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ON THE CONCENTRATION OF MEASURE PHENOMENON FOR
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Concentration of measure is studied, and obtained, for stable and related
random vectors.

Let X be a standard normal vectorikf and letf : R? — R be Lipschitz (with
constant one) with respect to the Euclidean distance. A seminal result of Borell [3]
and of Sudakov and Tsirel'son [7] asserts that forall O,

e—x2/2
1) P(f(X)—m(f(X))2x)<1-d(x) < >

wherem(f (X)) is a median of f(X) and where® is the (one-dimensional)
standard normal distribution function. The inequality (1) has seen many extensions
and to date, most of the conditions under which these developments hold require
the existence of finite exponential moments for the underlying vectdris thus
natural to explore the robustness of this “concentration phenomenon” and to study
the corresponding results for stable vectors. It is the purpose of these notes to
initiate this study and to present a few concentration results for stable and related
vectors, freeing us from the exponential moment requirement. Our main result will
imply that if X is an«-stable random vector iR, then for allx > 0,

(2) PO —m(fX) = x) <1 Z%D,

x(l

where the constan («, d) will be explicit.

Let X ~ID(b, 0, v), that is, letX be ad-dimensional infinitely divisible vector
without Gaussian component. Forale R?, its characteristic functiopy is given
by ox (1) = eV ™, with

©) ¥ (u) =i(u,b) JrfRd(E““’y> —1—i{u, y) Ly <1)v(dy),

whereb € R? and wherev # 0 (the Lévy measure) is a positive Borel measure
without atom at the origin and such thﬁ@(”y”z A Dv(dy) < 400 (throughout,
(-,-y and| - || are, respectively, the Euclidean inner product and nor&rin
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CONCENTRATION OF MEASURE 1497

It is well known that there is a one-to-one relationship between Lévy processes
and infinitely divisible laws. More precisely, {{X(¢):¢t > 0} is a Lévy process
(without Gaussian component) &9, then for allr > 0, u € R¢,

(4) ox () (u) = Ee' X D) = V),

whereys is as in (3). Hence, an infinitely divisible vect&rcan be viewed aX¥ (1),
the Lévy proces$X (1) :t > 0} at time 1.

Recall also thaiX is «-stable, O< «a < 2, if the measure is given, for any
Borel setB € B(R?), by

+00 d
(5) v = [ rae [ 1s00 -1

where is a finite positive measure osf—1, the unit sphere oR?, called the
spherical component of the Lévy measuXeis symmetrica-stable &) if and
only if A is symmetric, in which case,

oxw =exp|—c, [ .o,

wherec, = %m Moreover,X is rotationally invariant if and only if is

uniform onS?—1 and then
ox ) = e_Ca,d”””a’
wherecy ¢ = co [ga-1 [(u/llu]l, £)|*1(dE) does not depend ane R?. In particu-

lar, if A is the uniform probability measure &2, ¢, 4 = %W.

(We refer the reader to Sato’s book [6] for a good introduction to Lévy processes
and infinitely divisible laws.)

In order to prove our first theorem, we need the lemma below. For the mean
rather than a median (andrather tharnx /2), the result is obtained in [4]. However,
it is standard that applying this result to the functigty) = min(d(y, A), x),
y € R¢, whereA = {f < m} andm is a median off, leads to deviation from a
median. IndeedEg < x/2, and thereforg — Eg > x/2 wheneverf —m > x.

LEMMA 1. Let X ~ ID(b,0,v) with v boundedly supportedet V2 =
Jra Ix|IPv(dx) and let R = inf{p > O:v({x:|lx|| > p}) = 0}. Then for any
Lipschitz function(with constantl) f:R¢ — R,

6) P(f(X)- m(f(X))>x)<exp{2R (2R+X—z)'°9<”;v2>}

for all x > 0, and wheren(f (X)) is a median off (X).

Above (and below), the Lipschitz property is usually taken with respect to the

Euclidean norm, that isf is Lipschitz if | flLip = SUR., W < +o0;

however, other norms could be considered [e.g., see Remark 2(ii)].
We can now state
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THEOREM 1. LetX be ana-stable vector with Lévy measuregiven by(5).
Let f:RY — R be such thaf| f|Lip < 1. Then

Kia(s9h
7 P(f(X)— X _
() (f (X) =m(f( ))Zx)fa(z—a)xa’
whenever
(sz(Sd—l) )1/01
x> —= ,
"\ a—w)
and wheren(f (X)) is a median off (X) while K1, K» are two absolute constants

PROOF  For anyR > 0, we have the identity in distributiok Ly® 4 z(R)
whereY ® and Z® are mutually independent infinitely divisible vectors with

. . . (R (®)
respective characteristic functign x) = eVy andg,«x) = e¥z . Foru e R?, the
exponents are given by

Ry — i(uy) _q d
= [ e 2y,

WS W) = i, by + /” e R L TR SO}
yi=s

with
b=b— y1jy<1vx (d@y),
lyll>R

where the last integral is understood coordinatewise (and so is the above
difference) and wherey is the Lévy measure of .
Next,

(8) P(f(X)—m(f(X)=x)<P(f(Y®)—m(f(X)=x)+ P(Z® £0).

Let us first estimate the second probapiiit (8) involving the compound Poisson
random vectoZ (®):

P(z® 20 =1-P(z® =0)

<1-— exp(— /”x”>R vx(dx))

—1 exp( / A(dE) dr)
B si-1 Irgl>R rite

d—1
=1-exf 20 re)
o

=1—exp(—Ca(a, )R™)
&

_Rav

9)
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whereCz := Ca(a, 1) = 250,

Turning our attention toY ®, we first compute the quantities involved in
Lemma 1:

P(f(y®)—m(f(r™®)) > x)

(10) X
=5~ (55 72) 091+ 372 |
2R 2R R? 2ve) |’
where
V2= 2yx(d
f”x”<R lx]1vx (dx)
= Jua @ | el M
(11)
= [, e [
= C1(a, ) RZ™,
with Cy(a, L) =
P(f(Y(R)) —m(f(Y?)) = x)
X X C1 R%x
(12) < ex 2R (ﬁ"‘ﬁ) Iog(1+2RC1)}
= H®(x)
x/2R
(13) <

< b
= (14 R%x/(2RCy))*/2R

d—1
whereCy := Cy(a, 2) = 25—

Now rewrite the first probability in (8) as
P(f(Y'"®) —m(f(X)) = x)
=P(f(¥™) =m(f(¥™)) = x +m(f (X)) = m(f(¥™))).

We want to boundm (£ (X)) — m(f (Y ®)))| and, as it will become clear from
the proof, only the case( f (X)) < m(f (Y ®))) (which we assume) presents some
interest and needs some work. To this end, remark that, forxany and any
function f, we have

(14)

P(f(X)<x)=P(f(¥®) <x)| < P(X£Y®)=P(z® 0).
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SetP,, = P(f(X) <m(f(X))) = 1/2. Then,
Py — P(f(Y®) =m(f(X)))
= P(f(X) =m(f(X))) = P(f(Y®) =m(f(X)))
< P(z® £0).
Moreover, if f is Lipschitz with|| f||Lip < 1,
Py —P(Z® 20) < P(F(r®) <m(f(X)))
=P(f(Y®) =m(f(r™)) =m(f X)) —m(f(¥'®)))
< H®(m(f(r®)) —m(f (X)),

where the second inequality follows from Lemma 1 applied 6, and with H (®
given in (12). SinceH® is decreasing, set®(y) = supz > 0, H®) (z) > y}.
Thus, provided?,, > P(Z® £ 0),

m(f(Y®) —m(f(X)) < 1®(P, — P(z® £0)).
Choosé’ € (0, 1/2). Then, for everyR such that
(15) R = (C2/8)"°,

we have, using the same estimates as in (8),— P(Z(® #£0) > 1/2 — 5.
Moreover, for every positival, (13) entails

2 A/2
P(f(r®) —m(f(r™)) = AR) < H®(AR) < 6A/2<Alcei> .
Thus if
2C1 A/2 eA/Z 2/aA
R i
4o =((%) 12m5)
then

H®(AR) <1/2-3,

or, equivalently,7®(1/2 — 8§) < AR. As a consequence, iR satisfies both
conditions (15) and (16), we have

Im(f (Y ®)) —m(f(X)| < 1® (P, — P(z® £0)) <1®(1/2-5) < AR.
Using this together with (12) and (14) yields
P(f(Y®) —m(f (X)) = 2+ AR)

< PU(r) —mlr (r)) = 2R) < %E
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Settingx = (2+ A)R, we obtain

2+ A)“
(17) P(f(Y®) —m(f(X)) = x) < %
Finally, combining (17) and (9), we conclude that, for ahy O,
eC1+Co)(2+ A)“
(18) P(FO) = m(f00) 2 x) < CATEDERAT
whenever is large enough, so that there exists (0, 1/2) satisfying
X C2 1/a
(19) 21 A° (T) ’
and
1/a AJ2 2/aA
() ()
2+ A A 1/2—6

For a givenA, the domain of validity of (18) can be found by optimizidggn
(19) and (20). Taking, for instancd,= 2 leads [by equating the right-hand sides
of (19) and (20)] tas = C2/2(eC1+ C2) = (2 — «)/2(2 — o + er), and SO
4eC1+Co) _ 42— a+ea)i(5'™H

x% N o(2—a)x“

P(f(X)—m(f(X)) =x) <

’

whenever

_ d—1\\ 1/a
x24<2(2 a+ea)A(S )) '

x(2—a) O

REMARK 1. (i) The estimate in (7) is sharp in, as can be seen by taking
X ~ SxS a one-dimensional symmetric-stable random variable with parameter
o > 0 and characteristic functiogy (1) = ¢~ “I“. In that case (e.g., see
Proposition 1.2.15in [5])

lim x*P(X>x)=0%A,

X—>400
where
1—-«
9 11
4 _lr@-wcosza2 ¢ 7
o=

1

) o= 11

T

and 0% = 20(Dcy = %2)\(1). Ford = 1, and X symmetric, our

constants ar€; = 2D — 2 gnqc, = 2 Thys, the dependency in
a in the constants of (7) is sharp as— 0, but explodes ag — 2 (in contrast
to 0“A,). This problem will be addressed in the sequel. We also note that the
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dependency on the dimensidris sharp. Indeed, iX is a stable vector iiR?, then
by a result of Araujo and Giné [1] (see, e.g., Theorem 4.4.8 in [5])

(21) lim x*P(|X]| > x) = coA(STHA,.
x——4+00

(i) As usual left tails inequalities also follow from (7) by applying the result
to — f and, as is also classical, the estimates can equivalently be given in terms of
enlargements of sets. Fer> 1, a median can be replaced by the mean (changing
the range of, too) by properly modifying the above proof or by using

Elf(X) —m(f (X))l
3 2<K2X(Sd—1))1/a 2 Kl)\(sd—l)(sz(sd—l))(l—a)/a
- a(2—a) a—1 a(2—a) a(2—w) ’
which follows from integrating the tail inequality (7).

(i) The methodobgy of proof presented above works as well for any infinitely
divisible vector X. However, it requires estimates 0f|h||>1e vx(dx) and on

f||x||sR lx|I2vx (dx) which, in general, are unavailable in the absence of further
knowledge of the Lévy measure. If the Lévy measur& dfas the form

+oo Lr)d
(22) V/(B) = /S A(dE) / 15(8) (r) ’

for some slowly varying functior. on [0, co), in WhICh caseX is in the domain

of attraction of a stable random vector with Lévy measure given by (5), the proof
of Theorem 1 and standard estimates on regularly varying functions (see, e.g., [2],
Theorem 1.5.11) give the following bound:

K1a (S HL(x)
a(2—a)x“
for everyx such thatL is locally bounded offix, o) and such that

(23) P(f(X)—m(f(X))=x)<

o
X o

> K¢,

L(x)~ 2
where the constant&1, K> are the same as in Theorem 1. A similar result can
also be obtained wheK is in the domain of attraction of a stable vector with

Lévy measure. In that caseL(r) in (22) should be replaced by(r, £); thus if
L1(r) < L(r,&) < La(r), in (23), L(x) should be replaced b (x).

Whena is close to 2, the upper bound in Theorem 1 has the f&mgSs9—1)/
(2 — a)x? as soon asx® > K'A(S91)/(2 — o). We would like to obtain a
better bound, namely of the fork”A(s?1)/x*, at the price of potentially
strengthening the condition on. To do so, we begin by a result improving
Lemma 1. The setting and the notation below are as in Lemma 1; in addition,
let W3 = [ra Ix[13v(dx).
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LEMMA 2. If V2/W3> 2/R, let so be the unique positive solution of

sR_1  RV?2
67:—_1’ s >0,
SR w3
and let
W3
=2 V2——> :
X0 ( R S0

Let f :R? — R be such that| f ||Lip < 1. Then if x < xo,

—x2
P(f(X)—Ef(X)>x) < eXp(m)’

while forx > xq,

P(F(X) — EF(X) > x) < Kexp(% - (% 4 ZR—W;) log (1+ 5_;;))

with
K — ex (——xg)
=P 4(V2— W3/R)

xo 2W3 R2xg
—— | 1
<o =0+ (g + G oo (1+ g3 )

PrRooOF Recall that Theorem 1 in [4] asserts that

(25) P(FO0 = EF 00 zx) x| = [“h i ds),

(24)

forall 0 < x < h(N~), whereN = supr > 0: E¢'lXIl < 400} and wheren 1 is
the inverse ofi(s) = [ga [lu](e*1*l — Lv(du), 0<s < N.

When the Lévy measure has its support in the Euclidean ball of center 0 and
radiusR (in which caseN = +o00), Lemma 1 follows by bounding the function
gs(x) = e** — 1 between 0 an® by a linear interpolation, using also the convexity
of the exponential. It is easily seen that, for evare [0, R], the following
improved inequality holds:

eSR—_1-—sR 2
_x

gs(x) <sx+ R2

for all s > 0. Therefore,

w3 w3
]’l(S) < <V2 — ?>S + F(BSR — 1)

3 3
<2max( (V2 - w= sm(e‘R 1)).
R?
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Soif V2/W?3 > 2/R, there exists a unique positivg such that

eSOk _ 1  Rvy2
soR W3

1,

and fors < sq,

while for s > sq,
W3
his) <2—5 (e = 1).

Letxg=2(V2— WTS)so. We have, for < xo,

1 t
A1) = V=W

while for ¢t > x,

i) > 1 log <1+ R—Zt)
~ R 2w3

The lemma follows. O
We are now ready to state our second theorem. We will express the deviation

from the expectation here (since it exists). As already mentioned, a result in terms
of the median can be easily derived.

THEOREM 2. Using the notation of Theorerh, assumex > 3/2 and let
M =1/(2 — «). Then there exists an absolute const&itsuch that

d—1
(26) P(F(X) — Ef(X) = x) < XD

for everyx satisfying
x> 40 (ST M log M log(1+ 2M log M).

x(l

PROOF  We use the notation of the proof of Theorem 1. The second and third
moments of the Lévy measuré® of y® are given by
A(sh
2—«

V2 — RZ—O{

and
)\.(Sd_l)
3—«

W3 — R3—C{
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which entails
RV?
— —1=M.
WS
Asa >3/2,M > 2 and
logM logM
) <s0<2 ) ,
and
208 HMlogM A0S HMlogM
27) (s"HmlogM _ _ 4r(STHMlog

B—a)Re1  — 3—a)Ro1
So forx > xg, Lemma 2 gives

P(f(Y®)—Ef(r®) > x)

< K ex (x (x +2W3)Io (1+ RZx))
- pR R RS 9 2w3) )"

From (24), (27) and since

it follows that

4 (STYHYMlogM )

(28) ngxp( YT log(1+ 2M log M)

Suppose next that
(29) x% > 40 (S Y M log M log(1 + 2M log M).

Then settingR = x, it first follows (sincex < 2) thatK < ¢, and second by (27)
and sinceV > 2, thatx > xg. Therefore, sincéV3 = A(S¢"1HR3*/(3— ),

P(f(r®)—Ef(r®)>x)

20 (891 (3—a)x¥
=¢ exp(l - (1 e a)xa) 09 (1 T 25 ))

< ¢? exp( —log (1 + 7(2?1(_53)_);;[ ))

(30)

2 d—1
3 2¢2)(S ).

xOl
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for all x satisfying (29). Let us now estimate the difference betwE¢nX) and
Ef(Y®)y:

EF ) — EF(r®)| = [E(F(r® 4 20) = f(r®)1, 00
<E|z®|
31 < d
(31) _/“x||>R||x||vx< x)

)\.(Sd_l)
a—1

Rl—(l

X
= 4log2logl+4log2’

where we used the compound Poisson structurgé? to get the next to last
inequality, and our choice@® =x, M > 2, — 1 > 1/2, and the range of given
by (29), to get the last one.

The estimate (31) as well as (30) and (9) finally give the result by proceeding as
in the proof of Theorem 1K3 = 1+ 8¢2 will do). O

REMARK 2. (i) Unlessi(5?1) is bounded above independently&f The-
orems 1 and 2 are not dimension-free, evenXawith independent components.
This is to be expected in view of (21), and is in sharp contrast to the Gaussian
case.

(i) X hasindependent components if and only i§ discrete and concentrated
on the intersections of the axes & with $9~1. In that case, the natural
Lipschitz property is with respect to thé€-norm. Thus taking, in the Lévy—
Khintchine representation (35“11 (the £1-unit ball of R?) instead ofs?~1, and
correspondingly changing to vy.,, (7) continues to hold replacings?~1) by
k“.“l(Sl’l”.ﬁll), wherei., is the “spherical component” ofy.,. In fact, for any

norm of R?, a result similar to (7) continues to hold with the type of changes just
described.

As already mentioned, the above theorems are not dimension-free, in particular,
when the components aX are independent and (for simplicity of notation)
identically distributed. However, using Corollary 3 in [4], improved versions of
Theorems 1 and 2 can be obtained with a mixture of “Lipschitz norms.” More
precisely, while we are not able to improve the constant in the upper bound of (26),
the additional conditions we assume on the functfoanable us to extend (when
¢ below is small) the range on which our inequality holds. Again Xowith i.i.d.
components, the measurds concentrated on the axesRf (see [6], page 67),
that is,

d
v(dx, ..., dxq) =) So(dx1) - -So(dx—1)V(dx)So(dxk41) - - So(dxa).
k=1
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Denoting byey, ..., e; the canonical basis @<, Theorem 2 now becomes

THEOREM 3. LetX be a stable vector with index > 3/2 and Lévy measure
v given by(31).Let f : RY — R be such that

(32) supZ / G+ uer) — F@)1Z5(du) < d?,

xeR4 |1

and
sup|f(x +uex) — f(x)| <clul,
xeRd

forall k=1,...,d,ueR.Then

A(sd-1 K
PUFOX) = E(f(X)) = x) < ST+ Ksa?

xO{

whenever
xoc Z 4(401)0{—16_0{—1)\(541—1)’

whereK 4 and K5 are absolute constants

PrRoOR We only briefly describe the changes to the previous proofs to get the

result. First, and as previously done, decomposes X L y®) 4 7(R) Next, use
Corollary 3 in [4]: under the assumptions grstated above

P(F(r®) - E(f(r®)) = x) < eX"( “aR 9 (“ 252))

Then, proceed as in the proof of Theorem 1, using also the comparison
betweenEf(X) and Ef(Y®) given in the proof of Theorem 2Ef(X) —
Ef(Y®) < A5 1HR¥*/(a — 1). Hence, takingR = Kx/(2uc), for some
constant O< K < 1, chosen below, leads to:

(20)* M8 + a(da)*/%a”
aK%x®

P(f(X) = E(f(X)) = x) <

’

whenever
o—1 pl-o
s @K
T a—11-K
with « > 1. The choiceX =1/2, « > 3/2 yield the result. [A slightly improved

result holds if in the integral in (32R is replaced byu| < R whereR is chosen
as above.] O

Ca_l)\.(Sd_l),
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