ ∑
r>r1

sup
κ∈PP

∑
k∈Kr(ω)

ξ
p
k,κ(ω) + sup

κ∈PP

∑
r≤r1

∑
k∈Kr(ω)

ξ
p
k,κ(ω)

≤ ∑
r>r1

2−rp sup
κ∈PP

∑
k∈Kr(ω)

1+ (
(2M)pν0

)
(ω)

=: S1 + (
(2M)pν0

)
(ω).

(3.1)

To establish thatvp(ξ) is bounded almost surely forp > γ/β, it is sufficient to
bound

E sup
κ∈PP

∑
k∈Kr(ω)

1=: EYr

for r > r1, and to show thatS1 converges forp > γ/β.

LEMMA 3.1. Let r be any integer and let α(x, a) and Tr be as in
Corollary 2.6.Suppose that r > r1. Then

EYr ≤
{

4T −1
r eT , if Tr < 1,

1.95eT , if Tr = 1.

PROOF. First write EYr = ∑∞
j=1P (Yr ≥ j). Since r > r1, we have

Mr+2 < a0 andTr = min{(Mγ
r+2/(2K))1/β, T ,1} < 1. So by Lemma 2.7, we get

P (Yr ≥ j) ≤ P (τj,r ≤ T ) ≤ eT

{
βγ (β,Tr)

T
β
r

}j

.
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Now Lemma 2.5(ii) yieldsβγ (β,Tr) < T
β
r and, sinceTr < 1, we also have

1

T
β
r − βγ (β,Tr)

≤ 1

β/(β + 1)T
β+1
r − β/(2(β + 2))T

β+2
r

≤ 2(β + 1)

βT
β+1
r

≤ 4

T
β+1
r

.

Thus forTr < 1,

EYr ≤ eT
∞∑

j=1

{
βγ (β,Tr)

T
β
r

}j

= eT βγ (β,Tr)

T
β
r

{
1− βγ (β,Tr)

T
β
r

}−1

≤ 4eT βγ (β,Tr)

T
β+1
r

≤ 4eT

Tr

.

If Tr = 1, then Lemma 2.7 gives, for eachj ,

P (Yr ≥ j) ≤ P (τj,r ≤ T ) ≤ eT (
e−1 + 7

24

)j
< eT (0.66)j .

Thus in this case

EYr ≤ eT
∞∑

j=1

(0.66)j = eT 0.66
0.34 < 1.95eT .

�

Returning to the proof of Theorem 1.3, recall the definition ofr1. It satisfies the
following inequalities:

r1 ≤ −(log2 a0 + 3) < r1 + 1.(3.2)

Now choose anyε > 0 and letN > 0. Then from (3.1) we get

P
(
vp(ξ) > N

) = P
({vp(ξ) > N} ∩ B

) ≤ P1 + P2 + P3,

where, using Markov’s inequality and Lemma 3.1,

P1 := P

(
S1 >

N

2

)
≤ 2

N

∑
r>r1

2−rpEYr

≤ 2eT

N

∑
r>r1

2−rp
{
4T −1

r 1{Tr<1} + (1.95)1{Tr=1}
}
.

If r > r1, thenMr+2 = 2−r−3 < a0 andTr = min{(Mγ
r+2/(2K))1/β, T ,1}. And so

T −1
r =

(
min

{(
M

γ
r+2

2K

)1/β

, T ,1
})−1

= max
{

1,
1

T
,
(2K)1/β

M
γ/β
r+2

}

≤ 1+ 1

T
+ (

K21+γ (r+3)
)1/β

.
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Hence

P1 ≤ 2eT

N

{(
6+ 4

T

) ∞∑
r=r1+1

2−rp + K1/β22+(3γ+1)/β
∞∑

r=r1+1

2−r(p−γ /β)

}

= 2eT

N

{(
6+ 4

T

)
2−(r1+1)p

(1− 2−p)
+ K1/β22+(3γ+1)/β−(r1+1)(p−γ /β)

1− 2−(p−γ /β)

}

=: C1(K,T ,p,β, γ, a0)

N
≤ ε

3
,

for all N ≥ N1 := [3C1(K,T ,p,β, γ, a0)ε
−1] + 1 andp > γ/β. Moreover, for

N ≥ N2(ε) large enough,

P2 := P

(
(2M(ω))p >

√
N

2

)
≤ ε

3
.

Similarly, for N ≥ N3(ε) large enough,

P3 := P

(
ν0(ω) >

√
N

2

)
≤ ε

3
.

Combining the obtained bounds and recalling Remark 1.5, for allN ≥ max{N1,

N2,N3} andp > γ/β, we haveP (vp(ξ) > N) ≤ ε. This implies that, forp >

γ/β, vp(ξ) is bounded almost surely. This completes the proof of the main
theorem.

4. Examples. In this section we show how Theorem 1.3 can be applied to
real-valued symmetricα-stable Lévy processes.

Let X1 be a real-valued symmetricα-stable random variable with a characteris-
tic functionφ(t) = e−c|t|α for t ∈ R, α ∈ (0,2] and some constantc > 0. Consider
the temporally homogeneous symmetricα-stable Lévy motion{Xt, t ≥ 0} started
atx = 0 and with increments having distribution:

Xt − Xs ∼ |t − s|1/αX1, t, s > 0.

[For more on Lévy processes and their properties, see, e.g., Sato (2000).]
It is well known [e.g., Feller (1971), page 448] that, for some constant

b ∈ (0,∞),

xαP (X1 > x) → b asx → +∞.

Thus there exists anx0 ∈ (0,∞) such that

P (X1 > x) ≤ 2bx−α for all x ≥ x0.

For x ∈ (0, x0), we trivially haveP (X1 > x) ≤ xα
0x−α . By assumption,X1 is

symmetric, and so combining the above bounds, we have

P (|X1| > x) ≤ 2 max{xα
0 ,2b}x−α =: Kx−α.



p-VARIATION OF STRONG MARKOV PROCESSES 2065

Therefore forh > 0 anda > 0,

P (|Xt+h − Xt | > a) = P (|X1| > ah−1/α) ≤ K
h

aα
.(4.1)

DenoteAa(x) = {y ∈ R : |x − y| ≥ a} for a > 0. From the spatial homo-
geneity of transition probability functions of Lévy processes [e.g., Sato (2000),
Theorem 10.5] and (4.1), we get, for anyT > 0, h ∈ (0, T ] anda > 0,

α(h, a) = sup
{
Ps,t

(
x,Aa(x)

)
:x ∈ R,0 ≤ s ≤ t ≤ (s + h) ∧ T

}
= sup

{
Ps,t

(
0,Aa(0)

)
: 0 ≤ s ≤ t ≤ (s + h) ∧ T

}
= sup{P (|Xt − Xs | ≥ a) : 0 ≤ s ≤ t ≤ (s + h) ∧ T }
≤ sup

{
Kv

aα
: 0≤ v ≤ h ≤ T

}
= K

h

aα
.

(4.2)

Now Theorem 1.3 implies thatα-stable Lévy motion has boundedp-variation
on every interval[0, T ] for p > α. This reestablishes the “positive” parts of
Theorem 9 of Lévy (1940) forα = 2 and Theorem 4.1 of Blumenthal and Getoor
(1960) forα ∈ (0,2). Moreover, this example shows that the condition “p > γ/β”
of Theorem 1.3, in general, cannot be replaced byp ≥ γ/β: by the aforementioned
theorems, forp = γ/β = α, thep-variation of anα-stable Lévy motion is infinite
almost surely for all intervals[0, T ].
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