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EXTREME VALUE THEORY, ERGODIC THEORY AND THE
BOUNDARY BETWEEN SHORT MEMORY AND LONG
MEMORY FOR STATIONARY STABLE PROCESSES!

BY GENNADY SAMORODNITSKY
Cornell University

We study the partial maxima of stationarystable processes. We relate
their asymptotic behavior to the ergodic theoretical properties of the flow. We
observe a sharp change in the asymptotic behavior of the sequence of partial
maxima as flow changes from being dissipative to being conservative, and
argue that this may indicate a change from a short memory process to a long
memory process.

1. Introduction. Let X = (Xp, X1,...) be a stationary symmetrig-stable
(SaS) process, & o < 2. How does one decide whether or not the process has
long range dependence?

Sincex-stable random variables with9a < 2 have infinite second moment,
one cannot use correlations to tell when a stationastable process has long
range dependence. Covariance-like functions have been tried [see, e.g., Astrauskas,
Levy and Taqqu (1991)], but their usefulness seems to be limited. In fact, even
for stationary processes with a finite second moment, the definition of long range
dependence based on the true correlation function is of uncertain value unless the
process is a Gaussian process, or very close to being one.

Instead of using the correlation function or looking for a substitute, we propose
a different approach. Suppose tli&y, 6 € ©) is a family of laws of a stationary
stochastic processXg, X1, X2, ...), where® is some parameter space. Assume
that the marginal laws of the process do not change muchwasies (perhaps,
the marginal laws remain constant, or only the global scale changes, if we are
considering, say, Gaussian oS processes). Suppose we are given a functional
of interestR, a (measurable) functional d&r°. The behavior of this functional is
different, in general, under different law® . Suppose that there is a partition of
the parameter space into two parts,©g and ®1, such that the behavior of the
functional changes dramatically as one crosses the boundary beByeamd©1.
Such change may be caused by various factors (e.g., by changing heaviness of
the tails), but in some cases it may make sense to talk about that boundary as a
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boundary between short range dependence and long range dependence. That is,
the change from short memory to long memory occurs as a phase transition. We
emphasize that the behavior of each individual functional does not define short or
long memory, and the phase transition indicated should occur for a large group
of functionals for a boundary to be called a change from short to long memory.

A complete theory is missing at the moment. In this paper we find one important
functional undergoing such a phase transition at a boundary.

Existence of boundaries with such properties has been observed before.
For stationary zero mean Gaussian processes parameterized by the common
variance, and by the correlation function, such a phase transition occurs when the
correlations stop being summable. The functional of interest here is the sequence
of the partial sums, and its distributional rate of growth changes significantly at the
boundary. The rate of growth of the partial sums may change its order of magnitude
whether or not the second moment is finite. This has been observed many times on
the example of the increments of self-similar processes with stationary increments.
In the Gaussian case the family of such processes are fractional Brownian motions,
parameterH of self-similarity has to be in the intervdD, 1), and the partial
sums of the increment process (the so-called fractional Gaussian noise) increase
at the rate higher than/2 when H > 1/2. HenceH = 1/2 is considered to
be the boundary between short and long memory for fractional Gaussian noise.
See, for example, Mandelbrot (1975) and Mandelbrot and Tagqu (1979), as well
as a more recent discussion in Beran (1994). A similar phenomenon occurs
for the increments of self-similaz-stable processes with stationary increments,

1 <« < 2, that have infinite variance. Here the range of paramAtesf self-
similarity is still (0, 1), and the boundary where the partial sums of the increment
process start increasing at the rate higher than the i.i.d. case (i.e., faster than
nl/*)is that of H = 1/«. See, for example, Samorodnitsky and Taqqu (1994). No
such boundary is possible if we consider the increments of self-simikEtable
processes with stationary increments and @ < 1. If one uses the boundary

H = 1/a to define long range dependence, one would have to conclude that long
range dependence is impossible k@ < 1.

The present paper uncovers a different boundary for statiomasyable
processes. We believe that this is a very fundamental boundary, and it is based
on ergodic-theoretical properties of nonsingular flows underlying such processes.
Specifically, we concentrate on the partial maxima sequence

(1.1) M, =max(|Xol, |X1l, ..., | Xu_1l), n=2L12 ...,

and its distributional rate of growth. We will see that the parameter space consists
of two parts, in one of which the partial maxima grow at the réit&, which is the

rate at which partial maxima of i.i.d.-stable random variables grow, while in the
other part of the parameter space the partial maxima grow at a strictly slower rate.
Moreover, in the latter part of the parameter space the actual rate of growth may
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depend on the choice of the parameters. This boundary is present for all02.

Again, by itself the change in behavior of a single functional does not qualify this
boundary as that between short and long memaory. Our conjecture is, however, that
many other important changes occur at that boundary.

This paper is organized as follows. In Section 2 we provide a background on
integral representations of stationary Sprocesses, and elements of the theory
developed by Roaéski (1994, 1995) relating such integral representations and
ergodic theory. In Section 3 we discuss the behavior of a certain deterministic
sequence controlling the rate of growth of the partial maxima. In Section 4 we
prove the main result, Theorem 4.1, dealing with the asymptotic behavior of the
sequence partial maxima. Section 5 discusses a number of examples illustrating the
results of Section 4. A brief conclusion discussing what the results of this paper
tell us about short and long memory for stationary stable processes is in Section 6.

2. Ergodic theory and representations of stationary a-stable processes.
Throughout this sectioiX = (X, X1,...) IS a SxS process, & o < 2. Every
(not necessarily stationarypxS process has an integral representation

2.1) X,,:/Efn(x)M(a’x), n=0,12, ...,

whereM is a xS random measure on a measurable spac&) with a o -finite

control measurer, while f,, € L*(m, &) for all n. See Chapter 3 in Samorodnitsky

and Taqqu (1994) oa-stable random measures and integrals with respect to these
measures, and Chapter 13 there on integral representations as above as well as on
the history of such representations.

When a procesX is stationary, the integral representation can be selected to
be of a particular form, according to a theory developed in a series of papers
by Roshski. See, for example, Raski (1995); various facts presented below
can be found in that paper. Specifically, a stationazs process has an integral
representation of the form (2.1) with

dm o "
2.2) fn<x>=an<x>( ”';md’

forn=0,1,2,..., where¢p: E — E is a measurable nonsingular map (i.e., a one-
to-one map with botlp and¢—1 measurable, mapping the control measuriato
an equivalent measure),

1/a
(X)) fod"(x), x€E,

n—1
an(x)=[Juo¢/(x), xekE,
j=0
forn=0,1,2,...,withu: E — {—1, 1} ameasurable function antle L*(m, §).
That is, the procesX is determined by a single functioff € L%(m, &),
acocycle (a,,n=0,1,2,...) and aflow (¢",n =0, 1, 2,...). This triple [taken
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together with the spacéE, &,m) on which it lives] can, therefore, be taken
as a parameterization of stationargSs processes. When working with this
parameterization, the task is to relate the ergodic-theoretic properties of the flow
to the probabilistic properties of the stable process. We are interested in properties
that we can interpret as related to the length of memory of a stationary stable
process.

Let E = C U D be the Hopf decomposition df with respect to the flow. That
is, C and D are measurable-invariant sets, such that the flow is conservative
on C and dissipative oD; see Krengel (1985) for the various ergodic-theoretical
notions and facts we use in this paper. Writing

dm o ¢" e
X, = an<x>( (x)) £ o ¢ (x)M(dx)
c dm

dm o d" 1/a
(2.3) +[ an<x>( i <x>) £ o¢"(x)M(dx)

::ch—i—X,?, n=012...,

leads to a unigue in law decomposition of a stationarg $rocess into a sum of
two independent such processes, one of which is generated by a conservative flow,
and the other by a dissipative flow.

Intuitively, one expects stable processes generated by conservative flows to have
a longer memory than those generated by dissipative flows, simply because a
conservative flow “tends to keep coming back,” and so the same values of the
random measur®f contribute to observations,, far separated in time. Consider,
for example, stationary processes generated by a dissipative flow. Such a process
has amixed moving average representation of the form

(2.4) X, =/W/Zf(v,x _mMdv.dx). n=0.12 ...

with M a SxS random measure on a product measurable spéce Z, W x B)

with control measuren = v x [, wherev is ao-finite measure oW, W), [ is

the counting measure dh and f € L*(m, W x 8). Such processes are always
mixing irrespective of what the kerngl in either (2.2) or (2.4) is [or what the
cocycle in (2.2) is]. See Surgailis, Raski, Mandrekar and Cambanis (1993).
On the other hand, stable processes generated by conservative flows are often not
even ergodic. For example, if a conservative flow is measure preserving and the
expected return time to any set of a finite positive measure is finite, then the stable
process is not ergodic [see Rioski and Samorodnitsky (1996)]. Another example
demonstrating that conservative flows tend to lead to a longer memory (in the case
1 < o < 2) can be found in Mikosch and Samorodnitsky (2000), who studied ruin
probabilities.
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3. The sequence (b,). Let X = (Xo, X1,...) be a stationary &S process,
0 < o < 2. We assume that the process is given in an integral representation of
the form (2.1), wheré f,,) is of the form (2.2). It turns out that, to a large extent,
the asymptotic behavior of the maximal functiordd), in (1.1) is related to the
quantity defined below. Let

1/«
(3.2) b,,:(/Ej max |fj(x)| m(a’x)) , n=12....

.....

In fact, to a certain extem, controls “the size” ofV,, even without the assumption
of stationarity of the process. Indeed, for any:® < «, there are constantg_,,
Cq,p € (0,00) such that, for k< o < 2,

(3-2) Carp < %(EM,{’)”P < Ca,p (logm)™®,
wherea’ is the conjugate ok in 1/o + 1/o’ = 1, while fora =1,
(3.3) c1p < %(EM,{’)”P <CypLon,
whereLon = max(1, loglogn). Finally, for 0< a < 1,

(3.4) Carp < %(EM,?)”" <Cap

See Theorem 2.1 in Marcus (1984).

We will see that for stationaryds processes the sequendg) tells us even
more about the sequencgd?,,) of the partial maxima. Note that the sequence
(b,) is completely determined by the process, and does not depend on a particular
integral representation. Certain important features of this sequence are determined
by the flow in (2.2) underlying the process. In particular, the next result shows that
the sequence, grows at slower rate for processes generated by a conservative
flow than for processes generated by a dissipative flow.

THEOREM3.1. Let (f,) begivenby (2.2).
(i) If theflow (¢") is conservative, then:
(3.5) n~Yep, -0 asn — oo.

(i) If the flow is dissipative, and the process is given in the mixed moving
average form (2.4), then:

1/a
(3.6) lim n=Y%, = (/ g(W)® v(a’v)) € (0, 00),
n—oo w
where
(3.7) glv) = sup | f(v, k)| forve w.

k=0,£1,%2,...
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PrROOF (i) Suppose first that the flo") is control measure: preserving,
and thatf = 14 for someA € & with 0 < m(A) < oo. In that case the Radon—
Nykodim derivative in (2.2) disappears, and we get

n—1
(3.8) bg:m<U¢—k(A)), n=12....

k=0

We use a construction used to prove the Kac recurrence theorem; see, for
example, Theorem 3.6 in Krengel (1985). Let

TAa(x) =inf{k >1:¢k(x) e A} forxe A
be the first recurrence time b, and let, fork =1, 2, ...,
Ri={xe€Aita(x) =k}
and
Ar={xe A% ¢of(x)eA, /()¢ A, j=1,.... k-1

be, correspondingly, the set of pointsdnreturning toA afterk steps, and the set
of points outside ofd enteringA for the first time aftek steps. Let alsdig = A.
Note that

n—1 n—1
(3.9) m( U ¢_k(A)> =Y " m(Ap).
k=0 k=0
Furthermore, forevery=1,2, ...,
Ri={xeE:p"(x)e A, ¢/(x)¢ A, j=1,....k—1}
—(xeA%pf(x) e A, pl(x) ¢ A, j=1,... k-1
= ¢ (Ak-1) — A,
and so by the measure-preserving property of the flow,
m(Ry) =m(Ar_1) —m(Ay).

Summing up, we see that, for evéry=0, 1, ...,

o0

(3.10) m(Ay) = Y m(Rj)+ lim m(A,).
Papat} n— oo

Since the flow is conservative, we can use (3.10) with O to see that the limit
above is equal to zero. Therefore, by (3.9) we conclude that

n—1
}m< U (b_k(A)) -0 asn — 090,
T \r=o

which establishes (3.5) for indicator functions in the measure-preserving case.



1444 G. SAMORODNITSKY

To establish (3.5) in the general case (i.e., not necessarily measure-preserving
conservative flow and a general kernfgl denote

d)l’l

wy,(x) = (x), n=012,..., x€E.

dm
Then

Ba(x, y) = (¢<x> ()) YEE y=0,

defines a conservative flow ofE x (0, 00), & x B,m x Leb) which can be
expressed as

qb:(x,y):(qb (x), ()) xeE, y>0forn=0,+1,42,...,

and this flow preserves the measurex Leb; see Maharam (1964).
Let

A={(x,y) € Ex (0,00):0<y<|f(x)]*}.

Note that
m x Leb(A) :/ | £ ()% m(dx) € (0, 00).
E
Furthermore,
n—1
m x Leb( U ¢>*_k(A))
k=0
:/E/O 1UZ;3¢;k(A)(x,y)m(dx)dy
://0 max L () m(dx)dy
(3.11) —/ /0 . max 10<y<wk(x)|f d*(0)” ym(dx)dy

= | _max_w()lfo PF ()% m(dx)

.....

.....

Since the left-hand side of (3.11) i(n) by the already considered case of
measure-preserving flows and indicator functions, this establishes (3.5) in full
generality.
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(i) We start with the case wherg has a compact support, that is,
(3.12) f, 0w x—m.mpc (v, k) =0 forsomen=1,2,....
In that case, fon > 2m + 1, we have

m
b — / max | F(v. i+ B v(dv
! j:_;nﬂ W k=0.... X_|f@.j+ b v(dv)

= X [ max 17+l vv)

j=m—nt1? W =0

m—n
+ / max v, j +k)*v(dv
j=—;n+1 W k=0..... X . j+b v(dv)

m
+ Y f max | f(v, j +Kk)[*v(dv) =T, + RV + R,
j=—m+1 w k=0,...,n—1

Observe that, foreach=m —n+1, ..., —m,
ma. ,j+ k)| = ,
k=o,..,,3f_1|f(v J+RI=gW)
while
9 j k =<
k:g\%_llf(v Jt+h|<g)
for other values ofj. Therefore,
To=(1—2m) [ g() v(dv),
w
while

IRff)|§2m/ g% v(dv)  fori=1,2.
w

Therefore (3.6) in the case of a compact suppoytddilows. In the general case,
givene > 0, choose a compact supportédsuch that f (v, k)| < |f (v, k)| for all
v, k, and

k;}o /W | (0. ) v(d) —kgoo fW £ (0, )% v(dv) <.
Let

gG(U): Sup |f6(vvk)|’
k=0,£1,£2,...
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ve W. Then
0< f g0 v(dv) — / e () V(dv)
w w

< / sup (I B — | fo(v. K)I*) v(dv)
w

k=0,£1,%2,...

=< /w kgo:o(lf(v,k)lo‘ — | fe(, K)|*) v(dv)

= ¥ [ rebrvan - ¥ [ 1fehr v <e

k=—o0 k=—00

Therefore,

Ebz‘ - /Wgw)“v(dv)

1
< —
“n

o0
max ,j+R|%v(d
pa [ max 1+ R

.....

_.l_

.....

=TO4+7@ 4T3,

+ \ /W e v(dv) — /W 2 v(dv)

By the above,T,,(S) < ¢, and the same argument shows tﬁép < e as well.

Furthermore, by the already considered compact support da@b,—> 0 as
n — oco. Hence

< Ze,

Iimsup{}bz —/ g()*v(dv)
n w

n—oo

and, since > 0 is arbitrary, the proof of (3.6) is completel]

4. Maxima of stationary stable processes. In this section we investigate
the rate of growth of the sequencaf,) of partial maxima of a stationaryos
process, G< @ < 2. We will see, in particular, that if such a process has a nonzero
componeniX¢ in (2.3) generated by a dissipative flow, then the partial maxima
grow at the rate of/®, while if the process is generated by a conservative flow,
then the partial maxima grow at a slower rate. The following is the main theorem
of this paper.
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THEOREM4.1. LetX = (Xp, X1,...) beastationary SxSprocess, 0 < o < 2,
with integral representation (2.1),and functions ( ;) given by (2.2).

(i) Suppose that X is not generated by a conservative flow [i.e., that the
component X in (2.3) generated by a dissipative flow is nonzero]. Then

1
(4.1) T Mn= cYegyz,

weakly asn — oo, where

1/a
Ky = ( /W g(v)“v(dv))

and g given by (3.7) for any representation of X in the mixed moving average
form(2.4).Furthermore,
l-«

0 -1 s
(4.2) ca=(/ x_“sinxa’x> _ | T@=ajcosna/2)
0 2

—, ifa=1,
T

if o1,

and Z, is the standard Frechét-type extreme value random variable with the
distribution

P(Zg<z)=e*", >0

(i) Supposethat X is generated by a conservative flow. Then

1
4.3 —M,—0
4.3) o

in probability asn — oo. Furthermore, with 5,, given by (3.1),

1
(4.4) (—M,,) is not tight for any positive sequence ¢, = o(by,),
C

n

while
1 (|Ogn)1/°‘/, ifl<a <2,
(4.5) (b 7 Mn) istight, where f,, =3 Lon, ifa=1,
o 1, if0<a <1
If, for somed > 0 and ¢ > 0,
(4.6) b,>cn®  foralln=>1,

then (4.5)holdswith f, =1forall 0 <« < 2.
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Furthermore, forn =1, 2, ..., let n, bea probability measureon (E, &) with
dnp _
4.7 =b ¢ ()|« E
(4.7) g O =ba"_max If;lF, x ek,

and let U™, j =1,2, beindependent E-valued random variables with common
law n,,. SUppose that (4.6) holds and that, in addition, for any € > 0,

P(for somek=0,1,...,n—1,
(4.8)
fe(U)]

> €, j:l,2)—>0

asn — oo. Then

(4.9) % = CcYez,
weakly asn — oo.

REMARK 4.2. Here are some sufficient conditions for (4.8). If
(4.10) im 21— o,

then (4.8) holds. Indeed, lef denote the probability in the left-hand side of (4.8).

Clearly,
n—1 (n) 2
rnsz<P< | /U] >€)) |
k=0

Furthermore, forevery =0,1,...,n — 1,

(m)
T
max—o,_n 11 (V")
- ) o
A sy i W I

<y fE | fie o) “m(dx).

and (4.8) follows from (4.10) since, by the stationarity, the last integral does not

depend ork.
Alternatively, assume that: is a finite measure, the flow is measure
preserving, the sequends, “ maxj—o,.. ,—11fj(x)[*),n=1,2,..., is uniformly

integrable with respect ta and, for every > 0
(4.11) nleoonl/Zm{x € E:|f(x)| > eby} =0,
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wheref is the kernel in (2.2). Then (4.8) holds.
Indeed, let|m || be the total mass ofi. Given as > 0, selectM > 0 such that

/1( max |ﬁ(x)|“>Mbg) max | f; (0| m(dx) < 8 b
E i=0,...,n—1 i=0,....,n—1

1=

.....

for all n > 1. We have withe from (4.8),
n—1

ra <45+ b Z(/E max_|f; (ol

k=0 j=0,...,n—

x 330y = _max 1001 < M)
j=0,....n—=1 """

1( | fi(x0)] . 6) m(dx))z

max—o,...n—1|fi (x)]

2
<45+ M?n (/ 1(|f(x0)] > 68||m||_1b,,)m(dx)) .
E
Therefore, using (4.11), we obtain
limsupr, <49,
n—oo

and (4.8) follows by letting — 0.

PROOF OFTHEOREM4.1. We use a series representation of the random vector
(Xo, X1, ..., X,,_1) of the form

(n)

© ()
@12 xe=pcyey et T
S maxco 1l AW

k=0,1,....,n—1,

where C,, is given by (4.2),e1, ¢2, ... are i.i.d. Rademacher random variables
(symmetrict+1-valued random variabled)s, I',, ... is a sequence of the arrival
times of a unit rate Poisson process @) oo), and(U}”)) are i.i.d. E-valued
random variables with common law given by (4.7). All three sequences are
independent. See Section 3.10 in Samorodnitsky and Taqqu (1994). Of course,
the representation in (4.12) is in law.

We start with observing that (4.5) follows from (3.2)—(3.4) regardless of the
properties of the flow. To check (4.4), we use the series representation (4.12) and
symmetry. Letg be theo-field generated by, (I';, j > 1) and (U/(."),j > 1.
Letting ‘

(n)
_ U
Zn = by Ci/ot max Fl 1/ | fi( 1 )|

k=0,...n—1 max—o,.. n—1 |fi(U1(n))|
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andKg be the smallest =0, 1, ..., n — 1 over which the maximum is achieved,
we see that bottZ,, and Ko are measurablg. Further, the symmetry tells us that,
for anyx > 0,

P(Xko > x1§) = 3P(Z, > x19).

Hence, for any > 0,

1
P (—Mn > x)
Cn

()
(413) Z}]_)( max anol/a glFIl/Ol |fk(U1 )l = ‘ )
2 \k=0....n—1 maX—o....n—1 /i (U;")]
1 _1/ —1 C l
_§P<F1 “>C, /O‘—:x)—> >

asn — oo. Hence lack of tightness.
Suppose now that (4.6) holds. LEt=1, 2, ... be such that

(4.14) a(K+1)6 > 1
We claim that, in this case, for all> 0 satisfying
1
(4.15) O<e<—,
K
we have

(4.16) P(k max |Xk|>kbn,F1_1/°‘§eA)—>O asn — 0o

=0,..., n—1

for all A > 0. Indeed, choose
1
(4.17) g <p<oa(K+1).

Notice that the probability in the left-hand side of (4.16) is bounded from above
by
n—1 U(”)
ZP<|Xk| > Aby, ;¢ D))l
k=0

For f in (2.2), let

§ekforallj:1,2,...).

1flla = (/E |f<x)|“m(dx>)l/a,

and notice that, forany=0, 1, ...,n — 1, the points

()
_ U;™")
bpe;T ;¢ Sl i=12...,

7 max—o,..a1l iU
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represent a symmetric Poisson random measuRewhose mean measure assigns

a mass ofx ~*|| f]|%/2 to the sef(x, co) for everyx > O [see, e.g., Propositions
4.3.1 and 4.4.1 in Resnick (1992)]. Since the same random measure can be
represented by the points

-1 .
LY e j=12..

we conclude that the probability in (4.16) is bounded from above by

o0
nP(Col/O‘ZEj >/\||f||—1bn,r‘1/°‘<ek||f||;1bn)

j=1

o0
5nP<C;/°‘ 3 ejr;l/“>x<1—el<>||f||;1bn)

j=K+1
1 -1
G MIBEICE SR g T
n
=nb,” A(l—eK)

As long as the expectation above is finite, the latter expression goes 06 as
and, hence, (4.16) follows. The expectation is finite by the choigeiof(4.17).
Indeed, notice thaEFj_p/“ < oo for all j > K + 1 and that, by the Stirling

formula, EFJ._”/“ ~ eP/® j=P/% gs j — 0o, Assuming without loss of generality
that p/2=m is an integer (we can remove finitely many leading terms in the sum
and increase, if necessary), we see that for finite positive constats,,

P 00 p/2
SC]_E< Z Fj—Z/ot)

j=K+1

E

o0
Z £ Fj—l/oz

j=K+1

o0 o0

m
=c1 Y ... Yy E[[r;¥

j1=K+1  ju=K+1 i=1

( > <Er‘2'”/“>1/m)

j=K+1

/2
( > (ET; ”“)”P)p

j=K+1
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Fix € > 0 satisfying (4.15). Givel > 0, choose. > 0 such thatP(Fl_l/“ >
€)) <§8/2, chooserg such that

-1/
P max |X Ab,, T < €M
(k:o X Xkl > 2y T _e)

.....

<(S for
— n>n
> 0

andA’ > A such that
P(My > Xby) <6 fork=1,...,no.
Then

1 /
P(—Mn > A ) <$
by
foralln > 1, and so (4.5) holds witlf, = 1.

Now, suppose tha is generated by a conservative flow. debe a stationary
Sa'S process independentXf also given by an integral representation of the form
(2.1), say,

Vo= [ goM @0, n=012...
E/

whereM’ is a SxS random measure with control measureindependent od in
the integral representation Xf, with the functions,, also given in the form (2.2),
with some nonsingular conservative flgon E’, and such that

1/«

bY = (/ ~ max |gj(x)|°‘m’(dx)) , n=12...,
E’ j=0,...n—1

satisfies (4.6) for somé& > 0. Processe¥ with the above properties exist;

see the examples in the next section. However, the above step may require

enlarging the probability space we are working with. Zet X + Y. ThenZ is a

stationary &S process generated by a conservative flow. We use its natural integral

representation ot U E’ with the naturally defined flow on that space. bgtbe

the corresponding quantity in (3.1) defined for the procsNote thath? > bY

for all n, hence the procegssatisfies (4.6) as well. By the already proven part of

.....

foranyx >0andn=1,2,...,

P( max |z >1p( max |x
<k=o,...,il(—1| K> x) -2 <k:0 ..... " 1| K> x)
by the symmetry of, we conclude that the sequer(ob%)—1 maX.—o,...n—1 | X«kl,
n=12,...,istight as well.

However, the procesg is generated by a conservative flow and, hence, by
Theorem 3.1b7 = o(n/%). Therefore, (4.3) follows.
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Suppose now that (4.8) holds. Then for every J; < j» ande > 0

| (UM
. >
MaX%,—o,...n—1 | fm (US|

P(forsomek:O, 1,...on—1, 1Y

i €, i=1,2)

5P(Flsr)+P(forsomek=0,1,...,n—1,

| (U™
N
max,—o...., n—1|fm(Uj )|

for any r > 0. Letting firstn — oo and thent — 0 shows that, for every
1< j1 < jpande > 0,

et/ j=1, 2)

nli_)mooP(for somek=0,1,...,n—1,
(4.18)
e FA0]
T ma,—o,. a1 fu(US)]
Observe, further, that for ary> 0,

r

> €, i:l,Z):O.

P(forsomek:O,l,...,n—l,

i/ | (U™

FJ ()
maXx,—o,...n—1 |fm (Uj )l

> ¢ for at least 2 differeny‘)

= oP(e) <P, > ¢)
J-1 J-1
+> > P(forsomek:O, 1,....,n—1,
J1=1jo=j1+1
e | (U
M ma—o,. et | fn (US))]

foranyJ =1,2.... Letting n — oo and using (4.18), and then letting— oo
shows that, for every > 0

oMy —
(4.19) lim_¢{P(e)=0.

r

> €, i=1,2)

Suppose now that both (4.6) and (4.8) hold. Kebe asin (4.14). Let > 0 and
0 < § < 1 satisfy

)
(4.20) O<e<—.
K
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For anyA > 0, we have

1
P(—Mn > /\)
bn

< P(CYeT Y > 21— 8)) + oM (C Y 1)

(n)
_ JeU;™)
+ P( max_ e | > €Yo
**** max—o,...n-11fi(U; )l
(4.21) ryve < c;l/“,\(l —9),
and foreack =0,1,...,n —1,
(n)
Ve | fe(U;)I _1/“ek

7 max—o,..a-1lfi(UM)]

foratmostong =1,2,.. )

= P(CHYr[ Y% > M1 = 8)) + 9P (C; Y1) + 9P (e, 5).

Proceeding similarly to the argument used in proving (4.16) we have
n—1 o0 (n)
_ x(U;™)
(pr(ZZ)(G’(S)SZP(ZSij 1/a Ji ‘>
k=0 \lj=1

e |fk(U(n))|
7 max—o,..a-11fi(UM)]

<c ;Y\l —s)foreachj=1,2,...
e | (U™

7 max_o..a1l fi(UM)]

C—l/(l)\"

o

andr’ ~Yee

(4.22)
foratmostoneg =1, 2, .. )

0
P( CoYnN 1l by,
j=1

FIl/O{

< 7Y@= 8) 1 f 117 bns

andl', Ve - coleen) £ glb,,)
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and the latter expression goes to zera as oo by the choice ot ands, as in the
proof of (4.16).
We conclude by (4.19) and (4.22) that, for any @ < 1,

, 1 _
limsupP (b—M,, > x) < P(CYerY* > 01— 5))

n—oo n
=1—exp—Cy A7 %(1—8)7%},
and lettingé — 0, we obtain
1
(4.23) lim supP(—Mn > A) <l-—exp{—Cyr7%}.
n—o00 bn

In the opposite direction, the argument is similar. For anynd § > 0
satisfying (4.20), we have

1
P(—Mn > x)
by
> P(CYor Y > a(1+8)) — oV (C Y en)

—1/a fk(Uj )
—P max eI,
(k:o,...,n—l /X::l I

< C—l/(){)\"

o

and foreaclk =0,1,...,n —1,

e /U™
J

_1/0[6)\,

r >
max—o__.-1|fWM  °

foratmostong =1,2,.. )

=: P(CYT Y > 114 8)) — oD (CY%0) — oD (e, ).

Once again, the choice efandé gives us
i ©) —
(4.24) n||_>moo ¢, 7 (,8)=0,
and so we conclude by (4.19) and (4.24), that for &ny0,

1 _
liminf P(b—Mn > x) > P(CYeT Y > a1+ 6))

n—oo n
—1—exp—Cy A %(1+8)79),

and lettingé — 0, we obtain a lower bound matching (4.23). This proves (4.9).
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If X is not generated by a conservative flow, then it follows from Theorem 3.1
that

n~Ye, — Ky asn — 0o.

In particular, both conditions (4.6) and (4.8) are satisfied (see Remark 4.2).
Therefore, (4.1) follows from the already proven (4.9), and the proof of all parts of
the theorem is complete [

REMARK 4.3. The entire statement of part (ii) of Theorem 4.1 remains valid
with any integral representation of the process, not necessarily with functions of
the form (2.2). Of course, the sequerisg) does not depend on the representation.
One can easily see that the particular structure of the integral representation was
not used in the proof, except when proving (4.3). The latter statement is, however,
a distributional one, and does not depend on the integral representation.

REMARK 4.4. The assumptions (4.6) and (4.8) mean, intuitively, that one and
only one Poisson jump in the series representation (4.12) significantly contributes
to the value of\M,, for largen. Because of that, an extreme value distribution arises
as a limit. Either of these two assumptions may fail, as will be seen from the
examples in the next section. Even though a complete limit theory in such cases
is unavailable at the moment, limiting distributions (when weak limits exist) are
likely to depend on the number of Poisson jumps that contribute significantly to
the value of the maximum. In particular, the limiting distribution is not, in general,
an extreme value distribution. See Example 5.1.

In any case, no subsequential weak limitidf /b, can be constant, as can be
seen by using (4.13) withy, = b,:

1 1
P(b—M,, > x) > SP(I; Ve o o7V xy

n
for all n > 1, so that any subsequential weak limit must have a nonvanishing tail.
REMARK 4.5. Given a stationarydss, proces, let
(4.25) M©Q =max(Xo, X1,..., X,_1), n=12 ...

The same argument as that used in proof of Theorem 4.1 shows tKais ifot
generated by a conservative flow, then

1 0
(4.26) mM,ng = cYe kP z,

weakly as: — oo, where

1/«
0= (3] Q@ van + [ Cwram)
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with

0 0
2w = sup  fw.by  ¢Qm= sup  f.h_,
k=0,£+1,+2,... k=0,£1,£2,...

v € W, for any representation &€ in the mixed moving average form (2.4). Here
ay anda_ are, correspondingly, the positive and negative parts of a real number
In the particular case of linear-stable process, this result is in Theorem 3.8.3 in
Leadbetter, Lindgren and Rootzén (1983).

It is, of course, clear that iX is generated by a conservative flow, then
n=Yep® - 0in probability as: — oo.

Here is a sketch of an argument for (4.26). The points

f(U™)
(C;/Ol bnej 1—‘,'_1/0t ! () ), j=12...,
T omax=o. a1l fi(UY)]

in (4.12) form a symmetric Poisson random measureR¥n Here f(x) =
(fo(x), ..., fa_1(x)). The proof of Theorem 4.1 shows that the eventl/* x
M,EO) > A} is asymptotically equivalent to the event that at least one of the points
of the Poisson random measure is in the(sebo, anl/e]")c.

It is easy to check that the mean measure of that set is equal to

1/1 1
Co,k_“; <§bg,+ + Eb,‘;"_),

where

1/a
byt = (/ max (fj(x))(im(dx)> , n=L12...
E j=0,....n—-1
An argument identical to that used to prove the second part of Theorem 3.1 shows
that
1/1 1

;(Ebg{+ + Eb;{_) S (KO asn— oo

and (4.26) follows.

REMARK 4.6. Theorem 4.1 extends easily to the case of complex-valued
rotationally invariant stationary stable processes; we refer the reader to Chapter 6
in Samorodnitsky and Taqqu (1994) for basic information on such processes. Such
processes also have an integral representation of the form (2.1) and (2.2), but this
time M is a complex-valued rotationally invarian&S random measure, and the
function f in (2.2) is complex-valued as well. Further results, like (2.3) and (2.4),
hold in the complex-valued case as well. See Relgi(1995).
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In the complex-valued case, one has to replace the series representation (4.12)
by

(n)
o U )
(4.27) X =b, CHo 3 e 4 Fj_l/a Ji( _
j=1 max—o,...n-11/i(U; )

k=0,1,...,n—1,

where(I";) and(U(”)) are as before, an4 ;) is an independent of them i.i.d.
sequence of random variables uniformly dIStrIbute(i],l’Qn) This representation
can be easily derived from the real-valued series representations in Chapter 3 of
Samorodnitsky and Taqqu (1994).

It can be easily verified that the representation (4.27) is a perfect substitute
for (4.12) in the proof of Theorem 4.1 and, hence, all the claims of that theorem
hold in the rotationally invariant complex-valued case as well.

REMARK 4.7. An open, and very interesting, question is what are some
possible counterparts of Theorem 4.1 in the case of continuousetistable
processes.

Integral representations of the type (2.1) with the functi¢fis given in the
form (2.2) exist not only for &S processes, but also for all strictlystable
processes witly #£ 1 (in this case the random measifemay not be symmetric,
and will, in general, have a nonconstant skewness intensity). SeedRDgi994).
The following result is a straightforward consequence of Theorem 4.1.

THEOREM 4.8. Let X = (X0, X1,...) be a dsationary strictly «-stable
process, 0 < @ < 2, o # 1, with integral representation (2.1), and functions ( f;,)
given by (2.2).

(i) Supposethat X isnot generated by a conservative flow. Then (4.1) holds.
(i) Supposethat X is generated by a conservative flow. Then (4.3) holds.

PROOF In the case O< @ < 1, a strictly ¢-stable process has a series
representation of the form (4.12) [but witla;) dependent or(U](.")) and not
necessarily symmetric]. The entire argument of Theorem 4.1 used to prove
(4.1) and (4.3) goes through in this case. Hence, we only need to consider the
case l< o < 2. In that case there is a positive constant O such that

(4.28) min(P (X1 > 0), P(X1 <0)) > .

See Theorem 4 in Zolotarev (1957).

LetY be anindependent copy Bt ThenZ = X —Y is a stationary &S process
that has an integral representation (2.1) with the same functignsas X does,
but where the random measuveis now replaced by adS random measuré’
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whose control measure is giveny = 2m; see Samorodnitsky and Taqqu (1994).
If, (b%), is the sequence (3.1) defined ®using this integral representation, we
have

(4.29) bz =2Yp,  n=1,2 ...

Suppose thaK is generated by a conservative flow; then s&ZisWe have
by (4.28), for any. > 0,

Pl max |Z,|>Ar)>P(|Z 5
<k=o,..,,3l(_1| nl> )— (1Zk,| > &)
= P(XKn >)\" YK” = O) + P(XKn < _)‘" YKn < O)

>tP(|Xk,| > 1) :rP( _max_ |X,| > k)
by the independence of andY, wherek,, is the smallesk =0, 1, ... such that
|Xk| =maxj—o,.. .—11X;|. Therefore, (4.3) foX follows from (4.3) forZ proven
in Theorem 4.1.
If X is not generated by a conservative flow, then neithet.iVe have by
Theorem 4.1 and (4.29),

(4.30) e _max_ |Z|:>21/°‘C1/°‘KXZ

=U,...,

weakly asn — oo.
Let

Kx(n)=minlk=0,1,...,n—1:|X;| = M,}
and similarly withKy (n). For everyx > 0 ande > 0, we have, by the stationarity
and independence,

P( max |Z,| < knl/“>
=0,..., n—1

= max_ X, -, <kn1/“)
(,_max_ 1%, ~ ¥, =

~~~~~~~~~~

+ P(|YKx<n)| >en®, or | X,y > 6"1/‘”)

§<P<k max_ |X, |<k(l+e)n1/°‘>> + 2P (|X1| > e n¥/?).

.....

Therefore, using (4.30), we have, for any 0,

n—oo

liminf P( 5nax | X, < knl/"’) >exp{—Cq 2% (14 €)%}

.....
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for anye > 0. Lettinge — 0, we obtain

4.31 liminf P max |X,| <A 1/"‘) > exp{—Cy A%
@3D)  tminf P(,_max X, < ) = exp )
for anyA > 0.

In the other direction, for every > 0andO0<e <1

P( max |Z,| sx\nl/"‘)
k=0,...,n—1

2
>(P( max |X,|<Ai(l-— ”“))
_< <k=o,...,n—1| nl=xd=en

— P(forsomek=0,1,...,n—1,|Xx| > en™’® and|Yx| > en/®).
By stationarity and independence,
P(forsomek=0,1,...,n —1,|X¢| > en'’* and|Y;| > en'’®)
<n(P(IX1] > en¥)? -0

asn — oo. Once again, using (4.30), we have, for any 0,

limsupP (k max Xnl = Anl/“) <exp—Cy A7%(1 — €)%}

n—oo

.....

forany O< € < 1. Lettinge — 0, we obtain an upper bound matching (4.31) and,
hence, complete the proof[]

REMARK 4.9. We see immediately from the proof of Theorem 4.8 that the
statement (4.9) extends to the skewed case as well if (4.10) holds.

5. Examples. The results of the previous section describe completely the
limiting behavior of the partial maxima of stationargS processes not generated
by a conservative flow. The picture for processes generated by conservative flows
is less complete, and in this section we consider several examples of such processes
to illustrate what may happen.

Our first example shows that, in general, the partial maximMjdoes not have
an extreme value limit.

EXAMPLE 5.1. LetZg, Z1,... be i.i.d. standard normal random variables,
independent of a positiver/2)-stable random variablé with Laplace transform
Ee %4 = ¢~ 9 > 0. ThenX, = AY2Z,,n =0,1,2,..., is a stationary 8S
process, the simplest type efib-Gaussian SeS processes; see Section 3.7 in
Samorodnitsky and Taqgqu (1994). This process has an integral representation of
the form

(5.1) Xo=@o ™t [ oM@y, n=012...,
R
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whered, = v2(E|Zo|*)Y®, and M is an %S random measure dRZ whose
control measuren is a probability measure undevhich the projectionsg,
k € Z, are i.i.d. standard normal random variables. Whtlbeing the usual left
shift operator onR%, this is a representation with the functions given in the
form (2.2), witha,, = 1 and a measure-preserving flow. The flow is, obviously,
conservative, as is any measure-preserving flow on a finite measure space. As
usual, the representation (5.1) is in law.

An elementary direct computation shows that

b =(dy) ™ “E  max |Zi|* ~ (dy) % (2logn)*/?
k=0,1,....n—1
and

1

——— max |Z 1 with probability 1
(2logn)1/2 k=o,1,...,n_1| Kl = P y

asn — oo. Therefore, the assumption (4.6) in Theorem 4.1 fails, and we see

directly that

1

=M, = (do) " AY?,

bn
a nonextreme value limit, even though the partial maximdmdoes grow at the
rateb,,.

Our next example shows that, ifd o < 2 and without the assumption (4.6),
the sequence of the partial maxima of the process may grow faster than the
sequenceb,,); that is, (4.5) may not hold witlf,, = 1.

EXAMPLE 5.2. LetX be given by (5.1) withd, = 1, where this time the
control measure: of the SxS random measur# is a probability measure under
which the projectiong, k=...,—1,0,1,2, ... are i.i.d. Rademacher random
variables. We have, once again, a conservative measure-preserving flow, and
b, =1.Let 1< < 2. We claim that (4.5) witty,, = 1 does not hold. Indeed, if it
did, then the 8S proces would be a.s. bounded, and then, for any @ < «,
we would have

EME =E sup |Xi|? <oo
k=0,1,...
[see, e.g., Araujo and Giné (1980)], which would contradict, in the case k 2,
(2.22) in Marcus (1984) and in the cage= 1, it would contradict (2.23) in that

paper.

The next example exhibits a variety of rates at which the sequ@ptand the
partial maxima of the processes can grow. We look at a class of station&y S
processes generated by null recurrent Markov chains, introduced indRoand
Samorodnitsky (1996) and studied in more details in Resnick, Samorodnitsky and
Xue (2000) and Mikosch and Samorodnitsky (2000).
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ExAaMPLE 5.3. We start with an irreducible null-recurrent Markov chain on
Z with law P;(-), i € Z and transition probabilitiegp ;). Let 7 = (7;);ez be
the o -finite invariant measure corresponding to the faniiy) satisfyingrzg = 1.
Let P* be the bilateral extension af; to E = 7Z: that is, underP’, xo =i,
(x0, x1, . ..) is @a Markov chain with transition probabiliti€p ;x) and(xo, x_1, ...)
is a Markov chain with transition probabilitiesr; pi;/m;). Define ao-finite
measuren on E by

m()= > mPr),

i=—00

and observe thai: is invariant under the left shift operatgr, and the latter
generates a conservative flow [see Harris and Robbins (1953)].

Let X be a stationary &S process defined by the integral representation (2.1),
with M being an &S random measure with control measuire

fu(x) = fo¢"(x), x€E, n=0,1,2,...,
with
f(x) = 1o(x0), x=(..,x_1,x0,X1,x2,...) €EE.

Because of the null recurrence of the Markov chain, this is a mixing stationary
process (unlike, say, the processes in Examples 5.1 and 5.2); sdsiRasid
Samorodnitsky (1996).

Let d be the period of the Markov chain [the largest common factot of1
such thatPp(x,, = 0) > 0]. Assume that

(5.2 Po(xpg =0)=n""L{n) asn — oo
for somey € (0, 1) and a slowly varying functiot.. Let
t=t(x)=inf{n>1:x,=0}

be the first return time to 0. Notice that

[e.e]
by = > miP(xx=0forsomek=0,....,n—1)

i=—00

oo
=P(t=n+ Y mP(r<n-1)

i=—00
=Pyt >=n)+m(t <n-1)
at-v

~ Y(L, -1
A+ pra—y" &
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asn — oo by Remark 3.1 and Lemma 3.3 in Resnick, Samorodnitsky and Xue
(2000). In particular, it follows from Theorem 4.1 and Remark 4.2 that

L(n)l/a ( C, dl—y >1/01
nv/e F(l+y)T1-y) *

(5.3)

asn —>ooif y > 1/2. . .
What happens ify < 1/2? Let Y., Yl(‘),..., i =1,2, be two independent
Markov chains with the same transition probabilitigs,) as before. Then

v =P v?), n=012...,

n ’>"°n
is a Markov chain with state spa& and transition probabilities
Pljs.jo. (ki ko) = PivkaPiokes  J1 2 k1, k2 € Z.
Let
t*=inf{n >1:Y; = (0,0)}

be the first time the new Markov chain returng@0).
Let r, be the probability in the left-hand side of (4.8). For any @ < 1, we
have

00 00
rn=b;2“|:P(o’o)(r*Zn)+ Z Z njan(i,j)(T*fn_l)i|-
i=—00 j=—00

Notice thatn*. =mn;for (i, j) e 72 is an invariant measure for)"), and letm*
be the shift- mvarlant measure defined@#f)Z usingp* andz* in the same way
as measure: was defined above usingandsx. Then

rn=b;2[Po,o)(t* = n) +m*(* <n—1)].
It follows from (5.2) that
P(BO)( r:kd = (0, 0)) = (PO(xnd = 0))2 =n~% (L(”))Z asn — oo.

Therefore, fory < 1/2 we may, once again, appeal to Remark 3.1 and Lemma 3.3
in Resnick, Samorodnitsky and Xue (2000) to conclude that
dl—Zy

Ly 1)~ 2y -2
=D v ra- ey

asn — oo and, hence,

APA+p)Td-yp)?

F(1+2y)I(1—2y)
asn — oo. In particular, the condition (4.8) holds in the case- 1/2, and so (5.3)
holds in this case as well.

On the other hand, (4.8) fails in the case<Qy < 1/2, and we conjecture
that (5.3) does not hold either (cf. with Remark 4.4).

Iy —>
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In the previous example we saw classes of stationaly grocesses generated
by conservative flows satisfying (4.6) and (4.8) and, hence, also (4.9). For these
processed, is regularly varying at infinity with exponent > 1/(2«). The
following example exhibits stationarye$S processes generated by conservative
flows and also satisfying both (4.6) and (4.8), for whigtcan be regularly varying
at infinity with any exponent & y < 1/«.

EXAMPLE 5.4. Once again, leX be given by (5.1) withi, = 1, but now the
control measure: of the SxS random measur# is a probability measure under
which the projectiong, k=...,—1,0,1,2,... are i.i.d. positive Pareto random
variables with

m(go>x):x_9 forx>1
for somed > «. Note that, for every & p <6,
5.4 max g’ m(dg) ~ Pl%  as
4) /Ekzo,l ..... (1 8k mAD~cpon el

for some finite positive constany, ». Using (5.4) withp = o shows that

1
/gt /0

by ~ ¢, asn — oo,

and so (4.6) holds. Using, furthermore, (5.4) with< p < 6 shows uniform
integrability of the sequencéb,* maxi—o,.. .-11g;(g)I*), n =1,2,..., with
respect tam. Since (4.11) is obvious in this case, we conclude that (4.8) holds
as well.

That is, the convergence to extreme value distribution (4.9) holds here in all
cases, and the exponent of regular variatigh af b, spans here the entire range
0,1/a).

All of the examples thus far emphasize the message of Theorem 4.1: while
the partial maxima grow at the rate ot/“ for stationary &S processes with a
nondegenerate part generated by a dissipative flow, the rate of growth is strictly
slower if the process is generated by a conservative flow. In all these examples the
actual rate of growth ob, and, hence, of the partial maximum was determined
by the properties of the conservative flow. Our final example exhibits a new
class of stationary &S processes generated by a conservative flow, in which the
actual rate of growth of the partial maxima is determined by the kefrialthe
representation (2.2).

ExamMpPLE 5.5. Let E = (0,1], let m be the Lebesgue measure @h
and definep: E — E by ¢(x) = {2x}, where {a} is the fractional part of a
real numbera. Obviously, (¢",n = 0,1,2,...) is a conservative measune-
preserving flow (but it is not invertible). This flow is referred to as tyadic
transformation; see Example 1.6 in Billingsley (1965).
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Let 1, ho, ... be a nondecreasing sequence of nonnegative numbers such that

o0
(5.5) > hf2* < oo,
k=1
and suppose that the limit
. log,h
(5.6) 0= lim 2 ¢ [0,1/a]
k—o00 k
exists.
Forx = (x1, x2,...) € (0, 1] given in its binary expansion, define
(5.7) Kx)=inf{j>1:x; =1},

and letX be a stationary &S process defined by (2.1) withy,(x) = f o ¢"(x),
x € E, where we choose

(5.8) f(x) = h[((x), xekE.

Of course we do not need to worry about the fact that neikheror f is defined

for binary rational numbers. Notice, furthermore, that by switching to the space

of doubly infinite sequences= (..., x_1, xo0, X1, X2, ...) with x; € {0, 1} for all i

with the product probability measure; under which the projections, form a
sequence of i.i.d. Bernoulli random variables with med8,land the left shift
operator as the flow, we regain invertibility and, hence, we are in the framework

of (2.2).
Denoting
(5.9) R,(x)= j:rqaxn supgm >1:xj=xj41="--=Xj4m-1="0}

to be the longest run of zeroes startindIn...,n},n=1,2,..., we see that

1
(5.10) b= [ hdx. n=1l2....

We claim that

log, b
m 292% _ o

511
( ) k—oo log, k

Suppose that < 1/a. Then, for every € (0, 1/a — 6), we have
1
b < CE/ 20O+ Ru(X) n=12
n — 9 9 90
0

for some finite positive constamt. An elementary Bernoulli trials computation
shows that, forany & y < 1,

_log, [YorR«(0) q
(5.12) jim 1292J0 *
n—00 |092n
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Indeed,R,/log,n — 1 a.s. [Example 4.14 in Billingsley (1986)], providing the
liminf part of (5.12). Furthermore, for evesy> 0 andy > 0,

Leb{x : ZVRn(X) > n7(1+3) + y} < 2}’2_6)/_1/)/,

and so

1 00
/0 o Ra(x) dxs(ny(l+6)+l)+/1 Lebjx: 27 Rr() 5 7 @) 4 1 gy

0
< (ny(1+8)+1)+2n—8/1 v dy,

establishing the lim sup part of (5.12).
We conclude that

log, b
lim supﬂ <6 +e,
k—oco 100p
and lettinge — 0 we see that, if @ 0 < 1/«, then
. log, b
(5.13) lim supM <6
k— 00 092

Of course, the fact that (5.13) also holds foe 1/« is trivial.
Similarly, if & > 0, then for every € (0, 0), we have

1
by zcE/ 24 O=Rn(x) g n=12...,
0

for some finite positive constant, and using, once again, (5.12) and letting
e — 0, we obtain

log, b
(5.14) liminf ~2% = g
k— o0 |Og2k

for 6 > 0. Since (5.14) is trivial fop = 0, we obtain (5.11) from (5.13) and (5.14).
One can easily see from Theorem 4.1 and a slight modification of the proof
of (4.4) that (5.11) implies that
log, M),
log, n
asn — oo, which is a way of saying tha¥,, grows as fast as, [but it is not as
precise as, say, (4.9)].

— 0 in probability

6. Conclusions. We have seen that the sequence of partial maxima of a
stationary &S process generated by a dissipative flow grows always at the rate
of n!/® irrespective of the further properties of the flow or of the kernel in
the integral representation of the process. On the other hand, the sequence of
partial maxima of stationary o5 processes generated by a conservative flow
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grows always at the rate slower tha®’®. However, the actual rate of growth
here depends on the further properties of the flow and of the kernel. This is an
example of a phase transition that would be consistent with a passage between
short memory and long memory. It is important to note this phenomenon exists for
al0<a < 2.

Examples of phase transitions of this kind for stationagb$rocesses have
been observed before; see, for example, the discussion of ruin probabilities in
Mikosch and Samorodnitsky (2000) or change in the rate of growth of partial
sums in the case of increment processes of self-sirafatable processes with
stationary increments; see Samorodnitsky and Taqqu (1994). In the previous cases
the functionals for which the phase transitions were observed were based on partial
sums of a process, which resulted in the phase transition being observed only in the
range 1< « < 2. In the present paper the phase transition occurs for-akO< 2.

It is interesting to mention that, unlike in the case of partial sums, maxima of
long range dependent processes grow slower than those of short range dependent
processes. This results in the fact that the maxima of a sum of two independent
processes, one of which is generated by a dissipative flow, and the other by a
conservative flow, will grow at the rate dictated by the dissipative part. If one
decides to associate long range dependencex8f Focesses with conservative
flows, then, for the partial maxima functional, the long memory is being hidden in
such a sum. Recall, however, that this does not mean that the sum does not have
long memory, for this cannot be dependent on behavior of a single functional.

Itis also important to mention that, while stationawySsprocesses generated by
conservative flows, considered in Mikosch and Samorodnitsky (2000), were also
in the part of the parameter space suspected to represent long range dependence,
some processes generated by dissipative flows were also long range dependent in
that case.

This suggests that there may be multiple phase transitions indicating long range
dependence, and the complete structure of those is yet to be discovered.
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