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THE EULER SCHEME FOR LÉVY DRIVEN STOCHASTIC
DIFFERENTIAL EQUATIONS: LIMIT THEOREMS

BY JEAN JACOD

Université Pierre et Marie Curie

We study the Euler scheme for a stochastic differential equation driven
by a Lévy processY . More precisely, we look at the asymptotic behavior of
the normalized error processun(Xn − X), whereX is the true solution and
Xn is its Euler approximation with stepsize 1/n, andun is an appropriate
rate going to infinity: if the normalized error processes converge, or are at
least tight, we say that the sequence(un) is a rate, which, in addition, is sharp
when the limiting process (or processes) is not trivial.

We suppose thatY has no Gaussian part (otherwise a rate is known to
beun = √

n ). Then rates are given in terms of the concentration of the Lévy
measure ofY around 0 and, further, we prove the convergence of the sequence
un(Xn − X) to a nontrivial limit under some further assumptions, which
cover all stable processes and a lot of other Lévy processes whose Lévy
measure behave like a stable Lévy measure near the origin. For example,
whenY is a symmetric stable process with indexα ∈ (0,2), a sharp rate is
un = (n/ logn)1/α; whenY is stable but not symmetric, the rate is againun =
(n/ logn)1/α when α > 1, but it becomesun = n/(logn)2 if α = 1 and
un = n if α < 1.

1. Introduction. We consider the following stochastic differential equa-
tion (SDE):

Xt = x0 +
∫ t

0
f (Xs−) dYs,(1.1)

where f denotes aC3 (three times differentiable) function andY is a Lévy
process with characteristics(b, c,F ) with respect to the truncation functionh(x) =
x1{|x|≤1}, that is,

E(eiuYt ) = expt

(
iub − cu2

2
+

∫
F(dx)

(
eiux − 1− iux1{|x|≤1}

))
.(1.2)

We also suppose thatf is such that (1.1) admits a (necessarily unique)
nonexplodingsolution (this is the case, e.g., iff has at most linear growth).

A number of papers have been devoted to studying the rate of convergence of
the Euler scheme for this equation. That is, the approximated solution is defined at
the timesi/n, by induction on the integeri, according to the formula

Xn
0 = x0, Xn

i/n = Xn
(i−1)/n + f

(
Xn

(i−1)/n

)(
Yi/n − Y(i−1)/n

)
.(1.3)
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This scheme allows for numerical computations, using Monte Carlo techniques,
provided one can simulate the incrementsYt − Ys of the Lévy processY : A first
problem consists in computing an approximation of the expected valueE(h(X1))

for smooth enough functionsh, and we need to evaluate the erroran(h) =
E(h(Xn

1)) − E(h(X1)). A second problem is to compute an approximation of the
law of some functional of the path, like, for example, supt≤1 Xt , and for this we
need to evaluate the (discretized) error process, which is defined as

Un
t = Xn[nt]/n − X[nt]/n.(1.4)

Problem 1 has been extensively studied whenY is continuous (i.e.,F = 0) and
c > 0: we can quote, with increasing order of generality as to the smoothness of
f andh, the works of Talay and Tubaro (1990) and Bally and Talay (1996a, b),
where it is proved thatan(h) is of order 1/n and where an expansion ofan(h) as
increasing powers of 1/n is even exhibited. In Protter and Talay (1997) the same
problem is studied for discontinuousY , but they only prove thatan(h) = O(1/n);
see also a forthcoming paper by Kohatsu-Hida and Yoshida (2001) for an equation
driven by a Wiener process plus a Poisson random measure. The techniques are
essentially analytical.

For problem 2 one uses stochastic calculus techniques, and the idea is to find a
rateun, that is, a sequence going to∞ such that the sequence(unU

n) is tight; the
rate is calledsharpif further the sequence(unU

n) admits some limiting processes
that are not identically 0. Even better is the case when the whole sequence(unU

n)

converges to a nondegenerate limit. In Jacod and Protter (1998) we have proved
the following (more precise results are recalled below):

1. If c > 0, then a sharp rate isun = √
n, and the sequence(

√
nUn) converges in

law to a nondegenerate limit.
2. If c = 0 andF is a finite measure, hence,Y is a compound Poisson process plus

a drift, then a sharp rate isun = n if the drift b is not 0; whenb = 0, the rate
is “infinite,” meaning that for anyt , we haveUn

s = 0 for all s ≤ t for n large
enough.

3. If c = 0 andF is an infinite measure, then a rate isun = √
n, but this rate is not

sharp in the sense that(
√

nUn) goes in law to 0.

Although the implicit assumption that the increments ofY can be simulated is
somewhat unrealistic except in particular situations, which, however, include the
case whereY is a stable process, finding the exact rate of convergence is at least of
much theoretical importance. Here we aim to find sharp rates for problem 2, when
c = 0 andF(R) = ∞. The crucial factor is the behavior of the Lévy measureF

near 0 (i.e., how many “small jumps” we have), which will be expressed through
the following functions onR+:

θ+(β) = F
(
(β,∞)

)
,

(1.5)
θ−(β) = F

(
(−∞,−β)

)
, θ(β) = θ+(β) + θ−(β).
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We introduce several assumptions, in whichα denotes our basic index; here and
belowC denotes a constant which may change from line to line, and may depend
onF just here, and also onb andf further below:

HYPOTHESIS(H1-α). We haveθ(β) ≤ C
βα for all β ∈ (0,1].

HYPOTHESIS(H2-α). We haveβαθ+(β) → θ+ andβαθ−(β) → θ− asβ → 0
for some constantsθ+, θ− ≥ 0, and further, θ := θ+ + θ− > 0. We also set
θ ′ = θ+ − θ−, and we observe thatθ(β) ∼ θ

βα asβ → 0.

HYPOTHESIS(H3). The measureF is symmetrical about0.

HYPOTHESIS(H4). We haveb = 0.

Note that Hypothesis (H2-α) ⇒ Hypothesis (H1-α), and that Hypothesis (H1-2)
always holds becauseF integratesx 
→ |x|2 ∧ 1, and Hypothesis (H1-0) [i.e.,
(H1-α) for α = 0] holds iff the measureF is finite, a case which we exclude. Under
Hypothesis (H3) we have Hypothesis (H2-α) as soon asθ(β) ∼ θ

βα asβ → 0, and
θ+ = θ− = θ/2.

Unfortunately, we cannot totally fulfill our aim. But we find ratesun that
are bigger than

√
n. And we prove that these rates are sharp and even that

unU
n converges in some reasonably general circumstances. Let us single out five

different cases:
Case1. We have Hypothesis (H1-α) for someα > 1; thenun = ( n

logn
)1/α.

Case2a. We have Hypothesis (H1-α) for α = 1; thenun = n
(logn)2 .

Case2b. We have Hypothesis (H1-α) for α = 1 and Hypothesis (H3); then
un = n

logn
.

Case3a. We have Hypothesis (H1-α) for someα < 1; thenun = n.

Case3b. We have Hypothesis (H1-α) for some α < 1 and Hypotheses
(H3) and (H4); thenun = ( n

logn
)1/α.

Clearly, Hypothesis (H1-α) ⇒ Hypothesis (H1-α′) if α < α′, while the rate is
better (i.e., bigger) whenα decreases: one should take the smallest possibleα for
which Hypothesis (H1-α) holds, although, of course, there might not be such a
minimal α. Observe also that the rate in Case 2b (resp. 3b) is strictly bigger than
in Case 2a (resp. 3a): the symmetry of the driving process improves the quality of
the Euler scheme under Hypothesis (H1-α) whenα ≤ 1, while it does not affect
the rate whenα > 1.

Now we describe the results of this paper. The first one concerns tightness [the
assumption off is always that it isC3 and that (1.1) has a nonexploding solution;
this is not repeated in the next theorems].

THEOREM 1.1. Assume thatc = 0 and that Hypothesis(H1-α) holds for some
α ∈ (0,2). Then, with the above choice ofun, the sequence(unU

n), is tight.
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The results about limits necessitate the stronger Hypothesis (H2-α) instead of
Hypothesis (H1-α), except in Case 3a; in all cases except 2a, the description
of the limit invloves another process or additional random variables which are
independent ofY , so we might need to enlarge the probability space to accomodate
these.

Below, Y
n

stands for the discretized process associated withY , that is,Y
n

t =
Y[nt]/n.

THEOREM 1.2. Assume thatc = 0 and that Hypothesis(H1-α) holds for
someα ∈ (0,2). Then in the following cases and withun as above, the sequence
( Y

n
,unU

n) converges in law( for the Skorokhod topology) to (Y,U), whereU is
the unique solutionU of the linear equation

Ut =
∫ t

0
f ′(Xs−)Us− dYs − Wt,(1.6)

and where the processW may be described as follows:

(a) In Case1, and if further Hypothesis(H2-α) holds, then

Wt =
∫ t

0
f (Xs−)f ′(Xs−) dVs,(1.7)

whereV is another Lévy process, independent ofY and characterized by

E(eiuVt ) = exp
tα

2

∫ (
(θ2+ + θ2−)1{x>0} + 2θ+θ−1{x<0}

)
(1.8)

× 1

|x|1+α
(eiux − 1− iux) dx

(hence, V is a stable process with indexα).
(b) In Case2a,and if further Hypothesis(H2-α) holds forα = 1, then

Wt = −(θ+ − θ−)2

4

∫ t

0
f (Xs−)f ′(Xs−) ds,(1.9)

and we even have thatunU
n converges toU in probability (locally uniformly in

time).
(c) In Cases2b and 3b, and if further Hypothesis(H2-α) holds, then we

have(1.7),whereV is another Lévy process, independent ofY and characterized
by

E(eiuVt ) = expt

∫
θ2α

4

1

|x|1+α

(
eiux − 1− iux1{|x|≤1}

)
dx(1.10)

(hence, V is a symmetric stable process with indexα).
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(d) In Case3a,then

Wt = d
∑

n : Rn≤t

([
f

(
XRn

) − f
(
XRn−

)]
ξn + f ′(XRn−

)
�XRn(1− ξn)

)
(1.11)

+ d2

2

∫ t

0
f (Xs−)f ′(Xs−) ds,

where d = b − ∫
{|x|≤1} xF (dx) and (ξn)n≥1 is a sequence of i.i.d. variables,

uniform on[0,1] and independent ofY , and (Rn)n≥1 is an enumeration of the
jump times ofY (or of X).

REMARK 1.1. For comparison with the cases excluded here and studied in
Jacod and Protter (1998), let us mention that ifc = 0 andF is a finite measure
[i.e., Hypothesis (H1-0) holds], then Theorem 1.2(d) holds without change. When
c > 0, the sequence( Y

n
,
√

nUn) converges in law to(Y,U), whereU solves (1.6)
with

Wt = √
c

∑
n : Rn≤t

([
f

(
XRn

) − f
(
XRn−

)]√
ξnκn + f ′(XRn−

)
�XRn

√
1− ξnκ

′
n

)
+ c√

2

∫ t

0
f (Xs−)f ′(Xs−) dBs

and whereB is a standard Brownian motion, andξn is uniform over[0,1], and
κn andκ ′

n are standard normal variables, all these being independent one from the
other and fromY as well.

REMARK 1.2. When θ+ = θ− [e.g., under Hypothesis (H3)] then
(1.8) and (1.10) agree (but, of course, for different values ofα). In Theorem 1.2(b)
[resp. (d)], if θ ′ = θ+ − θ− = 0 (resp.d = 0), the limiting processU is identi-
cally 0. So these results are interesting only whenθ ′ �= 0 (resp.d �= 0), implying
thatY is dissymmetric, and otherwise the rate is not sharp.

REMARK 1.3. It would be possible, at the price of even more complicated
computations, to accomodate other forms for Hypothesis (H2-α): for example, if
θ+(β) and θ−(β) are of orderβ−α(log 1

β
)γ as β → 0 for someα ∈ (0,2) and

γ ∈ R. On the contrary, it seems rather difficult to express the ratesun directly in
terms of the two functionsθ+(β) andθ−(β).

REMARK 1.4. In Theorem 1.2(b) we have convergence in probability, so
there ought to be an associated “central limit theorem.” This suggests that we can
improve the Euler scheme and simultaneously improve the rate, which is, indeed,
the case: assume that Hypothesis (H1-α) holds forα = 1. Then replace the Euler
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scheme of (1.3) by a modified Euler schemeX′n constructed as follows:

X′n
0 = x0,

X′n
i/n = X′n

(i−1)/n + f
(
X′n

(i−1)/n

)(
Yi/n − Y(i−1)/n

)
(1.12)

− f
(
X′n

(i−1)/n

)
f ′(X′n

(i−1)/n

)
γn,

where

γn = 1

2n2

∫
{logn/n<|x|≤1}

xF (dx)

∫
{logn/(n|x|)<y≤1}

yF (dy).(1.13)

Denote byU ′n the associated error process, that is,U ′n
t = X′n|nt]/n − X[nt]/n. Then

one can show that the sequence(u′
nU

′n) is tight with u′
n = n/ logn. If further

Hypothesis (H2-α) holds withα = 1, then it is quite likely (although we have not
proved it) that this sequence even converges in law to a nontrivial limiting process.
The improvement in the rate, going fromn/(logn)2 to n/ logn, is, of course,
negligible in practice [not to speak about the fact that actually computingγn

in (1.13) might be a difficult task], so these results will not be proved below.
Observe also that when further Hypothesis (H3) holds, thenγn above vanishes,
soX′n = Xn and we recover Theorem 1.1 in Case 2b.

REMARK 1.5. We will introduce below—and use in a crucial way—a
condition called (UT) [or sometimes (P-UT), for “predictably uniformly tight”] on
a sequence of processes. Then one easily deduces from the proof of Theorem 1.1
that the sequence(unU

n) satisfies the (UT) property, in addition to being tight.

REMARK 1.6. Let us say a word about our assumption thatf is C3: it is fully
used here for Case 1 only. For Cases 2 and 3 [statements (b)–(d) of Theorem 1.2
it is enough thatf beC2, and an application of Theorem 3.5 of Kurtz and Protter
(1991a, b), plus some scaling property, would give that the results hold as soon as
f is C1, whenY is a symmetric stable process.

Finally, let us mention that, for the sake of notational simplicity, we have
considered only the one-dimensional case, but everything goes through in the
multi-dimensional case as well, with exactly the same proofs.

The paper is organized as follows: in Section 2 we present a number of general
tools connected with Euler approximations and limit theorem. More specific
tools are developped in Section 3, while the heart of the proof (a long string of
inequalities, extremely technical) is given in Section 4. The proofs of the two
preceding theorems are given in Section 5.

2. Some general tools. Throughout all the paper, we suppose thatc = 0 and
at least that Hypothesis (H1-α) holds for someα ∈ (0,2). Recall also thatf is C3

and (1.1) has a nonexploding solution.
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2.1. A condition for convergence of Euler schemes.Let us writeY ′ = f (X).
We have

Un
t =

[nt]∑
i=1

∫ i/n

(i−1)/n

(
f

(
Xn

(i−1)/n

) − f
(
X(i−1)/n

))
dYs

−
[nt]∑
i=1

∫ i/n

(i−1)/n

(
Y ′

s− − Y ′
(i−1)/n

)
dYs.

RecallingY
n

t = Y[nt]/n and setting accordinglyX
n = X[nt]/n and

Wn
t =

[nt]∑
i=1

∫ i/n

(i−1)/n

(
Y ′

s− − Y ′
(i−1)/n

)
dYs,(2.1)

we obtain

Un
t =

∫ t

0

(
f (X

n

s− + Un
s−) − f (X

n

s−)
)
dY

n

s − Wn
t .(2.2)

Observe that the sequence( Y
n
,X

n
) converges pointwise to(Y,X) for the

Skorohod topology. We can say more, and for this we recall the property (UT)
defined in Jakubowski, Mémin and Pagès (1989) [see also Jacod and Shiryaev
(2003), Chapter VI.6, where it is called (P-UT)]. LetZn be a sequence of
semimartingale, with the canonical decompositions

Zn
t = A

n,a
t + M

n,a
t + ∑

s≤t

�Zn
s 1{|�Zn

s |>a},(2.3)

wherea > 0 andAn,a is a predictable process with locally bounded variation and
Mn,a is a (locally bounded) local martingale. Then we say that the sequence(Zn)

satisfies (UT) if for anyt < ∞, the sequence of real-valued random variables

Var(An,a)t + 〈Mn,a,Mn,a〉t + ∑
s≤t

|�Zn
s |1{|�Zn

s |>a}

is tight. This property does not depend on the choice ofa ∈ (0,∞).
The following lemma applies, in particular, when�n = Y

n
because then

�n
1 = Y1. Its setting is as follows: we have a triangular array of rowwise i.i.d.

d-dimensional random variablesζ n
i , i = 1,2, . . . , and we set�n

t = ∑[nt]
i=1 ζ n

i .

LEMMA 2.1. If �n
1 converges in law to a limitU , then there is ad-dimensional

Lévy process� such that�1 = U ; this process is unique in law and�n converges
in law to� ( for the Skorokhod topology). Further, the sequence(�n) has(UT).

PROOF. The first claims are all well known [see, e.g., Jacod and Shiryaev
(2003), Chapter VII.3.6], and only the last one needs proving. Since the (UT)
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property holds for a multi-dimensional sequence iff it holds separately for the
sequence of each component, for the last claim we may assume w.l.o.g. that the
variables are one-dimensional. Let(b, c,F ) be the characteristics of the Lévy
process�, and takea > 1 such thatF({x : |x| = a}) = F({x : |x| = −a}) = 0. Set
bn = E(ζn

i 1{|ζ n
i |≤a}) andcn = E((ζn

i )21{|ζ n
i |≤a}) − b2

n andγn = P (|ζ n
i | > a), for

all a ∈ D we have, by virtue of Jacod and Shiryaev (2003),

nbn → b +
∫
{1<|x|≤a}

xF (dx),

(2.4)
ncn →

∫
{|x|≤a}

x2F(dx), nγn → F(x : |x| > a).

Writing (2.3) for �n gives A
n,a
t = bn[nt] and 〈Mn,a,Mn,a〉t = cn[nt]. Set

further V
n,a
t = ∑

s≤t |��n
s |1{|��n

s |>a} and V
′n,a
t = ∑

s≤t 1{|��n
s |>a} and Hn

t =
sups≤t |�n

s |. Then (2.4) yields that the sequences(A
n,a
t )n, (〈Mn,a,Mn,a〉t )n and

(V
′n,a
t )n are tight (for the later, note thatE(V

′n,a
t ) ≤ [nt]γn), and the convergence

in law �n → � yields the tightness of the sequence(Hn
t )n for all t . Since

V
n,a
t ≤ Hn

t V
′n,a
t , the result is obvious.�

Using (2.2) and Lemma 2.1 and the fact that( Y
n
,X

n
) converges to(Y,X),

as mentioned earlier, and following the proof of Theorem 3.2 of Jacod and
Protter (1998), which itself is based upon Kurtz and Protter (1991b, 1996) [see
also Słomínski (1989) and Mémin and Słomiński (1991)], we readily obtain the
following:

THEOREM 2.2. Let (un) be a sequence of reals increasing to+∞, such that
the sequence( Y

n
,unW

n) converges to a limit(Y,W) in law, whereW is possibly
defined on an extension of the original probability space(resp. in probability, with
W given on the original space). Then the sequence( Y

n
,unU

n) converges in law
(resp. in probability) to (Y,U), whereU is the unique solutionU of the following
equation:

Ut =
∫ t

0
f ′(Xs−)Us− dYs − Wt.(2.5)

Up to taking subsequences, we deduce the following:

COROLLARY 2.3. Let (un) be a sequence of reals increasing to+∞, such
that the sequence( Y

n
,unW

n) is tight. Then the sequence(unU
n) is also tight.

2.2. Localization. In order to avoid a lot of technical problems, we will
“localize” it in the sense of the following proposition:
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PROPOSITION2.4. Suppose that either Theorem1.1or 1.2holds for all Lévy
processesY satisfying the relevant assumptions and having further bounded jumps,
and for all C3 functionsf with compact support. Then these theorems also hold
for a Lévy processY with unbounded jumps and aC3 functionf with noncompact
support.

PROOF. We start with a Lévy processY satisfying the assumptions of one of
our theorems and with aC3 functionf . We callW the limit of unW

n in case of
Theorem 1.2.

Forp ∈ N

 we consider the new Lévy processY (p)t = Yt −∑

s≤t �Ys1{|�Ys|>p},
and aC3 functionfp with compact support, satisfyingfp(x) = f (x) for |x| ≤ p.
Finally, we associate withY (p) andfp the same terms withY andf , writing, in
particularX(p), Y (p)n, U(p)n instead ofX, Y

n
, Un.

Observe thatY (p) satisfies the same Hypotheses (H1-α) or (H2-α) or (H3)
or (H4) thanY , and the numbersθ+ and θ− in Hypothesis (H2-α) or d in
Theorem 1.2(d) are the same forY and eachY (p). So our hypothesis yields in case
of Theorem 1.1 that for eachp the sequence(unU(p)n) is tight. For Theorem 1.2 it
yields that for eachp the sequence( Y (p)n,unU(p)n) converges to(Y (p),U(p)),
whereU(p) satisfies (1.6) relative to some processW(p): for (a) or (c) this process
is given by (1.7) withV (p) = V independent ofp and withX(p); for (b) it is given
by (1.9) withX(p); for (d) we have to be more careful: for eachq ∈ N


, we denote
by (R(q)n)n≥1 an enumeration of all jump times ofY with size in(q − 1, q], and
let (ξ(q)n)n,q≥1 be a double sequence of i.i.d. variables uniform over[0,1] and
independent ofY ; thenW(p) can be taken to be the process defined by (1.11),
where the summation in the first term extends to allR(q)n andξ(q)n for q ≤ p

andX is replaced byX(p); similarly, for W we can takeW = W(∞), with the
processX.

SetSp = inf(t : |Xt | ≥ p or |�Yt | > p). We haveY = Y (p), hence,X = X(p)

andUn = U(p)n andY
n = Y(p)n, on the interval[0, Sp); in case of Theorem 1.2,

we also haveW = W(p), hence,U = U(p) as well, on the interval[0, Sp).
Let us first consider the case of Theorem 1.1. For anyε > 0 andt > 0, there

is a p such thatP (Sp ≤ t) ≤ ε, and a compact setK in the Skorokhod space
D([0,∞),R) which depends on the sample path only up to timet and such that
P (unU(p)n /∈ K) ≤ ε. SinceU = U(p) on [0, Sp), we have{unU

n /∈ K,Sp >

t} = {unU(p)n /∈ K,Sp > t}, hence,P (unU
n /∈ K) ≤ 2ε, and this proves the

tightness of the sequence(unU
n).

Let us next consider the case of Theorem 1.2. For any continuous bounded
function�t on the Skorokhod spaceD([0,∞),R

2) which depends on the sample
path only up to timet , we have∣∣E(

�t(Y
n
,unU

n)
) − E

(
�t

(
Y (p)n,unU(p)n

))∣∣ ≤ 2‖�t‖P (Sp ≤ t),∣∣E(
�t(Y,U)

) − E
(
�t

(
Y (p),U(p)

))∣∣ ≤ 2‖�t‖P (Sp ≤ t).
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SinceP (Sp ≤ t) → 0 and sinceE(�t((Y (p)n,unU(p)n)) → E(�t((Y (p),U(p))

for every t as p → ∞, we get E(�t((Y
n
,unU

n)) → E(�t((Y (p),U(p)),
hence, the result for the convergence in law. For the convergence in measure in
Theorem 1.2(b), the proof is similar.�

2.3. Some limit theorems.In a rather natural way, the solution to our problem
goes through various limit theorem concerning sums of triangular arrays of the
form

�n
t =

[nt]∑
i=1

ζ n
i ,(2.6)

where for eachn we haveRd -valued random variables(ζ n
n )i≥1 such that eachζ n

i is
Fi/n-measurable. Below we give various conditions (very far from being optimal)
insuring tightness or convergence of the sequence(�n).

First we introduce a set of conditions, whereξn, ξ ′
n, ξ ′′

n,y denote arbitrary finite
constants:

E
(|ζ n

i ||F(i−1)/n

) ≤ ξn

n
,(2.7)

∣∣E(
ζ n
i |F(i−1)/n

)∣∣ ≤ ξn

n
,

(2.8)

E
(|ζ n

i |2|F(i−1)/n

) ≤ ξ ′
n

n
,

∣∣E(
ζ n
i 1{|ζ n

i |≤1}|F(i−1)/n

)∣∣ ≤ ξn

n
,

E
(|ζ n

i |21{|ζ n
i |≤1}|F(i−1)/n

) ≤ ξ ′
n

n
,(2.9)

P
(|ζ n

i | > y|F(i−1)/n

) ≤ ξ ′′
n,y

n
∀y > 1.

Note that (2.8) witĥξn and ξ̂ ′
n implies (2.9) withξn = ξ̂n + ξ̂ ′

n andξ ′
n = ξ̂ ′

n and
ξ ′′
n,y = ξ̂ ′

n/y
2. Also, (2.7) withξ̂n implies (2.9) withξn = ξ ′

n = ξ̂n andξn,y = ξ̂n/y.
Observe also that if (2.9) holds, then the last inequality is true fory ∈ (0,1] as
well, with ξ ′′

n,y = ξ ′′
n,1 + ξ ′

n/y
2.

Part (a) below is well known, and part (b) follows from Theorem VI.5.10 of

Jacod and Shiryaev (2003). By�n P→ 0, we mean that sups≤t |�n
s | goes to 0 in

probability for all t .

LEMMA 2.5. (a)For �n P→ 0, it is enough that either(2.7) or (2.8) or (2.9)
hold with

lim
n

ξn = 0, lim
n

ξ ′
n = 0, lim

n
ξ ′′
n,y = 0 ∀y > 1.(2.10)
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(b) For the sequence(�n) to be tight for the Skorokhod topology, it is enough
that the sequence of each of thed components ofζ n

i satisfies either(2.7)or (2.8)
or (2.9)with

lim sup
n

ξn < ∞, lim sup
n

ξ ′
n < ∞,

(2.11)
lim sup

n
ξ ′′
n,y < ∞, lim

y↑∞ lim sup
n

ξ ′′
n,y = 0.

The conditions in Lemma 2.5 can be substituted with conditions on the
following conditional characteristic functions:

LEMMA 2.6. Suppose that one can find constantsξ ′′′
n,v such that

sup
u : |u|≤v

∣∣1− E
(
eiu.ζ n

i |F(i−1)/n

)∣∣ ≤ ξ ′′′
n,v

n
,(2.12)

then(2.9)holds withξn = ξ ′
n = Cξ ′′′

n,1 andξ ′′
n,y = Cξ ′′′

n,1/y .

PROOF. It is enough to consider the one-dimensional cased = 1. We use
known facts about characteristic functions, which readily pass to “conditional”
characteristic functions. We have [see, e.g., (2) in the proof of Lemma VII.2.16 of
Jacod and Shiryaev (2003)]

E
(|wζn

i |2 ∧ 1|F(i−1)/n

) ≤ C

∫
{|u|≤w}

∣∣1− E
(
eiu.ζ n

i |F(i−1)/n

)∣∣du ≤ C

n
ξ ′′′
n,w.

This readily gives (2.9) withξ ′
n = Cξ ′′′

n,1 and ξ ′′
n,y = Cξ ′′′

n,1/y . We also have the

estimate|x1{|x|≤1} − sinx| ≤ x2 ∧ 1, hence,∣∣E(
ζ n
i 1{|ζ n

i |≤1}|F(i−1)/n

)∣∣ ≤ ∣∣1− E
(
eiζ n

i |F(i−1)/n

)∣∣ + E
(|ζ n

i |2 ∧ 1|F(i−1)/n

)
,

and (2.9) holds withξn = Cξ ′′′
n,1. �

LEMMA 2.7. In the previous setting, suppose that we have(2.9) with ξ̂n,
ξ̂ ′
n and ξ̂ ′′

n,y and Ĉy , and assume that̂ξn/n → 0. Then the variablesζ ′n
i = ζ n

i −
E(ζn

i 1{ζ n
i |≤1}|F(i−1)/n) satisfy(2.9)with, for all n large enough,

ξn = 6 ξ̂ ′′
n,1/2, ξ ′

n = 4 ξ̂ ′
n + 8 ξ̂ ′′

n,1 + 4̂ξ 2
n

n
, ξ ′′

n,y = ξ̂ ′′
n,y−1/2.(2.13)

PROOF. Set an
i = E(ζn

i 1{|ζ n
i |≤1}F(i−1)/n). We have|an

i | ≤ ξ̂n/n, so εn =
supi |an

i | → 0 and, up to takingn large enough, we can assume thatεn ≤ 1/2.
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Then

y > 1 �⇒ {|ζ ′n
i | > y} ⊂ {|ζ n

i | > (y − 1/2)},
(ζ ′n

i )21{|ζ ′n
i |≤1} ≤ 4

(
(ζ n

i )21{|ζ n
i |≤1} + ε2

n + 21{|ζ ′n
i |>1}

)
,∣∣ζ ′n

i 1{|ζ ′n
i |≤1} − (

ζ n
i 1{|ζ n

i |≤1} − an
i

)∣∣ ≤ 3
(
1{|ζ ′n

i |>1} + 1{|ζ n
i |>1}

)
.

The result is then obvious.�

Finally, we will often encounter the following situation, in connection with our
basic processY : we have a pair(Zn,�n) of (possibly multi-dimensional) processes
of the form

Zn
t =

[nt]∑
i=1

ηn
i , �n

t =
[nt]∑
i=1

ζ n
i .(2.14)

Further, we have

ζ n
i = g

(
X(i−1)/n

)
ζ ′n
i ,(2.15)

and for eachn the sequence(ηn
i , ζ ′n

i ), i = 1,2, . . . , is i.i.d. We set�′n
t = ∑[nt]

i=1 ζ ′n
i .

Assume also thatZn converges in probability (for the Skorokhod topology) to a
limit Z of the formZt = Yt +at for some constanta. Then, combining Lemma 2.1
with a fundamental property of convergent sequences of processes having (UT),
we get the following:

LEMMA 2.8. In the previous setting, suppose that the pair(Zn
1,�′n

1 ) of
random variables converges in law to(Z1, γ

′) with γ ′ a random variable
independent ofZ1, and thatg is a continuous function. Then there is a Lévy
process�′, independent ofY and unique in law, such that the processes
(Zn,�n,�′n) converge in law to(Z,�,�′), where�t = ∫ t

0 g(Xs−) d�′
s . If further

γ ′ is a constant, then we get�t = ∫ t
0 g(Xs−)γ ′ ds, and the convergence of

(Zn,�n,�′n) takes place in probability.

PROOF. Lemma 2.1 yields the convergence in law of(Zn,�′n) to some Lévy
process(Z′,�′) which is unique in law, and the independence of the variablesZ1
andγ ′ implies the independence of the processesZ and�′. Further, sinceZ′

1 = Z1
in distribution, then the laws ofZ andZ′ are the same: so we can realize(Z′,�′)
with a first componentZ′ equal to the original processZ. And if further γ ′ is
a constant, then obviously�′

t = γ ′t and the convergence of(Zn,�′n) to (Z,�′)
holds in probability.

Finally, Lemma 2.1 also yields the (UT) property for(�′n), and a fundamental
property of (UT) [Theorem VI.6.22 of Jacod and Shiryaev (2003)] gives the claim.

�
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3. Some preliminaries. As seen in Proposition 2.4, we can and will assume
thatf is C3 with compact support, and that|�Y | ≤ p identically for some integer
p ≥ 1, which amounts to saying thatθ(p) = 0.

3.1. About the Lévy measure.The following quantities, whereβ > 0, will be
of interest:

c(β) =
∫
{|x|≤β}

|x|2F(dx),

d+(β) =
∫
{x>β}

|x|F(dx), d−(β) =
∫
{x<−β}

|x|F(dx),

ρ+(β) =
∫
{x>β}

|x|αF (dx), ρ−(β) =
∫
{x<−β}

|x|αF (dx),

(3.1)
δ(β) = d+(β) + d−(β), ρ(β) = ρ+(β) + ρ−(β),

d ′(β) = d+(β) − d−(β), b′ = b +
∫
{|x|>1}

xF (dx),

d(β) = b′ − d ′(β).

Note thatd(β) = b − ∫
{β<|x|≤1} xF (dx) if β < 1. We will now give some

estimates on these quantities. First, observe that, for all 0≤ a < b ≤ 1 andγ > 0,
we have ∫

{a<x≤b}
|x|γ F (dx) = γ

∫ b

0
yγ−1(θ+(y ∨ a) − θ+(b)

)
dy,(3.2)

and a similar relation on the negative side. Introduce also the notation

s(β) =



1, if α < 1,

log
(

1

β

)
, if α = 1,

1

βα−1
, if α > 1.

Then, sinceθ(p) = 0, we readily deduce that under Hypothesis (H1-α) we have

c(β) ≤ Cβ2−α, ρ(β) ≤ C log
(

1

β

)
,

∫
{|x|>β}

|x|α/2F(dx) ≤ C

βα/2
,

(3.3)
δ(β) + |d(β)| + d+(β) + d−(β) + |d ′(β)| ≤ Cs(β).

Further, ifα < 1, thend+(β), d−(β) andd(β) converge asβ → 0 to some finite
limits d+, d− andd , andd is as in Theorem 1.2(d).

Under Hypothesis (H3) we also have

d ′(β) = 0, |d(β)| ≤ C,(3.4)
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while under Hypotheses (H3) and (H4) we even haveb = b′ = d(β) = 0.
Next suppose that Hypothesis (H2-α) holds. Taking advantage of (3.2), we

obtain the following equivalences or convergences asβ → 0:

c(β) ∼ αθ

2− α
β2−α,

ρ+(β)

log(1/β)
→ αθ+,

ρ−(β)

log(1/β)
→ αθ−,

d+(β) → d+, d−(β) → d− if α < 1,(3.5)

d+(β)

log(1/β)
→ θ+,

d−(β)

log(1/β)
→ θ− if α = 1,

βα−1d+(β) → αθ+
α − 1

, βα−1d−(β) → αθ−
α − 1

if α > 1.

We will also need an estimate of the integral ofx logx w.r.t. F whenα = 1. For
this we first observe that, analogously to (3.2),∫

{a<x≤b}
(x logx)F (dx) =

∫ b

0
(1+ logy)

(
θ+(y ∨ a) − θ+(b)

)
dy,

and a similar relation on the negative side. We then deduce that for everya > 0
and asβ → 0,

Hypothesis (H2-1)⇒


1

(log(1/β))2

∫ a

β
(x logx)F (dx) → −θ+

2
,

1

(log(1/β))2

∫ −β

−a
(|x| log|x|)F (dx) → −θ−

2
.

(3.6)

3.2. About the Lévy process.Now we split the processesY andY ′ = f (X).
We first recall that ifµ is the jump measure ofY andν(ds, dx) = ds ⊗ F(dx) is
its predictable compensator, for eachβ > 0, we can write [recalling thatc = 0; we
denote byU ∗ (µ − ν) the stochastic integral process of the predictable function
U on� × R+ × R w.r.t. µ − ν]

Y = Aβ + Mβ + Nβ where
(3.7)

A
β
t = d(β)t, Mβ = x1{|x|≤β} ∗ (µ − ν), Nβ = x1{|x|>β} ∗ µ.

ThenMβ is a square-integrable martingale with predictable bracket〈Mβ,Mβ〉t =
c(β)t . Since|�Y | ≤ p, we haveNp = 0 andY = Ap + Mp andA

p
t = b′t . We

also haveA1
t = bt .

Next, we setg = ff ′, which is aC2 function with compact support. We have
the decomposition

G(x,y) := f
(
x + yf (x)

) − f (x) = yg(x) + y2k(x, y),(3.8)
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with k a C1 function which vanishes outsideK × R for some compact subsetK

of R.
Now we turn to the decomposition of the semimartingaleY ′ = f (X). We

introduce the notation

b
β
t = g(Xt−) d(β) +

∫
{|x|≤β}

F(dx)x2k(Xt−, x).

Then Itô’s formula yields

Y ′ = Y ′
0 + A′β + M ′β + N ′β,

where

A
′β
t =

∫ t

0
bβ
s ds,

M ′β = G(X−, x)1{|x|≤β} ∗ (µ − ν),

N ′β = G(X−, x)1{|x|>β} ∗ µ.

Observe that

|bβ
t | ≤ C

(|d(β)|) + c(β)(3.9)

and

〈M ′β,M ′β〉t =
∫ t

0
c′
β,s ds wherec′

β,t ≤ Cc(β).(3.10)

We also set

Yβ = Aβ + Mβ, Y ′β = A′β + M ′β.(3.11)

3.3. A decomposition forWn. 1. The ratesun have been described in Section 1
to the case we are in. We will also choose a sequenceβn going to 0 in such a way
that

λn = θ(βn)

n
→ 0.(3.12)

We write cn = c(βn), dn = d(βn), d ′
n = d ′(βn), ρn = ρ(βn) andδn = δ(βn). The

precise choice ofβn is as follows (we repeat also the definition ofun for easier
reading):

Case1. un = ( n
logn

)1/α andβn = logn

n1/(2α) .

Case2a. un = n
(logn)2 andβn = logn

n
.

Case2b. un = n
logn

andβn = logn
n

.

Case3a. un = n and βn = (logn)2

n
.

Case3b. un = ( n
logn

)1/α andβn = (
logn

n
)1/α.
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Taking advantage of the estimates of (3.3) we get the following:

Case1. cn ≤ C
(logn)2−α

n(2−α)/(2α)
, |dn| + δn ≤ C

nα−1/(2α)

(logn)α−1
,

λn ≤ C
1

n1/2(logn)α

Case2a. cn ≤ C
logn

n
, |dn| + δn ≤ C logn, λn ≤ C

logn
,

Case2b. cn ≤ C
logn

n
, |dn| ≤ C, δn ≤ C logn, λn ≤ C

logn
,

Case3a. cn ≤ C
(logn)4−2α

n2−α
, |dn| + δn ≤ C,

λn ≤ C

n1−α(logn)2α
,

Case3b. cn ≤ C

(
logn

n

)(2−α)/α

, dn = 0, δn ≤ C, λn ≤ C

logn
.

(3.13)

If, further, Hypothesis (H2-α) holds, we get (sincedn = b′ − d ′
n) the following:

Case1. cn ∼ αθ

2− α

(logn)2−α

n(2−α)/(2α)
,

dn(logn)α−1

n(α−1)/(2α)
→ − αθ ′

α − 1
,

λn ∼ θ
1

n1/2(logn)α
,

Case2a. cn ∼ θ
logn

n
,

dn

logn
→ −θ ′, λn ∼ θ

logn
,

Case3a. cn ∼ αθ

2− α

(logn)4−2α

n2−α
, dn → d,

λn ∼ θ

n1−α(logn)2α
,

Case2b, 3b. λn ∼ θ

logn
.

(3.14)

2. By virtue of Theorem 2.2 we have to prove the convergence of the processes
( Y

n
,unW

n). Both Y
n
t andunW

n
t are the sums fori between 1 and[nt] of i.i.d.

variables, sayyn
i = Yi/n − Y(i−1)/n and wn

i , each one depending only on the
increments ofY over the intervalI (n, i) = ( i−1

n
, i

n
], and forwn

i on the “truncation”
at levelβn.

Each of these variables,yn
i andwn

i , will in turn be decomposed into small bits
which are handled separately, and which we callζ n

i (j) for j between 1 and 14!
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This is done in such a way that if

�n(j)t =
[nt]∑
i=1

ζ n
i (j),

then

Y
n = �n(13) + �n(14), unW

n =
12∑

j=1

�n(j).(3.15)

In order to do this, we introduce a number of notations. First, denote byX′n,i

the unique solution over( i−1
n

,∞) of the equationdX′n,i = f (X
′n,i
− ) dY βn starting

atX(i−1)/n at time i−1
n

. Then we set

Y
n,i
t = Y

βn
t − Y

βn

(i−1)/n, Y
′n,i
t = Y

′βn
t − Y

′βn

(i−1)/n

M
n,i
t = M

βn
t − M

βn

(i−1)/n, A
n,i
t = A

βn
t − A

βn

(i−1)/n = dn

(
t − i − 1

n

)
for t ≥ i − 1

n
,

Ŷ n
i = sup

s∈I (n,i)

|Yn,i
s |, M̂n

i = sup
s∈I (n,i)

|Mn,i
s |, Ân

i = sup
s∈I (n,i)

|An,i
s |,

X̃n
i = sup

s∈I (n,i)

∣∣Xs − X(i−1)/n

∣∣, X̃′n
i = sup

s∈I (n,i)

∣∣X′n,i
s − X

′n,i
(i−1)/n

∣∣.
Standard arguments, using (3.9) and (3.10) and also the boundedness off for

X̃n
i andX̃′n

i , yield

E
(
(M̂n

i )2|F(i−1)/n

) ≤ C
cn

n
,

E
(
(Ân

i )
2|F(i−1)/n

) ≤ C
c2
n + d2

n

n
,

E
(
(Ŷ n

i )2|F(i−1)/n

) ≤ C

(
cn

n
+ d2

n

n2

)
,(3.16)

E
(
(X̃n

i )2|F(i−1)/n

) ≤ C

n
,

E
(
(X̃′n

i )2|F(i−1)/n

) ≤ C

(
cn

n
+ d2

n

n2

)
.

Let denote byT (n, i)p for p = 1,2, . . . , the successive jump times ofY , after
i−1
n

and of size bigger than or equal toβn. Let alsoK(n, i) be the (random) integer
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such thatT (n, i)K(n,i) ≤ i
n

< T (n, i)K(n,i)+1. Then we set fort ≥ (i − 1)/n,

V
n,i
t = G

(
X(i−1)/n, x

)
1{|x|>βn}1((i−1)/n,∞)(s) 
 µT (n,i)1∧t ,

V
′n,i
t = N

′βn
t − N

′βn

(i−1)/n.

Now, we can introduce the variablesζ n
i (j) occuring in (3.15):

ζ n
i (1) = un

∫
I (n,i)

(
Y

′n,i
s− − g

(
X(i−1)/n

)
Y

n,i
s−

)
dYs,

ζ n
i (2) = ung

(
X(i−1)/n

)(∫
I (n,i)

Y
n,i
s− dMβn

s +
∫
I (n,i)

M
n,i
s− dAβn

s

)
,

ζ n
i (3) = un

∫
I (n,i)

(V
′n,i
s− − V

n,i
s− ) dY βn

s ,

ζ n
i (4) = un

∫
[T (n,i)3,i/n]

V
′n,i
s− dNβn

s 1{K(n,i)≥3},

ζ n
i (5) = un

(
g
(
XT (n,i)1−

) − g
(
X(i−1)/n

))
�YT (n,i)1�YT (n,i)21{K(n,i)≥2},

ζ n
i (6) = unk

(
XT (n,i)1−,�YT (n,i)1

)
�Y 2

T (n,i)1
�YT (n,i)21{K(n,i)≥2},

ζ n
i (7) = ung

(
X(i−1)/n

)(∫
I (n,i)

Y
n,i
s− dNβn

s − �YT (n,i)1Y
n,i
T (n,i)1

1{K(n,i)≥1}
)
,

ζ n
i (8) = unk

(
X(i−1)/n,�YT (n,i)1

)(
�YT (n,i)1

)2(
M

n,i
i/n − M

n,i
T (n,i)1

)
,

ζ n
i (9) = ung

(
X(i−1)/n

)
�YT (n,i)1M

n,i
i/n1{K(n,i)≥1},

ζ n
i (10) = ung

(
X(i−1)/n

) ∫
I (n,i)

(
A

n,i
s− + �YT (n,i)11{K(n,i)≥1}

)
dAβn

s ,

ζ n
i (11) = ung

(
X(i−1)/n

)
�YT (n,i)1�YT (n,i)21{K(n,i)≥2},

ζ n
i (12) = unk

(
X(i−1)/n,�YT (n,i)1

)(
�YT (n,i)1

)2
dn

(
i

n
− T (n, i)1

)
1{K(n,i)≥1},

ζ n
i (13) = M

n,i
i/n + ∑

j≥2

�YT (n,i)j 1{K(n,i)≥j },

ζ n
i (14) = dn

n
+ �YT (n,i)11{K(n,i)≥1}.

Then we deduce from (3.7) and from (2.1) (after some tedious calculations)
that (3.15) holds.

Finally, the following property will be used over and over again:

Conditionally onF(i−1)/n the variables(�YT (n,i)j )j≥1,K(n, i), Y n,i

are independent; eachYT (n,i) has the law 1
θ(βn)

F (dx)1{|x|>βn};
K(n, i) has a Poisson law with parameterλn.

(3.17)
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4. The key lemma. This section is devoted to proving the next lemma:

LEMMA 4.1. Assume that we are in one of the Cases1, 2a, 2b, 3aor 3b.

(a) We have�n(j)
P→ 0 if j = 1, . . . ,8, and also

• for j = 9 in Cases2a, 2b, 3aand3b;
• for j = 10 in Cases1, 2band3b;
• for j = 11 in Cases1 and3a;
• for j = 12 in Cases1, 2a, 2band3b;
• for j = 13 in Cases1, 2b, 3aand3b.

(b) In the remaining cases, and for j = 9 (resp. j = 10, resp. j = 11, resp.
j = 12,resp. j = 13,resp. j = 14),the sequences(ζ n

i (j)) satisfy(2.9) [resp. (2.8),
resp. (2.9),resp. (2.7),resp. (2.8),resp. (2.8)],with (2.11).

We will proceed through a large number of (very technical) steps.

4.1. Step1: auxiliary results. Let us first derive some easy consequences of
Cauchy–Schwarz and Doob inequalities. We consider a locally square-integrable
martingaleN such that〈N,N〉t = ∫ t

0 cs ds, wherec is a bounded process, and a
constantγ , and also a bounded predictable processH , and fixn andi, and set for
t > i−1

n
,

Zt =
∫ t

(i−1)/n
Hs(γ ds + dNs).

LEMMA 4.2. In the above setting, we have fort > i−1
n

,

E
(
Zt |F(i−1)/n

) = γ

∫ t

(i−1)/n
E

(
Hs |F(i−1)/n

)
ds,(4.1)

E

(
sup

t∈I (n,i)

Z2
t

∣∣F(i−1)/n

)
≤ 2γ 2

n2
E

(
sup

t∈I (n,i)

H 2
t

∣∣∣F(i−1)/n

)
(4.2)

+ 8

n
E

(
sup

t∈I (n,i)

H 2
t ct

∣∣∣F(i−1)/n

)
.

Next we consider integrals w.r.t. the random measureµ. LetW be a predictable
function on�× R+ × R, which is bounded on�× R+ × [−p,p] (recall thatp is
such thatF charges only[−p,p]), and such that the process

Hs =
∫

R

|W(s, x)|F(dx)

is also bounded. We fix againn andi, and set fort > i−1
n

,

Zt =
∫ t

(i−1)/n

∫
R

W(s, x)µ(ds, dx).
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LEMMA 4.3. In the above setting, we have fort > i−1
n

,

E
(
Zt |F(i−1)/n

) =
∫ t

(i−1)/n
ds E

(∫
R

W(s, x)F (dx)
∣∣∣F(i−1)/n

)
,(4.3)

E

(
sup

t∈I (n,i)

Z2
t

∣∣∣F(i−1)/n

)
≤ 2

n2E

(
sup

t∈I (n,i)

(∫
R

W(t, x)F (dx)

)2∣∣∣F(i−1)/n

)
(4.4)

+ 8

n
E

(
sup

t∈I (n,i)

∫
R

W(t, x)2F(dx)
∣∣∣F(i−1)/n

)
.

PROOF. We can writeZ = Z′ + Z′′, where

Z′
t =

∫ t

(i−1)/n

∫
R

W(s, x)ν(ds, dx), Z′′
t = Zt − Z′

t .

Since ν(ds, dx) = ds ⊗ F(dx) is the predictable compensator ofµ, we have
E(Zt |F(i−1)/n) = E(Z′

t |F(i−1)/n), and (4.3) readily follows. We also get

E

(
sup

t∈I (n,i)

Z′2
t

∣∣∣F(i−1)/n

)
≤ 1

n2
E

(
sup

t∈I (n,i)

(∫
R

W(t, x)F (dx)

)2∣∣∣F(i−1)/n

)
.

On the other hand,Z′′ is a square-integrable martingale with bracket〈Z′′,Z′′〉t =∫ t
(i−1)/n ds

∫
R

W(s, x)2F(dx) and, thus,

E

(
sup

t∈I (n,i)

Z′′2
t

∣∣∣F(i−1)/n

)
≤ 4

∫ i/n

(i−1)/n
ds E

(∫
R

W(t, x)2F(dx)
∣∣∣F(i−1)/n

)
.

Then (4.4) readily follows. �

In the next auxiliary result, we fixn andi and write for simplicityTj = T (n, i)j
andK = K(n, i). For somer ≥ 2, let alsoHr be a random variables satisfying

Hr , K and�YTr are independent conditionally onF(i−1)/n,
(4.5)

|Hr | ≤ C0

r−1∑
j=1

|�YTj
|.

Recall the notation (3.12) forλn. We also setvn(r) = e−λn
λr

n
r ! andH ′

r = Hr�YTr .
The lemma below does not require any particular choice for the sequenceβn.

LEMMA 4.4. Under Hypothesis(H1-α) with α ∈ (0,2) and (4.5), for all
r ′ ≥ r ≥ 2 andy > 0,we have the following estimates, where the constantC below
depends onC0 in (4.5):

P
(|unH

′
r | > y,K = r ′|F(i−1)/n

) ≤ C
r1+αuα

nvn(r
′)

yαθ(βn)
2 log

(
1

βn

)
,(4.6)
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E
(|unHr |α1{K=r ′}|F(i−1)/n

) ≤ Cr2uα
nvn(r

′)
θ(βn)

log
(

1

βn

)
,(4.7)

E
(|unH

′
r |21{|unH ′

r |≤y,K=r ′}|F(i−1)/n

) ≤ Cr2y2−α uα
nvn(r

′)
θ(βn)

2 log
(

1

βn

)
,(4.8)

E
(|unH

′
r |1{K=r ′}|F(i−1)/n

) ≤ Cr
unvn(r

′)
θ(βn)2

δ2
n,(4.9)

α > 1 �⇒ E
(|unH

′
r |1{|unH ′

r |>y,K=r ′}|F(i−1)/n

)
(4.10)

≤ C
r2uα

nvn(r
′)

yα−1θ(βn)
2 log

(
1

βn

)
,

α < 1 �⇒ E
(|unH

′
r |1{|unH ′

r |≤y,K=r ′}|F(i−1)/n

)
(4.11)

≤ C
r2uα

nvn(r
′)

yα−1θ(βn)2

(
log

(
1

βn

))2

.

PROOF. Recalling (3.17) and (4.5), we see that the left-hand side of (4.6) is
smaller than

≤ vn(r
′)P

(∣∣�YTr

∣∣ >
y

unC0
∑r−1

j=1 |�YTj
|
∣∣∣F(i−1)/n

)

= vn(r
′)

θ(βn)

∫
{|x|>βn}

F(dx)P

(
r−1∑
j=1

∣∣�YTj

∣∣ >
y

unC0|x|
∣∣∣F(i−1)/n

)

≤ rvn(r
′)

θ(βn)

∫
{|x|>βn}

F(dx)P

(∣∣�YT1

∣∣ >
y

(r − 1)unC0|x|
∣∣∣F(i−1)/n

)

≤ rvn(r
′)

θ(βn)2

∫
{|x|>βn}

F(dx)E

(∫
F(dz)1{|z|>y/(r−1)unC0|x|}

∣∣∣F(i−1)/n

)

≤ C
r1+αuα

nvn(r
′)

θ(βn)
2yα

ρn ≤ C
r1+αuα

nvn(r
′)

yαθ(βn)
2 log

(
1

βn

)
,

where we have used Hypothesis (H1-α) and (3.3). Hence, (4.6) holds.
Second,

E
(|Hr |α1{K=r ′}|F(i−1)/n

) ≤ Cvn(r
′)(r − 1)α∨1E

(∣∣�YT1

∣∣α|F(i−1)/n

)
≤ r2vn(r

′)
θ(βn)

ρn,

and (4.7) follows from (3.3).



EULER SCHEME FOR DISCONTINUOUS SDEs 1851

Third, by (3.3) the left-hand side of (4.8) is

= E
(
(unHr)

2|�YTr |21{|�YTr |≤y/|unHr |}1{K=r ′}|F(i−1)/n

)
= 1

θ(βn)
E

(
(unHr)

2c

(
y

|unHr |
)
1{K=r ′}

∣∣∣F(i−1)/n

)

≤ C
y2−α

θ(βn)
E

(|unHr |α1{K=r ′}|F(i−1)/n

)
,

and (4.8) follows from (4.7).
Next the left-hand side of (4.9) is smaller thanCun(r − 1)vn(r

′)(E(|�YT1|))2.
But E(|�YT1|) = δn

θ(βn)
, hence, (4.9).

Next, suppose thatα > 1. The left-hand side of (4.10) is

= E
(|unHr ||�YTr |1{|�YTr |>y/|unHr |}1{K=r ′}|F(i−1)/n

)
≤ 1

θ(βn)
E

(
|unHr |δ

(
y

|unHr |
)
1{K=r ′}

∣∣∣F(i−1)/n

)

≤ C

yα−1θ(βn)
E

(|unHr |α1{K=r ′}|F(i−1)/n

)
[use (3.3)], and (4.10) follows from (4.7).

Finally, suppose thatα < 1. The left-hand side of (4.11) is

= E
(|unHr |

∣∣�YTr

∣∣1{|�YTr |≤y/|unHr |}1{K=r ′}|F(i−1)/n

)
≤ E

(
|unHr |

∣∣�YTr

∣∣α y1−α

|unHr |1−α
1{K=r ′}

∣∣∣F(i−1)/n

)

≤ Cρny
1−α

θ(βn)
E

(|unHr |α1{K=r ′}|F(i−1)/n

)
and (4.11) follows from (3.3) and (4.7).�

Now we proceed to proving Lemma 4.1, going step by step.

4.2. Step2: j = 1,2,3. First, from (3.8) and (3.11) we see that fort > i−1
n

,

Y
′n,i
t − g

(
X(i−1)/n

)
Y

n,i
t

=
∫ t

(i−1)/n
Hs(dn ds + dMβn

s ) +
∫ t

(i−1)/n

∫
R

W(s, x)µ(ds, dx),

where Ht = g(Xt−) − g(X(i−1)/n) and W(t, x) = x2k(Xt−, x)1{|x|≤βn} (with
n andi fixed). Then sinceg is bounded with a bounded derivative andk is bounded
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over R × [−p,p], we deduce from (4.2) (withN = Mβn ) and (4.4), together
with (3.16) and the fact that|Ht | ≤ CX̃n

i for t ∈ I (n, i), that

E

(
sup

s∈I (n,i)

(
Y ′n,i

s − g
(
X(i−1)/n

)
Yn,i

s

)2
∣∣∣F(i−1)/n

)
≤ Cαn

whereαn = cnβ
2
n

n
+ cn

n2
+ d2

n

n3
.

Now we haveY = Mp + Ap andA
p
t = b′t : we can apply once more Lemma 4.2

(with N = Mp) to get (2.8) forζ n
i (1) with ξn = Cun

√
αn andξ ′

n = Cξ2
n . Since

ξn → 0 by (3.13), we obtain the result forj = 1 from Lemma 2.5.
By (3.16) and Lemma 4.2 again, we have (2.8) forζ n

i (2) with ξn = 0 and

ξ ′
n = Cu2

ncn(
cn

n
+ d2

n

n2 ), which goes to 0 by (3.13): hence, the result forj = 2.

Next we haveV ′n,i − V n,i = Un,i 
 µ [use (3.8)], where

Un,i(s, x) = (
g(Xs−)1{s>T (n,i)1}
+ (

g(Xs−) − g
(
X(i−1)/n

))
1{(i−1)/n<s≤T (n,i)1}

)
x1{|x|>βn}

+ (
k(Xs−, x)1{s>T (n,i)1}
+ (

k(Xs−, x) − k
(
X(i−1)/n, x

))
1{(i−1)/n<s≤T (n,i)1}

)
x21{|x|>βn}.

The fact thatf is C3 with compact support implies that|g(x) − g(x′)| ≤ Cu

and |k(x, y) − k(x′, y)| ≤ Cu whenever|x − x′| ≤ u andy ∈ [−p,p]. Then if
t ∈ I (n, i), we have∣∣∣∣ ∫

R

Un,i(t, x)F (dx)

∣∣∣∣ ≤ C(|d ′
n| + 1)

(
1{K(n,i)≥1} + X̃n

i

)
,∫

R

Un,i(t, x)2F(dx) ≤ C
(
1{K(n,i)≥1} + (X̃n

i )2).
Then it follows from (3.16), (3.17) and from Lemma 4.3 that

sup
s∈I (n,i)

∣∣E(V ′n,i
s − V n,i

s |F(i−1)/n)
∣∣ ≤ Cα′

n

whereα′
n = 1

n
(1+ |dn|)

(
λn + 1√

n

)
,

E

(
sup

s∈I (n,i)

|V ′n,i
s − V n,i

s |2
∣∣∣F(i−1)/n

)
≤ Cα′′

n

whereα′′
n = 1

n

(
1+ d2

n

n

)(
λn + 1

n

)
.

Recall thatYβn = Mβn + Aβn and A
βn
t = dnt , so the above estimates and

an application of Lemma 4.2 (withN = Mβn ) allow us to deduce thatζ n
i (3)
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satisfies (2.8) withξn = Cun|dn|α′
n andξ ′

n = Cu2
nα

′′
n(cn + d2

n/n). By (3.13) these
go to 0, hence, the result forj = 3.

4.3. Step3: j = 4. In order to studyζ n
i (4) we apply Lemma 4.4: we use

the notationTj and K of Step 1 and we setHr = �Y ′
T1

+ · · · + �Y ′
Tr−1

and

H ′
r = Hr�YTr and H ′′

k = un

∑k
r=3H ′

r (an empty sum being set to 0). The key
observation is then that

ζ n
i (4) = H ′′

K1{K≥3}.
Observe that eachHr satisfies (4.5), and recall (3.17). We will also use the easily

proven fact that for anya, a′ > 0 andr ∈ N, there is a constantCa,a′,r such that
(recall thatλn → 0)

0 < λn ≤ 1

a
�⇒

∞∑
k=r

vn(k)akka′ ≤ Ca,a′,rλ
r
n.(4.12)

In view of (4.6), we get fory > 0 andk′ ≥ k ≥ 3,

P
(|H ′′

k | > y,K = k′|F(i−1)/n

) ≤
k∑

r=3

P

(
|unH

′
r | >

y

k − 2
,K = k′∣∣∣F(i−1)/n

)
(4.13)

≤ C
k2+2αuα

nvn(k
′)

yαθ(βn)2 log
(

1

βn

)
.

Therefore, sinceλn = θ(βn)/n, we deduce from (4.12) and (4.13),

P
(|ζ n

i (4)| > y|F(i−1)/n

) =
∞∑

k=3

P
(|H ′′

k | > y,K = k|F(i−1)/n

)
(4.14)

≤ Cuα
n

n2yα
log

(
1

βn

)
λn.

Next, a simple computation shows that fork ≥ 3,

H ′′2
k 1{|H ′′

k |≤1} ≤
k−1∑
r=3

2k−r1{|H ′′
r |>1} +

k∑
r=3

2k+1−r(unH
′
r )

21{|unH ′
r |≤2}.

Hence, we obtain, by virtue of (4.8) and (4.13),

E
(
H ′′2

k 1{|H ′′
k |≤1,K=k}|F(i−1)/n

) ≤ C2kk2α+3uα
nvn(k)

θ(βn)2
log

(
1

βn

)
,

and by (4.12),

E
(
ζ n
i (4)21{|ζ n

i (4)|≤1}|F(i−1)/n

) =
∞∑

k=3

E
(|H ′′

k |21{|H ′′
k |≤1,K=k}|F(i−1)/n

)
(4.15)

≤ Cuα
n

n2
log

(
1

βn

)
λn.
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Next, for r ≥ 2, we haveH ′′
r 1{|H ′′

r |≤y|} = ∑4
j=1µ

j
r (y), where

µ1
r (y) = H ′′

r−11{|H ′′
r−1|≤y/2}, µ2

r (y) = −H ′′
r−11{|H ′′

r−1|≤y/2,|H ′′
r |>y},

µ3
r (y) = H ′′

r 1{|H ′′
r |≤y,|H ′′

r−1|>y/2}, µ4
r (y) = unH

′
r1{|H ′′

r−1|≤y/2,|H ′′
r |≤y}.

Inequality (4.13) yields, fork ≥ r ,

E
(|µ2

r (y) + µ3
r (y)|1{K=k}|F(i−1)/n

) ≤ Cr2+2α uα
nvn(k)

θ(βn)2
y1−α log

(
1

βn

)
.(4.16)

Set also

νn =


(
log

(
1

βn

))2

, if α ≤ 1,

u1−α
n δ2

n, if α > 1.

(4.17)

Note that|µ4
r (y)| ≤ |unH

′
r |1{|unH ′

r |≤3y/2}, so (4.9) whenα ≥ 1 and (4.11) when
α < 1 yield

k ≥ r �⇒ ∣∣E(
µ4

r (y)1{K=k}|F(i−1)/n

)∣∣ ≤ Cr2uα
nνnvn(k)

θ(βn)2
(1+ y1−α).(4.18)

Putting (4.16) and (4.18) together, and settingξr,k(y) = |E(H ′′
r 1{|H ′′

r |≤y,K=k}|
F(i−1)/n)|, we get for 3≤ r ≤ k,

ξr,k(y) ≤ ξr−1,k

(
y

2

)
+ Cr2+2α(1+ y1−α)

uα
nvn(k)

θ(βn)
2

(
νn + log

(
1

βn

))
.

Recalling thatH ′′
2 = 0, hence,ξ2,k(y) = 0, an induction gives

ξr,k(1) ≤ Cr3+2α2r(α−1)+ uα
nvn(k)

θ(βn)2

(
νn + log

(
1

βn

))
and, thus, we obtain by (4.12),

∣∣E(
H ′′

K1{|H ′′
K |≤1,K≥3}|F(i−1)/n

)∣∣ ≤
∞∑

k=3

ξk,k(1)

≤ C
uα

n

n2

(
νn + log

(
1

βn

))
λn,

(4.19) ∣∣E(
H ′′

K1{|H ′′
K |≤1,K≥4}|F(i−1)/n

)∣∣ ≤
∞∑

k=4

ξk,k(1)

≤ C
uα

n

n2

(
νn + log

(
1

βn

))
λ2

n.

In Cases 2b and 3b, the symmetry property of�YT3 and (3.17) and the fact
that H ′′

3 = unH3�YT3 yield that E(H ′′
3 1{|H ′′

3 |≤1,K=3}|F(i−1)/n) = 0; therefore,
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the above two inequalities yield, withλ′
n = λn in Cases 2b and 3b andλ′

n = 1
otherwise,∣∣E(

ζ n
i (4)1{|ζ n

i (4)|≤1}|F(i−1)/n

)∣∣ ≤ C
uα

n

n2

(
νn + log

(
1

βn

))
λnλ

′
n.(4.20)

Then we put together (4.14), (4.15) and (4.20): we see thatζ n
i (4) satisfies (2.9)

with

ξn = Cuα
n

n

(
νn + log

(
1

βn

))
λnλ

′
n,

ξ ′
n = Cuα

n

n
log

(
1

βn

)
λn, ξ ′′

n,y = Cuα
n

nyα
log

(
1

βn

)
λn.

Using (3.13), we see that the above quantities go to 0 asn → ∞, hence, the result
for j = 4.

4.4. Step 4: j = 5. Observe that|ζ n
i (5)| ≤ CunX̃

′n
i |�YT (n,i)1�YT (n,i)2|

1{K(n,i)≥2}. Then by (3.16) and (3.17),

E
(|ζ n

i (5)||F(i−1)/n

) ≤ Cun

P (K(n, i) ≥ 2|F(i−1)/n)

θ(βn)2

(
cn

n
+ d2

n

n2

)1/2

δ2
n

≤ C

n

un(cn/n + d2
n/n2)1/2δ2

n

n
,

E
(
ζ n
i (5)2|F(i−1)/n

) ≤ Cu2
n

P (K(n, i) ≥ 2|F(i−1)/n)

θ(βn)2

(
cn

n
+ d2

n

n2

)

≤ C

n

u2
n

n

(
cn

n
+ d2

n

n2

)
.

Hence, (2.8) holds withξn = C
unδ2

n

n
( cn

n
+ d2

n

n2 )1/2 andξ ′
n = C

u2
n

n
( cn

n
+ d2

n

n2 ). These
sequences go to 0 by (3.13), hence, the result forj = 5.

4.5. Step5: j = 6. Set Un
i = un�Y 2

T (n,i)1
|�YT (n,i)2|1{K(n,i)≥2}. As for the

proof of (4.6), and using (3.17), we get,

P
(
Un

i > y|F(i−1)/n

)
≤ Cλ2

nP

(
�Y 2

T (n,i)1

∣∣�YT (n,i)2

∣∣ >
y

un

∣∣∣F(i−1)/n

)
(4.21)

≤ C

n2

∫
{|x|>βn}

F(dx)

∫
{|x′|>y/unx2}

F(dx′)

≤ C

n2

∫
F(dx)

uα
n |x|2α

yα
≤ C

uα
n

n2yα
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because
∫ |x|2αF (dx) < ∞. Similarly, we have by (3.3),

P
(
Un

i 1{Un
i ≤1}F(i−1)/n

)
≤ Cun

n2

∫
{|x|>βn}

F(dx)|x|
∫
{|x′|≤1/

√
un|x|}

x′2F(dx′)(4.22)

≤ Cu
α/2
n

n2

∫
{|x|>βn}

F(dx)|x|α/2 ≤ Cu
α/2
n

n2β
α/2
n

.

Now we observe that|k(x, y)| ≤ C0 for some constantC0 > 0, hence,|ζ n
i (6)| ≤

C0U
n
i . Then if |ζ n

i (6)| > y for somey > 0, we must haveUn
i > y/C0; also if

|ζ n
i (6)| ≤ 1, then we haveζ n

i (6)2 ≤ |ζ n
i (6)| ≤ C0U

n
i 1{Un

i ≤1} + 1{Un
i >1}. Then it

readily follows from (4.21) and (4.22) that the sequence(ζ n
i (6)) satisfies (2.9)

with ξn = ξ ′
n = C

n
(uα

n + u
α/2
n

β
α/2
n

) andξ ′′
n,y = Cuα

n
nyα . Those sequences all go to 0, hence,

the result forj = 6.

4.6. Step6: j = 7. We use again all the notation of Step 1, so that (sinceYn,i

does not jump at timesTj )

ζ n
i (7) = ung

(
X(i−1)/n

) K∑
k=2

Hk, whereHk = Y
n,i
Tk∧i/n�YTk

.

On the one hand we haveH 2
k ≤ (Ŷ n

i )2�Y 2
Tk

, so

E
(
ζ n
i (7)2|F(i−1)/n

) ≤ Cu2
nE

(
K

K∑
k=2

�Y 2
Tk

(Ŷ n
i )2

∣∣∣F(i−1)/n

)

≤ Cu2
nδn

∞∑
k=2

vn(k)

θ(βn)

∫
{|x|>βn}

x2F(dx)(4.23)

≤ C
u2

n

n
λn

(
cn

n
+ d2

n

n2

)
because of (3.17), (3.16) and (4.12). On the other hand we can write

E
(
ζ n
i (7)|F(i−1)/n

)
= ung

(
X(i−1)/n

) ∞∑
k=2

E
(
�YTk

1{Tk≤i/n}Yn,i
Tk

|F(i−1)/n

)

= ung
(
X(i−1)/n

)
dn

∞∑
k=2

E

(
�YTk

1{Tk≤i/n}
(
Tk − i − 1

n

)∣∣∣F(i−1)/n

)
,
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again by (3.17) and becauseYn,i is equal to a martingale plusdn(t − i−1
n

).
Therefore,∣∣E(

ζ n
i (7)|F(i−1)/n

)∣∣ ≤ C
un|dn|

n
E

(
K∑

k=2

∣∣�YTk

∣∣∣∣∣F(i−1)/n

)

= C
un|dn|

n

∞∑
k=2

vn(k)

θ(βn)

∫
{|x|>βn}

|x|F(dx)(4.24)

≤ C
un|dn|

n2 δnλn.

So ζ n
i (7) satisfies (2.8) withξn = C

un|dn|δnλn

n
andξ ′

n = Cu2
n(

cn

n
+ d2

n

n2 )λn. Those
sequences go to 0, hence, the result forj = 7.

4.7. Step7: j = 8,9. We haveE(ζn
i (8)|F(i−1)/n) = E(ζn

i (9)|F(i−1)/n) = 0
[use (3.17)], and also|ζ n

i (8)| + |ζ n
i (9)| ≤ Cun|�YT (n,i)1|M̂n

i 1{K(n,i)≥1}, hence,
by (3.17) again and (3.16),

E
(
ζ n
i (8)2|F(i−1)/n

) + E
(
ζ n
i (9)2|F(i−1)/n

) ≤ Cu2
ncn

nθ(βn)
P (K ≥ 1) ≤ Cu2

ncn

n2 .

Then (2.8) holds forj = 8 andj = 9, with ξn = 0 andξ ′
n = Cu2

ncn/n. Except in
Case 1, we haveξ ′

n → 0: hence, the result forj = 8 andj = 9 if we are not in
Case 1.

It remains to study Case 1. For this we will use Lemma 2.6. We first calculate the
conditional characteristic functionφn,i(v) = E(eivζn

i (8)|F(i−1)/n) and φ′
n,i(v) =

E(eivζn
i (9)|F(i−1)/n). Recall thatMn,i is a Lévy process, independent ofF(i−1)/n

and satisfying

E
(
eivM

n,i
t

) = expt

∫
{|x|≤βn}

(eivy − 1− ivy)F (dy).(4.25)

Then, using (3.17) and the form ofζ n
i (8) andζ n

i (9), we see that

φn,i(v) = e−λn

+
∫ 1/n

0
e−θ(βn)s ds

∫
{|x|>βn}

F(dx)E
(
e
ivunx2k(X(i−1)/n,x)(M

n,i
1/n−M

n,i
s ))

,

φ′
n,i(v) = e−λn + 1− e−λn

nλn

∫
{|x|>βn}

F(dx)E
(
eivung(X(i−1)/n)xM

n,i
s

)
.

Observe that 1− e−λn = ∫ 1/n
0 e−θ(βn)s ds

∫
{|x|>βn} F(dx). Then if

γn,i(v, x, y) = eivunx
2k(X(i−1)/n,x)y − 1− ivunx

2k
(
X(i−1)/n, x

)
y,

zn,i(x, v, t) = 1− t

n

∫
{|y|≤βn}

γn,i(v, x, y)F (dy),
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the change of variablet = ns gives

φn,i(v) = 1+ 1

n

∫ 1

0
e−λnt dt

∫
{|x|>βn}

F(dx)
(
ezn,i (x,v,t) − 1

)
.(4.26)

In a similar way we obtain

φ′
n,i(v) = 1+ 1− e−λn

nλn

∫
{|x|>βn}

F(dx)
(
e
z′
n,i(x,v) − 1

)
,(4.27)

where

γ ′
n,i(v, x, y) = eivung(X(i−1)/n)xy − 1− ivung

(
X(i−1)/n

)
xy,

zn,i(x, v) = 1

n

∫
{|y|≤βn}

γ ′
n,i(v, x, y)F (dy).

Since g (resp. k) is bounded (resp. bounded onR × [−p,p]), we get
|γn,i(v, x, y)| ≤ C(|vunx

2y| ∧ |vunx
2y|2) and |γ ′

n,i(v, x, y)| ≤ C(|vunx
2y| ∧

|vunx
2y|2) whenever|x| ≤ p. But (3.3) yields∫

(|uy| ∧ |uy|2)F (dy)

= |u|
∫
{|y|>1/u}

|y|F(dy) + u2
∫
{|y|≤1/u}

y2F(dy) ≤ C|u|α.

Therefore,|zn,i(x, v, t)| ≤ C
n
|vunx

2|α and |z′
n,i(x, v)| ≤ C

n
|vunx|α, providedt ∈

[0,1] and|x| ≤ p. In particular, the suprema of|zn,i | and|z′
n,i | over all t ∈ [0,1],

i, x ∈ [−p,p] andv ∈ [−1,1] go to 0 asn → ∞ and are thus uniformly bounded
in n as well. Therefore, in (4.26) and (4.27) the terme. − 1 is smaller than
C
n
|vunx

2|α and C
n
|vunx|α, respectively. Sincex 
→ |x|2α is F -integrable, and

using also (3.3), we readily deduce

|φn,i(v) − 1| ≤ C|v|αuα
n

n2
, |φ′

n,i(v) − 1| ≤ C|v|αuα
n

n2
log

1

βn

.

In other words, the sequences(ζ n
i (8)) and(ζ n

i (9)) satisfy (2.12) with, respectively,
ξ ′′′
n,v = Cvαuα

n/n andξ ′′′
n,v = Cvαuα

n(log 1
βn

)/n. In the first case we haveξ ′′′
n,v → 0

for all v ≤ 1; in the second case we haveξ ′′′
n,v ≤ Cvα : then, combining Lemmas

2.6 and 2.5, we obtain the result forj = 8 andj = 9 in Case 1.

4.8. Step8: j = 10,11,12. First considerj = 10. We have

ζ n
i (10) = ung

(
X(i−1)/n

)dn

n

(
dn

2n
+ �YT (n,i)11{K(n,i)≥1}

)
.
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Thenan
i = E(ζn

i (10)|F(i−1)/n) andbn
i = E(ζn

i (10)2|F(i−1)/n) have

an
i = ung

(
X(i−1)/n

)dn

n

(
dn

2n
+ (1− e−λn)

d ′
n

θ(βn)

)
,(4.28)

bn
i ≤ Cu2

nd
2
n

n2

(
d2
n

n2
+ E

(
�Y 2

T (n,i)1
1{K(n,i)≥1}|F(i−1)/n

))
(4.29)

≤ C
u2

nd
2
n

n3

(
1+ d2

n

n

)
.

In particular,|an
i | ≤ C

un(d2
n+|dnd

′
n|)

n2 , so (2.8) holds withξn = C
un(d2

n+|dnd ′
n|)

n
and

ξ ′
n = C

u2
nd2

n

n2 (1 + d2
n

n
): these quantities go to 0 in Cases 1, 2b and 3a, and they are

always bounded: hence, the result forj = 10.
Next, considerj = 11. We apply Lemma 4.4, in which we setH2 =

g(X(i−1)/n)�YT1, so that (4.5) is satisfied andζ n
i (11) = unH

′
21{K≥2}. Then using

(4.6) and (4.8), and also (4.11) [resp. (4.9)] ifα < 1 (resp. if α ≥ 1) for H ′
2

and summing up overr ′ ≥ 2, we get that whenα ≤ 1, the sequences(ζ n
i (11))

satisfy (2.9) with

ξn = C
uα

n

n

(
log

1

βn

)2

, ξ ′
n = C

uα
n

n
log

1

βn

, ξ ′′
n,y = C

uα
n

nyα
log

1

βn

.(4.30)

In Case 3a (resp. 2a) we haveξ ′
n → 0 andξ ′′

n,y → 0 and alsoξn → 0 (resp.ξn ≤ C):
hence, the result forj = 11 in Cases 2a and 3a. In Cases 2b and 3b we still
have (4.30) but, for symmetry reasons, we may takeξn = 0: hence, we also get
the result in Cases 2b and 3b.

Now consider Case 1. The estimates (4.30) are not fine enough and we
have to resort on another method. Theζ n

i (11)’s satisfy (2.15) with ζ ′n
i =

un�YT (n,i)1�YT (n,i)21{K(n,i)≥2}. So to obtain the result it is enough by Lemma 2.8

to prove that if�′n
t = ∑[nt]

i=1 ζ ′n
i , then�′n

1 → 0 in law. Then by Lemma 2.5 it is
enough to prove that the sequences(ζ ′n

i ) satisfy (2.9) with (2.10). By construction
|ζ ′n

i | is either 0 [with probabilityan = e−λn(1+λn)] or bigger thanunβ
2
n , the latter

with probability 1−an. Further,unβ
2
n → ∞ in the present case, so (2.9) holds with

ξn = ξ ′
n = 0 andξ ′′

n,y = n(1−an) for all n large enough. Nown(1−an) ∼ nλ2
n

2 → 0
by (3.13), so indeed we get the result forj = 11 in Case 1.

Finally, considerj = 12. Since|ζ n
i (12)| ≤ Cun|dn|

n
|�YT (n,i)1|21{K(n,i)≥1}, we

readily get

E
(|ζ n

i (12)||F(i−1)/n

) ≤ Cun|dn|
nθ(βn)

P (K ≥ 1) ≤ Cun|dn|
n2 .

Then (2.7) holds withξn = Cun|dn|/n and we deduce the result forj = 12
from (3.13).
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4.9. Step9: j = 13,14. First consider forj = 13. We have

E
(
ζ n
i (13)|F(i−1)/n

) =
∞∑

r=2

vn(r)

θ(βn)
(r − 1)d ′

n,

E
(
ζ n
i (13)2|F(i−1)/n

) ≤ C

(
cn

n
+

∞∑
r=2

vn(r)

θ(βn)
(r − 1)2

)
.

Therefore, we have (2.8) withξn = Cλn|d ′
n| and ξ ′

n = C(cn + λn) [use (4.12)].
Then (2.11) always holds, and (2.10) holds except in Case 2a: hence, the result
for j = 13.

Finally, we have

E
(
ζ n
i (14)|F(i−1)/n

) = dn

n
+ d ′

n(1− e−λn)

nλn

= b′

n
+ d ′

n

n

1− λn − e−λn

λn

,

E
(
ζ n
i (14)2|F(i−1)/n

) ≤ C

(
d2
n

n2 + 1

n

)
.

Therefore, we have (2.8) withξn = C(1 + λn|dn|) andξ ′
n = C(1 + d2

n/n). Then
(2.10) holds in all cases, and the proof of Lemma 4.1 is now complete.

5. Proofs of the theorems.

5.1. Proof of Theorem1.1. By virtue of Corollary 2.3, we can deduce Theo-
rem 1.1 from the tightness of the sequence( Y

n
,unW

n) under Hypothesis (H1-α),
with our choice ofun andβn. For this, in view of (3.15), it is enough to prove the
tightness of the sequence of fourteen-dimensional processes((�n(j)1≤j≤14)n. But
this readily follows from Lemmas 2.5 and 4.1, and Theorem 1.1 is proved.

5.2. Proof of Theorem1.2(a). We suppose here that Hypothesis (H2-α) holds
with α > 1 (in particular, we are in Case 1). In view of Lemma 4.1, of (3.15) and
of Theorem 2.2, for obtaining Theorem 1.2(a) it suffices to prove that the sequence
(�n(14),�n(9)) converges in law to(Y,W), whereW is given by (1.7) andV is a
Lévy process independent ofY and characterized by (1.8).

Observe thatζ n
i (9) satisfies (2.15) withζ ′n

i = un�YT (,;i)1M
n,i
i/n1{K(n,i)≥1}. Let

�′n
t = ∑[nt]

i=1 ζ ′n
i . In view of Lemma 2.8 [applied withηn

i = ζ n
i (14)], it is then

enough to prove that the pair(�n(14)1,�
′n
1 ) converges in law to(Y1,V1), whereV1

is independent ofY1 and having (1.8) (fort = 1). In other words, if we denote byφn

the characteristic function of(�n(14)1,�
n
1), and by�(u) and�(u), respectively,
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the right-hand sides of (1.2) and (1.8) written fort = 1, it suffices to prove that for
all u, v ∈ R, we have

φn(u, v) → �(u)�(v).(5.1)

Using (3.17) and (4.25), we get

φn(u, v) = eiuundn

(
e−λn + 1− e−λn

θ(βn)

∫
{|x|>βn}

F(dx)eiux+zn(x,v)

)n

,

where

zn(x, v) = 1

n

∫
{|y|≤βn}

F(dy)(eivunxy − 1− iuvnxy).

This is similar to Section 4.7, wherez′
n,i plays the role ofzn here and, in particular,

|zn(x, v)| ≤ C
1

n
uα

n |v|α|x|α.(5.2)

We can rewriteφn as

φn(u, v) = eiuundn

(
1+ an

n

(
An(u) + Bn(v) + Cn(u, v)

))n

,(5.3)

wherean = 1−e−λn

λn
and

An(u) =
∫
{|x|>βn}

F(dx)(eiux − 1),

Bn(v) =
∫
{|x|>βn}

F(dx)
(
ezn(x,v) − 1

)
,

Cn(u, v) =
∫
{|x|>βn}

F(dx)(eiux − 1)
(
ezn(x,v) − 1

)
.

Combining (5.2) and|eiux − 1| ≤ |ux|, and sincex 
→ |x|α+1 is F -integrable,
we first get|Cn(u, v)| ≤ C 1

n
|u‖v|αuα

n , hence,

Cn(u, v) → 0.(5.4)

Second,
∫
{|x|>βn} F(dx)(eiux − 1 − iux) converges to

∫
{|x|>βn} F(dx)(eiux − 1 −

iux), while dn = b′ − d ′
n, hence,

An(u) + iudn → iub′ +
∫

F(dx)(eiux − 1− iux)

(5.5)
= iub +

∫
F(dx)

(
eiux − 1− iux1{|x≤1}

)
.

Third, with K(dx) = α
2((θ2+ + θ2−)1{x>0} + 2θ+θ−1{x<0}) 1

|x|1+α dx, we want to
prove that

Bn(v) →
∫

K(dx)(eiux − 1− iux).(5.6)
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We haveBn(v) = B ′
n(v) + B ′′

n(v), where

B ′
n(v) =

∫
{|x|>βn}

F(dx)zn(x, v),

B ′′
n(v) =

∫
{|x|>βn}

F(dx)
(
ezn(x,v) − 1− zn(x, v)

)
.

Using again (5.2) and the fact thatF has compact support and integratesx 
→
|x|2α , we readily see that|B ′′

n(v)| ≤ C|v|2α u2α
n

n2 , which goes to 0. On the other

hand,B ′
n(v) = ∫

Kn(dx)(eivx − 1− ivx), where

Kn(A) = 1

n

∫
{|x|>βn}

F(dx)

∫
{|y|≤βn}

F(dy)1A(unxy).

Therefore, by Theorem VII.3.4 of Jacod and Shiryaev (2003), (5.6) will follow
from the fact thatKn(h) → K(h) for h equal either tohw = 1(w,∞) for w > 0, or
h′

w = 1(−∞,−w) for w > 0, orh′(x) = x21{|x|≤1}, or h′′(x) = x1{|x|>1}.
Let us first considerh = hw for somew > 0. Sinceunβ

2
n → ∞ here, forn large

enough,Kn(hw) is the sum ofγn = 1
n

∫
{x>βn} F(dx)F (( w

unx
, βn]) plus another

similar termγ ′
n corresponding to the integrals over the negative half-axis. Further,

w
βnunx

→ 0 uniformly in x > βn whenn → ∞, therefore, we have

γn ∼ 1

n

∫
{x>βn}

F(dx)
θ+uα

nxα

wα
∼ αθ2+

wα

uα
n

n
log

1

βn

→ θ2+
2wα

,

and, similarly,γ ′
n → θ2−

2wα : soKn(hw) → K(hw). In an analogous fashion we find

thatKn(h
′
w) converges toθ+θ−

wα = K(h′
w). We can also write forn large enough,

Kn(h
′) = 1

n

∫
{|x|>βn}

F(dx)

∫
{|y|≤1/un|x|}

F(dy)u2
nx

2y2

∼ 1

n

∫
{|x|>βn}

F(dx)
αθ

2− α
uα

n |x|α

∼ α2θ2

2− α

uα
n

n
log

1

βn

→ αθ2

2(2− α)
= K(h′).

Finally, we have

Kn(h
′′) = 1

n

∫
{|x|>βn}

F(dx)

∫
{1/un|x|<|y|≤βn}

F(dy)unxy

∼ 1

n

∫
{|x|>βn}

F(dx)
αθ ′

α − 1
uα

n |x|α

∼ α2θθ ′

α − 1

uα
n

n
log

1

βn

→ αθθ ′

2(α − 1)
= K(h′′).
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At this stage we can combine (5.3) with (5.4)–(5.6) to get thatφn(u, v)

converges to

exp
(
iub +

∫
F(dx)

(
eiux − 1− iux1{|x≤1}

) +
∫

K(dx)
(
eiux − 1− iux1{|x≤1}

))
,

which is�(u)�(v), and we are finished.

5.3. Proof of Theorem1.2(b). We suppose here that Hypothesis (H2-α) holds
with α = 1 (in particular, we are in Case 2a). In view of Lemma 4.1, of (3.15)
and of Theorem 2.2, for obtaining Theorem 1.2(b), it suffices to prove that
the sequence( Y

n
,�n(10) + �n(11)) converges in probability to(Y,W), where

Wt = − θ ′2
4

∫ t
0 g(Xs−) ds. Since we already know thatY

n → Y (pointwise for
the Skorokhod topology) and sinceW is continuous, it is enough that�n(10) +
�n(11)

P→ W .
The sumζ n

i (10) + ζ n
i (11) satisfies (2.15) withζ ′n

i = ζ ′n
i (10) + ζ ′n

i (11), where

ζ ′n
i (10) = und

2
n

2n2
+ undn

n
�YT (n,i)11{K(n,i)≥1},

ζ ′n
i (11) = un�YT (n,i)1�YT (n,i)21{K(n,i)≥2}.

So by virtue of Lemma 2.8, it is enough to prove that if�′n
t (j) = ∑[nt]

i=1 ζ ′n
i (j), then

�′n(10)1 + �′n(11)1
P→ −θ ′4

4
.(5.7)

First, if an = E(ζ ′n
i (10)|F(i−1)/n) andbn = E(ζ ′n

i (10)|F(i−1)/n) (which here
are nonrandom and independent ofi), thenan is given by (4.28) andbn satisfies
(4.29), after replacing the functiong by 1. So in view of (3.14) and ofdn = b′ −d ′

n,

we getnan → − θ ′2
2 andnbn → 0. SinceE((�′n

i (10)1 − nan)
2) ≤ nbn, we get

�′n(10)1
P→ −θ ′2

2
.(5.8)

Let us use Section 4.8 again: upon replacing once moreg by 1, we see that
the sequences(ζ ′n

i (11)) satisfy (2.9) with (4.30), hence,ξ ′
n → 0 andξ ′′

n,y → 0
and ξn ≤ C. So if αn = E(ζ ′n

i (11)1{|ζ ′n
i (11)|≤1}|F(i−1)/n) (again nonrandom and

independent ofi), and applying Lemma 2.7, we see that the sequences(ζ ′n
i (11) −

αn) also satisfy (2.9), with new sequencesξn, ξ ′
n andξ ′′

n,y all going to 0. Hence,

Lemma 2.5 implies
∑[n.]

i=1(ζ
′n
i (11) − αn)

P→ 0 and, in view of (5.8), it remains to
prove that

nαn → θ ′2

4
.(5.9)
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By (3.17) it is clear that

nαn ∼ un

2n

∫
{|x|>βn}

xF (dx)

∫
{βn<|y|≤1/un|x|}

yF (dy)

∼ 1

2(logn)2

(
d ′2
n −

∫
{|x|>βn}

xF (dx)

∫
{|y|>1/un|x|}

yF (dy)

)
for all n large enough, becauseF has a bounded support andunβn → 0. By (3.5),
for anyε > 0, there existsε′ > 0 such that| d ′(β)

log 1/β − θ ′| ≤ ε wheneverβ ∈ (0, ε′).
Then we may write

∫
{|x|>βn} xF (dx)

∫
{|y|>1/un|x|} yF (dy) = xn + yn, where

xn =
∫
{βn<|x|≤1/unε′}

xF (dx)

∫
{|y|>1/un|x|}

yF (dy),

yn =
∫
{|x|>1/unε′}

xF (dx)

∫
{|y|>1/un|x|}

yF (dy)

=
∫
{|x|>1/unε′}

x d ′
(

1

un|x|
)
F(dx).

First, if |x| ≤ 1
unε′ , then 1

un|x| ≥ ε′, so we have

|xn| ≤ Cε′
∣∣∣∣ ∫{βn<|x|≤1/unε′}

xF (dx)

∣∣∣∣ ≤ Cε′ρn ≤ Cε′ logn.

Second, ifzn = ∫
{|x|>1/unε′} F(dx)|x| log(un|x|) andz′

n = ∫
{|x|>1/unε′} F(dx)x ×

log(un|x|), we have|yn − θ ′z′
n| ≤ εzn. But (3.6) and (3.5) again imply that

zn = (logun)

(
d+

(
1

unε
′
)

+ d−
(

1

unε
′
))

+
∫
{|x|>1/unε′}

|x| log |x|F ′(dx)

∼ θ

(
(logun) log(unε

′) − 1

2

(
log(unε

′)
)2

)
∼ θ

2
(logn)2

and, similarly,z′
n ∼ θ ′

2 (logn)2. Hence,

nαn ∼ d ′2
n

2(logn)2 − xn + yn

2(logn)2 ∼ θ ′2

2
− yn

2(logn)2 ,

and yn

2(logn)2 is in betweenθ ′zn−εz′
n

2(logn)2 and θ ′zn+εz′
n

2(logn)2 , which respectively converge to
−θ ′2−θε

4 and to −θ ′2+θε
4 . Sinceε > 0 is arbitrary, we deduce that (5.9) holds, and

we are finished.
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5.4. Proof of Theorem1.2(c). We suppose here that Hypothesis (H2-α) holds
for someα ∈ (0,1], as well as Hypothesis (H3), and also Hypothesis (H4) if
α < 1 (so we are in Cases 2b or 3b). In view of Lemma 4.1, of (3.15) and of
Theorem 2.2, it suffices to prove that the sequence(�n(14),�n(11)) converges in
law to (Y,W), whereW is given by (1.7) andV is a Lévy process independent
of Y and characterized by (1.10).

1. Note that if

�′n
t =

[nt]∑
i=1

ζ ′n
i whereζ n

i = un�YT (n,i)1�YT (n,i)21{K(n,i)≥2},(5.10)

Zn
t =

[nt]∑
i=1

ηn
i whereηn

i = �YT (n,i)11{K(n,i)≥1},(5.11)

then firstζ n
i (11) satisfies (2.15) withζ ′n

i as above, and�n(14) − Zn converges
locally uniformly in time tobt (becausedn = b here). So in view of Lemma 2.8, it
is enough to prove that(Zn

1,�′n
1 ) converges in law to(Z1,V1), whereZt = Yt −bt .

2. For eachn the variables(ηn
i , ζ ′n

i )i≥1 are i.i.d. centered, and we denote byKn

their law, which is given by

Kn(A) = e−λnλn

θ(βn)

∫
{|x|>βn}

F(dx)1A(x,0)

+ 1− e−λn(1+ λn)

θ(βn)2

∫
{|x|>βn}

F(dx)

∫
{|y|>βn}

F(dy)1A(x,unxy).

Since the two processesZ andV are independent Lévy processes, they have no
common jumps and, further, the jumps ofZ are the same as those ofY : so the
Lévy measureK of the pair(Z,V ) is

K(dx, dy) = F(dx)ε0(dy) + θ2α

4
ε0(dx)

1

|y|1+α
dy.

Observe that(Z,V ) has no drift and no continuous martingale part.
By virtue of Theorem VII.3.4 of Jacod and Shiryaev (2003), for the convergence

in law of (Zn
1,�′n

1 ) to (Z1,V1), it is enough to prove that

nKn(h) → K(h)(5.12)

for all h which are continuous bounded and vanish on a neighborhood of 0,
and also forh = hu,h

′
u,h

′′
u, where hu(x, y) = x21{x2+y2≤u} and h′

u(x, y) =
y21{x2+y2≤u} and h′′

u(x, y) = xy1{x2+y2≤u}, for almost allu > 0 (for Lebesgue
measure). Since bothK andKn are invariant under the maps(x, y) 
→ (−x, y)

and(x, y) 
→ (−x, y), it is even enough to prove (5.12) forhu, h′
u, h′′

u, and also
for hu,v(x, y) = 1{|x|≥u,|y|≥v} for all u, v ∈ R+ such that(u, v) �= (0,0).
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We begin with (5.12) forhu,v . Foru > 0, we have as soon asβn < u,

nKn(hu,0) = ne−λnλn

θ(βn)
θ(u−) + n

1− e−λn(1+ λn)

θ(βn)2

∫
{|x|≥u}

F(dx)θ(βn),

where θ(u−) denotes the left limit at pointu of the decreasing and right-
continuous functionθ(·). The last term above is smaller thanCuθ(βn)/n, which
goes to 0 asn → ∞, and the first term converges toθ(u−) = K(hu,0), so (5.12)
holds forhu,0.

Next, if u > 0 andv > 0, we have as soon asβn < u (recall thatun = 1/βn

here),

nKn(hu,v) = n
1− e−λn(1+ λn)

θ(βn)2

∫
{|x|≥u}

F(dx)

∫
{|y|>βn,|y|≥βnv/|x|}

F(dy)

≤ Cu

θ(βn)

n
,

which again goes to 0: so (5.12) holds forhu,v . Finally, if v > 0, we have as soon
asβn < v,

nKn(h0,v) = n
1− e−λn(1+ λn)

θ(βn)
2

∫
{|x|>βn}

F(dx)

∫
{|y|>βn,|y|≥βnv/|x|}

F(dy)

(5.13)

∼ 1

2n

∫
{|x|>βn}

F(dx)

∫
{|y|>βn,|y|≥βnv/|x|}

F(dy).

Let ε > 0. By Hypothesis (H2-α) there existsε′ ∈ (0, v) such that|βαθ(β)−θ | ≤ ε

for all β ∈ (0,2ε′]. By (5.13) we see thatnKn(h0,v) ∼ xn + yn + zn, where

xn = 1

2n

∫
{βn<|x|≤vβn/ε′}

F(dx)

∫
{|y|≥βnv/|x|}

F(dy),

yn = 1

2n

∫
{vβn/ε′<|x|≤v}

F(dx)

∫
{|y|≥βnv/|x|}

F(dy),

zn = 1

2n

∫
{|x|>v}

F(dx)

∫
{|y|>βn}

F(dy).

Using Hypothesis (H2-α) again and (3.2), we get

zn ≤ Cv

θ(βn)

n
,(5.14)

xn ≤ C

nβα
n vα

∫
{βn<|x|≤vβn/ε′}

|x|αF (dx)

= C

nβα
n vα

∫ vβn/ε
′

0
yα−1θ(y ∨ βn)(dy)(5.15)

≤ Cv

nβα
n

(
1+ log

v

ε

)
≤ Cv,ε

nβα
n

.



EULER SCHEME FOR DISCONTINUOUS SDEs 1867

Finally, if y′
n = θ

2nβα
n vα

∫
{vβn/ε<|x|≤v} |x|αF (dx), we havey′

n(1−ε′) ≤ yε
n ≤ y′

n(1+
ε′). But y′

n = θ
2nβα

n vα (ρ(βnv/ε) − ρ(v)), which is equivalent to αθ2

2nβα
n vα log 1

βn

by (3.5). Putting this together with (5.14) and (5.15), and sinceε is arbitrarily

small, we deduce thatnKn(h0,v) is equivalent to αθ2

2nβα
n vα log 1

2nβn
. Then, clearly,

nKn(h0,v) converges toθ2

2vα , which equalsK(h0,v).
It remains to prove (5.12) forhu, h′

u andh′′
u. First, because of Hypothesis (H3)

we haveKn(h
′′
u) = 0 andK(h′′

u) = 0. Next,

nKn(hu) = ne−λnλn

θ(βn)

∫
{βn<|x|≤√

u }
x2F(dx)

+ n
1− e−λn(1+ λn)

θ(βn)
2

×
∫
{βn<|x|<√

u }
x2F(dx)

∫
{βn<|y|≤βn

√
u/x2−1}

F(dy).

The last term above is smaller thanCθ(βn)/n, which goes to 0, while the first term
goes to

∫
{|x|≤√

u } x2F(dx), which equalsK(hu), hence, (5.12) holds forh = hu.
Finally, we have as soon asβn <

√
u,

nKn(h
′
u) = u2

nn
1− e−λn(1+ λn)

θ(βn)2

×
∫
{βn<|x|<√

u/2}
x2F(dx)

∫
{βn<|y|≤βn

√
u/x2−1}

y2F(dy)

∼ u2
n

2n

∫
{βn<|x|<√

u/2}
x2c

(
βn

√
u/x2 − 1

)
F(dx)

− u2
ncn

2n

∫
{βn<|x|<√

u/2}
x2F(dx).

The last term above is smaller thatCu2
ncn/n, which goes to 0. In view of (3.3), the

first term is equivalent to

u2
nβ

2−α
n αθ

2(2− α)n

∫
{βn<|x|<√

u/2}
x2

(
u

x2
− 1

)(2−α)/2

F(dx)

∼ uα
nαθu(2−α)/2

2(2− α)n

∫
{βn<|x|<√

u/2}
|x|αF (dx)

∼ uα
nα2θ2u(2−α)/2

2(2− α)n
log

(
1

βn

)
,

which converges toαθ2u(2−α)/2

2(2−α)
, which in turn equalsK(h′

u): we are thus finished.
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REMARK 5.1. When Hypothesis (H2-α) holds for someα ∈ (1,2) and also
Hypothesis (H3) holds, one could prove part (a) of Theorem 1.2 by the same
method as above for (c): we have, of course, the sameun = (n/ logn)1/α, but
instead ofβn = logn/n1/2α, one could takeβn = (logn/n)1/α as in Cases
2b and 3b. Then in Lemma 4.1 one obtains that�n(j) goes to 0 forj = 9, but
not for j = 11.

5.5. Proof of Theorem1.2(d). Now we assume Hypothesis (H1-α) for some
α < 1 (i.e., Case 3a). In view of Lemma 4.1, of (3.15) and of Theorem 2.2, for
obtaining Theorem 1.2(d) it suffices to prove that the sequence(�n(14),�n(10)+
�n(12)) converge in law to(Y,W), whereW is given by (1.11), which can also be
written as

Wt = d
∑

n : Rn≤t

([
f

(
XRn− + �YRnf

(
XRn−

)) − f
(
XRn−

)]
ξn

+ f
(
XRn−

)
f ′(XRn−

)
�YRn(1− ξn)

)
(5.16)

+ d2

2

∫ t

0
f (Xs−)f ′(Xs−) ds.

1. We haveζ n
i (10) = ζ ′n

i (10) + ζ ′′n
i (10), whereζ ′′n

i (10) = ung(X(i−1)/n)
d2
n

2n2

and

ζ ′n
i (10) = ung

(
X(i−1)/n

)dn

n
�YT (n,i)11{K(n,i)≥1}.

Set�′n
t = ∑[nt]

i=1 ζ ′n
i (10) and�′′n

t = ∑[nt]
i=1 ζ ′′n

i (10). Observe thatund2
n

n
→ d2, hence,

a simple Riemann approximation of the Lebesgue integral shows the following
convergence, locally uniform int :

�′n(10)t
P→ d2

2

∫ t

0
g(Xs−) ds.(5.17)

Therefore, it is enough to prove that the pair(�n(14),�′′n + �n(12)) converges in
law to the pair(Y,�′), where�′ is the first term in the right-hand side of (1.11).

Setan = undn/n. We can write�′′n + �n(12) = an�
n, where�n

t = ∑[nt]
i=1 ζ n

i
and

ζ n
i = (

G
(
X(i−1)/n,�YT (n,i)1

)(
i − nT (n, i)1

)
+ g

(
X(i−1)/n

)
�YT (n,i)1

(
nT (n, i)1 − i + 1

))
1{K(n,i)≥1}.(5.18)

We also writeV ′ = d�, where [cf. (1.11)]

�t = ∑
n : Rn≤t

([
f

(
XRn− + �YRnf

(
XRn−

)) − f
(
XRn−

)]
ξn

(5.19)
+ g

(
XRn−

)
�YRn(1− ξn)

)
.
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Sincean → d , it remains to prove that(�n(14),�n) converges to(Y,�) in law.
Observe also thatdn → d , so exactly as in Section 6, and if we set (5.11), it
is enough to prove that(Zn,�n) converges in law towards(Z,�), whereZt =
Yt − td .

2. The presence of an apriori arbitrary functionG in (5.18) makes things a bit
difficult, and in the absence of a general theory to handle this case, we use a trick,
pretending first thatX(i−1)/n does not show up in (5.18). That is, with an arbitrary
measurable bounded functionl on R × [0,1], with support in[−p,p] × [0,1],
which satisfies|l(x, u)| ≤ C|x|, we set

�n(l)t =
[nt]∑
i=1

ζ n
i (l)

(5.20)
whereζ n

i (l) = l
(
�YT (n,i)1, nT (n, i)1 − i + 1

)
1{R(n,i)≥1}.

We will study the convergence of the pair(Zn,�n(l)). In view of (3.17), the
law Kn of the pair(ηn

i , ζ n
i (l)) is independent ofi and given by

Kn(h) = e−λnh(0,0)
(5.21)

+ 1

n

∫ 1

0
e−λnu du

∫
{|x|>βn}

F(dx)

∫ 1

0
h
(
x, l(x,u)

)
du.

LettingK be the measure onR2 defined by

K(h) =
∫

F(dx)

∫ 1

0
h
(
x, l(x,u)

)
du,(5.22)

we want to prove thatnKn(h) → K(h) [i.e., (5.12)] holds for suitable functionsh.
Suppose first thath is continuous and bounded and vanishes on a neighborhood

of 0. Observe that since|l(x, u)| ≤ C|x|, we haveh(x, l(x,u)) = 0 if |x| ≤ ε for
someε > 0. In (5.21) the contribution of the first term to the right tonKn(h) is 0;
as soon asβn < ε, the contribution of the second term is∫ 1

0
e−λnu du

∫
{|x|>ε}

F(dx)

∫ 1

0
h
(
x, l(x,u)

)
,

which obviously converge toK(h) becauseλn → 0: so we have (5.12).
Now we take the functionh(x, y) = x1{|x|≤v} for any givenv > 0. In (5.21) the

contribution tonKn(h) of the first term to the right is 0, and the contribution of the
second term is ∫ 1

0
e−λnu du

∫
{βn<|x|≤v}

xF (dx),

which goes toK(h) again. The same argument works as well for the functions
h(x, y) = y1{|x|≤v}, h(x, y) = x21{|x|≤v}, h(x, y) = xy1{|x|≤v} and h(x, y) =
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y21{|x|≤v} [here we do not truncate iny, since the argumenty is replaced by the
bounded terml(x, u) in (5.21)].

All this shows that, by using Theorem VII.3.4 of Jacod and Shiryaev (2003),
the pair(Zn,�n(l)) converges in law to a Lévy process(Z,�(l)) with no drift, no
continuous part and Lévy measureK , and also has (UT) by Lemma 2.1.

We can, of course, realize this pair(Z,�(l)) as follows: we first takeZt =
Yt −dt (so this is in accordance with our previous notation), and we label the jump
times ofY asR1,R2, . . . [as in (5.19)]. Then we define, possibly on an extension
of the space, a sequence(ξn) of i.i.d. variables, independent ofY , and uniform
over[0,1]. Then we set

�(l)t = ∑
n : Rn≤t

l
(
�YRn, ξn

)
.(5.23)

Observe that�(l), as well asY andZ, has finite variation over finite intervals.
3. We will apply the preceding results to the functionsl = ly defined by

ly(x, u) = G(y,x)(1−u)+g(y)xu: we call�n(y) and�(y) the processes�n(ly)

and �(ly), and write alsoζ n
i (y) = ζ n

i (ly). If we pick finitely many arbitrary
points yj , not only do we have the convergence in law of(Zn,�n(yj )) to
(Z,�(yj )) for any givenj , but one could prove in a similar way that we have
the convergence of(Zn,�n(y1), . . . ,�

n(yk)) to (Z,�(y1), . . . ,�(yk)), with the
same sequenceξn in the definition of all�(yj)’s: one just has to put any finitely
many functionsl’s in (5.21) and (5.22) to see that everything works out the same
way. This, of course, gives the convergence for an infinite sequence ofyk ’s.

So we pick a dense sequenceyk . By the Skorokhod representation theorem
we can find another probability space on which new processes still called
(Y,Z,�(y1), . . . ,�(yk), . . . ) and(Y,Zn,�n(y1), . . . ,�

n(yk) . . . ) are defined and
have the same law as the original ones and, further,(Zn,�n(y1), . . . ,�

n(yk) . . . )

converges pointwise for the Skorokhod topology onD(R+,R
N) to (Z,�(y1), . . . ,

�(yk), . . . ). On the new space we still have the representation (5.23) for all�(yk)

with the same sequence(ξn). Furthermore, on the new space we can solve our
equation (1.1), having a solutionX, and redefineζ n

i by (5.18) and�n
t = ∑[nt]

i=1 ζ n
i :

hereY has locally finite variation, so the filtrations play no role at all. So we have
ζ n
i = lX(i−1)/n

(�YT (n,i)1, nS1)1{K(n,i)≤1}.
Now the functionsy 
→ ly(x, u) are continuous, and even much more. Namely,

we have

wK(ε) := sup
( |ly(x, u) − ly′(x,u)

|y| :y, y′ ∈ K, |y − y′| ≤ ε,

x ∈ [−p,p], u ∈ [O,1]
)

→ 0

asε → 0 for any compact setK . Let us first pick a pointω in the event space and
a timet > 0, then a compactK containing the path ofX over[0, t], and anε > 0.
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We can find a finite subdivisiont0 = 0 < t1 < · · · < tk = t and pointsyj ∈ K ,
such that|Xt − yj | ≤ ε for all t ∈ [tj−1, tj ). SetJ (n, j) = {i : i−1

n
∈ [tj−1, tj )}.

If i ∈ J (n, j), we have|ζ n
i − ζ n

i (yj )| ≤ wK(ε)|�YS1|. It follows that for alls ≤ t ,∣∣∣∣∣�n
s −

k∑
j=1

(
�n(yj )s∧tj − �n(yj )s∧tj−1

)∣∣∣∣∣ ≤ wK(ε)
∑
r≤t

|�Yr |.(5.24)

Similarly, if we set

�t = ∑
n : Rn≤t

lXRn−
(
�YRn,Un

)
(5.25)

[i.e., � is defined by (5.19), on our new space], we get for alls ≤ t ,∣∣∣∣∣�s −
k∑

j=1

(
�′(yj )s∧tj − �(yj)s∧tj−1

)∣∣∣∣∣ ≤ wK(ε)
∑
r≤t

|�Yr |.(5.26)

At this point, it suffices to use that(Zn,�n(yk), . . . ,�
n(yk)) → (Z,�(yk), . . . ,

�(yk)) for the Skorokhod topology to obtain that the upper limit of the
Skorokhod distance between(Zn,�n) and(Z,�) over[0, t] is smaller or equal to
wK(ε)

∑
s≤t |�Ys | < ∞. SincewK(ε) → 0 asε → 0 and since

∑
s≤t |�Ys | < ∞,

we conclude that for our particular pointω we have(Zn,�n) → (Z,�).
This works for all pointsω. Going back to the original space, this clearly implies

that indeed(Zn,�n) converges in law to(Z,�), and we are finished.
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