The Annals of Probability

2004, Vol. 32, No. 3A, 1830-1872

DOI 10.1214/009117904000000667

© Institute of Mathematical Statistics, 2004
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We study the Euler scheme for a stochastic differential equation driven
by a Lévy process’ . More precisely, we look at the asymptotic behavior of
the normalized error process (X" — X), whereX is the true solution and
X" is its Euler approximation with stepsize'rl, andu, is an appropriate
rate going to infinity: if the normalized error processes converge, or are at
least tight, we say that the sequerigg) is a rate, which, in addition, is sharp
when the limiting process (or processes) is not trivial.

We suppose that has no Gaussian part (otherwise a rate is known to
beu, = 4/n). Then rates are given in terms of the concentration of the Lévy
measure of around 0 and, further, we prove the convergence of the sequence
un (X™ — X) to a nontrivial limit under some further assumptions, which
cover all stable processes and a lot of other Lévy processes whose Lévy
measure behave like a stable Lévy measure near the origin. For example,
whenY is a symmetric stable process with index (0, 2), a sharp rate is
un = (n/logn)1/; wheny is stable but not symmetric, the rate is again=
(n/logn)¥* whena > 1, but it becomes:,, = n/(logn)? if « =1 and
u, =nifa <1.

1. Introduction. We consider the following stochastic differential equa-
tion (SDE):

t
(1.1) X;=xo+ [ F(X,)dY,,

where f denotes aC? (three times differentiable) function and is a Lévy
process with characteristi¢s, ¢, F) with respect to the truncation functidix) =
XLqx <1}, that is,

2
(1.2) E(e"Y) = expr (iub - % + / F(dx)(e™ —1— iux]l{x|51})).

We also suppose thay is such that (1.1) admits a (necessarily unique)
nonexplodingolution (this is the case, e.g.,ffhas at most linear growth).

A number of papers have been devoted to studying the rate of convergence of
the Euler scheme for this equation. That is, the approximated solution is defined at
the timesi /n, by induction on the integer according to the formula

(1.3)  Xg=xo, Xt = XGi—1y/n + F(XG1)/0) Yisn = Yi1)/n)-
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This scheme allows for numerical computations, using Monte Carlo techniques,
provided one can simulate the incremelts- Y, of the Lévy procesd: A first
problem consists in computing an approximation of the expected V&lleX 1))

for smooth enough functions, and we need to evaluate the ertgy(h) =
E(h(X')) — E(h(X1)). A second problem is to compute an approximation of the
law of some functional of the path, like, for example, sypX;, and for this we

need to evaluate the (discretized) error process, which is defined as
(1.4) U' = Xtuiyn — Xinti/n-

Problem 1 has been extensively studied wiieis continuous (i.e.F = 0) and
¢ > 0: we can quote, with increasing order of generality as to the smoothness of
f andh, the works of Talay and Tubaro (1990) and Bally and Talay (19964, b),
where it is proved that, (k) is of order ¥»n and where an expansion @f (k) as
increasing powers of /k is even exhibited. In Protter and Talay (1997) the same
problem is studied for discontinuods but they only prove that, (k) = O(1/n);
see also a forthcoming paper by Kohatsu-Hida and Yoshida (2001) for an equation
driven by a Wiener process plus a Poisson random measure. The technigues are
essentially analytical.

For problem 2 one uses stochastic calculus techniques, and the idea is to find a
rateu,, thatis, a sequence goingdo such that the sequen¢e,U") is tight; the
rate is calledsharpif further the sequence:, U™) admits some limiting processes
that are not identically 0. Even better is the case when the whole sequeglc®
converges to a nondegenerate limit. In Jacod and Protter (1998) we have proved
the following (more precise results are recalled below):

1. If ¢ > 0, then a sharp rate is, = \/n, and the sequendg/nU") converges in
law to a nondegenerate limit.

2. If c =0 andF is afinite measure, hencg,is a compound Poisson process plus
a drift, then a sharp rate ig, = n if the drift b is not 0; whenb = 0, the rate
is “infinite,” meaning that for any, we haveU! =0 for all s < for n large
enough.

3. If c =0andF is an infinite measure, then a ratejs= /n, but this rate is not
sharp in the sense thaynU") goes in law to 0.

Although the implicit assumption that the incrementsrotan be simulated is
somewhat unrealistic except in particular situations, which, however, include the
case wher# is a stable process, finding the exact rate of convergence is at least of
much theoretical importance. Here we aim to find sharp rates for problem 2, when
¢ =0 andF(R) = co. The crucial factor is the behavior of the Lévy meashre
near O (i.e., how many “small jumps” we have), which will be expressed through
the following functions ok .

0.+(B) = F((B.00)),

(1.5)
6_(B) = F((—o0, —B)), 0(B) =0+(B) +6—(B).
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We introduce several assumptions, in whictlenotes our basic index; here and
below C denotes a constant which may change from line to line, and may depend
on F just here, and also anand f further below:

HYPOTHESIS(H1-0). We haved(8) < ﬁ% forall B € (0, 1].

HYPOTHESIS(H2-r). We haved*6.(8) — 6, andB*0_(8) — 6_asB — 0
for some constanté,,6_ > 0, and further 6 := 6, + 6_ > 0. We also set
6’ =6, — 6_, and we observe tha(g) ~ % asp — 0.

HypPOTHESIS(H3). The measuréd’ is symmetrical aboud.
HYPOTHESIS(H4). We have» =0.

Note that Hypothesis (H2) = Hypothesis (Hlx), and that Hypothesis (H1-2)
always holds becausg integratesx — |x|2 A 1, and Hypothesis (H1-0) [i.e.,
(H1-«) for « = 0] holds iff the measuré# is finite, a case which we exclude. Under
Hypothesis (H3) we have Hypothesis (d2-as soon a8 (8) ~ % asg — 0, and
0L =60_=0)2.

Unfortunately, we cannot totally fulfill our aim. But we find ratag that
are bigger thany/n. And we prove that these rates are sharp and even that
u,U" converges in some reasonably general circumstances. Let us single out five
different cases:

Casel. We have Hypothesis (H&} for somex > 1; thenu,, = (@)1/“.

Case2a. We have Hypothesis (H)} for « = 1; thenu,, = (Iog—n)2'
Case2b. We have Hypothesis (Hd) for « = 1 and Hypothesis (H3); then

. n
n = Togn "
Case3a. We have Hypothesis (Hi)} for somex < 1; thenu,, = n.

Case3b. We have Hypothesis (Hi} for somea < 1 and Hypotheses
(H3) and (H4); then,, = (=),

logn

Clearly, Hypothesis (Htx) = Hypothesis (Hlz') if « < o, while the rate is
better (i.e., bigger) whes decreases: one should take the smallest possgifde
which Hypothesis (HX¢) holds, although, of course, there might not be such a
minimal «. Observe also that the rate in Case 2b (resp. 3b) is strictly bigger than
in Case 2a (resp. 3a): the symmetry of the driving process improves the quality of
the Euler scheme under Hypothesis (Hlwhena < 1, while it does not affect
the rate whem > 1.

Now we describe the results of this paper. The first one concerns tightness [the
assumption off is always that it isC3 and that (1.1) has a nonexploding solution;
this is not repeated in the next theorems].

u

THEOREM1.1. Assume that = 0and that Hypothesi@H1-«) holds for some
a € (0, 2). Then with the above choice of,, the sequenceé:,U"), is tight



EULER SCHEME FOR DISCONTINUOUS SDEs 1833

The results about limits necessitate the stronger HypothesisjHizstead of
Hypothesis (Hlx), except in Case 3a; in all cases except 2a, the description
of the limit invloves another process or additional random variables which are
independent of , so we might need to enlarge the probability space to accomodate
these.

BeIow,?" stands for the discretized process associated Witthat is,?," =

Y[nt]/n-

THEOREM 1.2. Assume that = 0 and that HypothesigH1-o) holds for
somex € (0, 2). Then in the following cases and witty as abovethe sequence
(Y",u,Um) converges in lav{for the Skorokhod topologyo (Y, U), whereU is
the unique solutioi/ of the linear equation

(1.6) U, = /Ot ' (Xs)Us_dYs — Wy,
and where the proced® may be described as follows
(a) In Casel, and if further HypothesigH2-«) holds then
(L.7) W= [ FX K avi,
whereV is another Lévy procesmdependent of and characterized by

. ta
E(eluV[) — exp? / ((942_ + 93)1{x>0} + 29+9_]l{x<0})

1
X |x|l+°‘

(1.8)

(€™ —1—jux)dx

(henceV is a stable process with indes.
(b) In Case2a,and if further Hypothesi§H2-«) holds fora = 1, then

0. —0_)2 [t
(1.9 Wt=—u/o F(Xso) fl(Xs-)ds,

4
and we even have that,U" converges tdJ in probability (locally uniformly in
time).

(c) In Cases2b and 3b, and if further HypothesigH2-«) holds then we
have(1.7),whereV is another Lévy procesgdependent of and characterized

by

( iux

. 62
(1.10) E(e”‘vf):expt/Ta —1—iuxlyy<y)dx

|x|1+ot

(hence V is a symmetric stable process with indeXx
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(d) In Case3a,then
We=d Y ([f(Xr,) = f(Xg,-)Je0 + f'(Xg,~) AXR, (1 - &)

n.R,<t

(1.11)
d? [t /
-5 /0 FX) f/(Xy) ds,

whered = b — f{\x|51}XF(dx) and (§,),>1 IS a sequence of.iid. variables

uniform on[0, 1] and independent of, and (R,),>1 IS an enumeration of the
jump times o’ (or of X).

REMARK 1.1. For comparison with the cases excluded here and studied in
Jacod and Protter (1998), let us mention that # 0 and F is a finite measure
[i.e., Hypothesis (H1-0) holds], then Theorem 1.2(d) holds without change. When
¢ > 0, the sequencer ", ./nU") converges in law t¢Y, U), whereU solves (1.6)
with

=ve Yo ([f(Xr,) = F(Xr,~)Wenkn + [ (XR, ) AXR,V1— E0kcy)

n.R,<t

c t ,
+ /O F(Xso) f'(Xs_)dB,

and whereB is a standard Brownian motion, aigd is uniform over[0, 1], and
kn, andk; are standard normal variables, all these being independent one from the
other and front as well.

REMARK 1.2. When 6, = 6_ [e.g., under Hypothesis (H3)] then
(1.8) and (1.10) agree (but, of course, for different valuas)ofn Theorem 1.2(b)
[resp. (d)], if0’ =6, — 6_ =0 (resp.d = 0), the limiting procesd/ is identi-
cally 0. So these results are interesting only wheg 0 (resp.d # 0), implying
thatY is dissymmetric, and otherwise the rate is not sharp.

REMARK 1.3. It would be possible, at the price of even more complicated
computations, to accomodate other forms for Hypothesis¢H2er example, if
0. (B) and6_(B) are of orderd—“(log %)V as g — 0 for somex € (0,2) and
y € R. On the contrary, it seems rather difficult to express the rgtedirectly in
terms of the two function& (38) andb_(8).

REMARK 1.4. In Theorem 1.2(b) we have convergence in probability, so
there ought to be an associated “central limit theorem.” This suggests that we can
improve the Euler scheme and simultaneously improve the rate, which is, indeed,
the case: assume that Hypothesis &)lholds fora = 1. Then replace the Euler
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scheme of (1.3) by a modified Euler scheXé constructed as follows:
Xg =xo,
(1.12) X=Xy + F(XG_1yn) Yign = Yi—1)/n)

— F(XG 1) [ (X1 /0) Vs
where
1

(1.13) Yn = —2/ xF(dx)/ yF(dy).
2n< J{logn/n<|x|<1) {logn/(n|x)<y<1}

Denote byU"™ the associated error process, thati$; = X|7,;/, — X{ur/»- Then

one can show that the sequen@gU™) is tight with u), = n/logn. If further
Hypothesis (H2x) holds witha = 1, then it is quite likely (although we have not
proved it) that this sequence even converges in law to a nontrivial limiting process.
The improvement in the rate, going frony(logn)? to n/logn, is, of course,
negligible in practice [not to speak about the fact that actually computing

in (1.13) might be a difficult task], so these results will not be proved below.
Observe also that when further Hypothesis (H3) holds, theabove vanishes,

so X = X" and we recover Theorem 1.1 in Case 2b.

REMARK 1.5. We will introduce below—and use in a crucial way—a
condition called (UT) [or sometimes (P-UT), for “predictably uniformly tight”] on
a sequence of processes. Then one easily deduces from the proof of Theorem 1.1
that the sequenae,U") satisfies the (UT) property, in addition to being tight.

REMARK 1.6. Letus say a word about our assumption thi C3: itis fully
used here for Case 1 only. For Cases 2 and 3 [statements (b)—(d) of Theorem 1.2
it is enough thatf be C2, and an application of Theorem 3.5 of Kurtz and Protter
(19914, b), plus some scaling property, would give that the results hold as soon as
fis C1, whenY is a symmetric stable process.

Finally, let us mention that, for the sake of notational simplicity, we have
considered only the one-dimensional case, but everything goes through in the
multi-dimensional case as well, with exactly the same proofs.

The paper is organized as follows: in Section 2 we present a number of general
tools connected with Euler approximations and limit theorem. More specific
tools are developped in Section 3, while the heart of the proof (a long string of
inequalities, extremely technical) is given in Section 4. The proofs of the two
preceding theorems are given in Section 5.

2. Some general tools. Throughout all the paper, we suppose that 0 and
at least that Hypothesis (Hi) holds for somex € (0, 2). Recall also thayf is C3
and (1.1) has a nonexploding solution.
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2.1. A condition for convergence of Euler schemeset us writeY’ = f(X).
We have

[nt]

Z/l /n 1)/n) - f(X(i—l)/n))dYs

[nt]

—Z/ Y =Y 1y,) dYs.

1)/n

RecallingY;' = Y},;1/,» and setting accordingl)(* = X1, and
[nt]

2.1 Y —Y/ dys,
(2.1) Z/l 1)/n (i—1)/n)
we obtain

d ~n <n <N
(22) vr = [ R+ U - FRL) AT -

Observe that the sequen¢® ", X") converges pointwise toY, X) for the
Skorohod topology. We can say more, and for this we recall the property (UT)
defined in Jakubowski, Mémin and Pages (1989) [see also Jacod and Shiryaev
(2003), Chapter VI.6, where it is called (P-UT)]. Let" be a sequence of
semimartingale, with the canonical decompositions

(2.3) Z) =AD"+ M+ AZI Az 50

s<t

wherea > 0 andA”™“ is a predictable process with locally bounded variation and
M™% is a (locally bounded) local martingale. Then we say that the sequgrige
satisfies (UT) if for any < oo, the sequence of real-valued random variables

Var(A™ ), + (M™, M"Y IAZ] [Lazs-a)
s<t
is tight. This property does not depend on the choice ©f(0, co).
The following lemma applies, in particular, whef* = Y" because then
I'l =Y,. Its setting is as follows: we have aangular array of rowwise i.i.d.
d-dimensional random variableg, i = 1,2, ..., and we sef? = Y"1 ¢

LEMMA 2.1. If '} convergesin law to a limit/, then there is a-dimensional
Lévy proces§ such thatl"y; = U; this process is unique in law arid’ converges
inlaw toT" (for the Skorokhod topologyrurther, the sequenc@™) has(UT).

PROOF The first claims are all well known [see, e.g., Jacod and Shiryaev
(2003), Chapter VI1.3.6], and only the last one needs proving. Since the (UT)
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property holds for a multi-dimensional sequence iff it holds separately for the
sequence of each component, for the last claim we may assume w.l.0.g. that the
variables are one-dimensional. Lét, ¢, F) be the characteristics of the Lévy
procesd”, and takez > 1 such thatF ({x: |x| =a}) = F({x:|x| = —a}) = 0. Set

by = E(&]'Tir1<a)) @Ndc, = E((¢)?1(002a)) — b @ndy, = P(I'] > a), for

all a € D we have, by virtue of Jacod and Shiryaev (2003),

nb, —>b+/ X F(dx),
{1<|x|<a}

(2.4)
nc, — sz(dx), ny, — F(x:|x| > a).
{lx|<a}
Writing (2.3) for T'" gives A} = b,[nt] and (M™%, M"™%), = c,[nt]. Set
further th,a = ngt |AF?|]1{|AF§‘>Q} and Vt/n,a = ngt Lar?|>a) and H' =
sup, IT'7|. Then (2.4) yields that the sequendgeg™),, (M"“, M™),), and

(v, are tight (for the later, note th@(V,"“) < [nt]y,), and the convergence
in law I'" — I' yields the tightness of the sequenc&;), for all r. Since
v/ < H'V/"“, the result is obvious.O

Using (2.2) and Lemma 2.1 and the fact thiat", X ') converges taY, X),
as mentioned earlier, and following the proof of Theorem 3.2 of Jacod and
Protter (1998), which itself is based upon Kurtz and Protter (1991b, 1996) [see
also Stomiski (1989) and Mémin and Stofski (1991)], we readily obtain the
following:

THEOREM 2.2. Let(u,) be a sequence of reals increasingtteo, such that
the sequenc&?" u, W") convergesto a limi¢y, W) in law, whereW is possibly
defined on an extension of the original probability sp(a(eep in probability, with
W given on the original spadeThen the sequened& ", u,,U") converges in law
(resp in probability) to (Y, U), whereU is the unique solutio® of the following
equation

t
(2.5) Ui= [ £ XU Y, — W
Up to taking subsequences, we deduce the following:

COROLLARY 2.3. Let (u,) be a sequence of reals increasing+@o, such
that the sequenc(eY", u, W") is tight Then the sequende, U") is also tight

2.2. Localization. In order to avoid a lot of technical problems, we will
“localize” it in the sense of the following proposition:
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PrROPOSITION2.4. Suppose that either Theoreni or 1.2 holds for all Lévy
processe¥ satisfying the relevantassumptions and having further bounded jumps
and for all €3 functions f with compact supporfThen these theorems also hold
for a Lévy proces¥ with unbounded jumps and@ function f with noncompact
support

PROOF We start with a Lévy process satisfying the assumptions of one of
our theorems and with & function 7. We call W the limit of u, W" in case of
Theorem 1.2.

For p € N* we consider the new Lévy proceBsp); =Y; — Y <, AYsL{jay,|>p}»
and aC? function fp with compact support, satisfying, (x) = f(x) for x| < p.
Finally, we associate witlf (p) and f, the same terms witli and f, writing, in
particularX (p), Y (p)", U(p)" instead ofx, Y ", U".

Observe thatr (p) satisfies the same Hypotheses (¢lor (H2-«) or (H3)
or (H4) thanY, and the numberg, and 6_ in Hypothesis (HZx) or d in
Theorem 1.2(d) are the same f6rand eacly (p). So our hypothesis yields in case
of Theorem 1.1 that for eaghthe sequence:, U (p)") is tight. For Theorem 1.2 it
yields that for eaclp the sequenceY (p)", u, U (p)") converges taY (p), U(p)),
whereU (p) satisfies (1.6) relative to some proc&Bép): for (a) or (c) this process
is given by (1.7) withV (p) = V independent op and withX (p); for (b) itis given
by (1.9) with X (p); for (d) we have to be more careful: for eagle N*, we denote
by (R(g)n)»>1 an enumeration of all jump times &f with size in(g — 1, ¢], and
let (£(¢)n)n,q>1 be a double sequence of i.i.d. variables uniform d@ed] and
independent ot’; then W(p) can be taken to be the process defined by (1.11),
where the summation in the first term extends toRl), and&(g), forg < p
and X is replaced byX (p); similarly, for W we can takeW = W (c0), with the
processX.

SetS, =inf(z:|X;| > p or |AY;| > p). We haveY =Y (p), hence X = X (p)
andU" = U(p)" andY" =Y (p)", on the interva[0, S,); in case of Theorem 1.2,
we also havéV = W(p), hencelU = U (p) as well, on the intervdl0, S,).

Let us first consider the case of Theorem 1.1. For any0 andz > 0, there
is a p such thatP(S, <t) < e, and a compact set in the Skorokhod space
D([0, c0), R) which depends on the sample path only up to tm@nd such that
P(u,U(p)" ¢ K) <e. SinceU =U(p) on|0, S,), we have{u,U" ¢ K, S, >
t} ={u,U(p)" ¢ K, S, > t}, hence,P(u,U" ¢ K) < 2¢, and this proves the
tightness of the sequen¢e,U").

Let us next consider the case of Theorem 1.2. For any continuous bounded
function ®, on the Skorokhod spad®([0, co), R%) which depends on the sample
path only up to time, we have

[E(@ (Y, uaU™) = E(@4(Y(p)", ualU (p)"))] < 214l P(Sp < 1),
E(®;(Y.U)) = E(®:(Y (p). U(p)))| < 2@ P(Sp <1).
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SinceP(S,<t)— Oand sinceE (O, (Y (p)*, u, U(p)")) — E(®:;((Y(p), U(p))

for everyt as p — oo, we get E(d,((Y", u,U") — E(®,((Y(p),U(p)),
hence, the result for the convergence in law. For the convergence in measure in
Theorem 1.2(b), the proof is similar[]

2.3. Some limit theorems.In a rather natural way, the solution to our problem
goes through various limit theorem concerning sums of triangular arrays of the
form

[nt]

(2.6) = 4"
i=1

where for each we haveR?-valued random variablgg,");~1 such that each” is
Fi/n-measurable. Below we give various conditions (very far from being optimal)
insuring tightness or convergence of the sequ&nce.

First we introduce a set of conditions, whéyg &, , E;l’,y denote arbitrary finite
constants:

. 3
(2.7) E(IE"|Fii—n/n) < ;"
3
E @1 Fa-n/m)] = =
(2.8) ;
E(Ig! 12 Fi-1/n) < 2,
3
|E (&' Lyjem =il Fiimp/m)| < ;"
= £,
(2.9) E(1¢! P gen <1y Fi-1/n) < -
g//
P(1¢'l > y|Fi—1y/n) < ::y Vy>1

Note that (2.8) with, and& implies (2.9) with, =&, + &, and&’ = & and
&/, =% /y? Also, (2.7) withg, implies (2.9) withg, =&, =&, ands, , =&,/y.
Observe also that if (2.9) holds, then the last inequality is trueyfar(0, 1] as
well, with & =&/} + &, /y2.

Part (a) below is well known, and part (b) follows from Theorem VI.5.10 of
Jacod and Shiryaev (2003). BY* £ 0, we mean that syp, |[I"{| goes to O in
probability for allz.

LEMMA 2.5. (a)ForI'” £ 0, it is enough that eithe(2.7) or (2.8) or (2.9)
hold with

(210)  limg =0,  limg =0,  lmg =0 Vy>1
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(b) For the sequencd™) to be tight for the Skorokhod topologyis enough
that the sequence of each of th&@omponents of/" satisfies eithe(2.7) or (2.8)
or (2.9)with

limsupg, < oo, lim supé, < oo,
(2.11) " "
limsupé, |, < oo, lim limsupé, , = 0.
n ’ ytoo n ’

The conditions in Lemma 2.5 can be substituted with conditions on the
following conditional characteristic functions:

LEMMA 2.6. Suppose that one can find constagjt§ such that

"
(2.12) sup |1— E(e™ 4 |Fi_1ym)| < En,v’
u:lul<v n
then(2.9) holds withg, = ¢, = C§,"; and§, , = C§" .

PROOF It is enough to consider the one-dimensional cdse 1. We use
known facts about characteristic functions, which readily pass to “conditional”
characteristic functions. We have [see, e.g., (2) in the proof of Lemma VII.2.16 of
Jacod and Shiryaev (2003)]

.o C
E(wg? ALUFG-1)) < C/{ 11— E(e"™ 5 |F(i—1y/n)|du < ;EW

|u|<w) m
This readily gives (2.9) witt, = C¢)"; and¢, |, = C§";,,. We also have the
estimatex1(jy<1) — Sinx| < x2 A 1, hence,
|E (] Lem=n| Fi—v/m)| < 1= E( | F—p/n)| + E(E'1P A UF—1/),
and (2.9) holds witl§, = C¢,";. O
LEMMA 2.7. In the previous settingsuppose that we hav@.9) with &,,

&, andg;, and C,, and assume thai,/n — 0. Then the variableg/" = ¢ —
E (5" Len <1y Fi-1)/0) satisfy(2.9) with, for all n large enough

—~
2
4§n /" =

: Eny =6ny—1/2-
n n,y n,y—1/2

(2.13) &, =681, & =4, +8E+

PROOF  Setal = E(;/'Lyn <y Fi-1/n)- We havela!'| < £,/n, SO &, =
sup |a!'| — 0 and, up to taking: large enough, we can assume that< 1/2.
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Then
y>1 = A{lg"I>ycllgl> —-1/2),
(@21 <1y < HED e <y + &7 + 2Ly n- 1),
16" Lo <y — (&' Lyer<yy — )| < 3(Lyemps 1y + Lyeri=1y)-

The result is then obvious.[J

Finally, we will often encounter the following situation, in connection with our
basic procesg: we have a pai¢Z", I'"") of (possibly multi-dimensional) processes
of the form

[nt] [nt]
(2.14) zZp=>"nmp, Iy=> ¢
i=1 i=1
Further, we have
(2.15) &' = g(Xi—1/n)g",

and for each: the sequencey!, ¢/"),i =1,2, ..., isiid. We set/” = Y"1 ¢/,
Assume also thaf” converges in probability (for the Skorokhod topology) to a

limit Z of the formZ; = Y, 4+ ar for some constant. Then, combining Lemma 2.1

with a fundamental property of convergent sequences of processes having (UT),

we get the following:

LEMMA 2.8. In the previous settingsuppose that the paitZj,I'") of
random variables converges in law t&Z;,y’) with ¥’ a random variable
independent ofZ;, and thatg is a continuous functianThen there is a Lévy
processI, independent ofY and unique in law such that the processes
(Zz",r", ') converge in law tqZ, I", '), wherel’, = fé g(Xy_)dr}. If further
y' is a constantthen we getl’, = [{ g(X,-)y’ds, and the convergence of
(Z", ", ') takes place in probability

PROOF Lemma 2.1 yields the convergence in lawmd@f*, I'"*) to some Lévy
procesg Z’, I'’) which is unique in law, and the independence of the variaBles
andy’ implies the independence of the procesgemdI™. Further, sinc&] = Z1
in distribution, then the laws df andZ’ are the same: so we can realiZ&, I'’)
with a first componenZ’ equal to the original process. And if further y’ is
a constant, then obviously;, = y’r and the convergence ¢£",I""") to (Z,I")
holds in probability.

Finally, Lemma 2.1 also yields the (UT) property f@t”), and a fundamental
property of (UT) [Theorem VI.6.22 of Jacod and Shiryaev (2003)] gives the claim.

O
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3. Some preliminaries. As seen in Proposition 2.4, we can and will assume
that f is C3 with compact support, and thes Y| < p identically for some integer
p > 1, which amounts to saying thé{p) = 0.

3.1. About the Lévy measureThe following quantities, wherg > 0, will be
of interest:

_ 2
c(B) = /{ L WPE@,

ap) = [

(x>

x| F(dx), d_os):/ x| F(dx),
} {x<—8}

p+(B) = / X F@x),  p_(B)= / x| F(dx),
(3-1) {x>B} {x<—-8B}

5B)=di(B)+d-(B).  p(B)=ps(B)+p_(B).

d'(B)=d.(B) —d_(B), V=b+ [ xF@x),
{lx|>1}

d(g)y="b"—d'(B).

Note thatd(B) = b — f{ﬂ<|x\sl}XF(dx) if B8 < 1. We will now give some

estimates on these quantities. First, observe that, foralkO< » <1 andy > 0,
we have

b
Y — y—1 _
(32) /{a<x5b}|x| Fx) =y [ 704V a) =0, 0)dy.

and a similar relation on the negative side. Introduce also the notation

1, if o <1,
1 .
log (—) if a =1,
s(B) = p
1 it
W, if o> 1.

Then, sincé (p) = 0, we readily deduce that under Hypothesis (@)lwe have

c(B) < CB>, p(ﬂ)§C|09<1), [ R <
B {Ix|>B8)

/2’
(3.3) g

8(B) +1d(B) +d(B) +d—(B) +|d'(B)| < Cs(B).

Further, ifa < 1, thend,(8), d—(B) andd(8) converge ag — 0 to some finite
limits d, d_ andd, andd is as in Theorem 1.2(d).
Under Hypothesis (H3) we also have

(3.4) d'(B) =0, ld(B)l = C,
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while under Hypotheses (H3) and (H4) we even haveb’' = d(B) = 0.
Next suppose that Hypothesis (K23-holds. Taking advantage of (3.2), we
obtain the following equivalences or convergenceg as O:

af

~ 2—«a
cB) ~ 5 F
B |, -6,
log(1/p) =" log(1/p) ~
(3.5) dy(B) — dy, d_(B)—d_ if o <1,
d(B) d—(B) —
og/p) ogayp - Test
B Yd (B) — 0+ , B td_(B) —> - a1
a—1 a—1

We will also need an estimate of the integrakddgx w.r.t. F wheno = 1. For
this we first observe that, analogously to (3.2),

b
| xlognF@n = [ @+ logy) ey va) - 6:0))dy.
{a<x<b} 0

and a similar relation on the negative side. We then deduce that for every
and a8 — 0,

1 /a(xlogx)F(dx)—> —9—+,

(log(1/8))2 /g 2
1

(log(1/p))?

(3.6) Hypothesis (H2-1}% i 9
/_ (|x|log|x]) F(dx) — —?_.

3.2. About the Lévy processNow we split the processdsandY’ = f(X).
We first recall that ifu is the jump measure &f andv(ds, dx) =ds ® F(dx) is
its predictable compensator, for egghl- 0, we can write [recalling that= 0; we
denote byU = (1 — v) the stochastic integral process of the predictable function
UonQ xRy x Rw.rt. u—v]

Y =AP + MP + NP where
S
Ay =d(Pt, MP = x1x<py % (n—v), NP = x1(x5p) % 1.

ThenM? is a square-integrable martingale with predictable bragket, M#), =
c(B)t. Since|AY| < p, we haveN? = 0 andY = A? + M? and A? =b't. We
also haveAl = br.

Next, we setg = ff’, which is aC? function with compact support. We have
the decomposition

(3.8) G(x,y) = f(x +yf(x) — f(x) = yg(x) + y%k(x, ),
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with k£ a C* function which vanishes outsid€ x R for some compact subsé&t
of R.

Now we turn to the decomposition of the semimartingéle= f(X). We
introduce the notation

bl =g(Xi)d@®)+ [ F@0xk(Xim, ).
{lx|=<B}

Then Ité’s formula yields
Y =Y,+AP +MP NP,

where
t
P = / bP ds,
0
M = G(X_, )yu1<p) * (i — v),
NP = G(X_, x)1jx)=p) * 1.
Observe that
(3.9) 6P < C(1d(B)) + c(B)
and
t
(3.10) (M'B, M'P), :/ Cg s ds wherecy , < Cc(B).
0 P ,
We also set
(3.11) Y8 = AP + MP, YP =A%+ ME.

3.3. AdecompositionfoWw”. 1. Therates, have been describedin Section 1
to the case we are in. We will also choose a sequ@paming to 0 in such a way
that

(3.12) jy = 2P g

n

We write ¢, = c(By), dp = d(Bn), dy/l =d'(Bn), pn = p(By) ands, = 8(B,). The
precise choice 0B, is as follows (we repeat also the definition:gf for easier
reading):

Casel. u,=(

1 __ logn
ny1/a andg, = v

Iogn
Iogn
Case2a. u, = (Iogn)2 andg, = .
Iogn
Case2b. u, Iogn andg, = .

Case3a. u,=nand B, = ('Of’l—")z.
Case3b. u, = (+2-)Y* andB, :("’%)1/“.

logn
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Taking advantage of the estimates of (3.3) we get the following:

(logn)2— pe—1/2)
Casel. CnSCm, |dn|+8n§CW’
M <C !
"= " n2(logn)*
lo
Case2a. ¢, <C gn’ |dy| + 6, < Clogn, An = ,
n logn
logn
(3.13) Case2b. ¢, <C——, |d|=C,  §,=Clogn, Ay =< logn’
n
lo 4—20
Case3a. cnsc%, |dy| + 6, < C,
n o
C

P e —
" = nl-(logn)2

lo (2—a)/a
gn) ) dn

n

Case3b. ¢, < C( =0, oy < C,

A < .
logn

If, further, Hypothesis (H2¥) holds, we get (sincé, = b’ — d,) the following:

af (logn)2— d,(logn)*—1 ab’
Casel. S G na/ ) @D/ g1’
A 6 1
" n1/2(logn)*’
lo d 0
Case?a. Cn~0 gn’ 9, A ~ ,
n logn logn
(3.14) e
0 (lo B
Case3a. Cp~ 6 _{ogn) , d, —d,

2—a n?«
6

hop ~
" nl-e(logn)®

Case2b, 3b. A, ~

logn

2. By virtue of Theorem 2.2 we have to prove the convergence of the processes
(Y", u,W"). BothY," andu, W are the sums for between 1 and] of i.i.d.

variables, sayy = Y;/, — Y;-1,,» andw, each one depending only on the
increments ot overthe interval (n, i) = (%, -1, and forw; on the “truncation”
at levelg,,.

Each of these variables;’ andw', will in turn be decomposed into small bits
which are handled separately, and which we ¢allj) for j between 1 and 14!
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This is done in such a way that if

[nt]
"G =Y ¢ (),

i=1

then

12
(3.15) Y'=T"13)+T"14,  u,W" =) T"()).
j=1

In order to do this, we introduce a number of notations. First, denotﬁ’by
the unique solution over=1, co) of the equatior/ X" = f(X"") dYP» starting
atX_1),,» attime=. Then we set

vt =y -y v, =y [Py P

(i-1)/n° (i—-1)/n
n,i __ IBn ,Bn n,i __ ,Bn ,Bn _ l B 1
MM =M _M(l._l)/n, Al = Al _A(i—l)/n_d’l<t_ " )
l —_—
forr > ,
n
YP= sup Y|, Mp= sup [M|,  A}= sup |A}Y,
sel(n,i) sel(n,i) sel(n,i)

X'= sup |X;— Xi—1/nls X"= sup X = Xl

i
sel(n,i) sel(n,i)

_ Standard arguments, using (3.9) and (3.10) and also the boundedngessrof
X! andX!", yield

— C
E((M"?|Fi_1y/n) < c;",

2, g2
~ cq+d,
E((A}?|Fi-1)/n) < C - =,

~ c d?
(3.16) E((P2 Fpyyn) < (;" + ;)

E(()N(?)zlf'(i—l)/n) <

YVInN2| g . Cn d_r?
E((X" | Fi-1m) <C . + 2):

Let denote byl'(n,i), for p=1,2,..., the successive jump times &f after
% and of size bigger than or equalfg. Let alsoK (n, i) be the (random) integer
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such thatl' (n, i) g (n,iy < & < T(n, i) (n,i)+1. Then we set for > (i — 1)/n,

Vi = G (X=1)/ns X)L1x1= pul LG~ D/n.00) () * KTyt
‘/t/nl _ N//Sn _ Nﬂnl)/n
Now, we can introduce the variable$(j) occuring in (3.15):

fi"(1)=un/[(ni) (¥ — g(Xi—pym)Yi') Y,
5'(2) =ung(X(i—1)/n)(/ yMamPt | My dAf">’
I(n,i) I(n,i)
£ (3) = uy f (v vy gy b,
1(n,i)
'@ =u, fmn el VAN Lk n,i)>3).
51)3,
') = un(8(XTm.i)1—) — &(X(i-1)/n)) AYT(n.i)y AYT (i)Yo LiK (n.1)>2)

&' (6) = unk(X7(n.ir3—» AYT.0)1) AYF i iyy AYT (o LK ()22}

&' (1) =ung(X(i—1)/n)</I(n )

Y dNfr — AYT(n,i)lY?’(Z,i)lﬂ{K(n,i»l})7
. .

&' (®) = unk(Xi—1)/ns AY1(,i00) (AYT(0,001) (M} — M7y 0,

§'9 = Mng(X(i—l)/n)AYT(n,i)lM,-"/,i,]l{K(n,i)zl},
§'(10) = ung(Xi-1/n) /1( ) (AL + AYr (i, LK (niy=1) d AP,

n,i

') = ung(X(i—1)/n) AYT (0,001 AYT (0,10, L (K (n,1)>2}

n 2 i .
5 (12) = unk(X(i=1)/ns AY7(n,i1) (AY7T(n,i)1) " dn (; —T(n, 1)1)11{K(n,i)>1},

;' (13 = Ml"/f1 + ) AYr(i; Lk 0= )
j=2

(14 = — + AYT i) LK (n,i)=1)-

Then we deduce from (3.7) and from (2.1) (after some tedious calculations)
that (3.15) holds.

Finally, the following property will be used over and over again:
Conditionally onF(;_1),, the variable$AYT(,, n;)j=1. K(n i), Y™
(3.17) are independent; eadfy, ;) has the law,z— 9(/3 Woiss F(dX)1jx)>g,):
K (n, i) has a Poisson law with parameter.
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4. Thekeylemma. This section is devoted to proving the next lemma:
LEMMA 4.1. Assume that we are in one of the Ca%ea, 2b, 3ar 3b.

(a) We havd™(j) £ oif j=1,...,8,and also

for j =9in Case2a, 2b, 3aand 3b;
for j =10in Casesl, 2band 3b;
for j =11in Casesl and3a;

for j =12in Casesdl, 2a, 2band3b;
for j = 13in Casedl, 2b, 3aand 3b.

(b) In the remaining casesnd for j =9 (resp j = 10,resp j = 11, resp
Jj=12,resp j =13,resp j = 14),the sequenceg;’ (j)) satisfy(2.9) [resp (2.8),
resp (2.9),resp (2.7),resp (2.8),resp (2.8)], with (2.11).

We will proceed through a large number of (very technical) steps.

4.1. Stepl: auxiliary results. Let us first derive some easy consequences of
Cauchy—-Schwarz and Doob inequalities. We consider a locally square-integrable
martingaleN such that{N, N), = [j c; ds, wherec is a bounded process, and a
con_stalmty, and also a bounded predictable procHssand fixn andi, and set for
t> ==,

t
Z; = H;(yds +dN;).
(i=1/n

LEMMA 4.2, Inthe above settingve have for > %

t
(4.1) E(Z\Fi-vm)=v | E(H|Fi-1)/n)ds,
i-1/n

2
2|2 2y 2| o
E( sup Z7|Fi-ym) < —5E( sup Hf|Fi-1/m
tel(n,i) n tel(n,i)
4.2 3
+—E( sup HZZC,‘\T(Z'_]_)/”).
n tel(n,i)

Next we consider integrals w.r.t. the random meagurieet W be a predictable
function on2 x R, x R, which is bounded o x R, x [—p, p] (recall thatp is
such thatF charges only—p, p]), and such that the process

H = /]Ié [W(s,x)|F(dx)

is also bounded. We fix againandi, and set for > %

t
Zt=/ /W(s,x)u(ds,dx).
(i—1)/n JR
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LEMMA 4.3. In the above settingve have for > =1

n !

t
(4.3) E@IFivm) = [ asE( [ WonF@o|Fi).
(i—1)/n R
2 2 2
E( sup z,‘sf(i_l)/n) 5—2E( sup (/ W(t,x)F(dx)) ‘}‘(l-_l)/n)
tel(n,i) n tel(n,i) \/R
(4.4)

8
+—E( sup /W(t,X)zF(dx)’?(i—l)/n)-
R

n tel (n,i)
PrROOF We canwriteZ = Z' + Z”, where
t
Z; =/ / W(s, x)v(ds,dx), Z;/ =7Z;— Z;.
(i-1)/n JR

Sincev(ds,dx) = ds ® F(dx) is the predictable compensator af we have
E(Z/|Fi-1)/n) = E(Z]|F(i-1)/x), and (4.3) readily follows. We also get

1 2
E( sup 2;2]?(,-_1>/n>5—2E< sup (/ W(I,X)F(dX)> ‘ﬂi—l)/n)-
tel(n,i) n rel(n,i) \/R
On the other handZ” is a square-integrable martingale with bracket, Z”); =
i1 ds Jg W(s, x)?F (dx) and, thus,
i/n
E( sup Z)?

tel(n,i)

?'(,-_1)/,,) <4 ds E(/R W(t,x)zF(dx)‘}'(,-_l)/n).

(i=1/n
Then (4.4) readily follows. [

In the next auxiliary result, we fix andi and write for simplicity?; = T'(n, i)
andK = K (n,i). For some > 2, let alsoH, be a random variables satisfying

H,, K andAY7, are independent conditionally of; 1)/,

r—1

|Hy| < Co ) |AYT.
j=1

(4.5)

Recall the notation (3.12) fox,,. We also set, (r) = e Ar—, andH/ = H,AYr..
The lemma below does not require any particular choice for the seq@gnce

LEMMA 4.4. Under HypothesigH1-«) with « € (0,2) and (4.5), for all
r’ > r>2andy > 0,we have the following estimateghere the constant below
depends oy in (4.5):

1+a,,a / 1
(4.6) P(lunH,| > v, K = | Fi—1n) < o) | ( )

Y40(B)2 Bn
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. u®v, (1) 1
4.7) E (Jun Hy |* Lk =ry| Fii—1)/n) < CFZW g (E)
o ubv,(r") 1
(4.8)  E(lunH/*Lyju, 171 <y, k=r}| Fi—1y/n) < Criy* *———Zlo <—)
0(Bn) Pn
o~ Uy, (r')
(4.9) E(lun H/|L (k= | Fii—1y/n) < Cr 9"0'5,,)2 2,
(4 10) a>1 = E(lunHr/ljl{\unHr’\>y,K:r’}|$i(i—1)/n)
' r2u®v, (r') 1
<C—7——log (—)
yH0(Bn) B
(4.11) o<l = E(lunH1Lu,n1<y.k=)|Fi-1/n)

2., 1 1 2
yeH0(Bn) Bn
PrRoOOF Recalling (3.17) and (4.5), we see that the left-hand side of (4.6) is
smaller than

< u, ") P(|8Yg | > {Fiam)

y
r—1
MnCO Zj:]_ |AYTJ‘

_ Un(r/)
0B Jixip

r—1
y
F(dx)P AYT, — | F-
(dx) <‘;§=1| T;| > u,,Colxl‘ i l)/n)

rvn(r/)/ y

< F(dx)P(AYT SO S— )

e(ﬂn) {|x|>Bn} | 1| (r_l)unCO|x|‘ i-1/n
rv, (r") </ )

= F(dx)E F(dz)1 1y, T
0(Bn)? Jix1>Ba) (@) (@2)L{jz1>y/(—DunColwl} | Fi=1/n

cern ), o) g (1)

T 0BT T T y*0(Ba)? 8,)

where we have used Hypothesis (dland (3.3). Hence, (4.6) holds.
Second,

E(1Hy |“1ig =y | Fi—1y/n) < Coa () (r — DV EE(|AY 7|1 Fi—1)/0)

2Un (}’/)

,
0B

Iol’h

and (4.7) follows from (3.3).
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Third, by (3.3) the left-hand side of (4.8) is

= E((un H)?| AY1, 1Ly avs, 1<y /lun iy L (K =) | Fli—1) /)

9(2,1) <( un )% <| nH|> W"””)

2—a
< C@(ﬁn) E(Jup He|“Lig = | Fli—1)/n)
and (4.8) follows from (4.7).
Next the left- hand side of (4.9) is smaller th@m,,(r — D)v, (r’)(E(|AYTl|))2.
But E(JAYrp|) = 9(/3 3 hence, (4.9).
Next, suppose that > 1. The left-hand side of (4.10) is

= E(|lunHr || AYT, 1L AYs >y /lun Hy ) L (K =} | Fli~1)/n)

1 y
< E H |0 ———— )1ig—n|Fi—
= 9(By) (Jun vl <|unfb|) (K=r'}|J (i D/n)
C o lrod
= y“—le(ﬁn)E(lu”H’| Lik=r}| Fi—1)/n)

[use (3.3)], and (4.10) follows from (4.7).
Finally, suppose that < 1. The left-hand side of (4.11) is

= E(Jun H/||AYT, LAy 1<y /lun B L (k=) FG—1)/n)

yl—a
< (a1 | AV | s | Fin
C/Onyl_a o g
< WE(|unHr| Lk =y | FGi—1)/n)

and (4.11) follows from (3.3) and (4.7)3
Now we proceed to proving Lemma 4.1, going step by step.
4.2. Step2: j =1,2,3. First, from (3.8) and (3.11) we see that fos =21,

Y, — g(Xi—1y/n) Y/
t

= H,(d, ds+dMﬂn)+/

Ay / W(s,x)u(ds,dx),
11— n

~/n

where H, = g(X;—-) — g(Xi—1/2) and W(t,x) = x%k(X,—, x)1{x|<p,) (With
n andi fixed). Then sincg is bounded with a bounded derivative a@igd bounded



1852 J. JACOD

overR x [—p, p], we deduce from (4.2) (withV = MP) and (4.4), together
with (3.16) and the fact thatd;| < CX} fort € I (n, i), that

E( sup (Y™ — g(X(i—1)/)¥;") ’hi—l)/n) =< Ca
sel(n,i)
cnﬂ,f Cn a’f

whereq,, =

n2 I’l3 '
Now we haveY = M? + AP and A’ = b't: we can apply once more Lemma 4.2
(with N = MP) to get (2.8) forg/ (1) with &, = Cu,./a, andé, = C&2. Since
&, — 0 by (3.13), we obtain the result fgr= 1 from Lemma 2.5.

By (3.16) and Lemma 4.2 again, we have (2.8) {g(2) with £, =0 and

e Cu%cn(% + z—é), which goes to 0 by (3.13): hence, the result foe 2.
Next we haveV’"! — V! = U"! » u [use (3.8)], where
U™ (s, %) = (§(Xs-) Ls=Tm,ira)
+ (8(Xs-) = (X (i—1)/n)) L{Gi~1)/n<s <T (n.i)1)) X L{1x|> )
+ (k(Xs—, X)Lis=T(n.i)1)
+ (k(Xs—, ) = k(X =1)/ns X)) L= /n<s=T 0,02 ¥ L 1x1> o)

The fact thatf is €3 with compact support implies thag(x) — g(x)| < Cu
and |k(x, y) — k(x’, y)| < Cu wheneverlx — x| <u andy € [—p, p]. Then if
te€l(n, i), we have

"/RU"”'(I,X)F(CZX) <C(d)|+ DLk i1y + X7,

[ Um0 Pan < Cikizy + @D
Then it follows from (3.16), (3.17) and from Lemma 4.3 that

sup [E(V" = V" |Fi—1m)| < Ca,

sel(n,i)

/ 1 1
Whel’e% S ;(1+ |dn|) A+ —

)

E( sup (v = VP Foayn ) < Ca

sel(n,i)
1 d? 1
wherea,, = — <1 + —”) (kn + —).
n n n

Recall thatY# = MP» + AP and AP" = d,t, so the above estimates and
an application of Lemma 4.2 (witth = M%) allow us to deduce thag (3)



EULER SCHEME FOR DISCONTINUOUS SDEs 1853

satisfies (2.8) witt§, = Cuy,|d, |, and&! = Cu2a//(c, + d?/n). By (3.13) these
go to 0, hence, the result fgr= 3.

4.3. Step3: j = 4. In order to studys"(4) we apply Lemma 4.4: we use
the notation7; and K of Step 1 and we sel, = AYy, +---+ AYy  and
H! = H,AYr, and H;' = u, Y ¥_sH/ (an empty sum being set to 0). The key
observation is then that

¢'(4) = Hgl(k>3).

Observe that eacH, satisfies (4.5), and recall (3.17). We will also use the easily
proven fact that for any, «’ > 0 andr € N, there is a constar, ./, such that
(recall thatr,, — 0)

1 ad /
(4.12) O<ip, < - = > 0a(K)a* k" < Cogr p 1
k=r
In view of (4.6), we get fory > 0 andk’ > k > 3,
k

T Y T
P(H{1> 3. K =K1Fivya) = 0 P (luatf1 > 1 K =K|Fian)
r=3

(4.13)
K22y %y, (k')

1
<Xt &) (_)
oz B,
Therefore, since,, = 6(8,,)/n, we deduce from (4.12) and (4.13),

(e e]
P @ > y|Fi—1m) =Y P(H| >y, K =k|Fi-1)/n)
k=3

- Cu o (1))\
= nzy 09\, )

Next, a simple computation shows that ftor 3,

(4.14)

k=1 k
2 k— k41— 2
H "<y < D2 27 Lympisny + )0 27 un HD L, 1y <2)-
r=3 r=3

Hence, we obtain, by virtue of (4.8) and (4.13),

— u%v, (k) 1
E(H{?1y| 1|1, k=k| Fli-1y/n) < C2k*+3 222 log (—)
0(Bn) Bn

and by (4.12),

o0

2 2
E(&' B Lyer @y <qy| Fi-1/n) = Y E(H 1157 <1, k=) | Fii—1)/n)
k=3

(4.15)
Cuf 1
<— log (—)An.

n



1854 J. JACOD
Next, forr > 2, we havel, "1 g <, = Z?:lﬂz (), where
2
1) = H g <y/2) 1Y) = —H aLggr 1<y/2. 571>y

w0 = H W<y =y ) =un <y 171<y)-
Inequality (4.13) yields, fok > r,

aUn(k) g 1
4.16) E + 1 Fii 1y, < Cretealin? ®) J1-a) (—)
(4.16) E(InZ(y) + niWI Lk =k)| Fii—1/n) < ARV

Set also

(4.17) b, = ('09 (%))2 if o <1,

ul_o‘éz if > 1.
Note that|ur(y)| < lunH}|1; {lunH!|<3y/2}» SO (4.9) wheny > 1 and (4.11) when
a < 1yield

2Uy VnVn (K) 1-a
0(B,)?2 AQ+y7.

Putting (4.16) and (4.18) together, and setpg(y) = |E(H,'1{g/ <y, k=k)|
Fi-1/m)l, we getfor 3<r <k,

X 2420 1 1—ay Yn ﬂ(k)< | ( 1 ))
‘i:r,k(y) =< Sr—l,k(z) +Cr ( +y ) Q(ﬁn)z + 109 ﬂn
Recalling thatd) = 0, henceg x(y) = 0, an induction gives

3420 or(@—1)T Un Un(k)( ( 1 ))
‘i:r,k(l) <Cr 2 Q(ﬂn)z v, + |Og ﬂn

(4.18) k>r = |E(wO) k=i Fi-1/m)| <Cr

and, thus, we obtain by (4.12),

o0
|E(H L mp)<1. k23| Fi-v/m)| < D & (D)
k=3

-l )

0
|E(HgLyny <1k =41 Fi-n/m)| < > Ei(D)
k=4

<c”3< +log () )22
—| v, — .
=T\, )

In Cases 2b and 3b, the symmetry property/ofr, and (3.17) and the fact
that Hy = u, H3AYr, yield thatE(Hg]l{wé/‘slv,(:s»}|}‘(l-_1)/n) = 0; therefore,

(4.19)
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the above two inequalities yield, withl, = 4, in Cases 2b and 3b and, = 1
otherwise,

u® 1
(4.20)  |E(& DLygr@i<ylFi-v/m)| < C3 (Un +log (ﬁ—»kn/\;-
n

Then we put together (4.14), (4.15) and (4.20): we seeth@ satisfies (2.9)

with
Cu? 1 ,
§n = i (Vn + Iog <_)))‘nkn,
n Bn

PR NES N EN

n ny“ n

Using (3.13), we see that the above quantities go to-asoo, hence, the result
for j = 4.

4.4, Step 4. j = 5. Observe thatl{l"(5)| = Cunjv(,{n|AYT(n,i)1AYT(n,i)2|
1{k (n,i)>2}- Then by (3.16) and (3.17),

P(K(n,i) > 2|Fi-1ym) (cn  d\Y?,
_+ﬁ 5

E(15/' 5| Fi-1/n) < Cty G

n
_ Cunlen/n +d?/n?)1/282
_— n n b
P(K (n,i) > 2|F- M)( d2>
5)°| F < Cu? Zn
E(g' (52| Fi-1)/n) < Cul ITAE 3

2 2
< Cub(c diy
nn n n
Hence, (2.8) holds witl§, = C”"—‘S'%(C—" + d—g)l/z andg’ = Cﬁ(”—" + d—g) These
! ' n— n n nl n — n'\n n2’"
sequences go to 0 by (3.13), hence, the resulj fers.

4.5.Step5: j =6. SetU = u,AYZ,, . [AYT (i, 1k n.i)=2- As for the
proof of (4.6), and using (3.17), we get,

P(U" > y|Fi-1)/n)

2
= C)‘n (AYT(n 1)1|AYT(" l)2| > —

C
< F(dx) / F(dx))
ne= J{lx|>Bn} {Ix'|>y/unx?}
a| |2a
< —/F(d ) <C 5

l)/n)

(4.21)

o
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becausd’ x| F (dx) < oo. Similarly, we have by (3.3),

P(U} Lyr <y Fi-1)/n)

c
(4.22) < S / F(dx)|x] / X2F (dx))
2 Jixi=pa) (/<) T}
- Cuz/2 uz/z

C
F(dx)|x|*/? < :
n? f{x|>ﬁn} n2pe/?
Now we observe thgk(x, y)| < Co for some constanty > 0, hence|s/" (6)| <
CoU!". Then if |£(6)| > y for somey > 0, we must havdJ' > y/Cop; also if

1£7(6)| < 1, then we have! (6)? < |¢(6)| < CoUl'Lyr<1y + Lyr-1y. Then it
readily follows from (4.21) and (4.22) that the sequeng&(6)) satisfies (2.9)

] /2 Cu®
with & = gr/l = %(u% + ;’;/2) andé,/l/’y — Ly

n nya '
the result forj = 6.

Those sequences all go to 0, hence,

4.6. Step6: j =7. We use again all the notation of Step 1, so that (sirteé
does not jump at times;)

K
() = ung(Xi—1/n) Y_ Hi. whereH = Y7, AYr,.
k=2

On the one hand we havé? < (?i”)ZAY%k’ SO

K
E(¢ (12| Fi—1y/n) < CulE (K > AY&(Y,-")Z\ﬂi_l)/n)
k=2
ad v, (k)

(4.23) < Cu?s,
" ,;9(/3,1) {1x[>Ba)

2 2
< C"—"/\n(c—" + d—';)
n n n

x2F(dx)

because of (3.17), (3.16) and (4.12). On the other hand we can write

E(&' (DI Fi-1)/n)

=ung(Xi-1/n) Y E(AYr Lz <i/m Y, 1Fi—1)/n)
k=2

o P— 1\
=ung(Xi-1)/n) dn Z E<AYTk Li1e<i/n) (Tk - ) ‘f(i—l)/n),
k=2
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again by (3.17) and becaus€’’ is equal to a martingale plug,(t — =1).
Therefore,

- unlda) (< -
[E DIFi-pm)| = C== E(Z |AY7,| ’fa—l)/n)
k=2
d| & vk
(4.24) _ ¢ lnldnl 3 Un (k) x| F (dx)
no =5 0B Jixi>g)

uyld
<c n|2n|
n

Onhn.

2
So ¢//(7) satisfies (2.8) withg, = C“aldrln’n gnger — Cu2(é 4 %)/\n. Those
sequences go to 0, hence, the resultjfer 7.

4.7. Step7. j =8,9. We haveE(;i”(8)|$(i_1)/n) = E/(\s“l-”(9)|5"(i—1)/n) =0
[use (3.17)], and als/(8)| + ¢/ (9| < Cuul AYT (i) IM]'Lik (n.i)>1}, heNce,
by (3.17) again and (3.16),

Cu?c Cu?c
E(" (82| Fiic1ym) + E(CH92|Fiictym) < —2 " P(K >1) < —2 "
(& @1 Fi—1)/n) + E(&" (D F 1)/)_119(/3”) (K=l =—3

Then (2.8) holds foj = 8 and;j = 9, with &, = 0 and&/ = Cu?c,/n. Except in
Case 1, we havé, — 0: hence, the result fof = 8 andj =9 if we are not in
Case 1.

It remains to study Case 1. For this we will use Lemma 2.6. We first calculate the
conditional characteristic functiog, ;(v) = E(e*% ®|%;_1,,) and ¢, (v) =
E(e"vfi"(9)|$'(,-_1)/,,). Recall thatM™ is a Lévy process, independent®f_1),,
and satisfying

(4.25) E(e"UMr’”) = expt/ (€' —1—ivy)F(dy).
{Ix1=Bn}
Then, using (3.17) and the form gf (8) and¢/" (9), we see that
Pni(v) = e

1 . n,i n,i
+ / " g 0ibs g / F(dx)E (/" F Xm0 (M), = M)y
0 {Ix]>fn}

1—e

¢;l,i(v) =e M 4 / F(dx)E(e"”“"g(x("*l)/")XMfJ).
{lx|>Bn}

ni,

Observe that L e = [/" ¢=0Fn)s 4 Jix1=p,) F(dx). Then if

. 2 ) .
Yai(v, x,y) = eV kX —p/mX)y _q zvunxzk(X(,-_l)/n, x)y,

—t
Zni(x,v,1) = / Yn,i(v, x, y)F(dy),
{ly1<Bu}

n
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the change of variable= ns gives

1 rl
(4.26)  ¢ni(v)=1+ —/ e‘Wdt/ F(dx)(emi®vD _ 1),
n Jo {x1>Ba)

In a similar way we obtain

1 ¢ ,
(427) ¢r/l,i(v) =1+ 78/ F(dx)(ezm(x,v) _ 1)’
nhn  Jix1>p0)

where

yri,i(v’ X,y) = V8 Xa—n/mxy _ 1 _ ivung(X(i_l)/n)xy,

1
tni(r ) = = / Y. (0.2, Y)F(dy).
n J{lyl<Bn}

Since g (resp. k) is bounded (resp. bounded dR x [—p, p]), we get
Vi W, x, M| < Clvunx®y| A Jou,x?y[?) and |y, (v, x, y)| < C(lvupx®y| A
lvu,x2y|?) wheneveix| < p. But (3.3) yields

f (luy| A luy[2)F(dy)
- |u|/ Iy F(dy) +u2/ V2F(dy) < Clul®.
{ly|>1/u} {ly|<l/u}

Therefore, |z, (x, v, )] < $jou,x?|* and|z), ;(x, v)] < $|vu,x|®, provided: e
[0, 1] and|x| < p. In particular, the suprema &f,, ;| and|z;“.| over allt € [0, 1],
i,x €[—p, plandv € [—1, 1] go to 0 as: — oo and are thus uniformly bounded
in n as well. Therefore, in (4.26) and (4.27) the teem— 1 is smaller than
€ lvu,x?|” and $lvu,x|®, respectively. Sincer — [x|2* is F-integrable, and
using also (3.3), we readily deduce

Clv|*uy

Clv|*u® 1
|ni(v) — 1| < R i (v) =1 < =

log —.
9B,

In other words, the sequencgs (8)) and(¢/" (9)) satisfy (2.12) with, respectively,
&/, = Cv®uff/n andg,’, = Cv*u(log z)/n. In the first case we hag’, — 0

n,v n,v
for all v < 1; in the second case we hag/,ﬁv < Cv“: then, combining Lemmas
2.6 and 2.5, we obtain the result fpe=8 andj = 9 in Case 1.

4.8. Step8: j =10,11,12. First considerj = 10. We have

d, (d
¢'(10) = Mng(X(i—l)/n)f (j + AYT(n,i)ljl{K(n,i)zl})
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Thenal’? = E({ln 10| Fi-1)/n) andb? = E({i"(10)2|37(i_1)/n) have
’

n__ . dn d —e M d
(4.28) @ = ung(Xi-1/n)—~ (2 +d-e )9<ﬁn )

Cu2d? (d?
bl’-l 5 ( =+ E(AYT(n i Lk (n,i)=13 | F(i— 1)/"))

(4.29) ”2 , n? ,
n n
2 ’ 2 ,
In particular |a"| < CM so (2.8) holds withg, = un(d —Hdnd D and

g = CMn " 1+ ") these quantities go to 0 in Cases 1, 2b and 3a and they are
always bounded hence, the result joe 10.

Next, considerj = 11. We apply Lemma 4.4, in which we sdi, =
g(X(i—1/n)AY71,, so that (4.5) is satisfied ar@ (11) = u, H;1(g>2;. Then using
(4.6) and (4.8), and also (4.11) [resp. (4.9)]uif< 1 (resp. ifa > 1) for H,
and summing up over’ > 2, we get that whem < 1, the sequenceg/ (11))
satisfy (2.9) with

u® 1\? R LA : u® 1
(4.30) &, =C ” (Iog ﬁn) g =C " log 5. Eny = Cny“ log 5
In Case 3a (resp. 2a) we hagfe— 0 andg,/lfy — Oandals@, — 0 (respé, < C):
hence, the result foj = 11 in Cases 2a and 3a. In Cases 2b and 3b we still
have (4.30) but, for symmetry reasons, we may tgke- 0: hence, we also get
the result in Cases 2b and 3b.

Now consider Case 1. The estimates (4.30) are not fine enough and we
have to resort on another method. Th&(11)’s satisfy (2.15) with¢/” =
Un AYT 0,1y AYT(n,i), 1 (K (n,i)>2)- SO to obtain the resultitis enough by Lemma 2.8

to prove that ifl";" = 3.~ [n1] 1¢/", thenT!" — 0 in law. Then by Lemma 2.5 it is
enough to prove that the sequen@?{g) satisfy (2.9) with (2.10). By construction
|£/"| is either O [with probability:, = e *n (14 A,)] or bigger thamnﬂﬁ, the latter

with probability 1—a,. Furthenu,,ﬁ2 — oo inthe present case, so (2.9) holds with

£, =& = andé”y =n(1l—ay,) for all n large enough. Now (1 —a,) ~ "A" -0

by (3.13), so indeed we get the result foe= 11 in Case 1.
Finally, considerj = 12. Since|/' (12)] < C”"T'd"‘IAYT(n,i)llzll{K(n,i)zl}, we
readily get

Cu,ld,| Cuyldy|

P(K>1)< .

nt (Bn) n?

Then (2.7) holds withs, = Cu,|d,|/n and we deduce the result fgr= 12
from (3.13).

E(15]' (12| Fi-1/n) <



1860 J. JACOD

4.9. Step9: j =13 14. First consider forj = 13. We have

o0

Up (1)
E(L"(A3)|Fi—1)/n) = (r—1)d,,
,2::29(/%)
(@35 ) = (% + 2 2B -

Therefore, we have (2.8) with, = Ci,|d,| and&, = C(c, + 1,) [use (4.12)].
Then (2.11) always holds, and (2.10) holds except in Case 2a: hence, the result
for j =13.
Finally, we have
dy  dj(1—e")

E({' (A8 Fi—1/n) = - + —

bood 1=k, —e

n n An

’

n 2 d3 1
E({j 14 |~¢(i—1)/n) <C 2 + e
Therefore, we have (2.8) with, = C(1+ A,|d,|) and§, = C(1+ a’f/n). Then
(2.10) holds in all cases, and the proof of Lemma 4.1 is now complete.

5. Proofsof thetheorems.

5.1. Proof of Theorem..1. By virtue of Corollary 2.3, we can deduce Theo-
rem 1.1 from the tightness of the sequeq&é, u,, W") under Hypothesis (H),
with our choice ofx,, andg,,. For this, in view of (3.15), it is enough to prove the
tightness of the sequence of fourteen-dimensional procéds&s)1<<14),. But
this readily follows from Lemmas 2.5 and 4.1, and Theorem 1.1 is proved.

5.2. Proof of Theorem..2(a) We suppose here that Hypothesis (HRholds
with & > 1 (in particular, we are in Case 1). In view of Lemma 4.1, of (3.15) and
of Theorem 2.2, for obtaining Theorem 1.2(a) it suffices to prove that the sequence
(I'"(14),T'"(9)) converges in law tgY, W), whereW is given by (1.7) and/ is a
Lévy process independent Bfand characterized by (1.8).

Observe that! (9) satisfies (2.15) witly/" = unAYT(,;i)lM?/’;]l{K(n,i)zl}- Let

r’ = Zl[”:q ¢/". In view of Lemma 2.8 [applied withy! = ¢/'(14)], it is then
enough to prove that the pdir” (14);, I'") converges in law toY1, V1), whereVy
is independent of; and having (1.8) (for = 1). In other words, if we denote lay,
the characteristic function ¢f*”(14)1, I'}), and by® («) and W (u), respectively,
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the right-hand sides of (1.2) and (1.8) written fot 1, it suffices to prove that for
all u, v e R, we have
(5.1) On(u,v) > )V (v).

Using (3.17) and (4.25), we get

¢n(u v) =eiuundn (e—)»n + 1- e_)tn / F(dx)eiux-‘rzn(x,v))n
O(Bn)  J{ix1>B)

where

1 .
Zn(x,v) = —/ Fdy)(e""Y — 1 —iuv,xy).
n J{lyl<Bn}

This is similar to Section 4.7, whezg,l. plays the role of,, here and, in particular,
1
(5.2) |2 (x, V)] SC;uZIvI“IXI“.
We can rewritap,, as
n
(5.3) dn (1, v) = /tindn (1 + C;—"(An(u) + B, (v) + Cp(u, v))) ,

1—e*n
An

whereaq,, = and

An(u) = f Fdx)(e™ — 1),
{Ix|>Bn}
_ Zn(x’v) _
B,(v) = /{x|>ﬂn} F(dx)(e 1),

Cp(u,v) :/ F(dx)(e™* — 1)(es™v) —1).
{1x1>Bu}

Combining (5.2) ande’* — 1| < |ux|, and sincexr — |x|**1 is F-integrable,
we first get|C,, (u, v)| < C 2 |ulv|*u?, hence,

(5.4) C,(u,v) — 0.
Second,f |- s,) F(dx) (" — 1 —iux) converges tq . s, F(dx)(e"* — 1 —
iux), whiled, =b’' — d),, hence,

An(uw) + iud, — iub' + / Fdx)(e™ —1—iux)
(5.5)
= iub+ / F(dx)(ei“x —1—iuxlyy<y).

Third, with K (dx) = 4((02 + 62)1(y>0) + 29+9—1{x<0})|x\% dx, we want to
prove that

(5.6) B,(v) — /K(dx)(ei“x —1—iux).
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We haveB, (v) = B, (v) + B}/ (v), where

B, (v) :/ F(dx)zn(x,v),
{lx|>Bn}

B)/(v) :/ F(dx) (e — 1 — 7, (x, v)).
{lx|>Bn}

Using again (5.2) and the fact th&t has compact support and integraies>

20
x|, we readily see thatB; (v)| < C|v|?*“4-, which goes to 0. On the other
hand,B! (v) = [ K,(dx)(e'"* — 1—ivx), where

1
K,(A F(d F(dy)La(u,
W= /{x|>/3n} v /y|<ﬁn (LA 7).

Therefore, by Theorem VII.3.4 of Jacod and Shiryaev (2003), (5.6) will follow
from the fact thatk,,(h) — K (h) for h equal either tdr,, = 1(y,00) for w > 0, Or
h/ = 1(—00,—w) fOr w >0, orh/(x) =x ]l{‘x|<1 orh’ (x) = xL{x>1-

Let us first considek = 4, for somew > 0. Sinceu /3 — oo here, fom large
enough,K, (h,) is the sum ofy, = f{x>ﬁ }F(a'x)F((u ~, Bn]) plus another
S|m|Iar termy, corresponding to the mtegrals over the negative half-axis. Further,
/3 e 0 uniformly inx > 8, whenn — oo, therefore, we have

1 0 02 u 1 62
yw—/ Fldn 2™ Ot gq 1 0%
n x>/3n wY we n B 2w®

and, similarly,y, — 57 - SO Ky (hy) — K (hy). In an analogous fashion we find
that K, (h,) converges tc?;}—f; = K (h),). We can also write fon large enough,

n_ 1 2,22
K,(h') = F(dx) F(dy)uyx
n J{|x|>pBn} {ly1<1/un|x|}

1 abd L
~ —/ F(dx) u, |x|

n J{lx|>B,) 2—a

a?0? u® 1 ab? ,
~ Llog— —» ———— =K ().

2—an Bn 22— a)
Finally, we have

1
Ko(h") = = / F(dx) / F(dy)unxy
n J{lx|>pu} {1/ unlx|<ly|<Bn}

/

1 0
~—/ F(dx)———u®|x|*
{IxI>Bn) a—1
a?06'ul 1 aho’ Y
~ log— - ——— = K ().

a—1n Bn 2 —1)
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At this stage we can combine (5.3) with (5.4)—(5.6) to get thatu, v)
converges to

exp(iub + / F(dx)(e™ — 1 —iuxlyy<1)) + / K(dx)(e™ —1— iux]1{|x<1})),

which is® (1) ¥ (v), and we are finished.

5.3. Proof of Theorenl.2(b) We suppose here that Hypothesis (HRholds
with @ = 1 (in particular, we are in Case 2a). In view of Lemma 4.1, of (3.15)
and of Theorem 2.2, for obtaining Theorem 1.2(b), it suffices to prove that
the sequenc(a?", I'"(10) + I'*(11)) converges in probability teY, W), where
W, = —e—f J5 8(Xs_)ds. Since we already know that" — Y (pointwise for
the Skorokhod topology) and sing€ is continuous, it is enough th&t" (10) +
rray 5 w.

The sumg/'(10) + ¢/ (11) satisfies (2.15) witlg/” = ¢/"(10) 4+ ¢/" (11), where

upd?  u,d
6" (A0 = Z 3+ == AV 1 i LK i)z

¢"(AD = up AY7(n,i), AYT (.01, L (K (n,1)>2}-
So by virtue of Lemma 2.8, it is enough to prove thatff(;j) = z[’;q ¢ (j), then

0/4
(5.7) r'(10); 4+ " (1)1 5 -

First, if a, = E("(10)|F(i-1)/») andb, = E(¢/"(10)|Fi-1)/») (Which here

are nonrandom and independent jyfthena, is given by (4.28) and,, satisfies
(4.29), after replacing the functignby 1. So in view of (3.14) and af, =b'—d,,

we getna, — —% andnb, — 0. SinceE ((I'"(10)1 — nay)?) < nb,, we get

0/2
(5.8) r'(10); > 5

Let us use Section 4.8 again: upon replacing once rgoog 1, we see that
the sequenceg;" (11)) satisfy (2.9) with (4.30), hencé, — 0 and¢,’, — 0
and§¢, <C. So ifa, = E(;lf”(11)]1{‘;;;1(11)‘51}|}‘(i_1)/n) (again nonrandom and
independent of), and applying Lemma 2.7, we see that the sequefiged 1) —
an) also satisfy (2.9), with new sequendgs &, and¢, , all going to 0. Hence,
Lemma 2.5 implieszl[’;']l({[”(ll) —ay) Lo and, in view of (5.8), it remains to
prove that

0/2
(5.9) noy, —> vy
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By (3.17) itis clear that

no, ~ Un xF(dx)/ yF(dy)
2n J{ix|> B {Bu<ly|<L/up|x]}

g
~ d;f_/ xF(dx)/ yF(dy))
2(logn)? {1x1> B4} {y1>1/unlxl}

for all n large enough, becaugehas a bounded support angls, — 0. By (3.5),
for anye > 0, there exists’ > 0 such that Igg(]/.s/)ﬁ —6'| <& wheneveR e (0, &').
Then we may Writefy |- .1 X F (dx) [{jy1=1/u,1x)y Y F (dY) = Xn + yn, Where

Yn = xF(dx) f yF(dy),
[y|>1/unlx|}

{Bn<Ix1=1/une"}

Vo = / xF(dx) / VE(dy)
{Ix|>1/une’} {ly|>1/unlx|}

1
=/ xd/< )F(dx).
{Ix|>1/upe’} uplx|

then— > ¢/, so we have

6/’ |‘

First, if |x| <

|xn| < Cor xF(dx)| < Cepp < Celogn.

{Bn<|x|<1/une’}

log(u,|x]), we havely, — 0’z | < ez,. But (3.6) and (3.5) again imply that

1 1
- (Iogun)(d+( ) +d_( )) + [ x[10g x| F'(dx)
uns/ une/ {|lx|>1/u,e’}

~0 <(Iog uy) log(u,e’) — %( Iog(une/))2>

~ %(Iogn)2

. . !/
and, similarly,zj, ~ % (logn)2. Hence,

d/z Xn + Yn 02 Yn
no, ~ -,
" 2(Iogn)2 2(logn)2 2 2(logn)?
0'zn—e1, 0'zntez, . .
and 2(| )2 is in betweer‘z(I ? and Sdogm? which respectively converge to

# and to#. Sinces > 0 is arbitrary, we deduce that (5.9) holds, and
we are finished.
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5.4. Proof of Theorem.2(c) We suppose here that Hypothesis (kRholds
for somea € (0, 1], as well as Hypothesis (H3), and also Hypothesis (H4) if
a < 1 (so we are in Cases 2b or 3b). In view of Lemma 4.1, of (3.15) and of
Theorem 2.2, it suffices to prove that the sequeiité14), I'"(11)) converges in
law to (Y, W), whereW is given by (1.7) and/ is a Lévy process independent
of Y and characterized by (1.10).

1. Note that if

[nt]
(5.10) Ft/n = Z {l-/n Wheregl-" = unAYT(n,i)lAYT(n,i)zjl{K(n,i)ZZ}7
i=1

[nt]
(5.11) Ztn = Z T}l’-l Wheren? = AYT(n,i)ljl{K(n,i)zl}v
i=1

then firstz/(11) satisfies (2.15) witlt/” as above, and™ (14) — Z" converges
locally uniformly in time tobr (becaused,, = b here). So in view of Lemma 2.8, it
is enough to prove th&Zy, I'") converges in law t6Z1, V1), whereZ, =Y, — br.

2. For each the variablesn!, ¢/");>1 are i.i.d. centered, and we denote Ky
their law, which is given by

e_)‘"kn

6(Bn)

l—e (142
0(Bn)?

Since the two processe&andV are independent Lévy processes, they have no
common jumps and, further, the jumps Bfare the same as those Bf so the
Lévy measure&X of the pair(Z, V) is

K,(A) = / F(dx)La(x,0)
{lx[>Bn}

) f F(dx) f F(dy)La(x, unxy).
{Ix|>pBn} {Iy|>pBn}

92
K (dx, dy) = F(dx)eo(dy) + ——eo(dx) —T—
4 |yt
Observe thatZ, V) has no drift and no continuous martingale part.
By virtue of Theorem VII.3.4 of Jacod and Shiryaev (2003), for the convergence
in law of (27, I'{") to (Z1, V1), itis enough to prove that

dy.

(5.12) nKn(h) — K (h)

for all » which are continuous bounded and vanish on a neighborhood of 0,
and also forh = hy, k!, h!/, where h,(x,y) = x2]l{x2+y25u} and i, (x,y) =
y2]l{x2+y2§u} and i, (x, y) = xyl2, 2., for almost allu > 0 (for Lebesgue
measure). Since botk and K,, are invariant under the mags, y) — (—x, y)
and(x, y) — (—x, y), it is even enough to prove (5.12) fay, k), h),, and also

for hy v (x, y) = L{x|>u,|y|=v) fOrall u, v € Ry suchthatu, v) # (0, 0).
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We begin with (5.12) for,, ,,. Foru > 0, we have as soon @4 < u,

ne ", 1—e (14 r,)
0(u— F(dx)0(8,),
0By T /{xm} (@x)6 ()

where 6(u—) denotes the left limit at poinit of the decreasing and right-
continuous functio®(-). The last term above is smaller thaho(8,,)/n, which
goes to 0 ag — oo, and the first term converges #gu—) = K (h, 0), SO (5.12)
holds forh, o.

Next, if u > 0 andv > 0, we have as soon &, < u (recall thatu,, = 1/8,
here),

nkK,(hy0) =

l—e @A+
e ™ ( 2+ ”)f F(dx)/ F(dy)
0(Bn) {Ix|>u} {y1> B |y|=Buv/Ix1}

- Cue(ﬂ”),
n

which again goes to 0: so (5.12) holds for,. Finally, if v > 0, we have as soon
asp, <v,

nk, (hu,v) =n

1—e M1+
o [ | Fdy)
0(Bn) {Ix]>Bn} (191> B [y1=Bav/|x1}

F(dy).

nKn(hO,v) =n
(5.13)

~ F(dx)/
2n J{ix|> B} (131> Bus |y 1= Bav/ 1}

Lete > 0. By Hypothesis (H2x) there existg’ € (0, v) such that*6(B8) —0| < ¢
for all 8 € (0, 2¢']. By (5.13) we see thatK,, (ho ) ~ X, + yn + 2, Where

1
Ko = o F(dx) / F(dy),
2n J (g, <|x|<vBn /') {y1=Buv/Ix]}

1
o / F(dx) f F(dy),
2n J{wB, /e <|x|<v) {y=Buv/Ixl}

.
Iy = — F(dx)/ F(dy).
" 2n {|x|>v} {Iyl>Bn}

Using Hypothesis (H2¢) again and (3.2), we get

0
(5.14) 20 < ¢, 2P
n
C
o < / x| F (dx)
nBIvY Jig,<|x|<vBu/e'}
5.15 C_ [ a=1p d
. = V
(5.15) nﬁgvafo ¥ lo (v v B (dy)

< CU <1+|0g3) < CU,E.
npy £
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Finally, if y, = Znﬂ"‘v"‘ Jtwp, e <ix|<vy 1X1* F (dx), we havey, (1—¢’) <yn <yn(1+

¢). But y, = Znﬁ“v“ (p(Bav/e) — p(v)), which is equivalent to;%:— Znﬁ“v“ Iogﬁ
by (3.5). Putting this together with (5.14) and (5. 15) and singe arbitrarily
small, we deduce thatK,(ho, ) is equivalent toznﬁava log ﬁ Then, clearly,

nKy(ho,) converges t%, which equalsK (hg,y).
It remains to prove (5.12) fak,, 4, andh],. First, because of Hypothesis (H3)
we havek, (k) = 0 andK (k) = 0. Next,
ne_A")L,,
OBn)  J(Bu<IxI=u}
1—e (14 A,)
6(Bn)?

nK,(hy,) = x2F(dx)

2
X x“F(dx) F(dy).
/{,Bn<|X<\/E} {ﬂn<‘)’|§ﬂn\/ u/xz—l}

The last term above is smaller th@f (8,,) /n, which goes to 0, while the first term
goes tof{lx‘iﬁ}sz(dx), which equalsK (), hence, (5.12) holds for = 4,,.

Finally, we have as soon & < /u,
2 1—e (14 A,)
0(Bn)?

nky(h,)=u;

2 2
Fww/ V2F(dy)
/ {Bn<lx|<s/u/2 } {Bn<|y|<Pnau/x2—1}

x%c(BuvVu/x? — 1)F (dx)

|=|\>

2n ﬁn<\XI<«/_u/2

nn

- f x2F(dx).
2n Ji,<Ix|<us2)

The last term above is smaller tr(au,%cn/n, which goes to 0. In view of (3.3), the
first term is equivalent to

2g2-a.,p (2—a)/2
o / x2<12—1) F(dx)
22— a)n {Bu<l|x|</u/2} X

uﬁ’a@u(z_a)/z

~

L |x|“F (dx)
22— a)n /{ﬁn<x|<m}

20—am_ N\B,)

which converges t@ez(”z(iw which in turn equals (),): we are thus finished.
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REMARK 5.1. When Hypothesis (H2) holds for somex € (1, 2) and also
Hypothesis (H3) holds, one could prove part (a) of Theorem 1.2 by the same
method as above for (c): we have, of course, the same (n/logn)¥/¢, but
instead of 8, = logn/nY/2%, one could takes, = (logn/n)Y* as in Cases
2b and 3b. Then in Lemma 4.1 one obtains thaf;) goes to 0 forj =9, but
not for j = 11.

5.5. Proof of Theoreni.2(d) Now we assume Hypothesis (H)-for some
a <1 (i.e., Case 3a). In view of Lemma 4.1, of (3.15) and of Theorem 2.2, for
obtaining Theorem 1.2(d) it suffices to prove that the sequéne@ 4), ' (10) +
I'"(12)) converge in law tqY, W), whereW is given by (1.11), which can also be
written as

Wi=d Y ([f(Xg,—+AYr, f(Xr,-)) = [(Xr,-)]én

n.R,<t

(5.16) + f(XRr,—) [ (XRr,~)AYR,(1—&,))

d> [t ,
- /0 F(X2) £/ (X ds.

1. We havet/ (10) = ¢"(10) + ¢/ (10), where¢/"(10) = u,g(X (i_l)/n)fn—’i
and

d
¢"(10) = Mng(X(i—l)/n);"AYT(n,in]l{K(n,i)zl}-

n [nt] o " [nt] .1m ndy 2
Setl’)" = ;"1 ¢/"(10) andI';" = ;"] ¢/ (10). Observe tha¥“= — 4%, hence,
a simple Riemann approximation of the Lebesgue integral shows the following
convergence, locally uniform in
p d? [t
(5.17) o, 5 S /0 2(X,_)ds.

Therefore, it is enough to prove that the pdif (14), I'’"" + I'"*(12)) converges in
law to the pair(Y, I'"), wherel’ is the first term in the right-hand side of (1.11).

Seta, = u,d,/n. We can writel'” + I'"(12) = a,I™", whereT'? = Y"1 ¢#
and
&' = (G(X(i-1)/ns AY7n,iyy) (i —nT (n,0)1)
(5.18) + &(X(i—1)/n) AYT iy, (0T (n, 1)1 — i + 1)) L (K (n,i)>1)-
We also writeV’ = dT", where [cf. (1.11)]
Fr= ) ([f(Xg,—+AYr, f(Xg,-)) = f(Xr,-)]én

n:R,<t

(5.19)
+8(Xg,-)AYR,(1-&)).
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Sincea,, — d, it remains to prove thatl’"(14), I'"") converges tqY, I') in law.
Observe also tha#, — d, so exactly as in Section 6, and if we set (5.11), it
is enough to prove thatz”,I'") converges in law toward&Z,I"), whereZ;, =

Y; —td.

2. The presence of an apriori arbitrary functiénin (5.18) makes things a bit
difficult, and in the absence of a general theory to handle this case, we use a trick,
pretending first thak ; _1),, does not show up in (5.18). That is, with an arbitrary
measurable bounded functiéron R x [0, 1], with support in[—p, p] x [0, 1],
which satisfies/(x, u)| < C|x|, we set

[nt]
M=y ¢

i=1

wheregi"(l) = I(AYT(n,i)l, nT(n,i)1—1i+ 1)]1{1{(”,,')21}.

(5.20)

We will study the convergence of the paiz”, I'"(1)). In view of (3.17), the
law K, of the pair(n}, ¢/ (1)) is independent of and given by

K, (h) = e *h(0,0)
(5.21)

1 1 1
+—/ e_)‘"“du/ F(dx)/ h(x,1(x,u))du.
nJo {1x|>Bn} 0

Letting K be the measure dR? defined by

1
(5.22) K(h):/F(dx)/o h(x,l(x,u))du,

we want to prove thai K, (h) — K (h) [i.e., (5.12)] holds for suitable functioris
Suppose first that is continuous and bounded and vanishes on a neighborhood

of 0. Observe that sincé(x, u)| < C|x|, we haveh(x,[(x,u)) =0 if |x| < ¢ for

somee > 0. In (5.21) the contribution of the first term to the righti&, (1) is O;

as soon ag,, < ¢, the contribution of the second term is

/Ole_)‘”“du /{x|>€}F(a'x) /olh(x,l(x,u)),

which obviously converge t& (k) because., — 0: so we have (5.12).

Now we take the function (x, y) = x1{|<y) for any givenv > 0. In (5.21) the
contribution ton K, (k) of the first term to the right is 0, and the contribution of the
second term is

1
/ e_A"”du/ xF(dx),
0 {Bn<lx|<v}

which goes toK (k) again. The same argument works as well for the functions
h(x,y) = ylyx<v), h(x,y) = xzﬂ{mfv}, h(x,y) = xyljxj<yy and h(x,y) =
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yzjl{mgv} [here we do not truncate in, since the argument is replaced by the
bounded termi(x, u) in (5.21)].

All this shows that, by using Theorem VII.3.4 of Jacod and Shiryaev (2003),
the pair(Z", (1)) converges in law to a Lévy proceé&s, I' (/)) with no drift, no
continuous part and Lévy measute and also has (UT) by Lemma 2.1.

We can, of course, realize this pdiZ, I'(/)) as follows: we first takeZ, =
Y, —dt (so this is in accordance with our previous notation), and we label the jump
times ofY asR1, Ry, ... [as in (5.19)]. Then we define, possibly on an extension
of the space, a sequeng¢g,) of i.i.d. variables, independent df, and uniform
over[0, 1]. Then we set

(5.23) Fi= Y. I(AYR,.&).

n:R,<t

Observe that' (1), as well ast andZ, has finite variation over finite intervals.

3. We will apply the preceding results to the functiohs- /, defined by
ly(x,u) =G(y,x)(L—u)+g(y)xu: we calll'" (y) andI'(y) the processels” (/)
and I'(/,), and write alsog/"(y) = ¢/(ly). If we pick finitely many arbitrary
points y;, not only do we have the convergence in law @",I'"(y;)) to
(Z,T'(y;)) for any given, but one could prove in a similar way that we have
the convergence ofZ", T'"(y1),..., T (yw)) to (Z,T'(y1), ..., ['(y)), with the
same sequendg in the definition of alll"(y;)’s: one just has to put any finitely
many functiond’s in (5.21) and (5.22) to see that everything works out the same
way. This, of course, gives the convergence for an infinite sequengésof

So we pick a dense sequenge By the Skorokhod representation theorem
we can find another probability space on which new processes still called
Y,Z,T(y1),..-., T ), ...) and(¥, Z", T"(y1), ..., "™ (y) ...) are defined and
have the same law as the original ones and, furtt#®t, ' (y1), ..., T () ...)
converges pointwise for the Skorokhod topologyliR ., RY) to (Z, T'(y1), ...,
T'(y),...). Onthe new space we still have the representation (5.23) for(ajl)
with the same sequencgg,). Furthermore, on the new space we can solve our
equation (1.1), having a solution, and redefing”” by (5.18) and™ = >\"!1 ¢
hereY has locally finite variation, so the filtrations play no role at all. So we have
&' = 1x_1y0 (AYT ()1 WSO LK (i) <1)

Now the functionsy — [, (x, u) are continuous, and even much more. Namely,
we have

[y (x,u) — 1y (x, u)
. |y|’ v,y €K, ly—y|<e,

wg(e) == Sup(

xe[—p,p],ue[O,l]) —0

ase — 0 for any compact seX . Let us first pick a point» in the event space and
atimer > 0, then a compad containing the path ok over[0, ¢], and are > 0.



EULER SCHEME FOR DISCONTINUOUS SDEs 1871

We can find a finite subdivisiom =0 <1 <--- < =t and pointsy; € K,

such that|X; — y;| <e forall r € [t;_1,t;). SetJ(n, j) = {i: % €ltj_1, 1)}
If i € J(n, j), we havell) — /' (v;)| < wg(e)|AYg, |. It follows that for alls <17,
k
(5.24)  |T7 = (T")sny; — T sn;_n)| Swk () D |AY,.
j=1 r<t

Similarly, if we set

(525) th Z lXRn_(AYanUn)

n.R,<t
[i.e., " is defined by (5.19), on our new space], we get fos adl 7,

k
Iy — Z (F/(yj)S/\tj - F(yj)s/\tj_l)
j=1

At this point, it suffices to use thatz”, I'"(yr), ..., ") = (Z,T (), ...,
I'(yx)) for the Skorokhod topology to obtain that the upper limit of the
Skorokhod distance betweés”, I'") and(Z, I') over[0, ¢] is smaller or equal to
w (&) Xs<; |AY| < 00. Sincewg (¢) — 0 ase — 0 and sincg_,, |AY;]| < oo,
we conclude that for our particular poiatwe have(Z", T'") — (Z,T).

This works for all pointg». Going back to the original space, this clearly implies
that indeed Z", I'"*) converges in law t@¢Z, I'), and we are finished.

(5.26) <wg (€)Y _|AY,].

r<t
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