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EXTREME VALUE THEORY, ERGODIC THEORY AND THE
BOUNDARY BETWEEN SHORT MEMORY AND LONG

MEMORY FOR STATIONARY STABLE PROCESSES1

BY GENNADY SAMORODNITSKY

Cornell University

We study the partial maxima of stationaryα-stable processes. We relate
their asymptotic behavior to the ergodic theoretical properties of the flow. We
observe a sharp change in the asymptotic behavior of the sequence of partial
maxima as flow changes from being dissipative to being conservative, and
argue that this may indicate a change from a short memory process to a long
memory process.

1. Introduction. Let X = (X0,X1, . . . ) be a stationary symmetricα-stable
(SαS) process, 0< α < 2. How does one decide whether or not the process has
long range dependence?

Sinceα-stable random variables with 0< α < 2 have infinite second moment,
one cannot use correlations to tell when a stationaryα-stable process has long
range dependence. Covariance-like functions have been tried [see, e.g., Astrauskas,
Levy and Taqqu (1991)], but their usefulness seems to be limited. In fact, even
for stationary processes with a finite second moment, the definition of long range
dependence based on the true correlation function is of uncertain value unless the
process is a Gaussian process, or very close to being one.

Instead of using the correlation function or looking for a substitute, we propose
a different approach. Suppose that(Pθ , θ ∈ �) is a family of laws of a stationary
stochastic process(X0,X1,X2, . . . ), where� is some parameter space. Assume
that the marginal laws of the process do not change much asθ varies (perhaps,
the marginal laws remain constant, or only the global scale changes, if we are
considering, say, Gaussian or SαS processes). Suppose we are given a functional
of interestR, a (measurable) functional onR∞. The behavior of this functional is
different, in general, under different lawsPθ . Suppose that there is a partition of
the parameter space� into two parts,�0 and�1, such that the behavior of the
functional changes dramatically as one crosses the boundary between�0 and�1.
Such change may be caused by various factors (e.g., by changing heaviness of
the tails), but in some cases it may make sense to talk about that boundary as a
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boundary between short range dependence and long range dependence. That is,
the change from short memory to long memory occurs as a phase transition. We
emphasize that the behavior of each individual functional does not define short or
long memory, and the phase transition indicated should occur for a large group
of functionals for a boundary to be called a change from short to long memory.
A complete theory is missing at the moment. In this paper we find one important
functional undergoing such a phase transition at a boundary.

Existence of boundaries with such properties has been observed before.
For stationary zero mean Gaussian processes parameterized by the common
variance, and by the correlation function, such a phase transition occurs when the
correlations stop being summable. The functional of interest here is the sequence
of the partial sums, and its distributional rate of growth changes significantly at the
boundary. The rate of growth of the partial sums may change its order of magnitude
whether or not the second moment is finite. This has been observed many times on
the example of the increments of self-similar processes with stationary increments.
In the Gaussian case the family of such processes are fractional Brownian motions,
parameterH of self-similarity has to be in the interval(0,1), and the partial
sums of the increment process (the so-called fractional Gaussian noise) increase
at the rate higher thann1/2 when H > 1/2. HenceH = 1/2 is considered to
be the boundary between short and long memory for fractional Gaussian noise.
See, for example, Mandelbrot (1975) and Mandelbrot and Taqqu (1979), as well
as a more recent discussion in Beran (1994). A similar phenomenon occurs
for the increments of self-similarα-stable processes with stationary increments,
1 < α < 2, that have infinite variance. Here the range of parameterH of self-
similarity is still (0,1), and the boundary where the partial sums of the increment
process start increasing at the rate higher than the i.i.d. case (i.e., faster than
n1/α) is that ofH = 1/α. See, for example, Samorodnitsky and Taqqu (1994). No
such boundary is possible if we consider the increments of self-similarα-stable
processes with stationary increments and 0< α ≤ 1. If one uses the boundary
H = 1/α to define long range dependence, one would have to conclude that long
range dependence is impossible if 0< α ≤ 1.

The present paper uncovers a different boundary for stationaryα-stable
processes. We believe that this is a very fundamental boundary, and it is based
on ergodic-theoretical properties of nonsingular flows underlying such processes.
Specifically, we concentrate on the partial maxima sequence

Mn = max(|X0|, |X1|, . . . , |Xn−1|), n = 1,2, . . . ,(1.1)

and its distributional rate of growth. We will see that the parameter space consists
of two parts, in one of which the partial maxima grow at the raten1/α, which is the
rate at which partial maxima of i.i.d.α-stable random variables grow, while in the
other part of the parameter space the partial maxima grow at a strictly slower rate.
Moreover, in the latter part of the parameter space the actual rate of growth may
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depend on the choice of the parameters. This boundary is present for all 0< α < 2.
Again, by itself the change in behavior of a single functional does not qualify this
boundary as that between short and long memory. Our conjecture is, however, that
many other important changes occur at that boundary.

This paper is organized as follows. In Section 2 we provide a background on
integral representations of stationary SαS processes, and elements of the theory
developed by Rosiński (1994, 1995) relating such integral representations and
ergodic theory. In Section 3 we discuss the behavior of a certain deterministic
sequence controlling the rate of growth of the partial maxima. In Section 4 we
prove the main result, Theorem 4.1, dealing with the asymptotic behavior of the
sequence partial maxima. Section 5 discusses a number of examples illustrating the
results of Section 4. A brief conclusion discussing what the results of this paper
tell us about short and long memory for stationary stable processes is in Section 6.

2. Ergodic theory and representations of stationary α-stable processes.
Throughout this sectionX = (X0,X1, . . . ) is a SαS process, 0< α < 2. Every
(not necessarily stationary) SαS process has an integral representation

Xn =
∫
E

fn(x)M(dx), n = 0,1,2, . . . ,(2.1)

whereM is a SαS random measure on a measurable space(E,E) with a σ -finite
control measurem, whilefn ∈ Lα(m,E) for all n. See Chapter 3 in Samorodnitsky
and Taqqu (1994) onα-stable random measures and integrals with respect to these
measures, and Chapter 13 there on integral representations as above as well as on
the history of such representations.

When a processX is stationary, the integral representation can be selected to
be of a particular form, according to a theory developed in a series of papers
by Rosínski. See, for example, Rosiński (1995); various facts presented below
can be found in that paper. Specifically, a stationary SαS process has an integral
representation of the form (2.1) with

fn(x) = an(x)

(
dm ◦ φn

dm
(x)

)1/α

f ◦ φn(x), x ∈ E,(2.2)

for n = 0,1,2, . . . , whereφ :E → E is a measurable nonsingular map (i.e., a one-
to-one map with bothφ andφ−1 measurable, mapping the control measurem into
an equivalent measure),

an(x) =
n−1∏
j=0

u ◦ φj(x), x ∈ E,

for n = 0,1,2, . . . , with u :E → {−1,1} a measurable function andf ∈ Lα(m,E).
That is, the processX is determined by a single functionf ∈ Lα(m,E),

a cocycle (an, n = 0,1,2, . . . ) and aflow (φn,n = 0,1,2, . . . ). This triple [taken
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together with the space(E,E ,m) on which it lives] can, therefore, be taken
as a parameterization of stationary SαS processes. When working with this
parameterization, the task is to relate the ergodic-theoretic properties of the flow
to the probabilistic properties of the stable process. We are interested in properties
that we can interpret as related to the length of memory of a stationary stable
process.

Let E = C ∪ D be the Hopf decomposition ofE with respect to the flow. That
is, C andD are measurableφ-invariant sets, such that the flow is conservative
on C and dissipative onD; see Krengel (1985) for the various ergodic-theoretical
notions and facts we use in this paper. Writing

Xn =
∫
C

an(x)

(
dm ◦ φn

dm
(x)

)1/α

f ◦ φn(x)M(dx)

+
∫
D

an(x)

(
dm ◦ φn

dm
(x)

)1/α

f ◦ φn(x)M(dx)(2.3)

=: XC
n + XD

n , n = 0,1,2, . . . ,

leads to a unique in law decomposition of a stationary SαS process into a sum of
two independent such processes, one of which is generated by a conservative flow,
and the other by a dissipative flow.

Intuitively, one expects stable processes generated by conservative flows to have
a longer memory than those generated by dissipative flows, simply because a
conservative flow “tends to keep coming back,” and so the same values of the
random measureM contribute to observationsXn far separated in time. Consider,
for example, stationary processes generated by a dissipative flow. Such a process
has amixed moving average representation of the form

Xn =
∫
W

∫
Z

f (v, x − n)M(dv, dx), n = 0,1,2, . . . ,(2.4)

with M a SαS random measure on a product measurable space(W × Z,W × B)

with control measurem = ν × l, whereν is a σ -finite measure on(W,W), l is
the counting measure onZ andf ∈ Lα(m,W × B). Such processes are always
mixing irrespective of what the kernelf in either (2.2) or (2.4) is [or what the
cocycle in (2.2) is]. See Surgailis, Rosiński, Mandrekar and Cambanis (1993).
On the other hand, stable processes generated by conservative flows are often not
even ergodic. For example, if a conservative flow is measure preserving and the
expected return time to any set of a finite positive measure is finite, then the stable
process is not ergodic [see Rosiński and Samorodnitsky (1996)]. Another example
demonstrating that conservative flows tend to lead to a longer memory (in the case
1 < α < 2) can be found in Mikosch and Samorodnitsky (2000), who studied ruin
probabilities.
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3. The sequence (bn). Let X = (X0,X1, . . . ) be a stationary SαS process,
0 < α < 2. We assume that the process is given in an integral representation of
the form (2.1), where(fn) is of the form (2.2). It turns out that, to a large extent,
the asymptotic behavior of the maximal functionalMn in (1.1) is related to the
quantity defined below. Let

bn =
(∫

E
max

j=0,...,n−1
|fj (x)|α m(dx)

)1/α

, n = 1,2, . . . .(3.1)

In fact, to a certain extentbn controls “the size” ofMn even without the assumption
of stationarity of the process. Indeed, for any 0< p < α, there are constantscα,p,
Cα,p ∈ (0,∞) such that, for 1< α < 2,

cα,p ≤ 1

bn

(EMp
n )1/p ≤ Cα,p (logn)1/α′

,(3.2)

whereα′ is the conjugate ofα in 1/α + 1/α′ = 1, while forα = 1,

c1,p ≤ 1

bn

(EMp
n )1/p ≤ C1,p L2n,(3.3)

whereL2n = max(1, log logn). Finally, for 0< α < 1,

cα,p ≤ 1

bn

(EMp
n )1/p ≤ Cα,p.(3.4)

See Theorem 2.1 in Marcus (1984).
We will see that for stationary SαS processes the sequence(bn) tells us even

more about the sequence(Mn) of the partial maxima. Note that the sequence
(bn) is completely determined by the process, and does not depend on a particular
integral representation. Certain important features of this sequence are determined
by the flow in (2.2) underlying the process. In particular, the next result shows that
the sequencebn grows at slower rate for processes generated by a conservative
flow than for processes generated by a dissipative flow.

THEOREM 3.1. Let (fn) be given by (2.2).

(i) If the flow (φn) is conservative, then:

n−1/αbn → 0 as n → ∞.(3.5)

(ii) If the flow is dissipative, and the process is given in the mixed moving
average form (2.4), then:

lim
n→∞n−1/αbn =

(∫
W

g(v)α ν(dv)

)1/α

∈ (0,∞),(3.6)

where

g(v) = sup
k=0,±1,±2,...

|f (v, k)| for v ∈ W .(3.7)
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PROOF. (i) Suppose first that the flow(φn) is control measurem preserving,
and thatf = 1A for someA ∈ E with 0 < m(A) < ∞. In that case the Radon–
Nykodim derivative in (2.2) disappears, and we get

bα
n = m

(
n−1⋃
k=0

φ−k(A)

)
, n = 1,2, . . . .(3.8)

We use a construction used to prove the Kac recurrence theorem; see, for
example, Theorem 3.6 in Krengel (1985). Let

τA(x) = inf{k ≥ 1 :φk(x) ∈ A} for x ∈ A

be the first recurrence time toA, and let, fork = 1,2, . . . ,

Rk = {x ∈ A : τA(x) = k}
and

Ak = {x ∈ Ac :φk(x) ∈ A, φj (x) /∈ A, j = 1, . . . , k − 1}
be, correspondingly, the set of points inA returning toA afterk steps, and the set
of points outside ofA enteringA for the first time afterk steps. Let alsoA0 = A.
Note that

m

(
n−1⋃
k=0

φ−k(A)

)
=

n−1∑
k=0

m(Ak).(3.9)

Furthermore, for everyk = 1,2, . . . ,

Rk = {x ∈ E :φk(x) ∈ A, φj (x) /∈ A, j = 1, . . . , k − 1}
− {x ∈ Ac :φk(x) ∈ A, φj (x) /∈ A, j = 1, . . . , k − 1}

= φ−1(Ak−1) − Ak,

and so by the measure-preserving property of the flow,

m(Rk) = m(Ak−1) − m(Ak).

Summing up, we see that, for everyk = 0,1, . . . ,

m(Ak) =
∞∑

j=k+1

m(Rj ) + lim
n→∞m(An).(3.10)

Since the flow is conservative, we can use (3.10) withk = 0 to see that the limit
above is equal to zero. Therefore, by (3.9) we conclude that

1

n
m

(
n−1⋃
k=0

φ−k(A)

)
→ 0 asn → ∞,

which establishes (3.5) for indicator functions in the measure-preserving case.
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To establish (3.5) in the general case (i.e., not necessarily measure-preserving
conservative flow and a general kernelf ), denote

wn(x) = dm ◦ φn

dm
(x), n = 0,1,2, . . . , x ∈ E.

Then

φ∗(x, y) =
(
φ(x),

y

w1(x)

)
, x ∈ E, y > 0,

defines a conservative flow on
(
E × (0,∞),E × B,m × Leb

)
which can be

expressed as

φn∗ (x, y) =
(
φn(x),

y

wn(x)

)
, x ∈ E, y > 0 for n = 0,±1,±2, . . . ,

and this flow preserves the measurem × Leb; see Maharam (1964).
Let

A = {(x, y) ∈ E × (0,∞) : 0< y ≤ |f (x)|α}.
Note that

m × Leb(A) =
∫
E

|f (x)|α m(dx) ∈ (0,∞).

Furthermore,

m × Leb

(
n−1⋃
k=0

φ−k∗ (A)

)

=
∫
E

∫ ∞
0

1⋃n−1
k=0 φ−k∗ (A)

(x, y)m(dx) dy

=
∫
E

∫ ∞
0

max
k=0,...,n−1

1
φ−k∗ (A)

(x, y)m(dx) dy

=
∫
E

∫ ∞
0

max
k=0,...,n−1

1
(
0 < y ≤ wk(x)|f ◦ φk(x)|α)

m(dx)dy(3.11)

=
∫
E

max
k=0,...,n−1

wk(x)|f ◦ φk(x)|α m(dx)

=
∫
E

max
k=0,...,n−1

|fk(x)|α m(dx) = bα
n .

Since the left-hand side of (3.11) iso(n) by the already considered case of
measure-preserving flows and indicator functions, this establishes (3.5) in full
generality.
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(ii) We start with the case wheref has a compact support, that is,

f (v, k)1W×[−m,m]c (v, k) ≡ 0 for somem = 1,2, . . . .(3.12)

In that case, forn ≥ 2m + 1, we have

bα
n =

m∑
j=−m−n+1

∫
W

max
k=0,...,n−1

|f (v, j + k)|α ν(dv)

=
−m∑

j=m−n+1

∫
W

max
k=0,...,n−1

|f (v, j + k)|α ν(dv)

+
m−n∑

j=−m−n+1

∫
W

max
k=0,...,n−1

|f (v, j + k)|α ν(dv)

+
m∑

j=−m+1

∫
W

max
k=0,...,n−1

|f (v, j + k)|α ν(dv) =: Tn + R(1)
n + R(2)

n .

Observe that, for eachj = m − n + 1, . . . ,−m,

max
k=0,...,n−1

|f (v, j + k)| = g(v),

while

max
k=0,...,n−1

|f (v, j + k)| ≤ g(v)

for other values ofj . Therefore,

Tn = (n − 2m)

∫
W

g(v)α ν(dv),

while ∣∣R(i)
n

∣∣ ≤ 2m

∫
W

g(v)α ν(dv) for i = 1,2.

Therefore (3.6) in the case of a compact supportedf follows. In the general case,
givenε > 0, choose a compact supportedfε such that|fε(v, k)| ≤ |f (v, k)| for all
v, k, and

∞∑
k=−∞

∫
W

|f (v, k)|α ν(dv) −
∞∑

k=−∞

∫
W

|fε(v, k)|α ν(dv) ≤ ε.

Let

gε(v) = sup
k=0,±1,±2,...

|fε(v, k)|,
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v ∈ W . Then

0 ≤
∫
W

g(v)α ν(dv) −
∫
W

gε(v)α ν(dv)

≤
∫
W

sup
k=0,±1,±2,...

(|f (v, k)|α − |fε(v, k)|α)
ν(dv)

≤
∫
W

∞∑
k−∞

(|f (v, k)|α − |fε(v, k)|α)
ν(dv)

=
∞∑

k=−∞

∫
W

|f (v, k)|α ν(dv) −
∞∑

k=−∞

∫
W

|fε(v, k)|α ν(dv) ≤ ε.

Therefore,∣∣∣∣1

n
bα
n −

∫
W

g(v)αν(dv)

∣∣∣∣
≤ 1

n

∣∣∣∣∣
∞∑

j=−∞

∫
W

max
k=0,...,n−1

|f (v, j + k)|αν(dv)

−
∞∑

j=−∞

∫
W

max
k=0,...,n−1

|fε(v, j + k)|αν(dv)

∣∣∣∣∣
+

∣∣∣∣∣1

n

∞∑
j=−∞

∫
W

max
k=0,...,n−1

|fε(v, j + k)|αν(dv) −
∫
W

gε(v)αν(dv)

∣∣∣∣∣
+

∣∣∣∣
∫
W

gε(v)αν(dv) −
∫
W

g(v)αν(dv)

∣∣∣∣ =: T (1)
n + T (2)

n + T (3)
n .

By the above,T (3)
n ≤ ε, and the same argument shows thatT

(1)
n ≤ ε as well.

Furthermore, by the already considered compact support case,T
(2)
n → 0 as

n → ∞. Hence

lim sup
n→∞

∣∣∣∣1nbα
n −

∫
W

g(v)αν(dv)

∣∣∣∣ ≤ 2ε,

and, sinceε > 0 is arbitrary, the proof of (3.6) is complete.�

4. Maxima of stationary stable processes. In this section we investigate
the rate of growth of the sequence(Mn) of partial maxima of a stationary SαS
process, 0< α < 2. We will see, in particular, that if such a process has a nonzero
componentXC in (2.3) generated by a dissipative flow, then the partial maxima
grow at the rate ofn1/α, while if the process is generated by a conservative flow,
then the partial maxima grow at a slower rate. The following is the main theorem
of this paper.
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THEOREM4.1. Let X = (X0,X1, . . .) be a stationary SαS process, 0< α < 2,
with integral representation (2.1),and functions (fn) given by (2.2).

(i) Suppose that X is not generated by a conservative flow [i.e., that the
component XD in (2.3)generated by a dissipative flow is nonzero]. Then

1

n1/α
Mn ⇒ C1/α

α KXZα(4.1)

weakly as n → ∞, where

KX =
(∫

W
g(v)αν(dv)

)1/α

and g given by (3.7) for any representation of XD in the mixed moving average
form (2.4).Furthermore,

Cα =
(∫ ∞

0
x−α sinx dx

)−1

=




1− α

	(2− α)cos(πα/2)
, if α �= 1,

2

π
, if α = 1,

(4.2)

and Zα is the standard Frechét-type extreme value random variable with the
distribution

P (Zα ≤ z) = e−z−α

, z > 0.

(ii) Suppose that X is generated by a conservative flow. Then

1

n1/α
Mn → 0(4.3)

in probability as n → ∞. Furthermore, with bn given by (3.1),(
1

cn

Mn

)
is not tight for any positive sequence cn = o(bn),(4.4)

while

(
1

bnfn

Mn

)
is tight, where fn =




(logn)1/α′
, if 1< α < 2,

L2n, if α = 1,

1, if 0< α < 1.

(4.5)

If, for some θ > 0 and c > 0,

bn ≥ cnθ for all n ≥ 1,(4.6)

then (4.5)holds with fn ≡ 1 for all 0< α < 2.
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Furthermore, for n = 1,2, . . . , let ηn be a probability measure on (E,E) with

dηn

dm
(x) = b−α

n max
j=0,...,n−1

|fj (x)|α, x ∈ E,(4.7)

and let U
(n)
j , j = 1,2, be independent E-valued random variables with common

law ηn. Suppose that (4.6)holds and that, in addition, for any ε > 0,

P

(
for some k = 0,1, . . . , n − 1,

(4.8)
|fk(U

(n)
j )|

maxi=0,...,n−1 |fi(U
(n)
j )| > ε, j = 1,2

)
→ 0

as n → ∞. Then
1

bn

Mn ⇒ C1/α
α Zα(4.9)

weakly as n → ∞.

REMARK 4.2. Here are some sufficient conditions for (4.8). If

lim
n→∞

bn

n1/2α
= ∞,(4.10)

then (4.8) holds. Indeed, letrn denote the probability in the left-hand side of (4.8).
Clearly,

rn ≤
n−1∑
k=0

(
P

( |fk(U
(n)
1 )|

maxi=0,...,n−1 |fi(U
(n)
1 )| > ε

))2

.

Furthermore, for everyk = 0,1, . . . , n − 1,

P

( |fk(U
(n)
1 )|

maxi=0,...,n−1 |fi(U
(n)
1 )| > ε

)

= b−α
n

∫
E

1
( |fk(x)|

maxi=0,...,n−1 |fi(x)| > ε

)
max

i=0,...,n−1
|fi(x)|αm(dx)

≤ ε−αb−α
n

∫
E

|fk(x)|αm(dx),

and (4.8) follows from (4.10) since, by the stationarity, the last integral does not
depend onk.

Alternatively, assume thatm is a finite measure, the flow is measurem

preserving, the sequence(b−α
n maxj=0,...,n−1 |fj (x)|α), n = 1,2, . . . , is uniformly

integrable with respect tom and, for everyε > 0

lim
n→∞n1/2m{x ∈ E : |f (x)| > εbn} = 0,(4.11)
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wheref is the kernel in (2.2). Then (4.8) holds.
Indeed, let‖m‖ be the total mass ofm. Given aδ > 0, selectM > 0 such that∫

E
1
(

max
i=0,...,n−1

|fi(x)|α > M bα
n

)
max

i=0,...,n−1
|fi(x)|α m(dx) ≤ δ bα

n

for all n ≥ 1. We have withε from (4.8),

rn ≤ 4δ + b−2α
n

n−1∑
k=0

(∫
E

max
j=0,...,n−1

|fj (x)|α

× 1
(
δ ‖m‖−1bα

n ≤ max
j=0,...,n−1

|fj (x)|α ≤ Mbα
n

)

× 1
( |fk(x)|

maxi=0,...,n−1 |fi(x)| > ε

)
m(dx)

)2

≤ 4δ + M2n

(∫
E

1
(|f (x)| > εδ‖m‖−1 bn

)
m(dx)

)2

.

Therefore, using (4.11), we obtain

lim sup
n→∞

rn ≤ 4δ,

and (4.8) follows by lettingδ → 0.

PROOF OFTHEOREM4.1. We use a series representation of the random vector
(X0,X1, . . . ,Xn−1) of the form

Xk = bn C1/α
α

∞∑
j=1

εj	
−1/α
j

fk(U
(n)
j )

maxi=0,...,n−1 |fi(U
(n)
j )| ,(4.12)

k = 0,1, . . . , n − 1,

whereCα is given by (4.2),ε1, ε2, . . . are i.i.d. Rademacher random variables
(symmetric±1-valued random variables),	1,	2, . . . is a sequence of the arrival
times of a unit rate Poisson process on(0,∞), and (U

(n)
j ) are i.i.d. E-valued

random variables with common law given by (4.7). All three sequences are
independent. See Section 3.10 in Samorodnitsky and Taqqu (1994). Of course,
the representation in (4.12) is in law.

We start with observing that (4.5) follows from (3.2)–(3.4) regardless of the
properties of the flow. To check (4.4), we use the series representation (4.12) and
symmetry. LetG be theσ -field generated byε1, (	j , j ≥ 1) and (U

(n)
j , j ≥ 1).

Letting

Zn = bn C1/α
α max

k=0,...,n−1

∣∣∣∣	−1/α
1

|fk(U
(n)
1 )|

maxi=0,...,n−1 |fi(U
(n)
1 )|

∣∣∣∣
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andK0 be the smallestk = 0,1, . . . , n − 1 over which the maximum is achieved,
we see that bothZn andK0 are measurableG. Further, the symmetry tells us that,
for anyx > 0,

P
(
XK0 > x|G) ≥ 1

2P (Zn > x|G).

Hence, for anyx > 0,

P

(
1

cn

Mn > x

)

≥ 1

2
P

(
max

k=0,...,n−1
bnC

1/α
α

∣∣∣∣ε1	
−1/α
1

|fk(U
(n)
1 )|

maxi=0,...,n−1 |fi(U
(n)
1 )|

∣∣∣∣ > cn x

)
(4.13)

= 1

2
P

(
	

−1/α
1 > C−1/α

α

cn

bn

x

)
→ 1

2

asn → ∞. Hence lack of tightness.
Suppose now that (4.6) holds. LetK = 1,2, . . . be such that

α (K + 1)θ > 1.(4.14)

We claim that, in this case, for allε > 0 satisfying

0 < ε <
1

K
,(4.15)

we have

P

(
max

k=0,...,n−1
|Xk| > λbn,	

−1/α
1 ≤ ελ

)
→ 0 asn → ∞(4.16)

for all λ > 0. Indeed, choose

1

θ
< p < α(K + 1).(4.17)

Notice that the probability in the left-hand side of (4.16) is bounded from above
by

n−1∑
k=0

P

(
|Xk| > λbn,	

−1/α
j

|fk(U
(n)
j )|

maxi=0,...,n−1 |fi(U
(n)
j )| ≤ ελ for all j = 1,2, . . .

)
.

Forf in (2.2), let

‖f ‖α =
(∫

E
|f (x)|α m(dx)

)1/α

,

and notice that, for anyk = 0,1, . . . , n − 1, the points

bn εj 	
−1/α
j

fk(U
(n)
j )

maxi=0,...,n−1 |fi(U
(n)
j )| , j = 1,2, . . . ,



EXTREMES OF STATIONARY STABLE PROCESSES 1451

represent a symmetric Poisson random measure onR whose mean measure assigns
a mass ofx−α‖f ‖α

α/2 to the set(x,∞) for everyx > 0 [see, e.g., Propositions
4.3.1 and 4.4.1 in Resnick (1992)]. Since the same random measure can be
represented by the points

εj 	
−1/α
j ‖f ‖α, j = 1,2, . . . ,

we conclude that the probability in (4.16) is bounded from above by

nP

(
C1/α

α

∞∑
j=1

εj	
−1/α
j > λ‖f ‖−1

α bn,	
−1/α
j ≤ ελ‖f ‖−1

α bn

)

≤ nP

(
C1/α

α

∞∑
j=K+1

εj	
−1/α
j > λ(1− εK)‖f ‖−1

α bn

)

≤ nb−p
n

‖f ‖p
αE|C1/α

α
∑∞

j=K+1 εj 	
−1/α
j |p

λp
(
1− εK

)p .

As long as the expectation above is finite, the latter expression goes to 0 asn → ∞
and, hence, (4.16) follows. The expectation is finite by the choice ofp in (4.17).
Indeed, notice thatE	

−p/α
j < ∞ for all j ≥ K + 1 and that, by the Stirling

formula,E	
−p/α
j ∼ ep/α j−p/α asj → ∞. Assuming without loss of generality

thatp/2= m is an integer (we can remove finitely many leading terms in the sum
and increasep, if necessary), we see that for finite positive constantsc1, c2,

E

∣∣∣∣∣
∞∑

j=K+1

εj	
−1/α
j

∣∣∣∣∣
p

≤ c1E

( ∞∑
j=K+1

	
−2/α
j

)p/2

= c1

∞∑
j1=K+1

. . .

∞∑
jm=K+1

E

m∏
i=1

	
−2/α
ji

≤ c1

( ∞∑
j=K+1

(E	
−2m/α
j )1/m

)m

= c1

( ∞∑
j=K+1

(E	
−p/α
j )2/p

)p/2

≤ c2

( ∞∑
j=K+1

j−2/α

)p/2

< ∞.
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Fix ε > 0 satisfying (4.15). Givenδ > 0, chooseλ > 0 such thatP (	
−1/α
1 >

ελ) ≤ δ/2, choosen0 such that

P

(
max

k=0,...,n−1
|Xk| > λbn,	

−1/α
1 ≤ ελ

)
≤ δ

2
for n > n0

andλ′ ≥ λ such that

P (Mk > λ′bk) ≤ δ for k = 1, . . . , n0.

Then

P

(
1

bn

Mn > λ′
)

≤ δ

for all n ≥ 1, and so (4.5) holds withfn ≡ 1.
Now, suppose thatX is generated by a conservative flow. LetY be a stationary

SαS process independent ofX, also given by an integral representation of the form
(2.1), say,

Yn =
∫
E′

gn(x)M ′(dx), n = 0,1,2, . . . ,

whereM ′ is a SαS random measure with control measurem′, independent ofM in
the integral representation ofX, with the functionsgn also given in the form (2.2),
with some nonsingular conservative flowφ′ onE′, and such that

bY
n =

(∫
E′

max
j=0,...,n−1

|gj (x)|α m′(dx)

)1/α

, n = 1,2, . . . ,

satisfies (4.6) for someθ > 0. ProcessesY with the above properties exist;
see the examples in the next section. However, the above step may require
enlarging the probability space we are working with. LetZ = X + Y. ThenZ is a
stationary SαS process generated by a conservative flow. We use its natural integral
representation onE ∪ E′ with the naturally defined flow on that space. LetbZ

n be
the corresponding quantity in (3.1) defined for the processZ. Note thatbZ

n ≥ bY
n

for all n, hence the processZ satisfies (4.6) as well. By the already proven part of
the theorem, the sequence(bZ

n )−1 maxk=0,...,n−1 |Zk|, n = 1,2, . . . , is tight. Since,
for anyx > 0 andn = 1,2, . . . ,

P

(
max

k=0,...,n−1
|Zk| > x

)
≥ 1

2P

(
max

k=0,...,n−1
|Xk| > x

)

by the symmetry ofY, we conclude that the sequence(bZ
n )−1 maxk=0,...,n−1 |Xk|,

n = 1,2, . . . , is tight as well.
However, the processZ is generated by a conservative flow and, hence, by

Theorem 3.1,bZ
n = o(n1/α). Therefore, (4.3) follows.
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Suppose now that (4.8) holds. Then for every 1≤ j1 < j2 andε > 0

P

(
for somek = 0,1, . . . , n − 1, 	

−1/α
ji

|fk(U
(n)
ji

)|
maxm=0,...,n−1 |fm(U

(n)
ji

)| > ε, i = 1,2
)

≤ P (	1 ≤ τ ) + P

(
for somek = 0,1, . . . , n − 1,

|fk(U
(n)
j )|

maxm=0,...,n−1 |fm(U
(n)
j )| > ε τ1/α, j = 1,2

)

for any τ > 0. Letting first n → ∞ and thenτ → 0 shows that, for every
1 ≤ j1 < j2 andε > 0,

lim
n→∞P

(
for somek = 0,1, . . . , n − 1,

(4.18)

	
−1/α
ji

|fk(U
(n)
ji

)|
maxm=0,...,n−1 |fm(U

(n)
ji

)| > ε, i = 1,2
)

= 0.

Observe, further, that for anyε > 0,

P

(
for somek = 0,1, . . . , n − 1,

	
−1/α
j

|fk(U
(n)
j )|

maxm=0,...,n−1 |fm(U
(n)
j )| > ε for at least 2 differentj

)

=: ϕ(1)
n (ε) ≤ P (	

−1/α
J > ε)

+
J−1∑
j1=1

J−1∑
j2=j1+1

P

(
for somek = 0,1, . . . , n − 1,

	
−1/α
ji

|fk(U
(n)
ji

)|
maxm=0,...,n−1 |fm(U

(n)
ji

)| > ε, i = 1,2
)

for any J = 1,2 . . . . Letting n → ∞ and using (4.18), and then lettingJ → ∞
shows that, for everyε > 0

lim
n→∞ϕ(1)

n (ε) = 0.(4.19)

Suppose now that both (4.6) and (4.8) hold. LetK be as in (4.14). Letε > 0 and
0 < δ < 1 satisfy

0< ε <
δ

K
.(4.20)
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For anyλ > 0, we have

P

(
1

bn

Mn > λ

)

≤ P
(
C1/α

α 	
−1/α
1 > λ(1− δ)

) + ϕ(1)
n (C−1/α

α ε λ)

+ P

(
max

k=0,...,n−1

∣∣∣∣∣
∞∑

j=1

εj	
−1/α
j

fk(U
(n)
j )

maxi=0,...,n−1 |fi(U
(n)
j )|

∣∣∣∣∣ > C−1/α
α λ,

	
−1/α
1 ≤ C−1/α

α λ(1− δ),(4.21)

and for eachk = 0,1, . . . , n − 1,

	
−1/α
j

|fk(U
(n)
j )|

maxi=0,...,n−1 |fi(U
(n)
j )| > C−1/α

α ελ

for at most onej = 1,2, . . .

)

=: P (
C1/α

α 	
−1/α
1 > λ(1− δ)

) + ϕ(1)
n (C−1/α

α ελ) + ϕ(2)
n (ε, δ).

Proceeding similarly to the argument used in proving (4.16) we have

ϕ(2)
n (ε, δ) ≤

n−1∑
k=0

P

(∣∣∣∣∣
∞∑

j=1

εj	
−1/α
j

fk(U
(n)
j )

maxi=0,...,n−1 |fi(U
(n)
j )|

∣∣∣∣∣ > C−1/α
α λ,

	
−1/α
j

|fk(U
(n)
j )|

maxi=0,...,n−1 |fi(U
(n)
j )|

≤ C−1/α
α λ(1− δ) for eachj = 1,2, . . .

and	
−1/α
j

|fk(U
(n)
j )|

maxi=0,...,n−1 |fi(U
(n)
j )| > C−1/α

α ελ

(4.22)

for at most onej = 1,2, . . .

)

≤ nP

(∣∣∣∣∣
∞∑

j=1

εj 	
−1/α
j

∣∣∣∣∣ > C−1/α
α λ‖f ‖−1

α bn,

	
−1/α
1 ≤ C−1/α

α λ(1− δ)‖f ‖−1
α bn,

and	
−1/α
2 ≤ C−1/α

α ελ‖f ‖−1
α bn

)
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and the latter expression goes to zero asn → ∞ by the choice ofε andδ, as in the
proof of (4.16).

We conclude by (4.19) and (4.22) that, for any 0< δ < 1,

lim sup
n→∞

P

(
1

bn

Mn > λ

)
≤ P

(
C1/α

α 	
−1/α
1 > λ(1− δ)

)
= 1− exp{−Cα λ−α(1− δ)−α},

and lettingδ → 0, we obtain

lim sup
n→∞

P

(
1

bn

Mn > λ

)
≤ 1− exp{−Cα λ−α}.(4.23)

In the opposite direction, the argument is similar. For anyε and δ > 0
satisfying (4.20), we have

P

(
1

bn

Mn > λ

)

≥ P
(
C1/α

α 	
−1/α
1 > λ(1+ δ)

) − ϕ(1)
n (C−1/α

α ελ)

− P

(
max

k=0,...,n−1

∣∣∣∣∣
∞∑

j=1

εj	
−1/α
j

fk(U
(n)
j )

maxi=0,...,n−1 |fi(U
(n)
j )|

∣∣∣∣∣ ≤ C−1/α
α λ,

	
−1/α
1 > C−1/α

α λ(1+ δ),

and for eachk = 0,1, . . . , n − 1,

	
−1/α
j

|fk(U
(n)
j )|

maxi=0,...,n−1 |fi(U
(n)
j )| > C−1/α

α ε λ

for at most onej = 1,2, . . .

)

=: P (
C1/α

α 	
−1/α
1 > λ(1+ δ)

) − ϕ(1)
n (C−1/α

α ελ) − ϕ(3)
n (ε, δ).

Once again, the choice ofε andδ gives us

lim
n→∞ϕ(3)

n (ε, δ) = 0,(4.24)

and so we conclude by (4.19) and (4.24), that for anyδ > 0,

lim inf
n→∞ P

(
1

bn

Mn > λ

)
≥ P

(
C1/α

α 	
−1/α
1 > λ(1+ δ)

)
= 1− exp{−Cα λ−α(1+ δ)−α},

and lettingδ → 0, we obtain a lower bound matching (4.23). This proves (4.9).
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If X is not generated by a conservative flow, then it follows from Theorem 3.1
that

n−1/αbn → KX asn → ∞.

In particular, both conditions (4.6) and (4.8) are satisfied (see Remark 4.2).
Therefore, (4.1) follows from the already proven (4.9), and the proof of all parts of
the theorem is complete.�

REMARK 4.3. The entire statement of part (ii) of Theorem 4.1 remains valid
with any integral representation of the process, not necessarily with functions of
the form (2.2). Of course, the sequence(bn) does not depend on the representation.
One can easily see that the particular structure of the integral representation was
not used in the proof, except when proving (4.3). The latter statement is, however,
a distributional one, and does not depend on the integral representation.

REMARK 4.4. The assumptions (4.6) and (4.8) mean, intuitively, that one and
only one Poisson jump in the series representation (4.12) significantly contributes
to the value ofMn for largen. Because of that, an extreme value distribution arises
as a limit. Either of these two assumptions may fail, as will be seen from the
examples in the next section. Even though a complete limit theory in such cases
is unavailable at the moment, limiting distributions (when weak limits exist) are
likely to depend on the number of Poisson jumps that contribute significantly to
the value of the maximum. In particular, the limiting distribution is not, in general,
an extreme value distribution. See Example 5.1.

In any case, no subsequential weak limit ofMn/bn can be constant, as can be
seen by using (4.13) withcn = bn:

P

(
1

bn

Mn > x

)
≥ 1

2
P (	

−1/α
1 > C−1/α

α x)

for all n ≥ 1, so that any subsequential weak limit must have a nonvanishing tail.

REMARK 4.5. Given a stationary SαS, processX, let

M(0)
n = max(X0,X1, . . . ,Xn−1), n = 1,2, . . . .(4.25)

The same argument as that used in proof of Theorem 4.1 shows that, ifX is not
generated by a conservative flow, then

1

n1/α
M(0)

n ⇒ C1/α
α K

(0)
X Zα(4.26)

weakly asn → ∞, where

K
(0)
X =

(
1
2

∫
W

g
(0)
+ (v)α ν(dv) + 1

2

∫
W

g
(0)
− (v)α ν(dv)

)1/α

,
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with

g
(0)
+ (v) = sup

k=0,±1,±2,...

f (v, k)+, g
(0)
− (v) = sup

k=0,±1,±2,...

f (v, k)−,

v ∈ W , for any representation ofXC in the mixed moving average form (2.4). Here
a+ anda− are, correspondingly, the positive and negative parts of a real numbera.
In the particular case of linearα-stable process, this result is in Theorem 3.8.3 in
Leadbetter, Lindgren and Rootzén (1983).

It is, of course, clear that ifX is generated by a conservative flow, then
n−1/αM

(0)
n → 0 in probability asn → ∞.

Here is a sketch of an argument for (4.26). The points

(
C1/α

α bn εj 	
−1/α
j

f(U(n)
j )

maxi=0,...,n−1 |fi(U
(n)
j )|

)
, j = 1,2, . . . ,

in (4.12) form a symmetric Poisson random measure onR
n. Here f(x) =

(f0(x), . . . , fn−1(x)). The proof of Theorem 4.1 shows that the event{n−1/α ×
M

(0)
n > λ} is asymptotically equivalent to the event that at least one of the points

of the Poisson random measure is in the set((−∞, λn1/α]n)c.
It is easy to check that the mean measure of that set is equal to

Cαλ−α 1

n

(
1

2
bα
n,+ + 1

2
bα
n,−

)
,

where

bn,± =
(∫

E
max

j=0,...,n−1

(
fj (x)

)α
±m(dx)

)1/α

, n = 1,2, . . . .

An argument identical to that used to prove the second part of Theorem 3.1 shows
that

1

n

(
1

2
bα
n,+ + 1

2
bα
n,−

)
→ (

K
(0)
X

)α asn → ∞

and (4.26) follows.

REMARK 4.6. Theorem 4.1 extends easily to the case of complex-valued
rotationally invariant stationary stable processes; we refer the reader to Chapter 6
in Samorodnitsky and Taqqu (1994) for basic information on such processes. Such
processes also have an integral representation of the form (2.1) and (2.2), but this
time M is a complex-valued rotationally invariant SαS random measure, and the
functionf in (2.2) is complex-valued as well. Further results, like (2.3) and (2.4),
hold in the complex-valued case as well. See Rosiński (1995).
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In the complex-valued case, one has to replace the series representation (4.12)
by

Xk = bn C1/α
α

∞∑
j=1

ei Aj 	
−1/α
j

fk(U
(n)
j )

maxi=0,...,n−1 |fi(U
(n)
j )| ,(4.27)

k = 0,1, . . . , n − 1,

where(	j ) and (U
(n)
j ) are as before, and(Aj ) is an independent of them i.i.d.

sequence of random variables uniformly distributed in(0,2π). This representation
can be easily derived from the real-valued series representations in Chapter 3 of
Samorodnitsky and Taqqu (1994).

It can be easily verified that the representation (4.27) is a perfect substitute
for (4.12) in the proof of Theorem 4.1 and, hence, all the claims of that theorem
hold in the rotationally invariant complex-valued case as well.

REMARK 4.7. An open, and very interesting, question is what are some
possible counterparts of Theorem 4.1 in the case of continuous-timeα-stable
processes.

Integral representations of the type (2.1) with the functions(fn) given in the
form (2.2) exist not only for SαS processes, but also for all strictlyα-stable
processes withα �= 1 (in this case the random measureM may not be symmetric,
and will, in general, have a nonconstant skewness intensity). See Rosiński (1994).
The following result is a straightforward consequence of Theorem 4.1.

THEOREM 4.8. Let X = (X0,X1, . . . ) be a stationary strictly α-stable
process, 0< α < 2, α �= 1, with integral representation (2.1),and functions (fn)

given by (2.2).

(i) Suppose that X is not generated by a conservative flow. Then (4.1)holds.
(ii) Suppose that X is generated by a conservative flow. Then (4.3)holds.

PROOF. In the case 0< α < 1, a strictly α-stable process has a series
representation of the form (4.12) [but with(εj ) dependent on(U(n)

j ) and not
necessarily symmetric]. The entire argument of Theorem 4.1 used to prove
(4.1) and (4.3) goes through in this case. Hence, we only need to consider the
case 1< α < 2. In that case there is a positive constantτ > 0 such that

min
(
P (X1 > 0),P (X1 < 0)

) ≥ τ.(4.28)

See Theorem 4 in Zolotarev (1957).
Let Y be an independent copy ofX. ThenZ = X−Y is a stationary SαS process

that has an integral representation (2.1) with the same functions(fn) asX does,
but where the random measureM is now replaced by a SαS random measureM ′
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whose control measure is given bym′ = 2m; see Samorodnitsky and Taqqu (1994).
If, (bZ

n ), is the sequence (3.1) defined forZ using this integral representation, we
have

bZ
n = 21/αbn, n = 1,2, . . . .(4.29)

Suppose thatX is generated by a conservative flow; then so isZ. We have
by (4.28), for anyλ > 0,

P

(
max

k=0,...,n−1
|Zn| > λ

)
≥ P

(∣∣ZKn

∣∣ > λ
)

≥ P
(
XKn > λ, YKn > 0

) + P
(
XKn < −λ, YKn < 0

)
≥ τP

(∣∣XKn

∣∣ > λ
) = τP

(
max

k=0,...,n−1
|Xn| > λ

)
,

by the independence ofX andY, whereKn is the smallestk = 0,1, . . . such that
|Xk| = maxj=0,...,n−1 |Xj |. Therefore, (4.3) forX follows from (4.3) forZ proven
in Theorem 4.1.

If X is not generated by a conservative flow, then neither isZ. We have by
Theorem 4.1 and (4.29),

1

n1/α
max

k=0,...,n−1
|Zn| ⇒ 21/αC1/α

α KX Zα(4.30)

weakly asn → ∞.
Let

KX(n) = min{k = 0,1, . . . , n − 1 :|Xk| = Mn}
and similarly withKY(n). For everyλ > 0 andε > 0, we have, by the stationarity
and independence,

P

(
max

k=0,...,n−1
|Zn| ≤ λn1/α

)

= P

(
max

k=0,...,n−1
|Xn − Yn| ≤ λn1/α

)

≤ P

(
max

k=0,...,n−1
|Xn| ≤ λ (1+ ε)n1/α

)
P

(
max

k=0,...,n−1
|Yn| ≤ λ(1+ ε)n1/α

)

+ P
(∣∣YKX(n)

∣∣ > ε n1/α, or
∣∣XKY (n)

∣∣ > ε n1/α)
≤

(
P

(
max

k=0,...,n−1
|Xn| ≤ λ (1+ ε)n1/α

))2

+ 2P (|X1| > ε n1/α).

Therefore, using (4.30), we have, for anyλ > 0,

lim inf
n→∞ P

(
max

k=0,...,n−1
|Xn| ≤ λn1/α

)
≥ exp{−Cα λ−α(1+ ε)α}
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for anyε > 0. Lettingε → 0, we obtain

lim inf
n→∞ P

(
max

k=0,...,n−1
|Xn| ≤ λn1/α

)
≥ exp{−Cα λ−α}(4.31)

for anyλ > 0.
In the other direction, for everyλ > 0 and 0< ε < 1

P

(
max

k=0,...,n−1
|Zn| ≤ λn1/α

)

≥
(
P

(
max

k=0,...,n−1
|Xn| ≤ λ (1− ε)n1/α

))2

− P (for somek = 0,1, . . . , n − 1, |Xk| > εn1/α and|Yk| > εn1/α).

By stationarity and independence,

P (for somek = 0,1, . . . , n − 1,|Xk| > εn1/α and|Yk| > εn1/α)

≤ n
(
P (|X1| > εn1/α)

)2 → 0

asn → ∞. Once again, using (4.30), we have, for anyλ > 0,

lim sup
n→∞

P

(
max

k=0,...,n−1
|Xn| ≤ λn1/α

)
≤ exp{−Cα λ−α(1− ε)α}

for any 0< ε < 1. Lettingε → 0, we obtain an upper bound matching (4.31) and,
hence, complete the proof.�

REMARK 4.9. We see immediately from the proof of Theorem 4.8 that the
statement (4.9) extends to the skewed case as well if (4.10) holds.

5. Examples. The results of the previous section describe completely the
limiting behavior of the partial maxima of stationary SαS processes not generated
by a conservative flow. The picture for processes generated by conservative flows
is less complete, and in this section we consider several examples of such processes
to illustrate what may happen.

Our first example shows that, in general, the partial maximumMn does not have
an extreme value limit.

EXAMPLE 5.1. Let Z0,Z1, . . . be i.i.d. standard normal random variables,
independent of a positive(α/2)-stable random variableA with Laplace transform
Ee−θA = e−θα/2

, θ ≥ 0. ThenXn = A1/2Zn,n = 0,1,2, . . . , is a stationary SαS
process, the simplest type ofsub-Gaussian SαS processes; see Section 3.7 in
Samorodnitsky and Taqqu (1994). This process has an integral representation of
the form

Xn = (dα)−1
∫

RZ

gn M(dg), n = 0,1,2, . . . ,(5.1)
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wheredα = √
2(E|Z0|α)1/α, andM is an SαS random measure onRZ whose

control measurem is a probability measure under which the projectionsgk ,
k ∈ Z, are i.i.d. standard normal random variables. Withφ being the usual left
shift operator onR

Z, this is a representation with the functions given in the
form (2.2), with an ≡ 1 and a measure-preserving flow. The flow is, obviously,
conservative, as is any measure-preserving flow on a finite measure space. As
usual, the representation (5.1) is in law.

An elementary direct computation shows that

bα
n = (dα)−αE max

k=0,1,...,n−1
|Zk|α ∼ (dα)−α(2 logn)α/2

and
1

(2 logn)1/2 max
k=0,1,...,n−1

|Zk| → 1 with probability 1

as n → ∞. Therefore, the assumption (4.6) in Theorem 4.1 fails, and we see
directly that

1

bn

Mn ⇒ (dα)−1A1/2,

a nonextreme value limit, even though the partial maximumMn does grow at the
ratebn.

Our next example shows that, if 1≤ α < 2 and without the assumption (4.6),
the sequence of the partial maxima of the process may grow faster than the
sequence(bn); that is, (4.5) may not hold withfn ≡ 1.

EXAMPLE 5.2. Let X be given by (5.1) withdα = 1, where this time the
control measurem of the SαS random measureM is a probability measure under
which the projectionsgk , k = . . . ,−1,0,1,2, . . . are i.i.d. Rademacher random
variables. We have, once again, a conservative measure-preserving flow, and
bn ≡ 1. Let 1≤ α < 2. We claim that (4.5) withfn ≡ 1 does not hold. Indeed, if it
did, then the SαS processX would be a.s. bounded, and then, for any 0< p < α,
we would have

EMp∞ =: E sup
k=0,1,...

|Xk|p < ∞

[see, e.g., Araujo and Giné (1980)], which would contradict, in the case 1< α < 2,
(2.22) in Marcus (1984) and in the caseα = 1, it would contradict (2.23) in that
paper.

The next example exhibits a variety of rates at which the sequence(bn) and the
partial maxima of the processes can grow. We look at a class of stationary SαS
processes generated by null recurrent Markov chains, introduced in Rosiński and
Samorodnitsky (1996) and studied in more details in Resnick, Samorodnitsky and
Xue (2000) and Mikosch and Samorodnitsky (2000).
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EXAMPLE 5.3. We start with an irreducible null-recurrent Markov chain on
Z with law Pi(·), i ∈ Z and transition probabilities(pjk). Let π = (πi)i∈Z be
theσ -finite invariant measure corresponding to the family(Pi) satisfyingπ0 = 1.
Let P ∗

i be the bilateral extension ofPi to E = Z
Z; that is, underP ∗

i , x0 = i,
(x0, x1, . . .) is a Markov chain with transition probabilities(pjk) and(x0, x−1, . . .)

is a Markov chain with transition probabilities(πk pkj /πj ). Define aσ -finite
measurem onE by

m(·) =
∞∑

i=−∞
πiP

∗
i (·),

and observe thatm is invariant under the left shift operatorφ, and the latter
generates a conservative flow [see Harris and Robbins (1953)].

Let X be a stationary SαS process defined by the integral representation (2.1),
with M being an SαS random measure with control measurem,

fn(x) = f ◦ φn(x), x ∈ E, n = 0,1,2, . . . ,

with

f (x) = 10(x0), x = (. . . , x−1, x0, x1, x2, . . .) ∈ E.

Because of the null recurrence of the Markov chain, this is a mixing stationary
process (unlike, say, the processes in Examples 5.1 and 5.2); see Rosiński and
Samorodnitsky (1996).

Let d be the period of the Markov chain [the largest common factor ofn ≥ 1
such thatP0(xn = 0) > 0]. Assume that

P0(xnd = 0) = n−γ L(n) asn → ∞(5.2)

for someγ ∈ (0,1) and a slowly varying functionL. Let

τ = τ (x) = inf{n ≥ 1 :xn = 0}
be the first return time to 0. Notice that

bα
n =

∞∑
i=−∞

πiPi(xk = 0 for somek = 0, . . . , n − 1)

= P0(τ ≥ n) +
∞∑

i=−∞
πi Pi(τ ≤ n − 1)

= P0(τ ≥ n) + m(τ ≤ n − 1)

∼ d1−γ

	(1+ γ )	(1− γ )
nγ (Ln)

−1
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asn → ∞ by Remark 3.1 and Lemma 3.3 in Resnick, Samorodnitsky and Xue
(2000). In particular, it follows from Theorem 4.1 and Remark 4.2 that

L(n)1/α

nγ/α
Mn ⇒

(
Cα d1−γ

	(1+ γ )	(1− γ )

)1/α

Zα(5.3)

asn → ∞ if γ > 1/2.
What happens ifγ ≤ 1/2? Let Y (i)

0 , Y
(i)
1 , . . . , i = 1,2, be two independent

Markov chains with the same transition probabilities(pjk) as before. Then

Y ∗
n = (

Y (1)
n , Y (2)

n

)
, n = 0,1,2 . . . ,

is a Markov chain with state spaceZ
2 and transition probabilities

p∗
(j1,j2),(k1,k2)

= pj1,k1pj2,k2, j1, j2, k1, k2 ∈ Z.

Let

τ ∗ = inf{n ≥ 1 :Y ∗
n = (0,0)}

be the first time the new Markov chain returns to(0,0).
Let rn be the probability in the left-hand side of (4.8). For any 0< ε < 1, we

have

rn = b−2α
n

[
P(0,0)(τ

∗ ≥ n) +
∞∑

i=−∞

∞∑
j=−∞

πj πj P(i,j )(τ
∗ ≤ n − 1)

]
.

Notice thatπ∗
ij = πiπj for (i, j) ∈ Z

2 is an invariant measure for(Y ∗
n ), and letm∗

be the shift-invariant measure defined on(Z2)Z usingp∗ andπ∗ in the same way
as measurem was defined above usingp andπ . Then

rn = b−2α
n

[
P(0,0)(τ

∗ ≥ n) + m∗(τ ∗ ≤ n − 1)
]
.

It follows from (5.2) that

P ∗
(0,0)

(
Y ∗

nd = (0,0)
) = (

P0(xnd = 0)
)2 = n−2γ (L(n))2 asn → ∞.

Therefore, forγ ≤ 1/2 we may, once again, appeal to Remark 3.1 and Lemma 3.3
in Resnick, Samorodnitsky and Xue (2000) to conclude that

m∗(τ ∗ ≤ n − 1) ∼ d1−2γ

	(1+ 2γ )	(1− 2γ )
n2γ (L(n))−2

asn → ∞ and, hence,

rn → d−1 	(1+ γ )2	(1− γ )2

	(1+ 2γ )	(1− 2γ )

asn → ∞. In particular, the condition (4.8) holds in the caseγ = 1/2, and so (5.3)
holds in this case as well.

On the other hand, (4.8) fails in the case 0< γ < 1/2, and we conjecture
that (5.3) does not hold either (cf. with Remark 4.4).
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In the previous example we saw classes of stationary SαS processes generated
by conservative flows satisfying (4.6) and (4.8) and, hence, also (4.9). For these
processesbn is regularly varying at infinity with exponentγ ≥ 1/(2α). The
following example exhibits stationary SαS processes generated by conservative
flows and also satisfying both (4.6) and (4.8), for whichbn can be regularly varying
at infinity with any exponent 0< γ < 1/α.

EXAMPLE 5.4. Once again, letX be given by (5.1) withdα = 1, but now the
control measurem of the SαS random measureM is a probability measure under
which the projectionsgk , k = . . . ,−1,0,1,2, . . . are i.i.d. positive Pareto random
variables with

m(g0 > x) = x−θ for x ≥ 1

for someθ > α. Note that, for every 0< p < θ ,∫
E

max
k=0,1,...,n−1

g
p
k m(dg) ∼ cp,θ np/θ asn → ∞(5.4)

for some finite positive constantcp,θ . Using (5.4) withp = α shows that

bn ∼ c
1/α
α,θ n1/θ asn → ∞,

and so (4.6) holds. Using, furthermore, (5.4) withα < p < θ shows uniform
integrability of the sequence(b−α

n maxj=0,...,n−1 |gj (g)|α), n = 1,2, . . . , with
respect tom. Since (4.11) is obvious in this case, we conclude that (4.8) holds
as well.

That is, the convergence to extreme value distribution (4.9) holds here in all
cases, and the exponent of regular variation 1/θ of bn spans here the entire range
(0,1/α).

All of the examples thus far emphasize the message of Theorem 4.1: while
the partial maxima grow at the rate ofn1/α for stationary SαS processes with a
nondegenerate part generated by a dissipative flow, the rate of growth is strictly
slower if the process is generated by a conservative flow. In all these examples the
actual rate of growth ofbn and, hence, of the partial maximum was determined
by the properties of the conservative flow. Our final example exhibits a new
class of stationary SαS processes generated by a conservative flow, in which the
actual rate of growth of the partial maxima is determined by the kernelf in the
representation (2.2).

EXAMPLE 5.5. Let E = (0,1], let m be the Lebesgue measure onE,
and defineφ :E → E by φ(x) = {2x}, where {a} is the fractional part of a
real numbera. Obviously, (φn,n = 0,1,2, . . .) is a conservative measure-m-
preserving flow (but it is not invertible). This flow is referred to as thedyadic
transformation; see Example 1.6 in Billingsley (1965).
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Let h1, h2, . . . be a nondecreasing sequence of nonnegative numbers such that
∞∑

k=1

hα
k 2−k < ∞,(5.5)

and suppose that the limit

θ =: lim
k→∞

log2hk

k
∈ [0,1/α](5.6)

exists.
Forx = (x1, x2, . . .) ∈ (0,1] given in its binary expansion, define

K(x) = inf{j ≥ 1 :xj = 1},(5.7)

and letX be a stationary SαS process defined by (2.1) withfn(x) = f ◦ φn(x),
x ∈ E, where we choose

f (x) = hK(x), x ∈ E.(5.8)

Of course we do not need to worry about the fact that neitherK nor f is defined
for binary rational numbers. Notice, furthermore, that by switching to the spaceE1
of doubly infinite sequencesx = (. . . , x−1, x0, x1, x2, . . .) with xi ∈ {0,1} for all i
with the product probability measurem1 under which the projectionsxk form a
sequence of i.i.d. Bernoulli random variables with mean 1/2, and the left shift
operator as the flow, we regain invertibility and, hence, we are in the framework
of (2.2).

Denoting

Rn(x) = max
j=1,...,n

sup{m ≥ 1 :xj = xj+1 = · · · = xj+m−1 = 0}(5.9)

to be the longest run of zeroes starting in{1, . . . , n}, n = 1,2, . . . , we see that

bα
n =

∫ 1

0
hα

Rn(x) dx, n = 1,2, . . . .(5.10)

We claim that

lim
k→∞

log2bk

log2 k
= θ.(5.11)

Suppose thatθ < 1/α. Then, for everyε ∈ (0,1/α − θ), we have

bα
n ≤ cε

∫ 1

0
2α(θ+ε)Rn(x) dx, n = 1,2, . . . ,

for some finite positive constantcε . An elementary Bernoulli trials computation
shows that, for any 0< γ < 1,

lim
n→∞

log2
∫ 1
0 2γRn(x) dx

log2 n
= γ.(5.12)
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Indeed,Rn/ log2 n → 1 a.s. [Example 4.14 in Billingsley (1986)], providing the
lim inf part of (5.12). Furthermore, for everyδ > 0 andy > 0,

Leb
{
x : 2γRn(x) > nγ (1+δ) + y

} ≤ 2n−δy−1/γ ,

and so∫ 1

0
2γ Rn(x) dx ≤ (

nγ (1+δ) + 1
) +

∫ ∞
1

Leb
{
x : 2γRn(x) > nγ (1+δ) + y

}
dy

≤ (
nγ (1+δ) + 1

) + 2n−δ
∫ ∞

1
y−1/γ dy,

establishing the lim sup part of (5.12).
We conclude that

lim sup
k→∞

log2 bk

log2 k
≤ θ + ε,

and lettingε → 0 we see that, if 0≤ θ < 1/α, then

lim sup
k→∞

log2bk

log2 k
≤ θ.(5.13)

Of course, the fact that (5.13) also holds forθ = 1/α is trivial.
Similarly, if θ > 0, then for everyε ∈ (0, θ), we have

bα
n ≥ cε

∫ 1

0
2α(θ−ε)Rn(x) dx, n = 1,2, . . . ,

for some finite positive constantcε , and using, once again, (5.12) and letting
ε → 0, we obtain

lim inf
k→∞

log2 bk

log2 k
≥ θ(5.14)

for θ > 0. Since (5.14) is trivial forθ = 0, we obtain (5.11) from (5.13) and (5.14).
One can easily see from Theorem 4.1 and a slight modification of the proof

of (4.4) that (5.11) implies that

log2 Mn

log2n
→ θ in probability

asn → ∞, which is a way of saying thatMn grows as fast asbn [but it is not as
precise as, say, (4.9)].

6. Conclusions. We have seen that the sequence of partial maxima of a
stationary SαS process generated by a dissipative flow grows always at the rate
of n1/α irrespective of the further properties of the flow or of the kernel in
the integral representation of the process. On the other hand, the sequence of
partial maxima of stationary SαS processes generated by a conservative flow
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grows always at the rate slower thann1/α. However, the actual rate of growth
here depends on the further properties of the flow and of the kernel. This is an
example of a phase transition that would be consistent with a passage between
short memory and long memory. It is important to note this phenomenon exists for
all 0 < α < 2.

Examples of phase transitions of this kind for stationary SαS processes have
been observed before; see, for example, the discussion of ruin probabilities in
Mikosch and Samorodnitsky (2000) or change in the rate of growth of partial
sums in the case of increment processes of self-similarα-stable processes with
stationary increments; see Samorodnitsky and Taqqu (1994). In the previous cases
the functionals for which the phase transitions were observed were based on partial
sums of a process, which resulted in the phase transition being observed only in the
range 1< α < 2. In the present paper the phase transition occurs for all 0< α < 2.
It is interesting to mention that, unlike in the case of partial sums, maxima of
long range dependent processes grow slower than those of short range dependent
processes. This results in the fact that the maxima of a sum of two independent
processes, one of which is generated by a dissipative flow, and the other by a
conservative flow, will grow at the rate dictated by the dissipative part. If one
decides to associate long range dependence of SαS processes with conservative
flows, then, for the partial maxima functional, the long memory is being hidden in
such a sum. Recall, however, that this does not mean that the sum does not have
long memory, for this cannot be dependent on behavior of a single functional.

It is also important to mention that, while stationary SαS processes generated by
conservative flows, considered in Mikosch and Samorodnitsky (2000), were also
in the part of the parameter space suspected to represent long range dependence,
some processes generated by dissipative flows were also long range dependent in
that case.

This suggests that there may be multiple phase transitions indicating long range
dependence, and the complete structure of those is yet to be discovered.
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ROSIŃSKI, J. (1994). Uniqueness of spectral representations of skewed stable processes and
stationarity. In Stochastic Analysis on Infinite-Dimensional Spaces (H. Kunita and
H.-H. Kuo, eds.) 264–273. Longman, Harlow.
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