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ON THE CONCENTRATION OF MEASURE PHENOMENON FOR
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Concentration of measure is studied, and obtained, for stable and related
random vectors.

Let X be a standard normal vector inRd and letf :Rd → R be Lipschitz (with
constant one) with respect to the Euclidean distance. A seminal result of Borell [3]
and of Sudakov and Tsirel’son [7] asserts that for allx > 0,

P
(
f (X) − m(f (X)) ≥ x

) ≤ 1− �(x) ≤ e−x2/2

2
,(1)

where m(f (X)) is a median off (X) and where� is the (one-dimensional)
standard normal distribution function. The inequality (1) has seen many extensions
and to date, most of the conditions under which these developments hold require
the existence of finite exponential moments for the underlying vectorX. It is thus
natural to explore the robustness of this “concentration phenomenon” and to study
the corresponding results for stable vectors. It is the purpose of these notes to
initiate this study and to present a few concentration results for stable and related
vectors, freeing us from the exponential moment requirement. Our main result will
imply that if X is anα-stable random vector inRd , then for allx > 0,

P
(
f (X) − m(f (X)) ≥ x

) ≤ 1∧ C(α,d)

xα
,(2)

where the constantC(α,d) will be explicit.
Let X ∼ ID(b,0, ν), that is, letX be ad-dimensional infinitely divisible vector

without Gaussian component. For allu ∈ R
d , its characteristic functionϕX is given

by ϕX(u) = eψ(u), with

ψ(u) = i〈u,b〉 +
∫

Rd

(
ei〈u,y〉 − 1− i〈u,y〉1‖y‖≤1

)
ν(dy),(3)

whereb ∈ R
d and whereν 
≡ 0 (the Lévy measure) is a positive Borel measure

without atom at the origin and such that
∫
Rd (‖y‖2 ∧ 1)ν(dy) < +∞ (throughout,

〈·, ·〉 and‖ · ‖ are, respectively, the Euclidean inner product and norm inR
d ).
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CONCENTRATION OF MEASURE 1497

It is well known that there is a one-to-one relationship between Lévy processes
and infinitely divisible laws. More precisely, if{X(t) : t ≥ 0} is a Lévy process
(without Gaussian component) onR

d , then for allt ≥ 0, u ∈ R
d ,

ϕX(t)(u) = Eei〈u,X(t)〉 = etψ(u),(4)

whereψ is as in (3). Hence, an infinitely divisible vectorX can be viewed asX(1),
the Lévy process{X(t) : t ≥ 0} at time 1.

Recall also thatX is α-stable, 0< α < 2, if the measureν is given, for any
Borel setB ∈ B(Rd), by

ν(B) =
∫
Sd−1

λ(dξ)

∫ +∞
0

1B(rξ)
dr

r1+α
,(5)

whereλ is a finite positive measure onSd−1, the unit sphere ofRd , called the
spherical component of the Lévy measure.X is symmetricα-stable (SαS) if and
only if λ is symmetric, in which case,

ϕX(u) = exp
{
−cα

∫
Sd−1

|〈u, ξ 〉|αλ(dξ)

}
,

wherecα =
√

π 	((2−α)/2)

α2α	((1+α)/2)
. Moreover,X is rotationally invariant if and only ifλ is

uniform onSd−1 and then

ϕX(u) = e−cα,d‖u‖α

,

wherecα,d = cα

∫
Sd−1 |〈u/‖u‖, ξ 〉|αλ(dξ) does not depend onu ∈ R

d . In particu-
lar, if λ is the uniform probability measure onSd−1, cα,d = 	(d/2)	((2−α)/2)

α2α	((d+α)/2)
.

(We refer the reader to Sato’s book [6] for a good introduction to Lévy processes
and infinitely divisible laws.)

In order to prove our first theorem, we need the lemma below. For the mean
rather than a median (andx rather thanx/2), the result is obtained in [4]. However,
it is standard that applying this result to the functiong(y) = min(d(y,A), x),
y ∈ R

d , whereA = {f ≤ m} andm is a median off , leads to deviation from a
median. Indeed,Eg ≤ x/2, and thereforeg − Eg ≥ x/2 wheneverf − m ≥ x.

LEMMA 1. Let X ∼ ID(b,0, ν) with ν boundedly supported, let V 2 =∫
Rd ‖x‖2ν(dx) and let R = inf{ρ > 0 :ν({x :‖x‖ > ρ}) = 0}. Then for any

Lipschitz function(with constant1) f :Rd → R,

P
(
f (X) − m(f (X)) ≥ x

) ≤ exp
{

x

2R
−

(
x

2R
+ V 2

R2

)
log

(
1+ Rx

2V 2

)}
,(6)

for all x > 0, and wherem(f (X)) is a median off (X).

Above (and below), the Lipschitz property is usually taken with respect to the
Euclidean norm, that is,f is Lipschitz if ‖f ‖Lip = supx 
=y

|f (x)−f (y)|
‖x−y‖ < +∞;

however, other norms could be considered [e.g., see Remark 2(ii)].
We can now state
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THEOREM 1. Let X be anα-stable vector with Lévy measureν given by(5).
Letf :Rd → R be such that‖f ‖Lip ≤ 1. Then

P
(
f (X) − m(f (X)) ≥ x

) ≤ K1λ(Sd−1)

α(2− α)xα
,(7)

whenever

x ≥
(

K2λ(Sd−1)

α(2− α)

)1/α

,

and wherem(f (X)) is a median off (X) whileK1, K2 are two absolute constants.

PROOF. For anyR > 0, we have the identity in distributionX d= Y (R) + Z(R),
whereY (R) andZ(R) are mutually independent infinitely divisible vectors with

respective characteristic functionϕY (R) = eψ
(R)
Y andϕZ(R) = eψ

(R)
Z . Foru ∈ R

d , the
exponents are given by

ψ
(R)
Z (u) =

∫
‖y‖>R

(
ei〈u,y〉 − 1

)
νX(dy),

ψ
(R)
Y (u) = i〈u, b̃〉 +

∫
‖y‖≤R

(
ei〈u,y〉 − 1− i〈u,y〉1‖y‖≤1

)
νX(dy),

with

b̃ = b −
∫
‖y‖>R

y1‖y‖≤1νX(dy),

where the last integral is understood coordinatewise (and so is the above
difference) and whereνX is the Lévy measure ofX.

Next,

P
(
f (X) − m(f (X)) ≥ x

) ≤ P
(
f

(
Y (R)

) − m(f (X)) ≥ x
) + P

(
Z(R) 
= 0

)
.(8)

Let us first estimate the second probability in (8) involving the compound Poisson
random vectorZ(R):

P
(
Z(R) 
= 0

) = 1− P
(
Z(R) = 0

)

≤ 1− exp
(
−

∫
‖x‖>R

νX(dx)

)

= 1− exp
(
−

∫
Sd−1

λ(dξ)

∫
‖rξ‖>R

dr

r1+α

)

(9)

= 1− exp
(
−λ(Sd−1)

α
R−α

)

= 1− exp
(−C2(α,λ)R−α

)

≤ C2

Rα
,
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whereC2 := C2(α,λ) = λ(Sd−1)
α

.
Turning our attention toY (R), we first compute the quantities involved in

Lemma 1:

P
(
f

(
Y (R)

) − m
(
f

(
Y (R)

)) ≥ x
)

(10)

≤ exp
{

x

2R
−

(
x

2R
+ V 2

R2

)
log

(
1+ Rx

2V 2

)}
,

where

V 2 =
∫
‖x‖≤R

‖x‖2νX(dx)

=
∫
Sd−1

λ(dξ)

∫
‖rξ‖≤R

‖rξ‖2 dr

r1+α

(11)

=
∫
Sd−1

λ(dξ)

∫ R

0
r2 dr

r1+α

= C1(α,λ)R2−α,

with C1(α,λ) = λ(Sd−1)
2−α

. Hence (10) becomes

P
(
f

(
Y (R)

) − m
(
f

(
Y (R)

)) ≥ x
)

≤ exp
{

x

2R
−

(
x

2R
+ C1

Rα

)
log

(
1+ Rαx

2RC1

)}
(12)

:= H(R)(x)

≤ ex/2R

(1+ Rαx/(2RC1))
x/2R

,(13)

whereC1 := C1(α,λ) = λ(Sd−1)
2−α

.
Now rewrite the first probability in (8) as

P
(
f

(
Y (R)

) − m
(
f (X)

) ≥ x
)

(14)
= P

(
f

(
Y (R)

) − m
(
f

(
Y (R)

)) ≥ x + m(f (X)) − m
(
f

(
Y (R)

)))
.

We want to bound|m(f (X)) − m(f (Y (R)))| and, as it will become clear from
the proof, only the casem(f (X)) < m(f (Y (R))) (which we assume) presents some
interest and needs some work. To this end, remark that, for anyx ≥ 0 and any
functionf , we have

∣∣P (
f (X) ≤ x

) − P
(
f

(
Y (R)

) ≤ x
)∣∣ ≤ P

(
X 
= Y (R)

) = P
(
Z(R) 
= 0

)
.
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SetPm = P (f (X) ≤ m(f (X))) ≥ 1/2. Then,

Pm − P
(
f

(
Y (R)

) ≤ m(f (X))
)

= P
(
f (X) ≤ m(f (X))

) − P
(
f

(
Y (R)

) ≤ m(f (X))
)

≤ P
(
Z(R) 
= 0

)
.

Moreover, iff is Lipschitz with‖f ‖Lip ≤ 1,

Pm − P
(
Z(R) 
= 0

) ≤ P
(
f

(
Y (R)

) ≤ m(f (X))
)

= P
(
f

(
Y (R)

) − m
(
f

(
Y (R)

)) ≤ m(f (X)) − m
(
f

(
Y (R)

)))
≤ H(R)

(
m

(
f

(
Y (R)

)) − m(f (X))
)
,

where the second inequality follows from Lemma 1 applied to−f , and withH(R)

given in (12). SinceH(R) is decreasing, setI (R)(y) = sup{z ≥ 0,H (R)(z) ≥ y}.
Thus, providedPm > P (Z(R) 
= 0),

m
(
f

(
Y (R)

)) − m(f (X)) ≤ I (R)
(
Pm − P

(
Z(R) 
= 0

))
.

Chooseδ ∈ (0,1/2). Then, for everyR such that

R ≥ (C2/δ)
1/α,(15)

we have, using the same estimates as in (9),Pm − P (Z(R) 
= 0) ≥ 1/2 − δ.
Moreover, for every positiveA, (13) entails

P
(
f

(
Y (R)

) − m
(
f

(
Y (R)

)) ≥ AR
) ≤ H(R)(AR) ≤ eA/2

(
2C1

ARα

)A/2

.

Thus if

R ≥
((

2C1

A

)A/2 eA/2

1/2− δ

)2/αA

,(16)

then

H(R)(AR) ≤ 1/2− δ,

or, equivalently,I (R)(1/2 − δ) ≤ AR. As a consequence, ifR satisfies both
conditions (15) and (16), we have

∣∣m(
f

(
Y (R))) − m(f (X))

∣∣ ≤ I (R)(Pm − P
(
Z(R) 
= 0

)) ≤ I (R)(1/2− δ) ≤ AR.

Using this together with (12) and (14) yields

P
(
f

(
Y (R)

) − m(f (X)) ≥ (2+ A)R
)

≤ P
(
f

(
Y (R)

) − m
(
f

(
Y (R)

)) ≥ 2R
) ≤ eC1

Rα
.
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Settingx = (2+ A)R, we obtain

P
(
f

(
Y (R)) − m(f (X)) ≥ x

) ≤ eC1(2+ A)α

xα
.(17)

Finally, combining (17) and (9), we conclude that, for anyA > 0,

P
(
f (X) − m(f (X)) ≥ x

) ≤ (eC1 + C2)(2+ A)α

xα
,(18)

wheneverx is large enough, so that there existsδ ∈ (0,1/2) satisfying

x

2+ A
≥

(
C2

δ

)1/α

,(19)

and

x

2+ A
≥

(
2C1

A

)1/α(
eA/2

1/2− δ

)2/αA

.(20)

For a givenA, the domain of validity of (18) can be found by optimizingδ in
(19) and (20). Taking, for instance,A = 2 leads [by equating the right-hand sides
of (19) and (20)] toδ = C2/2(eC1 + C2) = (2− α)/2(2− α + eα), and so

P
(
f (X) − m(f (X)) ≥ x

) ≤ 4α(eC1 + C2)

xα
= 4α(2− α + eα)λ(Sd−1)

α(2− α)xα
,

whenever

x ≥ 4
(

2(2− α + eα)λ(Sd−1)

α(2− α)

)1/α

. �

REMARK 1. (i) The estimate in (7) is sharp inx, as can be seen by taking
X ∼ SαS a one-dimensional symmetricα-stable random variable with parameter
σ > 0 and characteristic functionϕX(u) = e−σα|u|α . In that case (e.g., see
Proposition 1.2.15 in [5])

lim
x→+∞xαP (X ≥ x) = σαAα,

where

Aα =




1− α

2	(2− α)cos(πα/2)
, α 
= 1,

1

π
, α = 1,

and σα = 2λ(1)cα =
√

π	((2−α)/2)

2αα	((1+α)/2)
2λ(1). For d = 1, and X symmetric, our

constants areC1 = λ(1)+λ(−1)
2−α

= 2λ(1)
2−α

andC2 = 2λ(1)
α

. Thus, the dependency in
α in the constants of (7) is sharp asα → 0, but explodes asα → 2 (in contrast
to σαAα). This problem will be addressed in the sequel. We also note that the
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dependency on the dimensiond is sharp. Indeed, ifX is a stable vector inRd , then
by a result of Araujo and Giné [1] (see, e.g., Theorem 4.4.8 in [5])

lim
x→+∞xαP (‖X‖ ≥ x) = cαλ(Sd−1)Aα.(21)

(ii) As usual left tails inequalities also follow from (7) by applying the result
to −f and, as is also classical, the estimates can equivalently be given in terms of
enlargements of sets. Forα > 1, a median can be replaced by the mean (changing
the range ofx, too) by properly modifying the above proof or by using

E|f (X) − m(f (X))|

≤ 2
(

K2λ(Sd−1)

α(2− α)

)1/α

+ 2

α − 1

K1λ(Sd−1)

α(2− α)

(
K2λ(Sd−1)

α(2− α)

)(1−α)/α

,

which follows from integrating the tail inequality (7).
(iii) The methodology of proof presented above works as well for any infinitely

divisible vector X. However, it requires estimates on
∫
‖x‖>R νX(dx) and on∫

‖x‖≤R ‖x‖2νX(dx) which, in general, are unavailable in the absence of further
knowledge of the Lévy measure. If the Lévy measure ofX has the form

ν′(B) =
∫
Sd−1

λ(dξ)

∫ +∞
0

1B(rξ)
L(r) dr

r1+α
,(22)

for some slowly varying functionL on [0,∞), in which caseX is in the domain
of attraction of a stable random vector with Lévy measure given by (5), the proof
of Theorem 1 and standard estimates on regularly varying functions (see, e.g., [2],
Theorem 1.5.11) give the following bound:

P
(
f (X) − m(f (X)) ≥ x

) ≤ K1λ(Sd−1)L(x)

α(2− α)xα
,(23)

for everyx such thatL is locally bounded on[x,∞) and such that

xα

L(x)
≥ Kα

2 ,

where the constantsK1, K2 are the same as in Theorem 1. A similar result can
also be obtained whenX is in the domain of attraction of a stable vector with
Lévy measureν. In that case,L(r) in (22) should be replaced byL(r, ξ); thus if
L1(r) ≤ L(r, ξ) ≤ L2(r), in (23),L(x) should be replaced byL2(x).

Whenα is close to 2, the upper bound in Theorem 1 has the formKλ(Sd−1)/

(2 − α)xα as soon asxα > K ′λ(Sd−1)/(2 − α). We would like to obtain a
better bound, namely of the formK ′′λ(Sd−1)/xα, at the price of potentially
strengthening the condition onx. To do so, we begin by a result improving
Lemma 1. The setting and the notation below are as in Lemma 1; in addition,
let W3 = ∫

Rd ‖x‖3ν(dx).
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LEMMA 2. If V 2/W3 > 2/R, let s0 be the unique positive solution of

esR − 1

sR
= RV 2

W3 − 1, s > 0,

and let

x0 = 2
(
V 2 − W3

R

)
s0.

Letf :Rd → R be such that‖f ‖Lip ≤ 1. Then, if x ≤ x0,

P
(
f (X) − Ef (X) ≥ x

) ≤ exp
( −x2

4(V 2 − W3/R)

)
,

while forx ≥ x0,

P
(
f (X) − Ef (X) ≥ x

) ≤ K exp
(

x

R
−

(
x

R
+ 2W3

R3

)
log

(
1+ R2x

2W3

))
,

with

K = exp
( −x2

0

4(V 2 − W3/R)

)

(24)

× exp
(
−x0

R
+

(
x0

R
+ 2W3

R3

)
log

(
1+ R2x0

2W3

))
.

PROOF. Recall that Theorem 1 in [4] asserts that

P
(
f (X) − Ef (X) ≥ x

) ≤ exp
{

−
∫ x

0
h−1(s) ds

}
,(25)

for all 0 < x < h(N−), whereN = sup{t ≥ 0 :Eet‖X‖ < +∞} and whereh−1 is
the inverse ofh(s) = ∫

Rd ‖u‖(es‖u‖ − 1)ν(du), 0< s < N .
When the Lévy measure has its support in the Euclidean ball of center 0 and

radiusR (in which case,N = +∞), Lemma 1 follows by bounding the function
gs(x) = esx −1 between 0 andR by a linear interpolation, using also the convexity
of the exponential. It is easily seen that, for everyx ∈ [0,R], the following
improved inequality holds:

gs(x) ≤ sx + esR − 1− sR

R2
x2,

for all s ≥ 0. Therefore,

h(s) ≤
(
V 2 − W3

R

)
s + W3

R2
(esR − 1)

≤ 2 max
((

V 2 − W3

R

)
s,

W3

R2
(esR − 1)

)
.
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So if V 2/W3 > 2/R, there exists a unique positives0 such that

es0R − 1

s0R
= RV 2

W3 − 1,

and fors ≤ s0,

h(s) ≤ 2
(
V 2 − W3

R

)
s,

while for s ≥ s0,

h(s) ≤ 2
W3

R2 (esR − 1).

Let x0 = 2(V 2 − W 3

R
)s0. We have, fort ≤ x0,

h−1(t) ≥ t

2(V 2 − W3/R)
,

while for t ≥ x0,

h−1(t) ≥ 1

R
log

(
1+ R2t

2W3

)
.

The lemma follows. �

We are now ready to state our second theorem. We will express the deviation
from the expectation here (since it exists). As already mentioned, a result in terms
of the median can be easily derived.

THEOREM 2. Using the notation of Theorem1, assumeα > 3/2 and let
M = 1/(2− α). Then there exists an absolute constantK3 such that

P
(
f (X) − Ef (X) ≥ x

) ≤ K3λ(Sd−1)

xα
,(26)

for everyx satisfying

xα ≥ 4λ(Sd−1)M logM log(1+ 2M logM).

PROOF. We use the notation of the proof of Theorem 1. The second and third
moments of the Lévy measureν(R)

Y of Y (R) are given by

V 2 = λ(Sd−1)

2− α
R2−α,

and

W3 = λ(Sd−1)

3− α
R3−α,
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which entails

RV 2

W3 − 1= M.

As α ≥ 3/2, M ≥ 2 and

logM

R
≤ s0 ≤ 2

logM

R
,

and

2λ(Sd−1)M logM

(3− α)Rα−1
≤ x0 ≤ 4λ(Sd−1)M logM

(3− α)Rα−1
.(27)

So forx ≥ x0, Lemma 2 gives

P
(
f

(
Y (R)

) − Ef
(
Y (R)

) ≥ x
)

≤ K exp
(

x

R
−

(
x

R
+ 2W3

R3

)
log

(
1+ R2x

2W3

))
.

From (24), (27) and since

2W3

R3 log
(

1+ R2x0

2W3

)
≤ x0

R
,

it follows that

K ≤ exp
(

4λ(Sd−1)M logM

(3− α)Rα
log(1+ 2M logM)

)
.(28)

Suppose next that

xα ≥ 4λ(Sd−1)M logM log(1+ 2M logM).(29)

Then settingR = x, it first follows (sinceα < 2) thatK < e, and second by (27)
and sinceM > 2, thatx > x0. Therefore, sinceW3 = λ(Sd−1)R3−α/(3− α),

P
(
f

(
Y (R)) − Ef

(
Y (R)) ≥ x

)

≤ e exp
(

1−
(

1+ 2λ(Sd−1)

(3− α)xα

)
log

(
1+ (3− α)xα

2λ(Sd−1)

))

(30)

≤ e2 exp
(

− log
(

1+ (3− α)xα

2λ(Sd−1)

))

≤ 2e2λ(Sd−1)

xα
,
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for all x satisfying (29). Let us now estimate the difference betweenEf (X) and
Ef (Y (R)):∣∣Ef (X) − Ef

(
Y (R))∣∣ = ∣∣E(

f
(
Y (R) + Z(R)) − f

(
Y (R)))1{Z(R) 
=0}

∣∣
≤ E

∥∥Z(R)
∥∥

≤
∫
‖x‖>R

‖x‖νX(dx)(31)

= λ(Sd−1)

α − 1
R1−α

≤ x

4 log2 log(1+ 4 log2)
,

where we used the compound Poisson structure ofZ(R) to get the next to last
inequality, and our choice ofR = x, M > 2,α −1 > 1/2, and the range ofx given
by (29), to get the last one.

The estimate (31) as well as (30) and (9) finally give the result by proceeding as
in the proof of Theorem 1 (K3 = 1+ 8e2 will do). �

REMARK 2. (i) Unlessλ(Sd−1) is bounded above independently ofd , The-
orems 1 and 2 are not dimension-free, even forX with independent components.
This is to be expected in view of (21), and is in sharp contrast to the Gaussian
case.

(ii) X has independent components if and only ifλ is discrete and concentrated
on the intersections of the axes ofR

d with Sd−1. In that case, the natural
Lipschitz property is with respect to the
1-norm. Thus taking, in the Lévy–
Khintchine representation (3),Sd−1

‖·‖1
(the
1-unit ball of R

d ) instead ofSd−1, and
correspondingly changingν to ν‖·‖1, (7) continues to hold replacingλ(Sd−1) by
λ‖·‖1(S

d−1
‖·‖1

), whereλ‖·‖1 is the “spherical component” ofν‖·‖1. In fact, for any

norm ofRd , a result similar to (7) continues to hold with the type of changes just
described.

As already mentioned, the above theorems are not dimension-free, in particular,
when the components ofX are independent and (for simplicity of notation)
identically distributed. However, using Corollary 3 in [4], improved versions of
Theorems 1 and 2 can be obtained with a mixture of “Lipschitz norms.” More
precisely, while we are not able to improve the constant in the upper bound of (26),
the additional conditions we assume on the functionf enable us to extend (when
c below is small) the range on which our inequality holds. Again, forX with i.i.d.
components, the measureν is concentrated on the axes ofR

d (see [6], page 67),
that is,

ν(dx1, . . . , dxd) =
d∑

k=1

δ0(dx1) · · · δ0(dxk−1)ν̃(dxk)δ0(dxk+1) · · · δ0(dxd).
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Denoting bye1, . . . , ed the canonical basis ofRd , Theorem 2 now becomes

THEOREM 3. Let X be a stable vector with indexα > 3/2 and Lévy measure
ν given by(31).Letf :Rd → R be such that:

sup
x∈Rd

d∑
k=1

∫
R

|f (x + uek) − f (x)|2ν̃(du) ≤ a2,(32)

and

sup
x∈Rd

|f (x + uek) − f (x)| ≤ c|u|,

for all k = 1, . . . , d , u ∈ R. Then,

P
(
f (X) − E(f (X)) ≥ x

) ≤ K4λ(Sd−1)cα + K5a
α

xα
,

whenever

xα ≥ 4(4α)α−1cα−1λ(Sd−1),

whereK4 andK5 are absolute constants.

PROOF. We only briefly describe the changes to the previous proofs to get the

result. First, and as previously done, decomposeX asX
d= Y (R) + Z(R). Next, use

Corollary 3 in [4]: under the assumptions onf stated above

P
(
f

(
Y (R)) − E

(
f

(
Y (R))) ≥ x

) ≤ exp
(

− x

4cR
log

(
1+ cRx

2a2

))
.

Then, proceed as in the proof of Theorem 1, using also the comparison
betweenEf (X) and Ef (Y (R)) given in the proof of Theorem 2:|Ef (X) −
Ef (Y (R))| ≤ λ(Sd−1)R1−α/(α − 1). Hence, takingR = Kx/(2αc), for some
constant 0< K < 1, chosen below, leads to:

P
(
f (X) − E(f (X)) ≥ x

) ≤ (2α)αλ(Sd−1)cα + α(4α)α/2aα

αKαxα
,

whenever

xα ≥ (2α)α−1

α − 1

K1−α

1− K
cα−1λ(Sd−1),

with α > 1. The choicesK = 1/2, α > 3/2 yield the result. [A slightly improved
result holds if in the integral in (32),R is replaced by|u| ≤ R whereR is chosen
as above.] �
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