
The Annals of Probability
2004, Vol. 32, No. 2, 1469–1495
DOI 10.1214/009117904000000270
© Institute of Mathematical Statistics, 2004

MEANS OF A DIRICHLET PROCESS AND MULTIPLE
HYPERGEOMETRIC FUNCTIONS1

BY ANTONIO LIJOI AND EUGENIO REGAZZINI2

Università degli Studi di Pavia

The Lauricella theoryof multiple hypergeometric functions is used to
shed some light on certain distributional properties of the mean of a Dirichlet
process. This approach leads to several results, which are illustrated here.
Among these are a new and more direct procedure for determining the
exact form of the distribution of the mean, a correspondence between
the distribution of the mean and the parameter of a Dirichlet process,
a characterization of the family of Cauchy distributions as the set of the
fixed points of this correspondence, and an extension of the Markov–Krein
identity. Moreover, an expression of the characteristic function of the mean
of a Dirichlet process is obtained by resorting to an integral representation
of a confluent form of the fourth Lauricella function. This expression is then
employed to prove that the distribution of the mean of a Dirichlet process is
symmetric if and only if the parameter of the process is symmetric, and to
provide a new expression of the moment generating function of the variance
of a Dirichlet process.

1. Introduction. The connections between properties of functionals of a
Dirichlet process and the Lauricella multiple hypergeometric functions have been
investigated in independent papers by Kerov and Tsilevich (1998) and Regazzini
(1998); they also represent the point of departure of the present paper. The
approach undertaken here is quite different from that of recent contributions to the
study of exact distributions of functionals of a Dirichlet process. See, for example,
Regazzini, Guglielmi and Di Nunno (2002). Some specific properties of multiple
hypergeometric functions are extended in such a way as to become significant
properties of the laws of functionals of random measures. This is an unusual
application of the theory of special functions. On the other hand, since these
extensions can be thought of as infinite-dimensional versions of some fundamental
types of special functions, the results presented in the following sections might be
also of some interest from an analytic point of view.
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The main reason for analyzing the interplay between multiple hypergeometric
functions and laws of Dirichlet functionals is twofold: it allows simplifications
in the proofs of some well-known propositions and, more importantly, it leads to
new results concerning the distribution of the above-mentioned functionals. Ties
between the theory of multiple hypergeometric functions and some applied prob-
lems in statistics had been investigated in previous contributions, in addition to the
papers already cited above. Dickey (1968) extends an identity due to Picard and
applies it to Bayesian inference about multinomial cell probabilities, with a prior
expressed by the Savage generalization of the Dirichlet distribution. Hill (1977)
exploits suitable representations of Appell’s hypergeometric functions to exactly
evaluate the posterior moments of parameters of interest for the inference about
variance components. In a problem of Bayesian statistical inference for missing
data, Dickey, Jiang and Kadane (1987) obtain representations of posterior mo-
ments and predictive probabilities in terms of ratios of Carlson’s hypergeometric
functions. Jiang, Kadane and Dickey (1992) explore computational methods for
hypergeometric functions arising in Bayesian analysis. Moreover, an introduction
to Carlson’s functions for statisticians can be found in Dickey (1983).

As far as the present article is concerned, it is organized as follows. Some
integral representations of the Lauricella hypergeometric functions, together with
their probabilistic interpretations, are illustrated in Section 2. The Feigin and
Tweedie existence condition and the Markov–Krein identity are then jointly
restated in Theorem 1 in Section 3. The proof is based on some classical results
concerning Lauricella’s hypergeometric functions. Despite its pure analytic nature,
it is as simple as the proof of Theorem 9 in Tsilevich, Vershik and Yor (2000). See
also Theorem 2 in Tsilevich, Vershik and Yor (2001). Moreover, we prove the
existence of a one-to-one correspondence between the set of nonnull measures,
on R, with given finite total massa > 0 and the set of all probability distributions
(p.d.) of linear functionals of a Dirichlet process with parameter having total
massa. Among recent papers focusing on such a bijection—sometimes referred
to as theMarkov–Krein correspondence—are those of Diaconis and Kemperman
(1996), Kerov and Tsilevich (1998) and Tsilevich, Vershik and Yor (2000). In
Section 4, elementary properties of gamma processes lead to an expression for
the p.d. of the mean of a gamma process in terms of the p.d. of the mean of a
Dirichlet process. Moreover, it is also seen that the p.d. of the mean of a gamma
process is a generalized gamma convolution and is, hence, infinitely divisible. This
fact suggests a simple proof of the absolute continuity, with respect to the Lebesgue
measure onR, of the mean of a Dirichlet process (see Proposition 2 and Remark 1).
In Section 5, an extension of the Markov–Krein correspondence is deduced
from well-known integral representations of the fourth Lauricella hypergeometric
function. Two applications of this extension are considered in Section 6: the first
determines the exact form of the p.d. of the mean of a Dirichlet process, and the
second is a characterization of the Cauchy distribution. Section 7 is devoted to
a representation of the characteristic function of the mean of a Dirichlet process,



DIRICHLET PROCESS AND HYPERGEOMETRIC FUNCTIONS 1471

via a multidimensional extension of Kummer’s confluent hypergeometric function.
The latter can be considered as a confluent form of the fourth Lauricella function
and admits a representation as a contour integral proved by Erdélyi (1937). The
distribution of a vector of means of a single Dirichlet process is examined in
Section 8. The identities given in Section 5 are trivially extended to this setup.
This is also helpful in proving the absolute continuity, with respect to the Lebesgue
measure onRd , of a vector of means of a single Dirichlet process, a finding which
answers a question raised in Regazzini, Guglielmi and Di Nunno (2002). Finally,
a representation of the moment generating function of the variance of the Dirichlet
process is provided and it would seem a meaningful improvement on previous
contributions to the subject. See, for example, Cifarelli and Melilli (2000).

2. Probabilistic interpretation of the Lauricella fourth function FD . The
topic of multiple hypergeometric functions was first approached, in a systematic
way, by Giuseppe Lauricella at the end of the 19th century. See, for example,
Exton (1976). He defined four functions which are named after him and have
both multiple series and integral representations. In particular, thefourth of these
functions, denoted byFD, admits integral representations of importance in our
treatment. Given anyξ = (ξ1, . . . , ξn) in Rn, set |ξ | for

∑n
k=1 ξk and 〈·, ·〉 for

inner product. Moreover, letTn := {u = (u1, . . . , un) ∈ Rn :ui > 0 for everyi and
|u| < 1}. With this notation, an integral representation of Euler type [see (26) in
Lauricella (1893)] is

�(b1) · · ·�(bn)�(a − |b|)
�(a)

FD(c, b1, . . . , bn;a;x1, . . . , xn)

(2.1)

=
∫
Tn

u
b1−1
1 · · ·ubn−1

n (1− |u|)a−|b|−1(1− 〈u,x〉)−c du1 · · · dun,

which is valid for everyx = (x1, . . . , xn) in [0,1)n and b = (b1, . . . , bn) with
strictly positive real part, that is, Re(bk) > 0 for everyk, and such that Re(a −
|b|) > 0. A further representation provided by formula (25) in Lauricella (1893) is

FD(c, b1, . . . , bn;a;x1, . . . , xn)

(2.2) =
∫
[0,1]

(1− ux1)
−b1 · · · (1− uxn)

−bnB(du; c, a − c),

which holds true whenever Re(c) > 0 and Re(a − c) ≥ 0, with

B(A; c, a − c) =




δ1(A), if Re(a − c) = 0,

�(a)

�(c)�(a − c)

×
∫
A∩(0,1)

uc−1(1− u)a−c−1 du, if Re(a − c) > 0,
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for everyA in the Borel class onR, B(R), andδx standing for the unit point mass
concentrated atx. Hence, lettinga = c, one gets

FD(a, b1, . . . , bn;a;x1, . . . , xn) = (1− x1)
−b1 · · · (1− xn)

−bn .(2.3)

Representation (2.1) has an obvious probabilistic interpretation, which was first
stressed and exploited by Carlson (1977), giving rise to what he called “method of
Dirichlet averages,” for unifying a part of the theory of special functions. In point
of fact, let ϕ̃ be a random probability measure supported byS = {0, x1, . . . , xn},
with (x1, . . . , xn) in (0,1)n, and assume that the random vector(ϕ̃{x1}, . . . , ϕ̃{xn})
has the Dirichlet distribution,D , with parameter(b1, . . . , bn, a − |b|), and
a − |b| > 0, bk > 0 for everyk, that is, the distribution characterized by

D(du) = �(a)

�(b1) · · ·�(bn)�(a − |b|)
× u

b1−1
1 · · ·ubn−1

n (1− |u|)a−|b|−1ITn(u)du1 · · · dun,

whereIB denotes the indicator function of setB. Whence, combination of (2.1)
with (2.3) gives

D

[(
1−

∫
S
xϕ̃(dx)

)−a]
= exp

{
−

∫
S

log(1− x)α(dx)

}
,(2.4)

provided thatα is the measure on the power set ofS determined byα{xk} = bk

for k = 1, . . . , n and α{0} = a − |b|. Here, and in the sequel, given any
probability measureϕ and real-valued functionh such that

∫ |h|dϕ < +∞, ϕ(h)

denotes
∫

hdϕ.
Equality (2.4) represents the most elementary version of an identity established

by Cifarelli and Regazzini (1979a, b, 1990) forfunctional Dirichlet processes
with parameterα. Recall that, given a finite measureα on (R,B(R)) with
a := α(R) > 0, a random probability measurẽϕ is said to be a (functional)
Dirichlet process with parameterα if, for every finite and measurable partition
C1, . . . ,Cn,Cn+1 of R, the random vector(ϕ̃(C1), . . . , ϕ̃(Cn)) has the Dirichlet
distribution with parameter(α(C1), . . . , α(Cn),α(Cn+1)). As for the definition
and the main properties of a functional Dirichlet process, the seminal contribution
in Ferguson (1973) still represents a sound reference.

Throughout the following sections,ζ(w;α,f ) will indicate the integral∫
R log(1 + wf (x))α(dx), while logz will denote the principal determination of

the logarithm of the complex numberz, that is, logz = log |z| + i arg(z), where
arg(z) is chosen in(−π,π ].

3. Lauricella theory and Markov–Krein identity. Diaconis and Kemperman
observed that the identity of Cifarelli and Regazzini cited above is closely related
to a well-known version of the Markov moment problem. See Akhiezer and Krein
(1962), Diaconis and Kemperman (1996) and Kerov (1998). As a matter of fact,
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some authors refer to this identity as theMarkov–Krein identity. Compare, for ex-
ample, Kerov and Tsilevich (1998) and the more recent paper by Tsilevich, Vershik
and Yor (2000). According to Kerov and Tsilevich (1998) and Regazzini (1998),
the Markov–Krein identity extends (2.4) from the (finite-dimensional) Dirichlet
distribution to the functional Dirichlet distribution. Notice that in the real domain
the extension holds true provided that the support of the parameter of the latter
distribution is bounded above. In the complex domain, a variant of the same iden-
tity, which holds for any parameter, is established in Kerovand Tsilevich (1998)
and in Regazzini, Guglielmi and Di Nunno (2002). In the following section, the
Lauricella theory is exploited to state jointly the Markov–Krein identity and the
Feigin and Tweedie condition for finiteness of the mean of a Dirichlet process.

3.1. The Markov–Krein identity. Given any finite measureα on (R,B(R))

such thatα(R) = a > 0, let Dα denote the functional Dirichlet p.d. with
parameterα. A suitable sequence of simple functionsξn, n ≥ 1, exists that satisfies
ξn(x) ↑ I (x) if x ≥ 0, ξn(x) ↓ I (x) whenx < 0 and|ξn| ↑ |I |, whereI is the
identity map onR. Therefore the sequence of finite measuresαn defined by

αn(B) = α{ξn ∈ B}, B ∈ B(R)

converges weakly toα, namely αn ⇒ α. Now defineP to be the space of
all probability measures on(R,B(R)) endowed with the topology of weak
convergence, and letP be the Borelσ -algebra onP. In this way, it follows
that the identity mapϕ̃ on (P,P ,Dα) is a random probability measure with
p.d. Dα. Moreover,ϕ̃n := ϕ̃ ◦ ξ−1

n has p.d.Dαn . A straightforward application
of the Lauricella formula (2.4), combined with a standard analytic continuation
argument, yields∫

P

(
1+ itϕ(f ◦ ξn)

)−a
Dα(dϕ) = exp{−ζ(it;αn,f )}.(3.1)

THEOREM 1. SettingL := {ϕ ∈ P :ϕ(|I |) := lim ϕ(|ξn|) is finite}, one has

Dα(L){1− Dα(L)} = 0,

and the following two conditions are equivalent:

(i) Dα(L) = 1.
(ii)

∫
log(1+ |x|)α(dx) < +∞.

Moreover, if Dα(L) = 1, then

(iii)
∫

P

1

(1+ itϕ(I ))a
Dα(dϕ) = exp{−ζ(it;α, I )}, t ∈ R.

The equivalence of (i) and (ii) was first proved by Feigin and Tweedie
(1989), but it was already contained—at least in part—in Cifarelli and Regazzini
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(1979a, b). A complete development of the argument used in the latter paper can
be found in Cifarelli and Regazzini (1996). Here it is shown that both equivalence
of (i) and (ii) and identity (iii) easily follow from (3.1).

PROOF OFTHEOREM 1. In view of the definition of(ξn)n≥1, the operations
of integration and of taking limit can be interchanged to obtain

ζ(it;αn, |I |)
= 1

2

∫
R

log
(
1+ t2ξ2

n (x)
)
α(dx) + i

∫
R

arg
(
t|ξn(x)|)α(dx)

→ 1
2

∫
R

log(1+ t2x2)α(dx) + i
∫

R
arg(t|x|)α(dx), asn → +∞,

where an infinite real part in the above limiting expression is allowed. Moreover,∫
P

(
1+ itϕ(|ξn|))−a

Dα(dϕ)

=
∫

P
exp

{
−a

2
log

(
1+ t2ϕ2(|ξn|)) − ia arg

(
tϕ(|ξn|))

}
Dα(dϕ)

→
∫
L

1

(1+ itϕ(|I |))a Dα(dϕ), asn → +∞,

sinceϕ(|I |) = +∞ if ϕ ∈ Lc. Hence, by (3.1) withf (·) = | · |, one gets∫
L

(
1+ itϕ(|I |))−a

Dα(dϕ) = exp{−ζ(it;α, |I |)}(3.2)

for everyt ∈ R, with the proviso that the right-hand side is 0 whenever the real part
of

∫
log(1+ it|x|)α(dx) is infinite. Thus, if

∫
R log(1+|x|)α(dx) = +∞, the right-

hand side of (3.2) is 0 for everyt �= 0 and, therefore,Dα(L) must be 0. On the other
hand, if

∫
R log(1 + |x|)α(dx) < +∞, thent → exp{− ∫

R log(1 + it|x|)α(dx)} is
continuous att = 0, that is,

lim
t→0

exp
{
−

∫
R

log(1+ it|x|)α(dx)

}
= 1,

and, by taking the limit (ast → 0) on both sides of (3.2), one obtains

Dα(L) = 1.

Finally, if (ii) holds, interchanging the operations of integration and of taking limit
in (3.1), withf = I , yields (iii). �

Identity (iii) in Theorem 1 can be invoked to prove that the p.d. ofϕ̃

characterizes the parameter ofDα within the class of all measuresα on(R,B(R))

for which α(R) has some fixed valuea > 0. This is the essence of the Markov–
Krein correspondence and it is dealt with in Section 3.2. In addition to the papers
listed in Section 1, Andrea Ongaro, in a personal communication, has shown us a
proof of such a correspondence based on a completely different approach.
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3.2. Uniqueness theorem.Define F to be the set of all finite measures on
(R,B(R)), and put

Fa =
{
α ∈ F :α(R) = a and

∫
R

log(1+ |x|)α(dx) < +∞
}
,

Ma = {Dα ◦ ϕ̃(I )−1 :α ∈ Fa}
for everya > 0. In words,Ma is the set of all p.d.’s of̃ϕ(I) whenϕ̃ is a Dirichlet
process with parameter varying inFa. Let A stand for the distribution function
associated toα, andĀ for (a − A)I[0,+∞) − AI(−∞,0). Clearly, to anyα in Fa

there corresponds a uniqueµα := Dα ◦ ϕ̃(I )−1. Moreover, one has

THEOREM 2. Anyα in Fa is determined by itsµα.

PROOF. Fix µα1 in Ma and supposeα2 ∈ Fa is such thatµα2 = µα1. Then

exp{−ζ(it;α1, I )} =
∫

R

1

(1+ itx)a
µα1(dx)

(3.3) =
∫

R

1

(1+ itx)a
µα2(dx) [by hypothesis]

= exp{−ζ(it;α2, I )} [from (iii) in Theorem 1].
Use integration by parts to obtain

ζ(it;αj , I ) =
∫

R

it

1+ itx
Āj (x)dx, t ∈ R, j = 1,2,

which, combined with (3.3) and analytic continuation, yields∫
R

Ā1(x)

z + x
dx =

∫
R

Ā2(x)

z + x
dx, z ∈ C with Im(z) �= 0.(3.4)

Taking,l(z, αj ) for
∫
R[Āj (x)/(z + x)]dx, j = 1,2, and resorting to the Stieltjes–

Perron inversion formula [see Theorem 12.10d in Henrici (1991)], one has

Ā1(ξ) = 1

2π i
lim
ε↓0

{l(−ξ − iε,α1) − l(−ξ + iε,α1)}

= 1

2π i
lim
ε↓0

{l(−ξ − iε,α2) − l(−ξ + iε,α2)}

= Ā2(ξ),

provided thatξ is a continuity point for bothĀ1 andĀ2. This suffices to conclude
thatα1 = α2, sinceαi(R) = a, i = 1,2. �

Theorem 2 states that there is a bijectionβa of Fa to Ma . Clearly,Ma ⊂ P for
everya > 0 and, more precisely,Ma � P for eacha > 0. Namely, for everya > 0,



1476 A. LIJOI AND E. REGAZZINI

there is some probabilityµ onB(R) which is not the p.d. of̃ϕ(I) for anyDα with
α ∈ Fa. For example, take

µ(dx) = 1

2η

{
I(−1−η,−1)(x) + I(1,1+η)(x)

}
dx

with η > 0. It is easily seen that such aµ cannot be the p.d. of the mean of a
Dirichlet process with parameterα, for any choice ofα in Fa and for everya > 0.
One can argue by noting that the support of the p.d. of the mean of a Dirichlet
process with parameterα must coincide with the closure of the convex hull of the
support ofα. This can be proved by combining a result concerning the topological
support of the Dirichlet prior given in Majumdar (1992) and the equivalence of
(i) and (ii) in Theorem 1. We finally remark that general properties ofMa are
discussed, for example, in Section 2.3 of Kerov (1998).

4. Markov–Krein identity and means of gamma processes. From elemen-
tary properties of the gamma process it follows that the right-hand side of (iii) in
Theorem 1 is the conjugate of the characteristic function of the “mean” of a gamma
process with parameterα. See (4.1). It is easy to verify that such a characteristic
function coincides with the Fourier–Stieltjes transform of ageneralized gamma
convolution, according to the terminology introduced by Olof Thorin. See, for ex-
ample, the original contributions in Thorin (1977a, b, 1978a, b) and the systematic
treatment in Bondesson (1992). From one of the Thorin results, it is possible to
state the infinite divisibility of the distribution of the mean of a gamma process.
This fact motivates the search for the Lévy–Khintchine representation of the above
characteristic function. And this representation, in turn, allows us to deduce im-
mediately the absolute continuity, with respect to the Lebesgue measure, of the
corresponding distribution.

4.1. Remarks on the characteristic function of the mean of a gamma process.
EndowF with the topology of weak convergence, and letα be an element ofFa,
with a > 0. Denote the Borelσ -field on F by F , and call functional gamma
distribution with parameterα the probability measureGα on (F,F ) defined as
follows. Setγ̃ for the identity map onF and say that̃γ has the functional gamma
distribution with parameterα, Gα, if for every finite and measurable partition
{B1, . . . ,Bk} of R, the random variables̃γ (B1), . . . , γ̃ (Bk) are independent,
with gamma distribution such thatE(γ̃ (Bj )) = Var(γ̃ (Bj )) = α(Bj), for each
j = 1, . . . , k. It is well known thatγ̃ (·)/γ̃ (R) is a random probability measure
with p.d. Dα. Moreover, one easily obtains the following representation for the
characteristic function of̃γ (I ) = ∫

xγ̃ (dx):

Gα

(
eit γ̃ (I )) = exp{−ζ(−it;α, I )}, t ∈ R.(4.1)

Thus, according to Section 3.1 in Bondesson (1992), the p.d. of the random
meanγ̃ (I ) is an extended form of generalized gamma convolution, withThorin
measureα∗, whereα∗ = α ◦ J−1 andJ (x) = 1/x for anyx in R \ {0}.
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On the other hand, (4.1) can be invoked to establish a representation of the p.d.
of γ̃ (I ) in terms of the p.d.µα of ϕ̃(I ).

PROPOSITION 1. Suppose thatα is an element inFa, for somea > 0, and
0 ≤ α{0} < a. Then, the p.d. of γ̃ (I ) is absolutely continuous with respect to the
Lebesgue measure and

x → I(−∞,0](x)
|x|a−1

�(a)

∫
(−∞,0)

|y|−ae−x/yµα(dy)

+ I(0,+∞)(x)
xa−1

�(a)

∫
(0,+∞)

y−ae−x/yµα(dy) =: q(x)

is a density function of such a p.d.

PROOF. Theorem 1(iii) yields

exp{−ζ(−it;α, I )} =
∫

R
(1− itx)−aµα(dx)

=
∫

R

1

�(a)

∫ +∞
0

za−1e−z(1−itx) dzµα(dx)

=
∫ 0

−∞
eity |y|a−1

�(a)

∫
(−∞,0)

|x|−ae−y/xµα(dx)dy

+
∫ +∞

0
eity ya−1

�(a)

∫
(0,+∞)

x−ae−y/xµα(dx)dy,

where the last equality follows from the application of the change-of-variable
formula, with y = y(z) = zx, and of the Fubini theorem on iterated integrals.
It follows that exp{−ζ(−it;α, I )} = Gα(eit γ̃ (I )) is the Fourier transform of the
probability density functionq(·). �

Absolute continuity extends toµα. We propose a new and simpler proof of this
statement. See Regazzini, Guglielmi and Di Nunno (2002) for a different line of
reasoning.

PROPOSITION2. Suppose thatα is in Fa, for somea > 0, with 0 ≤ α{x} < a

for everyx ∈ R. Then, the p.d. of ϕ̃(I ) underDα is absolutely continuous with
respect to the Lebesgue measure onR.

PROOF. Suppose thatµα has a singular partµα,s such thatµα,s[c, c +] > 0
with  > 0 andc in R. Sinceα is nondegenerate, the p.d. functionGc

α of γ̃ (I − c)

is absolutely continuous and, by virtue of Proposition 1,Gc
α() − Gc

α(0) =
(�(a))−1 ∫ 

0 xa−1 ∫
(0,+∞) y

−ae−x/yµc
α(dy)dx, µc

α being the p.d. ofϕ̃(I − c).
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Without real loss of generality, it suffices to consider the casec = 0. Then, for
any finite class of disjoint intervals(ρ1, ρ

′
1), . . . , (ρm,ρ′

m) with ρ1 ≥ 0, ρ2 >

ρ′
1, . . . , ρm > ρ′

m−1, and for anyδ > 0, one has

m∑
j=1

[
Gα

(
(1+ δ)ρ′

j

) − Gα(ρj )
]

=
m∑

j=1

∫ ρ′
j (1+δ)

ρj

xa−1

�(a)

∫
(0,+∞)

σ−ae−x/σµα(dσ )dx

≥
m∑

j=1

∫ ρ′
j (1+δ)

ρj

xa−1

�(a)

∫
[ρj ∨x/(1+δ),ρ′

j∧x]
σ−ae−x/σµα(dσ )dx

=
m∑

j=1

∫ ρ′
j

ρj

∫ 1+δ

1

1

�(a)
ξa−1e−ξ dξ µα(dσ )

=
∫ 1+δ

1

1

�(a)
ξa−1e−ξ

m∑
j=1

µα[ρj , ρ
′
j ]dξ.

Because of the existence of the singular partµα,s (with c = 0), there isε > 0 such
that: With eachη > 0 one can associate a finite class of disjoint intervals, included
in [0,], (ρ1, ρ

′
1), . . . , (ρm,ρ′

m) such that
∑

(ρ′
j − ρj ) < η and, for someε > 0,∑

µα[ρj , ρ
′
j ] ≥ ε. On the other hand, from the absolute continuity ofGα, there

is η such that
∑{Gα((1+ δ)ρ′

j ) − Gα(ρj )} < ε
∫ 1+δ
1 (�(a))−1ξa−1e−ξ dξ for any

finite class of disjoint intervals satisfying
∑

(ρ′
j −ρj ) < η, yielding a contradiction

and, thus, completing the proof.�

4.2. Lévy–Khintchine representation ofexp{−ζ }. The next proposition ex-
tends part of Theorem 3.1.1 in Bondesson (1992). It involves the distribution func-
tion A associated withα, the functiong defined by

g(x) = − |x|
1+ x2

[
I[0,+∞)(x)

∫
(0,+∞)

e−yx dA(y−1)

(4.2)

+ I(−∞,0)(x)

∫
(−∞,0)

e−yx dA(y−1)

]
, x ∈ R

and the well-known fact that the Lévy–Khintchine representation of an infinitely
divisible characteristic function, determined by the pair(γ,G), is expressed by

t → exp
{

iγ t +
∫

R\{0}

(
eitu − 1− itu

1+ u2

)
1+ u2

u2
dG(u)

}
,

whereγ ∈ R, andG is nondecreasing, right-continuous withG(−∞) = 0 and
G(+∞) < +∞.
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THEOREM 3. Supposeα satisfies condition(ii) in Theorem1. Then the char-
acteristic function ofγ̃ (I ) is infinitely divisible with Lévy–Khintchine representa-
tion determined by the pair(γ,G), whereγ = ∫

R\{0} |x|−1g(x)dx and dG(x) =
g(x)dx for everyx ∈ R, g being defined by(4.2). In particular, Gα(eit γ̃ (I )) ≡ 1 if
and only ifα = δ0.

PROOF. The result is first proved for the case
∫
R |x|α(dx) < +∞. By

differentiation under the integral sign one gets

d

dt
logGα

(
eit γ̃ (I )

) =
∫

R

ix

1− itx
α(dx)

=
∫

R
ix

∫ +∞
0

e−z(1−itx) dzdA(x)

= −i
∫ +∞

0
eitξ

(∫
(0,+∞)

e−ξy dA(y−1)

)
dξ

+ i
∫ 0

−∞
eitξ

(∫
(−∞,0)

e−ξy dA(y−1)

)
dξ,

where the application of the Fubini–Tonelli theorem is valid in view of the
above extra-assumption. Next, by definingg as in (4.2), one obtainsg ≥ 0,∫
R g(x)dx < +∞,

∫
R |x|−1g(x)dx < +∞. Hence,G(x) := ∫ x

−∞ g(u)du is well
defined for everyx in R, and it turns out to be nondecreasing withG(−∞) = 0
andG(+∞) < +∞. Moreover, letting

φ∗(t) :=
∫

R
(eitx − 1)

1+ x2

x2
g(x)dx, t ∈ R,

theneφ∗
is an infinitely divisible characteristic function with

γ =
∫

R\{0}
|x|−1g(x)dx

and dG(x) = g(x)dx, such that

d

dt
φ∗(t) = d

dt
logGα

(
eit γ̃ (I )

)
, t ∈ R.

The latter can be verified by interchanging the derivative with the integral in the
expression ofφ∗(·). It implies thateφ∗

is the characteristic function of̃γ (I ) when∫
R |x|α(dx) < +∞.

The extension of this conclusion to anyα such that
∫
R log(1+|x|)α(dx) < +∞

can be carried out through direct calculation ofφ∗. �

REMARK 1. A nice application of this theorem is a further proof of
the absolute continuity of the p.d. of̃γ (I ). In fact, under the hypotheses in
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Proposition 2, one has
∫
R\{0} x−2g(x)dx = +∞ and this, applying a criterion

due to Tucker (1962), suffices to state the absolute continuity of the (infinitely
divisible) p.d. ofγ̃ (I ).

5. Extension of the Markov–Krein identity: the Lauricella identity. In
Section 3, the so-called Markov–Krein identity has been obtained as an extension
of the Lauricella formulae (2.1) and (2.2) witha = c > 0. The Lauricella general
representations are now employed to prove an identity that holds for all pairs(a, c)

of strictly positive numbers. For the remainder of this section,

I1 :=
∫ (1+)

0
exp{−ζ(iwt;α, I )}b(w; c, a − c)dw

is to be meant as the integral along the contourOGG′, as shown in Figure 1, of the
function exp{−ζ(iwt;α, I )}b(w; c, a − c), where

b(w; c, a − c) = �(a)

�(c)�(a − c)
wc−1(1− w)a−c−1

for everyw in C such that Re(w) > 0 and Im(w) �= 0 if Re(w) ∈ (0,1].
In view of the Cauchy integral theorem, this contour can be deformed into the

path of integration consisting of: (A) the straight line segmentw = x − iτ with x

varying in (0,1 − ε), (C) the circle 1+ εeiθ with θ ∈ (−π + η,π − η), for a
suitableη > 0 and (A′) the straight line segmentw = x + iτ . Thus, ifc and(a − c)

are strictly positive, with(a − c) different from 1,2, . . . , one can letε → 0 to
obtain

I1 = (
1− e2π i(a−c)

) ∫ 1

0
exp{−ζ(iwt;α, I )}b(w; c, a − c)dw.(5.1)

This is required to state the following extension of point (iii) in Theorem 1, which
we shall callLauricella’s identity. The symbolsB andµα appearing in this identity
have the same meaning as in Sections 2 and 3, respectively.

FIG. 1.
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THEOREM 4. If, for somea > 0, α is in Fa, then∫
R
(1+ itx)−cµα(dx) =

∫
[0,1]

exp{−ζ(iut;α, I )}B(du; c, a − c)(5.2)

if a ≥ c > 0 and∫
R
(1+ itx)−cµα(dx)

(5.3)

= �(c − a + 1)�(a)

2π i�(c)

∫ (1+)

0
exp{−ζ(iwt;α, I )}wc−1(w − 1)a−c−1 dw

if c > a > 0.

PROOF. First note that, if 0< c ≤ a, the following equality holds true by
virtue of analytic continuation of both sides of (2.1) and (2.2):∫

P

1

(1+ itϕ(ξn))c
Dα(dϕ) =

∫
[0,1]

exp{−ζ(iut;αn, I )}B(du; c, a − c).

Next, argue as in the proof of Theorem 1 and apply the basic limit theorems of
integration theory to obtain (5.2).

Finally, suppose thata > c > 0 and use what has just been proved and (5.1) to
state the equality ∫

R

1

(1+ itx)c
µα(dx) = I1

1− e2π i(a−c)

when a − c �= 1,2, . . . . Now, take Euler’s reflection formula�(z)�(1 − z) =
π(sinπz)−1 to obtain∫

R

1

(1+ itx)c
µα(dx)

= �(c − a + 1)�(a)

2π i�(c)

∫ (1+)

0
wc−1(w − 1)a−c−1 exp{−ζ(iwt;α, I )}dw.

Notice that the right-hand side of the previous equality, as a function ofc, is
analytic on{c ∈ C :Re(c) > 0,Re(a − c) /∈ {0,1,2, . . .}}. Hence, such an equality
can be extended to anyc with c > a. This completes the proof.�

The Lauricella identity establishes that the Stieltjes transform (of orderc > 0)
of µα can be viewed as a mixture of the Stieltjes transforms (of ordera) of p.d.’s
of means of Dirichlet processes with parameterαw(·) := α{x :wx ∈ ·}. Apropos of
this, recall that

�(c − a + 1)�(a)

2π i�(c)

∫ (1+)

0
wc−1(w − 1)a−c−1 dw = 1.

Compare, for example, 3.1.27 in Slater (1960).
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6. Applications of the previous results.

6.1. Exact forms of the p.d. of
∫

xϕ̃(dx). Much work has been done on the ex-
act form of the p.d. of̃ϕ(I). As the following arguments show, Lauricella’s identity
considerably simplifies the solution of the problem. First, rewrite Theorem 4 with
c = 1 andα such thatα{x} < α(R) for everyx. Denoting a density function forµα

by mα and settingL(w) := ∫
R(w + x)−1mα(x)dx, one has

L(w) =




w−1
∫
[0,1]

exp{−ζ(uw−1;α, I )}B(du;1, a − 1), if a > 1,

w−1 exp{−ζ(w−1;α, I )}, if a = 1,

w−1(1− exp{2π i(a − 1)})−1

×
∫ (1+)

0
exp{−ζ(uw−1;α, I )}b(u;1, a − 1)du, if a ∈ (0,1),

for everyw ∈ C for which Im(w) �= 0. Thus, the Stieltjes–Perron inversion formula
yields

µα(x1, x2] = 1

π
lim
ε↓0

Im
∫ x2

x1

1

(−λ − iε)
exp

{
−ζ

(
1

−λ − iε
;α, I

)}
dλ

if a = 1,

µα(x1, x2]
= a − 1

π
lim
ε↓0

Im
∫ x2

x1

1

(−λ − iε)

×
∫ 1

0
exp

{
−ζ

(
u

−λ − iε
;α, I

)}
(1− u)a−2 dudλ

if a > 1, and

µα(x1, x2]
= 1

π
lim
ε↓0

Im
∫ x2

x1

1

(1− e2π i(a−1))(−λ − iε)

×
∫ (1+)

0
exp

{
−ζ

(
w

−λ − iε
;α, I

)}
b(w;1, a − 1)dw dλ

if a ∈ (0,1). In particular, whena = 1, one obtains

mα(ξ) = 1

π
lim
ε↓0

Im
1

(−ξ − iε)
exp

{
−ζ

(
1

−ξ − iε
;α, I

)}
;

if a > 1 and the saltus ofA at each discontinuity point is strictly smaller than 1,
one has

mα(ξ) = 1

π
lim
ε↓0

Im
1

(−ξ − iε)

∫
[0,1]

exp
{
−ζ

(
u

−ξ − iε
;α, I

)}
B(du;1, a − 1).
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At this stage we can achieve the same results as in Proposition 9(ii) and (iii) of
Regazzini, Giglielmi and Di Nunno (2002), by a simple application of the change-
of-variable formula.

EXAMPLE 1. (a) Letα(dx) = Cθ,σ2(dx) be the Cauchy density function with
parametersθ ∈ R andσ > 0, that is,

Cθ,σ2(dx) := σ

π(1+ σ 2(x − θ)2)
dx, x ∈ R.

It is also convenient to identifyCθ,+∞ with the degenerate distributionδθ . By
resorting to the expression ofmα given above whena = 1, it is easily verified that,
for anyx in R,

mα(x) = 1

π
exp

{
−

∫
R\{x}

log |ρ − x|Cθ,σ (dρ)

}
sin

(
π

2
+ arctan

(
σ(x − θ)

))

= σ

π(1+ σ 2(x − θ)2)

if σ ∈ (0 + ∞), whereasµα is degenerate atθ if σ = +∞. In other terms, ifα
coincides withCθ,σ2 for someθ ∈ R andσ ∈ (0,+∞], thenµα = α, a well-known
result stated by Yamato (1984). In Section 6.2 the converse will be proved.

(b) If α(dx) = aI(0,1)(x)dx with a > 1, then, for anyξ ∈ (0,1),

mα(ξ) = (a − 1)(1− ξ)a−1eaξ

π

×
∫ 1

0

ea(1−ξ )uua−2 sin(aπ(1− ξ)(1− u))

[(1− ξ)u + ξ ]aξ+a(1−ξ )u[(1− ξ)(1− u)]a(1−ξ )(1−u)
du.

(c) If α(dx) = a(σ
√

2π )−1 exp{− 1
2σ2 (x − θ)2}dx, for anyσ > 0, θ ∈ R and

a > 1, then application of 2.6.22.1 in Prudnikov, Brychkov and Marichev (1986)
yields

mα(ξ) = (a − 1)ξa−1

π

×
∫ 1

0
(1− u)a−2 sin

[
aπ

{
1− �

(
ξ − uθ

uσ

)}]

× exp
{
− a

σ
√

2π
exp

{
−(ξ − uθ)2

2u2σ 2

}

× ∂

∂ν

(
(uσ )ν2−(ν/2)�(ν)�

(
ν

2
,

1

2
; (ξ − uθ)2

2σ 2

))∣∣∣∣
ν=1

}
du,

for any ξ > 0, where� denotes the distribution function of a Gaussian random
variable with zero mean and variance equal to 1 and� is the Tricomi confluent
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hypergeometric function. On the other hand, lettingξ < 0, one has

mα(ξ) = −(a − 1)|ξ |a−1

π

×
∫ 1

0
(1− u)a−2 sin

[
aπ�

(
ξ − uθ

uσ

)]

× exp
{
− a

σ
√

2π
exp

{
−(ξ − uθ)2

2u2σ 2

}

× ∂

∂ν

(
(uσ )ν2−(ν/2)�

(
ν

2
,

1

2
; (ξ − uθ)2

2σ 2

))∣∣∣∣
ν=1

}
du.

6.2. Characterization of the Cauchy distribution.We prove the characteriza-
tion of the Cauchy distribution already mentioned in Example 1(a). The proof is
based essentially on the result in Theorem 4. As in Theorem 2,βa is the bijection
of Ma onFa.

THEOREM 5. The class of all fixed points of the bijectionβ1 is {Cθ,σ2 : θ ∈ R,

σ 2 ∈ (0,+∞]}.

In other terms, ifα ∈ F1, thenµα = α if and only if α is Cauchy or degenerate.
In Section 4 of Cifarelli and Regazzini (1990) another characterization is given
under stronger hypotheses, that is: A nondegenerate probability is a fixed point
of βa for every aif and only it is Cauchy.

PROOF OFTHEOREM 5. In the light of Example 1(a), it suffices to prove that
the condition is necessary. Suppose thatµα = α ∈ F1. Thenµnα = α for every
n ∈ N. Indeed, by the Markov–Krein identity,∫

R

1

s + iy
α(dy) = exp

{
−

∫
R

log(s + iy)α(dy)

}
(6.1)

holds for everys ∈ R \ {0} by virtue of the above hypothesis. Differentiate both
sides to obtain∫

R

1

(s + iy)2α(dy) = exp
{
−

∫
R

log(s + iy)α(dy)

}∫
R

1

s + iy
α(dy)

= exp
{
−2

∫
R

log(s + iy)α(dy)

}
[by (6.1)].

Hence, the result holds true forn = 2. Assume that it is valid for allm < n. Then∫
R

1

(s + iy)n−1α(dy) = exp
{
−(n − 1)

∫
R

log(s + iy)α(dy)

}
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and, by differentiation,∫
R

1

(s + iy)n
α(dy) = exp

{
−(n − 1)

∫
R

log(s + iy)α(dy)

}∫
R

1

s + iy
α(dy)

= exp
{
−n

∫
R

log(s + iy)α(dy)

}
[by (6.1)].

By induction one can conclude thatµnα = α for everyn ≥ 1. Next, this statement
and Theorem 4, witha = 2 andc = 1, give

1

n − 1

∫
R

1

1+ itx
µnα(dx) =

∫ 1

0
exp{−ζ(iut;nα, I )}(1− u)n−2 du

where, by hypothesis,∫
R

1

1+ itx
µnα(dx) =

∫
R

1

1+ itx
µα(dx) = exp{−ζ(it;α, I )}.

Hence,

t

n − 1
exp{−ζ(it;α, I )} =

∫ t

0
exp{−ζ(iu;nα, I )}

(
1− u

t

)n−2

du.

In particular, lettingζ(it;α, I ) = ρ(t) andn = 2, one has

te−ρ(t) =
∫ t

0
e−2ρ(x) dx, t ∈ R.

Differentiation of both sides givese−ρ(t) − tρ′(t)e−ρ(t) = e−2ρ(t), that is,

ρ(t) = log(1+ wt)

for somew ∈ C. Hence, exp{− ∫
R log(s + ix)α(dx)} = (s + w)−1 holds true for

everys > 0, and by (6.1) one gets

(s + w)−1 =
∫

R
(s + iy)−1α(dy) =

∫ +∞
0

e−sx

(∫
R

e−iξyα(dy)

)
dξ.

The left-hand side is the moment generating function ofe−wxI(0,+∞)(x) for every
s > −Re(w), implying e−wx = ∫

R e−ixyα(dy), for every x > 0. Analogously,
ewx = ∫

R e−ixyα(dy) is valid for anyx < 0. Therefore,

α(dy) = Cθ,σ2(dy), y ∈ R,

whereσ = 1/ Im(w), Im(w) ≥ 0 andθ = Re(w). �

REMARK 2. Richard Olshen has drawn the attention of the authors to the
following problem. Let (Xn)n≥1 be a sequence of exchangeable real-valued
random variables, whose p.d.P is supposed to be characterized by

P (A1 × · · · × An × R∞) =
∫

P
p(A1) · · ·p(An)Dα(dp),(6.2)
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n ∈ N, Ak ∈ B(R) for k = 1, . . . , n, α being any element ofF1. Then, by
de Finetti’s representation theorem and the strong law of large numbers for i.i.d.
random variables, one has

P

(∣∣∣∣∣
n∑

k=1

Xk/n − ϕ̃(I )

∣∣∣∣∣ → 0
∣∣∣ϕ̃

)
= 1 a.s.-P ,

which entails

1

n

n∑
k=1

Xk →
∫

R
xϕ̃(dx) a.s.-P.

Thus, the limiting p.d. of
∑n

k=1 Xk/n coincides with the law ofϕ̃(I ), that is,
with µα. Moreover, recall that eachXk has p.d.α. A natural question is whether
the above limiting p.d. may coincide withα. An answer can be deduced from
Theorem 5, that is:If (Xn)n≥1 is a sequence of exchangeable random variables
with a law characterized by(6.2), then the limiting distribution of the empirical
mean

∑n
k=1 Xk/n is α if and only if α is an element of{Cθ,σ2 : θ ∈ R, σ 2 ∈

(0,+∞]}.
7. Characteristic function of

∫
xϕ̃(dx). Let b1, . . . , bk be strictly positive

numbers such that|b| < a, and letx1, . . . , xn be arbitrary real numbers. Erdélyi
(1937) defines a confluent form of the fourth Lauricella function,n�, through the
following limiting process:

n�(b1, . . . , bn;a; itx1, . . . , itxn) = lim
ε↓0

FD(ε−1;b1, . . . , bn;a; iεtx1, . . . , iεtxn),

wheret is any real number. From (8.5) in Erdélyi (1937) and the definition ofDα,
we get

n�(b1, . . . , bn;a; itx1, . . . , itxn)

= �(a)

�(b1) · · ·�(bn)�(a − |b|)

×
∫
Tn

u
b1−1
1 · · ·ubn−1

n (1− |u|)a−|b|−1 exp

{
it

n∑
k=1

xkuk

}
du1 · · · dun

= Dα

(
exp

{
it

∫
xϕ̃(dx)

})
,

whereϕ̃ is a Dirichlet process with parameterα defined byα{xk} = bk , k = 1,

. . . , n, andα{0} = a − |b|. Hence,n� can be viewed as the characteristic function
of the mean of a Dirichlet process with a parameterα supported by a finite set.

The function n� admits an interesting representation, as a single contour
integral, which Erdélyi achieved by resorting to the following argument. Take the
Laplace transform of

ϕ∗(σ ) := (�(a))−1σa−1
n�(b1, . . . , bn;a; itσx1, . . . , itσxn),
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namely,∫ +∞
0

ϕ∗(σ )e−wσ dσ

= 1

wa
Dα

[
wa

�(a)

∫ +∞
0

σa−1 exp
{
−wσ + itσ

∫
xϕ̃(dx)

}
dσ

]

[Re(w) > 0]
=

∫
P

1

(w − it
∫

xϕ(dx))a
Dα(dϕ)

= 1

wa
exp

{
−

∫
R

log
(

1− itx

w

)
α(dx)

}
[by Theorem 1(iii)]

= 1

wa

n∏
k=1

{
1− itxk

w

}−bk

.

The well-known complex inversion formula for the Laplace transform [see, e.g.,
Henrici (1991), page 278] yields

xa−1

�(a)
Dα

(
eitϕ̃(I )) = ϕ∗(x)

= lim
R→+∞

1

2π i

∫ γ+iR

γ−iR
ewx 1

wa

n∏
k=1

{
1− itxk

w

}−bk

dw γ > 0,

which, lettingx = 1, gives

Dα

(
eitϕ̃(I )) = �(a)

2π i
lim

R→+∞

∫ γ+iR

γ−iR
ew 1

wa

n∏
k=1

{
1− itxk

w

}−bk

dw

= �(a)

2π i
PV

∫ γ+i∞
γ−i∞

ew 1

wa
exp

{
−ζ

(
− it

w
;α, I

)}
dw,

PV
∫

denoting principal value integral. Moreover, from the Cauchy integral
theorem, the path of integration can be deformed into any contour which consists
of a simple loop,Ct , beginning and ending at−∞, and encircling all the finite
singularities of the integrand, that is: 0, itx1, . . . , itxn. See Figure 2.

The above discussion leads to a first representation—under some restrictions—
for the characteristic function of̃ϕ(I).

THEOREM 6. Let α be a measure with a bounded supportS ⊂ R, and, for
any t in R, let St be the closure of the convex hull of{itx :x ∈ S}. Then, with
a = α(S) > 0,∫

P
eitϕ(I )Dα(dϕ) = �(a)

2π i
PV

∫ γ+i∞
γ−i∞

ew 1

wa
exp

{
−ζ

(
− it

w
;α, I

)}
dw
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FIG. 2.

holds for everyγ > 0. Moreover, if Ct is any contour consisting of a simple loop,
beginning and ending at−∞, and encirclingSt in such a way thatSt ∩ Ct = ∅,
then ∫

P
eitϕ(I )Dα(dϕ) = �(a)

2π i

∫
Ct

ew

wa
exp

{
−ζ

(
− it

w
;α, I

)}
dw.

PROOF. In view of the previous discussion, the statements are true ifS is
finite. More in general, ifS is bounded, resort to the approximating functionsξn,
used in the proof of Theorem 1, to write∫

P
eitϕ(I )Dα(dϕ) = lim

n→+∞

∫
P

eitϕ(ξn)Dα(dϕ)

= �(a)

2π i
lim

n→+∞

∫
Ct

ew

wa
exp

{
−ζ

(
− it

w
;αn, I

)}
dw.

Next, interchanging limit and integral gives

lim
n→+∞

∫
Ct

ew

wa
exp

{
−ζ

(
− it

w
;αn, I

)}
dw =

∫
Ct

ew

wa
exp

{
−ζ

(
− it

w
;α, I

)}
dw.

Finally, by the Cauchy integral theorem, one has∫
Ct

ew

wa
exp

{
−ζ

(
− it

w
;α, I

)}
dw = PV

∫ γ+i∞
γ−i∞

ew

wa
exp

{
−ζ

(
− it

w
;α, I

)}
dw

for everyγ > 0. �

To deal with general parametersα, assume that condition (ii) in Theorem 1 is
satisfied and, for anyk in N, defineα(k) as

α(k)(·) = δ−k(·)α(−∞,−k] + α
(· ∩ (−k, k)

) + δk(·)α[k,+∞).
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It can be proved that the distribution of
∫

xϕ̃k(dx), where ϕ̃k is the Dirichlet
process with parameterα(k), converges weakly to the mean of the Dirichlet process
with parameterα, ask tends to+∞. Hence, by the continuity theorem,∫

P
eitϕ(I )Dα(k)(dϕ) →

∫
P

eitϕ(I )Dα(dϕ), t ∈ R, k → +∞.(7.1)

From Theorem 6 it follows∫
P

eitϕ(I )Dα(k)(dϕ) = �(a)

2π i
PV

∫ γ+i∞
γ−i∞

ew

wa
exp

{
−ζ

(
− it

w
;α(k), I

)}
dw,(7.2)

which proves

THEOREM 7. Letα be a measure inFa , for somea > 0. Then∫
P

eitϕ(I )Dα(dϕ)

(7.3)

= lim
k→+∞

�(a)

2π i
PV

∫ γ+i∞
γ−i∞

ew

wa
exp

{
−ζ

(
− it

w
;α(k), I

)}
dw

holds for everyt in R and for any strictly positiveγ .

REMARK 3. Principal value integral in the right-hand side of (7.3) reduces to
Lebesgue integral ifa > 1. This is the case when, in the presence of exchangeable
observations, one is interested in the Fourier transform of any conditional p.d.
of ϕ̃(I ), given those observations.

As a first application of this result, consider the problem of characterizing
symmetric p.d.’s inMa for some fixeda > 0. It is well known that the p.d. of̃ϕ(I),
underDα, is symmetric ifα is symmetric. See, for example, Regazzini, Guglielmi
and Di Nunno (2002). Here, in addition to a simple proof of this fact, we prove the
converse.

THEOREM 8. Letα be an element inFa. Then the distributionµα of the mean
of a Dirichlet process with parameterα is symmetric if and only ifα is symmetric.

PROOF. Suppose thatα in Fa is symmetric. Then, for anyk ∈ N,

�(a)

2π i
PV

∫ γ+i∞
γ−i∞

ew

wa
exp

{
−

∫
R

log
(

1− itx

w

)
dA(k)(x)

}
dw

= �(a)

2π i
PV

∫ γ+i∞
γ−i∞

ew

wa
exp

{
−

∫
R

log
(

1− itx

w

)
d
(
a − A(k)(−x)

)}
dw,

which, by the change of variabley = −x, can be shown to be equal to

�(a)

2π i
PV

∫ γ+i∞
γ−i∞

ew

wa
exp

{
−

∫
R

log
(

1+ ity

w

)
dA(k)(y)

}
dw,
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thus implying, by virtue of Theorem 7, that the characteristic function ofϕ̃(I ) is
real-valued.

Conversely, ifµα in Ma is symmetric, one has

lim
k→+∞

�(a)

2π i
PV

∫ γ+i∞
γ−i∞

ew

wa
exp

{
−

∫
R

log
(

1− itx

w

)
d
(
a − A(k)(−x)

)}
dw

= lim
k→+∞

�(a)

2π i
PV

∫ γ+i∞
γ−i∞

ew

wa
exp

{
−

∫
R

log
(

1+ itx

w

)
dA(k)(x)

}
dw

(by change of variable)

= lim
k→+∞

�(a)

2π i
PV

∫ γ+i∞
γ−i∞

ew

wa
exp

{
−

∫
R

log
(

1− itx

w

)
dA(k)(x)

}
dw

(by symmetry ofµα).

The proof is concluded by resorting to Theorem 2 (uniqueness).�

Another application concerns the problem of determining the p.d. ofϕ̃(f ) =∫
f dϕ̃, when ϕ̃ has the functional Dirichlet distributionDα, and f is any

measurable real-valued function. Here,Dα can be understood as the functional
Dirichlet distribution of a random probability measurem̃ on a probability space
(�,F ); that is,� andF need not coincide withR andB(R), respectively. In this
general framework,α must be a finite measure on(�,F ) satisfyinga = α(�) > 0.
If f is bounded, then the discretization process used to prove Theorem 6 can be
applied to give

Dα

(
eitm̃(f )) = �(a)

2π i
PV

∫ γ+i∞
γ−i∞

ew

wa
exp

{
−

∫
R

log
(

1− itx

w

)
α ◦ f −1(dx)

}
dw,

allowing an obvious generalization of Theorem 8.

THEOREM 9. Let m̃ be a random probability measure on(�,F ) with
distribution Dα, and let f be a measurable function from� to R such that∫
� log(1 + |f |)dα < +∞. Then, the p.d. of m̃(f ) is the same as the p.d. of ϕ̃(I ),

whereϕ̃ is a random probability measure on(R,B(R)) with p.d. Dα◦f −1.

8. Vector of means of a single Dirichlet process. Let (�,F ,P ) andDα

be those defined in the final part of the previous section, and letf1, . . . , fd be
measurable functions from� to R satisfying∫

�
log(1+ |fk|)dα < +∞, k = 1, . . . , d.(8.1)

For anyt = (t1, . . . , td) in Rd , defineα〈t,f〉 [with f = (f1, . . . , fd)] as the image
measure—defined on(R,B(R))—of α, through the measurable function〈t, f〉 :=∑d

j=1 tj fj , that is,

α〈t,f〉 = α ◦ 〈t, f〉−1.
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If m̃ is a random probability measure on(�,F ) with distribution Dα, then
Theorem 9 states that the p.d. of

m̃(〈t, f〉) =
∫
�

d∑
j=1

tj fj dm̃

coincides with the p.d. ofϕ̃(I ), where ϕ̃ is a random probability measure
on (R,B(R)) having p.d.Dα〈t,f〉 .

8.1. Multidimensional Lauricella identity. These remarks, combined with
a straightforward application of Theorem 4, yields the followingmultidimen-
sional form of the Lauricella identity, that is: Suppose(8.1) holds true, with
a = α(�) > 0, and denote the p.d. of(m̃(f1), . . . , m̃(fd)) by µα,f. Then, for any
t = (t1, . . . , td ) in Rd, one has∫

Rd

1

(1+ i〈t,x〉)c µα,f(dx)

=
∫
[0,1]

exp
{
−

∫
�

log(1+ iu〈t, f〉)dα

}
B(du; c, a − c)

if a ≥ c > 0, and∫
Rd

1

(1+ i〈t,x〉)c µα,f(dx)

= �(c − a + 1)�(a)

2π i�(c)

×
∫ (1+)

0
exp

{
−

∫
�

log(1+ iw〈t, f〉)dα

}
wc−1(w − 1)a−c−1 dw

if c > a > 0.
This proposition has also been proved in Regazzini, Guglielmi and Di Nunno

(2002) whena = c and in Kerov and Tsilevich (1998) whena = c = 1. The
following sections illustrate two applications. The former concerns the proof
of absolute continuity, with respect to the Lebesgue measure onRd , of µα,f.
Regarding this point, Firmani (2002) has determined a density function ofµα,f by
inversion of the above identities withd = 2, and for suitable choices off1 andf2.
The latter application deals with the problem of determining an expression for the
moment generating function of the variance of a Dirichlet process.

8.2. Absolute continuity ofµα,f. In view of Proposition 2 and of the remarks
at the beginning of this section, the p.d. ofm̃(〈t, f〉) is absolutely continuous
with respect to the Lebesgue measure onR if f := (f1, . . . , fd) is not affinely
α-degenerate; that is to say, there are nov in Rd \ {0} and b in R for which
α{〈v, f〉 = b} = a. As far as absolute continuity ofµα,f is concerned, the following
statement is valid.
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THEOREM 10. Supposeα andf satisfy(8.1)and assume thatf is not affinely
α-degenerate. Then the p.d. µα,f of (m̃(f1), . . . , m̃(fd)) is absolutely continuous
with respect to the Lebesgue measure onRd .

PROOF. The contrapositive statement will be proved. Indeed, ifµα,f is
not absolutely continuous, there areε > 0 and, for everyδ > 0, a setA =⋃M

k=1 k with i = ×d
r=1(a

(i)
r , b

(i)
r ), i ∩ j = ∅ if i �= j , and λd(A) =∑M

k=1
∏d

r=1(b
(k)
r − a

(k)
r ) < δ, such thatDα{m̃(f) ∈ A} = µα,f(A) ≥ ε. Denote

the Lebesgue measure onRd by λd and chooset1, . . . , td in such a way that
0 < tj ≤ min1≤k≤M

∏
i∈{1,...,j−1,j+1,...,d}(b

(i)
k − a

(i)
k )/d . Then,

M∑
k=1

d∑
j=1

tj
(
b

(j)
k − a

(j)
k

) ≤
M∑

k=1

d∑
j=1

(
b

(j)
k − a

(j)
k

)
< δ

and, therefore, lettingA′ = ⋃M
k=1(t1a

(1)
k + · · · + tda

(d)
k , t1b

(1)
k + · · · + tdb

(d)
k ), one

hasλ1(A′) ≤ ∑M
k=1

∑d
j=1 tj (b

(j)
k − a

(j)
k ) < δ. Moreover,A ⊂ {x ∈ Rd : 〈t,x〉 ∈ A′}

and ε > 0 is such that, with eachδ > 0, one can associate a setA′ ∈ B(R)

satisfying λ1(A′) < δ and Dα{m̃(〈t, f〉) ∈ A′} ≥ ε, contradicting the absolute
continuity of the p.d. ofm̃(〈t, f〉). �

8.3. Moment generating function of the variance ofϕ̃. If α satisfies condi-
tion (ii) in Theorem 1, then the random variance

Ṽ :=
∫

R

(
x − ϕ̃(I )

)2
ϕ̃(dx)

is finite, a.s.-Dα. Some of the results given in Section 7 are employed here
to determine an expression for the moment generating function,g

Ṽ
, of Ṽ .

The definition used forg
Ṽ

coincides with the one formulated, for instance, in
Section 13.5 in Fristedt and Gray (1997), so that

g
Ṽ
(t) = Dα

(
e−tṼ ) = Dα

(
exp

{−t
(
ϕ̃(f2) − (ϕ̃(f1))

2)}), t ≥ 0,(8.2)

wheref1(x) = x andf2(x) = x2 for everyx in R. After observing thatetx2
is the

moment generating function, atx, of a Gaussian-distributed random variable with
zero mean and variance equal to 2t , apply Fubini’s theorem to obtain

g
Ṽ
(t) = 1

2
√

2πt

∫
R

e−u2/(4t)Dα

(
euϕ(f1)−tϕ(f2)

)
du.

If the support ofα is bounded, by using arguments similar to those employed in
the proof of Theorem 6 and by resorting to Theorem 9, withf = uf1 − tf2, it is
straightforward to prove that

Dα

(
euϕ(f1)−tϕ(f2)

)
= �(a)

2π i
PV

∫ γu,t+i∞
γu,t−i∞

ez

za
exp

{
−

∫
log

(
1− ux − tx2

z

)
α(dx)

}
dz
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holds, provided thatγu,t is any element of(0,+∞) satisfying

γu,t > sup
x∈supp(α)

(ux − tx2).

The resulting expression for the moment generating function ofṼ is

�(a)

4π3/2i

∫
R

e−y2/4PV
∫ γ ′

y,t+i∞
γ ′
y,t−i∞

ez

za
exp

{
−ζ

(
1

z
;α, tf2 − y

√
tf1

)}
dzdy

andγ ′
y,t is any element of(0,+∞) satisfying

γ ′
y,t > sup

x∈supp(α)

(
y
√

tx − tx2)
.

An extension of this representation to cases in which the support ofα is arbitrary
can be obtained by considering the sequence of truncated measures(α(k))k≥1, as
defined in Section 7. Since the distribution of the variance of the Dirichlet process
with parameterα(k) converges weakly to the distribution of the variance of the
Dirichlet process with parameterα, ask tends to+∞, a continuity theorem for
moment generating functions yields

g
Ṽ
(t) = �(a)

4π3/2i

× lim
k→+∞

∫
R

e−y2/4

× PV
∫ γ ′

y,t+i∞
γ ′
y,t−i∞

ez

za
exp

{
−ζ

(
1

z
;α(k), tf2 − y

√
tf1

)}
dzdy.

See, for example, Fristedt and Gray [(1997), page 262].
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