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ZERO TEMPERATURE LIMIT FOR INTERACTING BROWNIAN
PARTICLES. I. MOTION OF A SINGLE BODY1

BY TADAHISA FUNAKI

University of Tokyo

We consider a system of interacting Brownian particles inR
d with a

pairwise potential, which is radially symmetric, of finite range and attains
a unique minimum when the distance of two particles becomesa > 0. The
asymptotic behavior of the system is studied under the zero temperature
limit from both microscopic and macroscopic aspects. If the system is rigidly
crystallized, namely if the particles are rigidly arranged in an equal distancea,
the crystallization is kept under the evolution in macroscopic time scale.
Then, assuming that the crystal has a definite limit shape under a macroscopic
spatial scaling, the translational and rotational motions of such shape are
characterized.

1. Introduction. This paper is concerned with a certain scaling limit for a
finite, but very large, system of interacting Brownian particles inR

d . The positions
of N particles at timet , which are denoted byx(t) = (xi(t))

N
i=1 ∈ (Rd)N , evolve

according to the stochastic differential equation (SDE)

dxi(t) = −β

2
∇xi

H(x(t)) dt + dwi(t), 1 ≤ i ≤ N,(1.1)

where(wi(t))
N
i=1 is a family of independentd-dimensional standard Brownian

motions. The HamiltonianH(x) of the configurationx = (xi)
N
i=1 ∈ (Rd)N is

defined as a sum of pairwise interactions between particles:

H(x) = ∑
1≤i<j≤N

U(xi − xj ).(1.2)

The potentialU = U(x), x ∈ R
d , is radially symmetric, smooth, of finite range

and has a unique nondegenerate minimum at|x| = a > 0; see Assumption I stated
in Section 2 for details. The gradient∇xi

H(x) ≡ ∑
j �=i ∇U(xi − xj ) ∈ R

d is taken
in the variablexi . The parameterβ > 0 represents the inverse temperature of the
system.

The basic scaling parameterε > 0 is the ratio of the microscopic spatial unit
length to the macroscopic one. The configurationx = (xi)

N
i=1 is a microscopic

object and its macroscopic correspondence is given by(εxi)
N
i=1 under the spatial
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scalingx �→ εx. The goal of this paper is to investigate the asymptotic behavior
asε ↓ 0 of the system defined by (1.1) withN , β andt suitably scaled depending
on ε, especially when the temperatureβ−1 of the system converges sufficiently
fast to 0. The time change from the microscopic to the macroscopic levels will be
introduced forx(t) by

x(ε)(t) = x(ε−κt), t ≥ 0, κ = d + 2.(1.3)

We say arigid crystal is formed at the microscopic level, if the particles are
arranged in an equal distancea and the total energyH(x) increases under any
deformation for such arrangement except isometric transformations; see Section 2.
As β−1 ↓ 0, that is, under the zero temperature limit, the system is expected to be
frozen and rigidly crystallized.

The results of this paper are twofold and will be formulated at both the
microscopic and macroscopic levels in space. The result at the microscopic level
can be roughly stated as follows. If the initial configurationx(0) of the system is
nearly a rigid crystal, so is forx(ε)(t) asymptotically with probability one asε ↓ 0
if the temperature of the system decreases to 0 sufficiently fast; see Theorem 3.4.

The motion of the crystal at the macroscopic level is observed under the spatial
scalingx �→ εx. Assuming that the particles’ numberN ≡ N(ε) behaves as̄ρε−d

with a fixed ρ̄ > 0 and the crystal has a limit densityρ(y), y ∈ R
d as ε ↓ 0

under the spatial scaling at timet = 0, we shall prove thatx(ε)(t) also has a limit
densityρt (y) for t > 0, which actually coincides with the initial density being
isometrically transformed so thatρt(y) = ρ(ϕ−1

θ(t),η(t)(y)) for someθ(t) andη(t).

Here,ϕθ,η denotes an isometry onRd defined byϕθ,η(y) = θy + η, y ∈ R
d for

θ = (θαβ)dα,β=1 ∈ SO(d), η = (ηα)dα=1 ∈ R
d ; SO(d) stands for thed-dimensional

special orthogonal group. In other words, the macroscopic limit ofx(ε)(t) is a rigid
body with densityρ(y), which is congruent to the initial body. The translational
and rotational motions(η(t), θ(t)) of the limit body are random and mutually
independent. They are characterized as follows:

η(t) = (d-dimensional Brownian motion)/
√

ρ̄,

while θ(t) is a Brownian motion onSO(d) which is a solution of an SDE of
Stratonovich’s type

dθ(t) = θ(t) ◦ dm(t).

Here m(t) = (mαβ(t))dα,β=1 satisfiesmαβ(t) = −mβα(t) and the upper half

components{mαβ(t);α < β} of the matrixm(t) are mutually independent such
that

mαβ(t) = (one-dimensional Brownian motion)/
√

q̄α + q̄β

with q̄α = ∫
Rd (yα)2ρ(y) dy, when the coordinatey = (yα)dα=1 of R

d is chosen
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in such a manner that
∫
Rd yρ(y) dy = 0 and(

∫
Rd yαyβρ(y) dy)dα,β=1 is a diagonal

matrix; see Theorem 4.3 and Corollary 4.4. The constantsρ̄ andq̄α + q̄β represent
the total mass and moments of inertia [13] of the rigid body with densityρ(y),
respectively; note that̄ρ = ∫

Rd ρ(y) dy holds.
In Section 2, the notion of rigid and infinitesimally rigid crystals is introduced

together with several examples. Main results are formulated and proved in Sections
3 and 4. The reason that the time scaling (1.3) is the right one is easily observed
for the (macroscopic) translational motion [see the identity (4.15) in the proof of
Theorem 4.3], although it may not be obvious for rotation. At the microscopic
level, the crystal translates much faster than it rotates. Section 5 is devoted to
the proof of technical estimates which are needed for the proof of Theorem 4.3.
Section 6 contains concluding remarks.

One of the motivations of this paper comes from the theory of interfaces which
appears under the phase transitions. The macroscopic body we have introduced
can be regarded as a kind of Wulff shape (see, e.g., [3]) at temperature zero. The
static theory for the Wulff shape is recently well developed. This paper attempts
to analyze the motion of the Wulff shape by proposing a simple model. Indeed,
at temperature zero, at least two pure phases arise in our model. One is the high
density region where particles are arranged in an equal distancea and the other is
the empty region where there are no particles. In this respect, the body with density
ρ(y) is a mixture of high density and empty regions observed macroscopically. It
would be more natural and desirable to study the model with temperature being
sufficiently small but fixed under the scaling. However, this problem turns out to
be quite hard. Actually, to solve such a problem, we need to have information on
the phase transition for the Gibbs measures corresponding to our dynamics with
infinitely many particles, but it is not well known. Lang [14] considered a system
of ordinary differential equation (1.1) dropping Brownian motions withβ = 1 and
N = ∞. Such a system is obtained from the SDE in the zero temperature limit
β → ∞ under a time changet �→ β−1t . In one dimension and for strictly convex
potentialU having a hard core, ergodic properties of the dynamics were studied
and equilibrium states (called rigid states) were characterized. Related problems
were discussed for the stochastic partial differential equations in [4] and [5].

This paper deals with the motion of a single body (or single crystal in
microscopic aspect). The coagulations of several bodies are discussed in [6] in
one dimension. The study of coagulations in higher dimensions is out of reach at
present.

2. Rigid configurations. We introduce the notion of rigidity and infinitesimal
rigidity for configurations of particles inRd and expose several examples of
infinitesimally rigid configurations. The numberN of particles is fixed throughout
this section.
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2.1. Hamiltonian and rigidity of configurations. The HamiltonianH(x) of
x ∈ (Rd)N is introduced by the formula (1.2). The potentialU is assumed to be
radially symmetric; that is,U(x) = U(|x|), x ∈ R

d for U = U(r), r ≥ 0, and the
functionU(r) satisfies the following conditions:

ASSUMPTIONI. (i) (Smoothness, finite range).U ∈ C3
0(R), whereU(−r) :=

U(r).
(ii) There exists a uniquea > 0 such thatU(a) = minr≥0U(r) and č :=

U ′′(a) > 0.

Condition (ii) means that the energy for two particles takes minimal value
when the distance between these particles becomesa. The range ofU is defined
by b := inf{r > 0; U(s) = 0 for every s > r}. Let z = (zi)

N
i=1 ∈ (Rd)N be a

configuration satisfying

|zi − zj | = a or |zi − zj | > b(2.1)

for every 1≤ i �= j ≤ N . An additional condition onb is necessary for suchz to
exist; for example, see condition (2.6) for configurations on a triangular lattice. The
configurationz is a critical point of the HamiltonianH . This physically means that
z is a microscopically crystallized or frozen configuration of atoms at temperature
zero. Its rotated and shifted configurationϕθ,η(z) := (ϕθ,η(zi))

N
i=1 ≡ (θzi + η)Ni=1

is obviously a critical point ofH again for everyθ ∈ SO(d) andη ∈ R
d . We shall

write

M = {ϕθ,η(z); θ ∈ SO(d), η ∈ R
d} ⊂ (Rd)N,(2.2)

and its tubular neighborhood

M2(δ) = {x ∈ (Rd)N ;dist(x,M) ≤ δ}, δ > 0,(2.3)

where the distance is defined under the Euclidean norm in(Rd)N : dist(x,M) =
infy∈M ‖x − y‖2 and ‖x − y‖2 = (

∑N
i=1 |xi − yi |2)1/2. The configurationz

satisfying (2.1) will be called acrystal.
We say the crystalz is rigid if H(x) > H(z) holds for everyx ∈ M2(δ) \M and

someδ > 0. The rigidity means thatz has no internal degree of freedom except for
the isometry. For example, in two dimension, the three vertices of an equilateral
triangle form a rigid crystal, but the four vertices of a square do not. The rigid
crystal is a local minimum ofH by definition, but not necessarily a global one.

2.2. Orthogonal decomposition of x ∈ M2(δ). In order to study the rigidity of
a crystalz, we introduce a decomposition ofx ∈ M2(δ). Let Hz = {Xz + h;X ∈
so(d), h ∈ R

d} ⊂ (Rd)N be the tangent space toM at z, where Xz + h :=
(Xzi + h)Ni=1 andso(d) = {X ∈ M(d);X + tX = 0} is the Lie algebra ofSO(d).
The setM(d) stands for the family of alld × d real matrices. The orthogonal
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subspace toHz in (Rd)N under the inner product(h,h′) := ∑N
i=1(hi, h

′
i ) for

h = (hi)
N
i=1 andh′ = (h′

i)
N
i=1 is denoted byH⊥

z . The corresponding norm ofh
is ‖h‖2 = (

∑N
i=1 |hi|2)1/2 defined previously.

For everyx ∈ M2(δ), we denote byz(x) := y ∈ M the minimizer of‖x − y‖2 in
y ∈ M. If δ > 0 is sufficiently small,z(x) is uniquely determined andx ∈ M2(δ)

admits a decomposition:

x = z(x) + h(x), z(x) ∈ M, h(x) ∈ H⊥
z(x).(2.4)

In fact, by the definition ofz(x), we have

d

du
‖x − ϕeuX,uh(z(x))‖2

2

∣∣∣∣
u=0

= 0

for everyX ∈ so(d) andh ∈ R
d , and this impliesh(x) := x − z(x) ∈ H⊥

z(x).

2.3. Hessian of H on M. Let

HessH(x) =
(

∂2H

∂xα
i ∂x

β
j

(x)

)
1≤α,β≤d,1≤i,j≤N

∈ M(dN)

be the Hessian ofH and define a quadratic form inh = (hi)
N
i=1 ∈ (Rd)N by

(
h,HessH(x)h

) =
N∑

i,j=1

d∑
α,β=1

∂2H

∂xα
i ∂x

β
j

(x)hα
i h

β
j .

Then a direct calculation yields the following atx = z.

LEMMA 2.1.

E1(h) ≡ E1,z(h) := (
h,HessH(z)h

) = č

a2

∑
〈i,j 〉

(hi − hj , zi − zj )
2 ≥ 0,

where the sum 〈i, j〉 is taken over all pairs {i, j} satisfying |zi − zj | = a. We call
such pairs neighboring.

This lemma immediately shows that the Hessian ofH degenerates forh ∈ Hz.
The degeneracy for(hi = h)Ni=1 comes from the invariance ofH under the
translation, while that for(hi = Xzi)

N
i=1 comes from its invariance under the

rotation. The rigidity ofz follows from the nondegeneracy of the Hessian ofH

for h ∈ H⊥
z . This leads us to introduce the following notion.

DEFINITION 2.1. We call the crystalz infinitesimally rigid if the quadratic
form HessH(z) restricted on the subspaceH⊥

z is (strictly) positive definite:
E1(h) = 0⇐⇒ h ∈ Hz.
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Since H(x) = H(z) + E1(h(x))/2 + o(‖h(x)‖2
2) as ‖h(x)‖2 → 0 under the

decomposition (2.4) [see (3.1)], we easily see that the infinitesimal rigidity implies
the rigidity.

REMARK 2.1. The study of rigidity and infinitesimal rigidity for bar and
joint frameworks has a long history; see [1], [2] and [17]. The length of bars is
alwaysa in our case, but such an assumption is unnecessary in a general theory.
According to ([1], page 281),z is called rigid inR

d if, for every x sufficiently
close toz satisfying|xi − xj | = a for every neighboring pair〈i, j〉, there exists
an isometryϕ of R

d such thatxi = ϕ(zi) holds for everyi. In [2] (page 173)
z is called infinitesimally rigid inR

d if Tz = kerdfG(z) holds, whereTz = Hz
and kerdfG(z) = {h ∈ (Rd)N ;E1(h) = 0}, respectively, in our terminology. We
therefore see that the definitions of rigidity and infinitesimal rigidity employed
by these papers coincide with ours. Three points{p1,p2,p3} in R

2 sitting on a
line are rigid but not infinitesimally rigid inR2 when the distances between any
two points are specified; see [12], noting that the rigidity in that paper means the
infinitesimal one. This example is not for a crystal, but exhibits the difference in
two notions.

The rigidity of z implies the connectedness of the setz under the neighboring
relation〈i, j〉 and therefore we have, under the infinitesimal rigidity, the spectral
gap for the quadratic formE1(h) in the following sense:

λ(1)(z) = inf
{

E1(h)

‖∇h‖2
2

; h ∈ H⊥
z ,‖∇h‖2 �= 0

}
> 0,

where

‖∇h‖2
2 = ∑

〈i,j 〉
|hi − hj |2.

This can be rewritten as

λ(1)(z)‖∇h‖2
2 ≤ E1(h) ≤ č‖∇h‖2

2, h ∈ H⊥
z .(2.5)

Note that the second inequality is obvious.

REMARK 2.2. In one dimension, a chainz = (zi = ai)Ni=1 arranged in an
equal distancea is a rigid crystal andλ(1)(z) = č sinceE1(h) = č‖∇h‖2

2.

2.4. Examples of infinitesimally rigid crystals. We prepare two lemmas before
constructing several examples of infinitesimally rigid crystals. We say a setC =
{xi}ni=0 ⊂ R

d, n ≤ d , is ann-dimensional cell inRd if the dimension of the affine
hull of C is n and|xi − xj | = a for every 0≤ i < j ≤ n.
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LEMMA 2.2. Let {ei}di=1 be a basis of R
d and set e0 = 0. If vectors {hi}di=0 ⊂

R
d satisfy (hi −hj , ei −ej ) = 0 for every 0 ≤ i < j ≤ d , then there exists a unique

X ∈ so(d) such that hi = Xei + h0,1 ≤ i ≤ d . In particular, a d-dimensional cell
is infinitesimally rigid.

PROOF. The uniqueness ofX is obvious, since{ei}di=1 forms a basis ofRd . To
show the existence ofX, we may assume that(e1, . . . , ed) is an upper triangular
matrix. In fact, by Schmidt’s orthogonalization, one can findP ∈ O(d) and
upper triangular matrix(ẽ1, . . . , ẽd) such that(e1, . . . , ed) = P (ẽ1, . . . , ẽd). If
the conclusion holds for(ẽ1, . . . , ẽd), there existsX̃ ∈ so(d) such thatP −1xi =
X̃ẽi,1 ≤ i ≤ d . Taking X = P X̃P −1 ∈ so(d), the conclusion is shown also for
{ei}di=1.

Now we assume(e1, . . . , ed) is an upper triangular matrix and use an induction
in d to constructX. We may further assumeh0 = 0 by replacinghi with hi − h0.
Sinceei has a form

ei =
(

e′
i

0

)

with e′
i ∈ R

d−1 for 1 ≤ i ≤ d − 1, writing

hi =
(

h′
i

h′′
i

)

with h′
i ∈ R

d−1 andh′′
i ∈ R, we have

0 = (hi − hj , ei − ej ) = (h′
i − h′

j , e
′
i − e′

j ), 1 ≤ i < j ≤ d − 1,

and thereforeh′
i = X′e′

i holds for someX′ ∈ so(d − 1) and every 1≤ i ≤ d − 1 by
the assumption of the induction. Now, writing

ed =
(

e′
d

e′′
d

)

with e′
d ∈ R

d−1 ande′′
d ∈ R \ {0}, define

X =
(

X′ y

−t y 0

)
∈ so(d) with y = 1

e′′
d

(h′
d − X′e′

d) ∈ R
d−1.

Then, we see thathd = Xed holds. We need to prove thathi = Xei holds also for
1 ≤ i ≤ d −1. To this end, it is enough to show that−(y, e′

i) = h′′
i . However, since

(hi − hd, ei − ed) = (hi, ei) = (hd, ed) = 0, we have(hi, ed) + (hd, ei) = 0. This
implies−(y, e′

i) = h′′
i , since(hd, ei) = (h′

d, e′
i) and

(hi, ed) = (h′
i , e

′
d) + h′′

i e
′′
d = (X′e′

i, e
′
d) + h′′

i e
′′
d

= −(e′
i ,X

′e′
d) + h′′

i e
′′
d = −(e′

i, h
′
d) + e′′

d(e
′
i , y) + h′′

i e
′′
d .
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Therefore, the conclusion is shown ind dimension if it is true ind − 1 dimension.
The procedure of the induction is complete once we can show the conclusion when
d = 2. However, this is already essentially done in the above argument.

The infinitesimal rigidity ofd-dimensional cellC = {xi}di=0 is immediate by
takingei = xi − x0 for 1 ≤ i ≤ d . �

LEMMA 2.3. Let two infinitesimally rigid crystals z(1) and z(2) be given and
assume that the dimension of the affine hull of z(1) ∩ z(2) is at least d − 1. Then,
the joined configuration z(1) ∪ z(2) is infinitesimally rigid.

PROOF. Let us denotez(1) ∩ z(2) = {z(0)
i }N0

i=1. Then, the conclusion follows

if one can show thatXz
(0)
i + h = X′z(0)

i + h′ for every 1≤ i ≤ N0 implies
X = X′ and h = h′, whereX,X′ ∈ so(d) and h,h′ ∈ R

d . However, from the
assumption, one can find at leastd − 1 linearly independent vectors{ek}d−1

k=1

from {z(0)
i − z

(0)
j }1≤i<j≤N0. The identitiesXek = X′ek hold for such vectors. Take

ed ∈ R
d in such a manner that{ek}dk=1 forms a basis ofRd . Then, since

(Xed, ek) = −(ed,Xek) = −(ed,X′ek) = (X′ed, ek)

for 1 ≤ k ≤ d − 1 and (Xed, ed) = 0 = (X′ed, ed), we seeXed = X′ed . We
accordingly haveXek = X′ek for every 1≤ k ≤ d . This provesX = X′ and
thereforeh = h′. �

EXAMPLE 2.1. The set obtained by patching togetherd-dimensional cells on
their faces is infinitesimally rigid from Lemmas 2.2 and 2.3. More precisely, a
finite setA ⊂ R

d satisfying the following two conditions is infinitesimally rigid:

1. A = ⋃
k Ck with finitely manyd-dimensional cellsCk .

2. For anyCk1 andCkn in A, there exists a sequenceCk2, . . . ,Ckn−1 in A such that
Cki

∩ Cki+1 are(d − 1)-dimensional cells for 1≤ i ≤ n − 1.

In two dimension, the set as in Figure 1 is infinitesimally rigid. In general,
infinitesimally rigid crystals may have defects.

EXAMPLE 2.2. In three dimension, the tetrahedron (= three-dimensional
cell), octahedron and icosahedron are infinitesimally rigid by Cauchy’s rigidity
theorem or by Alexandrov’s rigidity theorem [2]. Note that the faces of the three
types of regular polyhedrons listed above are all equilateral triangles. In particular,
the set obtained by patching together polyhedrons of these three types as in
Example 2.1 is infinitesimally rigid.

EXAMPLE 2.3 (Crystals on triangular lattice). Let{eα ∈ R
d}dα=1 be a basis

of R
d such that(eα, eβ) = (1 + δαβ)/2. In other words, it is a system of unit

vectors and arbitrarily chosen two of them are at an angle of 60◦ with each other.
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FIG. 1. Two-dimensional crystal.

Then, ad-dimensional triangular lattice is defined as an integer lattice generated
by {eα}dα=1 :� ≡ �d = {∑d

α=1 ξαeα ∈ R
d; ξ = (ξα)dα=1 ∈ Z

d}. Note that�1 = Z.
SetE = {e ∈ �; |e| = 1}, and then it is easy to see thate = ∑d

α=1 ξαeα ∈ E if
and only ifξ has the formξα = ±δα0α for someα0 or ξα = δα0α − δβ0α for some
α0 �= β0. The triangular lattice� is the set of centers of circles (whend = 2) or
balls (whend = 3) with radius 1/2 filled most densely in the space; this assertion
was known as the Kepler conjecture in three dimension and solved by Hales [8].
We need an additional assumption:

b < c(�d)a,(2.6)

for a rigid z to exist ona� satisfying (2.1), wherec(�d) := infx∈�d\E |x| = 2
(whend = 1),

√
3 (whend = 2) and

√
2 (whend ≥ 3).

In two dimension,� can be constructed by patching equilateral triangles, while
in three dimension,� is obtainable by patching tetrahedrons and octahedrons.
Therefore, at least in two and three dimensions,ε−1D ∩a� is infinitesimally rigid
for a bounded domainD in R

d (d = 2 or 3) having smooth boundary and for
small ε by deleting or adding some points near the boundary in a proper way if
necessary.

2.5. Tubular neighborhoods of M defined in two other norms. Let us consider
two norms‖h‖∞ and‖∇h‖∞ for h = (hi)

N
i=1 ∈ (Rd)N defined by

‖h‖∞ = max
i

|hi | and ‖∇h‖∞ = max〈i,j 〉 |hi − hj |,

respectively; recall that〈i, j〉 refers to neighboring pairs. Then, for every small



1210 T. FUNAKI

c > 0, tubular neighborhoodsM∞(c) andM∇∞(c) of M can be introduced as

M∞(c) = {x ∈ (Rd)N ; ‖h(x)‖∞ ≤ c},(2.7)

M∇∞(c) = {x ∈ (Rd)N ; ‖∇h(x)‖∞ ≤ c},(2.8)

respectively, whereh(x) ∈ (Rd)N is defined by (2.4) forx ∈ M2(δ) with
sufficiently smallδ > 0. For each crystalz, since two norms‖h‖∞ and‖h‖2 are
mutually equivalent, one can find̄c = c̄(z) > 0 such thath(x) is well defined for
all x ∈ M∞(c̄(z)).

For 1≤ i �= j ≤ N , letp(i, j) = {i = i0 ∼ i1 ∼ · · · ∼ in = j} be the shortest path
connectingi andj , whereik ∼ ik+1 means that the pair〈ik, ik+1〉 is neighboring.
We calln =: �p(i, j) the length ofp(i, j) and define the radius ofz by

R(z) = max{�p(i, j); 1 ≤ i �= j ≤ N}.

LEMMA 2.4. For every x ∈ M∞(c̄(z)), we have

‖h(x)‖∞ ≤ R(z)‖∇h(x)‖∞.(2.9)

In particular, the set M∇∞(c) is well defined for 0 < c ≤ c̄(z)/R(z).

PROOF. Since
∑N

j=1hj = 0 for h ≡ h(x) = (hi)
N
i=1,

|hi | =
∣∣∣∣∣hi − 1

N

N∑
j=1

hj

∣∣∣∣∣ ≤ 1

N

N∑
j=1

|hi − hj |

≤ 1

N

N∑
j=1

∑
〈ik ,ik+1〉∈p(i,j )

∣∣hik − hik+1

∣∣ ≤ R(z)‖∇h(x)‖∞

for every 1≤ i ≤ N . This shows (2.9) andM∇∞(c) ⊂ M∞(R(z)c). �

3. Microscopic shape theorem. This section establishes the asymptotic be-
havior asε ↓ 0 of x(ε)(t), the solution of the SDE (1.1) which is scaled macroscop-
ically in time, when the initial configurationx(ε)(0) is nearly infinitesimally rigid
and the temperatureβ−1 = β(ε)−1 of the system decreases to 0 sufficiently fast
compared withε.

3.1. Behavior of H near M. Let z be a crystal, that is, a configuration
satisfying the condition (2.1). A configurationx = (xi)

N
i=1 is then decomposed

asx = z + h aroundz just by settingh ≡ (hi)
N
i=1 := (xi − zi)

N
i=1. We shall write

G(x) =
N∑

i=1

∣∣∇xi
H(x)

∣∣2( ≡ ‖∇H(x)‖2
2
)
.
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LEMMA 3.1. Suppose that x satisfies |xi − xj | > b for nonneighboring pairs
{i, j} (of z) and |xi − xj | ≥ a0 for neighboring pairs 〈i, j〉 with some a0 ∈ (0, a).
Then, there exists C > 0 (independent of x, z and N ) such that∣∣H(x) − {

H(z) + 1
2E1(h)

}∣∣ ≤ C
∑
〈i,j 〉

|hi − hj |3,(3.1)

|G(x) − E2(h)| ≤ C
∑
〈i,j 〉

|hi − hj |3,(3.2)

where

E2(h) := č2

a4

N∑
i=1

∣∣∣∣∣
∑

j : 〈i,j 〉
(hi − hj , zi − zj )(zi − zj )

∣∣∣∣∣
2

= 1

4

N∑
i=1

∣∣∇hi
E1(h)

∣∣2.
PROOF. These two estimates are shown by Taylor’s theorem applied forH(x)

and G(x) in the variables{hi − hj } with neighboring pairs〈i, j〉. Since the
computations are easy, the details are omitted.�

Now let us assume thatz is infinitesimally rigid.

LEMMA 3.2. There exist C > 0 and λ(2)(z) > 0 such that

C−1E2(h) ≤ E1(h) ≤ {
λ(2)(z)

}−1E2(h), h ∈ H⊥
z .

PROOF. The first inequality is obvious. To show the second, note that the
quadratic formE1(h) is expressed asE1(h) = (Ah,h) with a symmetric matrix
A ∈ M(dN) andHz is the eigenspace ofA corresponding to the eigenvalue 0.
Since we have

E2(h) = ‖Ah‖2
2 = (A2h,h),

E2(h) = 0 holds if and only ifh ∈ Hz and this implies the conclusion.�

REMARK 3.1. The constantλ(2)(z) is related to the Poincaré inequality; see
Lemma 2.1 of [6] in one dimension. We may assume 0< λ(2)(z) ≤ 1 for everyz.

In the following, we shall normalize the HamiltonianH asH(z) = 0 by adding
a constant [i.e., by consideringH − H(z) instead ofH ].

COROLLARY 3.3. If h = x − z ∈ H⊥
z and ‖∇h‖∞ ≤ δλ(1)(z)λ(2)(z) is

satisfied for sufficiently small δ > 0, we have

C−1λ(2)(z)H(x) ≤ G(x) ≤ CH(x),

for some C > 0.
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PROOF. The estimates (3.1), (2.5) and the assumption on‖∇h‖∞ show that∣∣H(x) − 1
2E1(h)

∣∣ ≤ C‖∇h‖∞‖∇h‖2
2 ≤ CδE1(h),

sinceλ(2)(z) ≤ 1. Therefore, takingδ sufficiently small so thatCδ ≤ 1/4, we have
1
4E1(h) ≤ H(x) ≤ 3

4E1(h).(3.3)

On the other hand, from (3.2), (2.5) and Lemma 3.2,

|G(x) − E2(h)| ≤ C‖∇h‖∞‖∇h‖2
2 ≤ CδE2(h),

which shows
3
4E2(h) ≤ G(x) ≤ 5

4E2(h).(3.4)

The conclusion follows from (3.3), (3.4) and Lemma 3.2.�

3.2. Lyapounov argument. Assume that a sequencez(ε) = (z
(ε)
i )Ni=1, 0< ε< 1,

of infinitesimally rigid and centered crystals is given, where “centered” means∑N
i=1 z

(ε)
i = 0. The numberN ≡ N(ε) of particles inz(ε) may change depending

on the scaling parameterε. Let x(t) = (xi(t))
N
i=1 ∈ (Rd)N be the solution of the

SDE (1.1) and introduce the time changed processx(ε)(t) of x(t) by (1.3). The
inverse temperatureβ ≡ β(ε) changes withε and diverges to+∞ asε ↓ 0 suffi-
ciently fast; see the condition (3.8) in Theorem 3.4.

Let M ≡ M(ε) andM∇∞(c) ≡ M∇,(ε)∞ (c) be the sets (2.2) and (2.8) determined
from z(ε) instead ofz, respectively. Givenc = c(ε) ↓ 0, consider a sequence of
stopping timesσ ≡ σ (ε) defined by

σ = inf
{
t ≥ 0; x(ε)(t) /∈ M∇,(ε)∞ (c(ε))

}
.(3.5)

The main result of this section can now be stated. The proof is based on the
Lyapounov type argument.

THEOREM 3.4. Let {c = c(ε) ↓ 0} (as ε ↓ 0) and a sequence of (random)
initial data {x(ε)(0)} be given and satisfy the following conditions:

0< c(ε) ≤ δλ(1,ε)λ(2,ε) ∧ c̄(ε),(3.6)

E
[∥∥∇h

(
x(ε)(0)

)∥∥2p
2

]1/2p = o
({

λ(1,ε)
}1/2

c(ε)
)
,(3.7)

as ε ↓ 0 for some p > 1, where λ(1,ε) = λ(1)(z(ε)), λ(2,ε) = λ(2)(z(ε)), c̄(ε) =
c̄(z(ε))/R(z(ε)) and δ > 0 is the small constant appearing in Corollary 3.3. We
further assume the following condition on the sequence of temperatures β−1 =
β(ε)−1 ↓ 0:

β(ε)−1 = o
({

λ(1,ε)c(ε)2N(ε)−1}p/(p−1)
λ(2,ε)εκ/(p−1)

)
,(3.8)

as ε ↓ 0. Then we have, for every t > 0,

lim
ε↓0

P
(
σ (ε) ≥ t

) = 1.
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Theorem 3.4 asserts that asymptotically, with probability one,x(ε)(t) keeps its
rigidly crystallized shape within fluctuationsc(ε). In order to make the fluctuations
smaller, we need better assumptions on initial data as required in (3.7) and on
the speed of convergence to 0 ofβ(ε)−1 as in (3.8). This theorem characterizes
the microscopic structure of the solutions of the SDE (1.1), which are scaled
macroscopically in time.

REMARK 3.2. (i) Conditionc(ε) ≤ c̄(ε) in (3.6) is necessary only for the set
M∇,(ε)∞ (c(ε)) to be well defined; recall Lemma 2.4.

(ii) Condition (3.7) is always satisfied ifx(ε)(0) ∈ M(ε).
(iii) The theorem covers the situation purely microscopic in space, that is, the

case where the particles’ numberN is fixed and does not change withε. In this
case,c = c(ε) can be taken independently ofε if it is sufficiently small and the
condition (3.8) is satisfied if the temperature behaves asβ(ε)−1 = o(εκ/(p−1)).

(iv) The result will be reformulated in one dimension in [6], Theorem 2.2, and
the condition (3.8) will be rewritten into much simpler form based on Remarks
2.2 and 3.1 onλ(1) andλ(2), respectively.

For the proof of the theorem, we first note thatx(ε)(t) = (x
(ε)
i (t))Ni=1 satisfies

the following SDE:

dx
(ε)
i (t) = −β

2
ε−κ∇xi

H
(
x(ε)(t)

)
dt + ε−κ/2dwi(t), 1 ≤ i ≤ N,(3.9)

in law’s sense. Simple application of Itô’s formula shows the next lemma.

LEMMA 3.5. For every p ≥ 1,

Hp(
x(ε)(t)

) = Hp(
x(ε)(0)

) + m(ε)
p (t)

+
∫ t

0

{−βε−κb1,p

(
x(ε)(s)

) + ε−κb2,p

(
x(ε)(s)

)}
ds,

where

b1,p(x) = p

2
Hp−1(x)G(x),

b2,p(x) = p

2
(p − 1)Hp−2(x)G(x) + p

2
Hp−1(x)

N∑
i=1

�xi
H(x),

with the Laplacian �xi
in the variable xi , and m

(ε)
p (t) is the martingale defined by

m(ε)
p (t) = ε−κ/2p

N∑
i=1

∫ t

0
Hp−1(x(ε)(s)

)(∇xi
H

(
x(ε)(s)

)
, dwi(s)

)
.

We have the following bounds on the drift functionsb1,p andb2,p.
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LEMMA 3.6. Assume x ∈ M∇,(ε)∞ (δλ(1,ε)λ(2,ε) ∧ c̄(ε)), where δ > 0 is the
constant appearing in Corollary 3.3.Then, there exists C = Cp > 0 such that

b1,p(x) ≥ C−1λ(2,ε)Hp(x),(3.10)

b2,p(x) ≤ CNHp−1(x).(3.11)

In particular,

−βb1,p(x) + b2,p(x) ≤ Cβ−p+1Np{
λ(2,ε)}−p+1

.(3.12)

PROOF. The lower bound (3.10) is immediate from Corollary 3.3. To
show (3.11), note that, for every 0< c1 < c2, |∑N

i=1 �xi
H(x)| ≤ CN holds for

someC > 0 and allx ∈ (Rd)N satisfyingc1 ≤ |xi − xj | ≤ c2 for each〈i, j〉. Then,
we have (3.11) from Corollary 3.3. Finally, to show (3.12), we estimate choosing
q = p/(p − 1) (whenp �= 1),

Hp−1(x) = (
Lβ−1N

(
λ(2,ε))−1)1/q(

L−1βN−1λ(2,ε)Hp(x)
)1/q

≤ 1

p

(
Lβ−1N

(
λ(2,ε)

)−1)p−1 + 1

q
L−1βN−1λ(2,ε)Hp(x),

for everyL > 0. The inequality (3.12) follows from (3.10) and (3.11) by choosing
L > 0 sufficiently large. �

PROOF OFTHEOREM 3.4. Lemmas 3.5 and 3.6 show

E
[
Hp

(
x(ε)(t ∧ σ)

)] ≤ E
[
Hp

(
x(ε)(0)

)] + Cε−κβ−p+1Np
{
λ(2,ε)

}−p+1
t.

However, (3.3), (2.5) and the assumption onx(ε)(0) imply that a(ε)
p := (λ(1,ε) ×

c(ε)2)−p ×E[Hp(x(ε)(0))] tends to 0 asε ↓ 0. On the other hand, ifx = (xi)
N
i=1 ∈

∂M∇,(ε)∞ (c(ε)), then|hi −hj | = c(ε) for some neighboring pair〈i, j〉 and therefore
H(x) ≥ C−1λ(1,ε)c(ε)2 from (3.3) and (2.5). Accordingly we have

E
[
Hp(

x(ε)(t ∧ σ)
)] ≥ E

[
Hp(

x(ε)(σ )
)
, σ ≤ t

] ≥ (
C−1λ(1,ε)c(ε)2)pP (σ ≤ t).

Therefore, we have

P (σ ≤ t) ≤ C
{
a(ε)
p + (

λ(1,ε)c(ε)2)−p
ε−κβ−p+1Np

{
λ(2,ε)

}−p+1
t
}
,

which tends to 0 asε ↓ 0. The constantsC may change from line to line.�

4. Motion of a macroscopic body. In this section we shall identify the motion
of a macroscopic body obtained in the limit under the spatial scalingx �→ εx as
ε ↓ 0.
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4.1. Coordinate θ(x). Let z = (zi)
N
i=1 be a centered infinitesimally rigid

crystal and we fix it throughout Section 4.1. Forx ∈ M∞(c̄(z)), z(x) ∈ M
is defined in Section 2.2 as the minimizer of‖x − y‖2 in y ∈ M; see also
Section 2.5. Sincez(x) ∈ M, one can represent it asz(x) = ϕθ,η(z) for some
(θ, η) = (θ(x), η(x)) ∈ SO(d) × R

d . The function η(x) defined in this way
actually coincides with the center of the mass ofx:

η(x) = 1

N

N∑
i=1

xi ∈ R
d .(4.1)

In fact, (4.1) is seen fromd‖x − ϕθ,η(z)‖2
2/dηα = 0 for every 1≤ α ≤ d . On the

other hand, the functionθ(x) = (θαβ(x))dα,β=1 has the following property.

LEMMA 4.1. For every 1≤ α,β ≤ d and x ∈ M∞(c̄(z)),

(∇θαβ(x),∇H(x)
) ≡

N∑
i=1

(∇xi
θαβ(x),∇xi

H(x)
) = 0.(4.2)

PROOF. Step 1. For everyy ∈ M, let e�(y) ∈ (Rd)N and λ�(y) ≥ 0, 1 ≤
� ≤ dN , be the eigenvectors and the corresponding eigenvalues of the Hessian
HessH(y) of H at y, respectively. Recalling thaty is infinitesimally rigid, we
may assumeλ�(y) = 0 for 1 ≤ � ≤ d̃ and λ�(y) > 0 for d̃ + 1 ≤ � ≤ dN ,
where d̃ := d(d + 1)/2 is the dimension of the spaceM or Hy. Then, the

vectors(e�(y))d̃�=1 and (e�(y))dN

�=d̃+1
span the spacesHy andH⊥

y , respectively.

Moreover, since the invariance of the HamiltonianH : H(ϕθ,η(x)) = H(x) implies
HessH(ϕθ,η(y)) = ϕθ,0H(y)ϕ−1

θ,0, one can take{e�(y), λ�(y)} in such a manner
that

e�

(
ϕθ,η(y)

) = ϕθ,0
(
e�(y)

)
, λ�

(
ϕθ,η(y)

) = λ�(y),(4.3)

for every 1≤ � ≤ dN, (θ, η) ∈ SO(d) × R
d andy ∈ M.

Since x − z(x) ∈ H⊥
z(x) by (2.4), settingy := z(x), x ∈ M∞(c̄(z)) can be

decomposed as

x = y +
dN∑

�=d̃+1

ζ �e�(y)(4.4)

for someζ � ∈ R, d̃ + 1 ≤ � ≤ dN . We call(y, ζ d̃+1, . . . , ζ dN) ∈ M × R
dN−d̃ the

Fermi coordinate ofx; see [7], page 4.
Step 2. Under the Fermi coordinate, the HamiltonianH does not depend on the

variabley:

H(x) = H
(
ζ d̃+1, . . . , ζ dN

)
.(4.5)
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To see (4.5), we first note that the Fermi coordinate ofϕθ,η(x) is given by

(ϕθ,η(y), ζ d̃+1, . . . , ζ dN). In fact, by (4.4) and then by (4.3),

ϕθ,η(x) = ϕθ,η(y) + ϕθ,0

(
dN∑

�=d̃+1

ζ �e�(y)

)
= ϕθ,η(y) +

dN∑
�=d̃+1

ζ �e�

(
ϕθ,η(y)

)
.

Therefore, the invariance ofH implies

H
(
y, ζ d̃+1, . . . , ζ dN ) = H

(
ϕθ,η(y), ζ d̃+1, . . . , ζ dN )

under the Fermi coordinate for every(θ, η) ∈ SO(d) × R
d . This shows (4.5).

Step 3. We finally prove∇H(x) ≡ (∇xi
H(x))Ni=1 ∈ H⊥

z(x) and∇θαβ(x) ∈ Hz(x).
Once these relations are established, the conclusion of the lemma is immediately
deduced. Take an arbitraryξ ∈ (Rd)N and decompose it asξ = P ξ + P ⊥ξ , where
P : (Rd)N → Hz(x) andP ⊥ : (Rd)N → H⊥

z(x) are orthogonal projections. Then

(∇H(x), ξ
) = d

du
H(x + uξ)

∣∣∣∣
u=0

(4.6)
= d

du
H(x + uP ⊥ξ)

∣∣∣∣
u=0

= (∇H(x),P ⊥ξ
)
.

The second equality of (4.6) follows from (4.5) noting that dist(z(x)+uP ξ,M) =
O(u2) asu → 0. Equation (4.6) implies∇H(x) ∈ H⊥

z(x). Since by definitionθ(x)

depends only ony = z(x) : θ(x) = θ(z(x)), one can similarly show∇θαβ(x) ∈
Hz(x). �

In order to identify the motion of the macroscopic body, it becomes necessary
to calculate the derivatives ofθ(x) in the variablesxi . We introduce notation to
give their representations. The spaceM(d) of d × d matrices is equipped with an
inner product(X,Y ) := Tr(XtY ) and a norm|X| = √

(X,X) for X,Y ∈ M(d).
The orthogonal projection fromM(d) onto its subspaceso(d) under this inner
product is denoted by Proj, that is, ProjX = (X − tX)/2 for X ∈ M(d). For
e = (eα), ẽ = (ẽα) ∈ R

d , determine the matrixe ⊗ ẽ = ((e ⊗ ẽ)αβ) ∈ M(d) by
(e ⊗ ẽ)αβ = eαẽβ , 1 ≤ α,β ≤ d . Theγ -directed unit vector inRd is denoted by
eγ ,1≤ γ ≤ d . We defineQ(x) = (qαβ(x)) ∈ M(d) by

Q(x) =
N∑

i=1

zi ⊗ xi, that is, qαβ(x) =
N∑

i=1

zα
i x

β
i , 1≤ α,β ≤ d.(4.7)

Note thatQ(z) is symmetric. The map{Proj◦(Q(x)θ(x))}−1 is the inverse of
Proj◦(Q(x)θ(x)) : so(d) � X �→ Proj(Q(x)θ(x)X) = {Q(x)θ(x)X + Xt(Q(x) ×
θ(x))}/2 ∈ so(d). Note that the derivative

∂θ

∂x
γ
i

(x) ∈ Tθ(x)(SO(d)) ≡ θ(x){so(d)},



ZERO TEMPERATURE LIMIT, I. SINGLE BODY 1217

the tangent space toSO(d) at θ(x).

PROPOSITION4.2. For 1 ≤ γ ≤ d and 1≤ i ≤ N , we have

∂θ

∂x
γ
i

(x) = θ(x)
{

Proj◦(
Q(x)θ(x)

)}−1 Proj
{(

θ(x)−1eγ

) ⊗ zi

}
.

PROOF. Sinceϕθ(x),η(x)(z) is the minimizer for the norm‖x − y‖2
2 in y ∈ M,

we have

d

du

N∑
j=1

|xj − θ(x)euY zj − η(x)|2
∣∣∣∣
u=0

= 0

for every Y ∈ so(d). However, since
∑N

j=1 zj = 0 and (θ(x)zj , θ(x)Y zj ) =
(zj , Y zj ) = 0 for all j , this implies

∑N
j=1(xj , θ(x)Y zj ) = 0, which can be

rewritten as (
Q(x)θ(x), Y

) = 0.(4.8)

Taking the derivative of (4.8) inxγ
i and noting that∂qαβ/∂x

γ
i (x) = zα

i δβγ , we get(
Q(x)

∂θ

∂x
γ
i

(x), Y

)
= −

(
∂Q

∂x
γ
i

(x)θ(x), Y

)
= ((

θ(x)−1
eγ

) ⊗ zi, Y
)

(4.9)

for everyY ∈ so(d). SetX := θ(x)−1∂θ/∂x
γ
i (x) and then, sinceX ∈ so(d), (4.9)

shows that

Proj
(
Q(x)θ(x)X

) = Proj
{(

θ(x)−1
eγ

) ⊗ zi

}
.

This proves the conclusion.�

4.2. Identification of the limit. We now discuss the limit asε ↓ 0 under the
macroscopic spatial scalingx �→ y = εx for the system with the particles’ number
N ≡ N(ε) changing withε.

Our formulation is the following. LetMρ̃ ≡ Mρ̃ (Rd), ρ̃ > 0, be the family of all
Radon measuresµ on R

d satisfyingµ(Rd) ≤ ρ̃. The spaceMρ̃ is equipped with

the topology determined by the weak convergence. A sequencex(ε) = (x
(ε)
i )Ni=1,

0 < ε < 1, with N = N(ε) of the system of particles inRd is identified under the
scaling withµ(ε)(x(ε)) ∈ Mρ̃ , ρ̃ = εdN defined by

µ(ε)(dy) ≡ µ(ε)
(
x(ε);dy

) := εd
N∑

i=1

δ
εx

(ε)
i

(dy).(4.10)

Let us assume that, as in Section 3.2, a sequencez(ε) ≡ (z
(ε)
i )Ni=1, 0 < ε < 1,

of centered infinitesimally rigid crystals is given and satisfies the following three
conditions:
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1. There existsR > 0 such that|z(ε)
i | ≤ Rε−1 for all i andε.

2. z(ε) has amacroscopic limit density function ρ(y), y ∈ R
d , in the sense that

µ(ε)(z(ε);dy) �⇒ ρ(y) dy weakly asε ↓ 0.
3. (Nontriviality of the limit). The total mass of the macroscopic limit density is

positive:ρ̄ := ∫
Rd ρ(y) dy > 0.

Examples of the sequencez(ε) will be given at the end of this section. We shall
denote byM(ε)∞ (c) the set (2.7) determined fromz(ε) instead ofz. The domain
D := {y ∈ R

d;ρ(y) > 0} with density ρ(y) may be called the macroscopic
shape of the body. The above conditions imply thatD ⊂ {y ∈ R

d; |y| ≤ R} and
limε↓0 εdN(ε) = ρ̄. Sincez(ε) are centered, the body with densityρ(y) is also
centered in the sense that

∫
Rd yρ(y) dy = 0. Let Q̄ = (q̄αβ)dα,β=1 ∈ M(d) be the

matrix defined by

q̄αβ =
∫

Rd
yαyβρ(y) dy.

Then, since the matrixQ̄ is symmetric, by rotating the body around the origin
0 ∈ R

d , we may assume that̄Q is diagonal with diagonal elements:

q̄α =
∫

Rd
(yα)2ρ(y) dy, 1 ≤ α ≤ d.(4.11)

Let x(ε)(t) := x(ε−κt), κ = d + 2, be the process obtained by macroscop-
ically scaling in time the solutionx(t) of the SDE (1.1) with initial con-
figuration x(0) = z(ε). The spatially macroscopic scaling limit ofx(ε)(t) is
characterized by the following theorem, in which the limit of(η(ε)(t), θ(ε)(t)) :=
(εη(x(ε)(t)), θ(x(ε)(t))) ∈ R

d × SO(d) asε ↓ 0 is obtained. Here, the coordinate
θ(x), x ∈ M(ε)∞ (c̄(z(ε))), is defined as in Section 4.1 based onz(ε) in place ofz.
If x(ε)(t) goes outside ofM(ε)∞ (c̄(z(ε))) at a certain time,θ(ε)(t) may be defined
arbitrarily after such time keeping it continuous int . This theorem, in particular,
shows that the proper macroscopic time scalings for the translational and rotational
motions of the body are the same.

THEOREM 4.3. Assume that the temperature β−1 = β(ε)−1 of the system
converges to 0 as in (3.8) for some c(ε) satisfying (3.6) and c(ε) ≤ εν for some
ν > 0. Then, the process (η(ε)(t), θ(ε)(t)) weakly converges to (η(t), θ(t)) as ε ↓ 0
in the space C([0, T ],R

d × SO(d)) for every T > 0. The limit is characterized by
the following three properties:

(i) η(t) and θ(t) are mutually independent.
(ii)

√
ρ̄η(t) is a d-dimensional Brownian motion starting at 0.

(iii) θ(t) is a solution of an SDE of Stratonovich’s type on SO(d):

dθ(t) = θ(t) ◦ dm(t), θ(0) = I,(4.12)
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where m(t) = (mαβ(t))dα,β=1 is an so(d)-valued Brownian motion such that the

components {mαβ(t);α < β} in the upper half of the matrix m(t) are mutually
independent and

√
q̄α + q̄βmαβ(t) is one-dimensional Brownian motion for each

1 ≤ α,β ≤ d .

This theorem can be reformulated as the convergence for measure-valued
processes.

COROLLARY 4.4. Under the same assumption on β(ε)−1 as Theorem 4.3,
µ(ε)(t) := µ(ε)(x(ε)(t); · ) weakly converges to µ(t) := ρ(ϕ−1

θ(t),η(t)(y)) dy as ε ↓ 0

in the space C([0, T ],Mρ̃ ) for every T > 0, where ρ̃ = sup0<ε<1 εdN(ε). The
process (θ(t), η(t)) is characterized by the three properties (i)–(iii) in Theorem 4.3
and ρ(y) is the macroscopic limit density function of the initial configuration z(ε).

Before giving the proofs of Theorem 4.3 and Corollary 4.4, we state a
proposition whose proof will be postponed to the next section.

PROPOSITION 4.5. For every ν > 0, there exist C > 0 and 0 < ε0 < 1 such
that ∣∣∣∣ ∂θ

∂x
γ
i

(x)

∣∣∣∣ ≤ Cεκ−1,(4.13)

∣∣∣∣ ∂θ

∂x
γ
i

(x) − ∂θ

∂x
γ
i

(z(x))

∣∣∣∣ ≤ Cεd+ν+1,(4.14)

hold for every x ∈ M(ε)∞ (εν−1 ∧ c̄(z(ε))), 1≤ γ ≤ d , 1≤ i ≤ N(ε) and 0 < ε < ε0.

PROOF OF THEOREM 4.3. Step 1. From the SDE (3.9) forx(ε)(t), since
∇U(x) = −∇U(−x) holds from the radial symmetry ofU , we have

η(ε)(t) = ε1−κ/2

N

N∑
i=1

wi(t),(4.15)

which is equivalent toε1−κ/2N−1/2w(t) in law. This shows the property (ii) for
the limit η(t) of ηε(t) noting thatρ̄ = limε↓0 εdN so that limε↓0 ε1−κ/2N−1/2 =
ρ̄−1/2.

Step 2. We next consider the limit ofθ(ε)(t). Let σ (ε) be the stopping time
defined by (3.5) withc(ε) satisfying the conditions in the theorem. Then,θ(x(ε)(t))

is well defined for t ≤ σ (ε), and again from the SDE (3.9) and using the
property (4.2) ofθ(x), we have

dθ(ε)(t) = ε−κ/2
N∑

i=1

∇xi
θ
(
x(ε)(t)

) ◦ dwi(t), t ≤ σ (ε),(4.16)
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by applying Itô’s formula, where∇xi
θ ◦ dwi := ∑d

γ=1 ∂θ/∂x
γ
i ◦ dw

γ
i ∈ M(d).

This may be further rewritten as

dθ(ε)(t) = θ(ε)(t) ◦ dm(ε)(t), t ≤ σ (ε),

with anso(d)-valued martingalem(ε)(t) = {mαβ,(ε)(t)}dα,β=1 defined by

m(ε)(t) = ε−κ/2
N∑

i=1

∫ t

0
θ
(
x(ε)(s)

)−1∇xi
θ
(
x(ε)(s)

)
dwi(s), t ≤ σ (ε).

Therefore, setting̃θ(ε)(t) := θ(ε)(t ∧ σ (ε)) and m̃(ε)(t) := m(ε)(t ∧ σ (ε)) for all
t ≥ 0, θ̃ (ε)(t) satisfies an SDE

dθ̃(ε)(t) = θ̃ (ε)(t) ◦ dm̃(ε)(t), t ≥ 0.

This SDE written in Stratonovich’s form is equivalent to

dθ̃ (ε)(t) = θ̃ (ε)(t)dm̃(ε)(t) + 1
2 θ̃ (ε)(t)d

〈
m̃(ε), m̃(ε)

〉
(t)

in Itô’s form, where the quadratic variational process〈m̃(ε), m̃(ε)〉(t) ∈ M(d) is
defined by

(〈
m̃(ε), m̃(ε)

〉
(t)

)αβ =
d∑

γ=1

〈
m̃αγ,(ε), m̃γβ,(ε)

〉
(t), 1≤ α,β ≤ d.

The goal is to show that̃θ(ε)(t) weakly converges asε ↓ 0 to the solutionθ(t)

of the SDE (4.12) which is equivalent to

dθ(t) = θ(t)dm(t) + 1
2θ(t)d〈m,m〉(t)

in Itô’s form. Indeed, once this is proved, since limε↓0 P (σ (ε) ≥ T ) = 1 from
the microscopic shape theorem (Theorem 3.4),θ(ε)(t) also weakly converges
to θ(t); recall thatθ(ε)(t) was arbitrarily defined after the time whenx(ε)(t) goes
outside ofM(ε)∞ (c̄(z(ε))). To show the weak convergence ofθ̃ (ε)(t) to θ(t) in
C([0, T ],SO(d)), it suffices to prove the following two conditions for the driving
martingalem̃(ε)(t):

lim
ε↓0

E

[∣∣∣∣E[〈
m̃αβ,(ε), m̃ab,(ε)〉(t)∣∣Fs

] − t (δαaδβb − δαbδβa)

q̄α + q̄β

∣∣∣∣
]

= 0(4.17)

for everyt ≥ s ≥ 0, 1≤ α,β, a, b ≤ d , whereFs = σ {w(s′); s′ ≤ s} and

sup
0<ε<1

sup
0≤t≤T

E

[∣∣∣∣ d

dt

〈
m̃αβ,(ε), m̃ab,(ε)〉(t)∣∣∣∣

p]
< ∞(4.18)

for somep > 2; see, for instance, [11], page 222, Theorem 5.2.1. Note that, from
the property (iii), the quadratic variational processes of(mαβ(t))αβ are given by

〈mαβ,mab〉(t) = t (δαaδβb − δαbδβa)

q̄α + q̄β
.
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Now let us prove (4.17) and (4.18). Since we have

d

dt

〈
m̃αβ,(ε), m̃ab,(ε)

〉
(t)

= ε−κ
N∑

i=1

d∑
γ=1

(
θ
(
x(ε)(t)

)−1 ∂θ

∂x
γ
i

(
x(ε)(t)

))αβ(
θ
(
x(ε)(t)

)−1 ∂θ

∂x
γ
i

(
x(ε)(t)

))ab

for t ≤ σ (ε) (and= 0 for t > σ (ε)), (4.13) in Proposition 4.5 implies∣∣∣∣ d

dt

〈
m̃αβ,(ε), m̃ab,(ε)〉(t)∣∣∣∣ ≤ Cε−κN(εκ−1)2 ≤ C′,(4.19)

which is bounded inε andt . This shows (4.18). To prove (4.17), definem̄(ε)(t) by

m̄(ε)(t) = ε−κ/2
N∑

i=1

∫ t∧σ (ε)

0
θ
(
z
(
x(ε)(s)

))−1∇xi
θ
(
z
(
x(ε)(s)

))
dwi(s).(4.20)

We have replacedx(ε)(s) with z(x(ε)(s)) in m̃(ε)(t). Then, since condition 1 on
z(ε) implies R(z(ε)) ≤ R0ε

−1 for someR0 > 0, Lemma 2.4 showsx(ε)(s) ∈
M∇,(ε)∞ (c(ε)) ⊂ M(ε)∞ (R(z(ε))c(ε)) ⊂ M(ε)∞ (R0ε

ν−1 ∧ c̄(z(ε))) ⊂ M(ε)∞ (εν′−1 ∧
c̄(z(ε))) for s ≤ σ (ε) by takingν′ ∈ (0, ν) and for smallε > 0. Therefore, by (4.14)
in Proposition 4.5 and noting thatθ(x) = θ(z(x)), we have

∣∣〈m̃αβ,(ε) − m̄αβ,(ε)〉(t)∣∣ ≤ Cε−κN
(
εd+ν′+1)2

t ≤ C′ε2ν′
t.(4.21)

Using (4.19) and (4.21), we get∣∣〈m̃αβ,(ε), m̃ab,(ε)〉(t) − 〈
m̄αβ,(ε), m̄ab,(ε)〉(t)∣∣

≤
√〈

m̃αβ,(ε) − m̄αβ,(ε)
〉
(t) · 〈

m̃ab,(ε)
〉
(t)

+
√〈

m̃ab,(ε) − m̄ab,(ε)
〉
(t) · 〈

m̄αβ,(ε)
〉
(t)

≤ C′′εν′
t,

which tends to 0 asε ↓ 0; note that a similar estimate to (4.19) can be shown for
〈m̄αβ,(ε), m̄ab,(ε)〉(t). We accordingly see that it suffices to show condition (4.17)
for m̄(ε) instead ofm̃(ε).

For a configuratioñz = ϕθ̃,η̃(z
(ε)) ∈ M(ε) with some(θ̃ , η̃) ∈ SO(d)×R

d , since

θ(z̃) = θ̃ andQ(z̃) = Q(z(ε))θ̃−1, Proposition 4.2shows that

∂θ

∂x
γ
i

(
ϕ

θ̃,η̃

(
z(ε))) = θ̃

{
Proj◦(

Q
(
z(ε)))}−1 Proj

{
(θ̃−1

eγ ) ⊗ z
(ε)
i

}
.
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However, we see that

lim
ε↓0

εκQ
(
z(ε)) = lim

ε↓0

(∫
Rd

yαyβµ(ε)(z(ε);dy
))d

α,β=1
= Q̄,(4.22)

{Proj◦(Q̄)}−1Y =
(

2yαβ

q̄α + q̄β

)d

α,β=1
,(4.23)

for Y = (yαβ)αβ ∈ so(d), and

Proj
{
(θ̃−1eγ ) ⊗ z

(ε)
i

} = 1
2

(
θ̃ γ αz

β,(ε)
i − θ̃ γβz

α,(ε)
i

)d
α,β=1,

where θ̃ = (θ̃αβ)αβ and z
(ε)
i = (z

α,(ε)
i )α. Therefore, from Lemma 5.1(ii) stated

below [note that{Proj◦(Q(z(ε)))}−1 = εκ�(ε)(z(ε))−1] and recallingε|z(ε)
i | ≤ R,

we have

lim
ε↓0

∣∣∣∣ε−κ+1θ̃−1 ∂θ

∂x
γ
i

(
ϕ

θ̃,η̃

(
z(ε)

)) − ε

(
θ̃ γ αz

β,(ε)
i − θ̃ γβz

α,(ε)
i

q̄α + q̄β

)d

α,β=1

∣∣∣∣ = 0(4.24)

uniformly in (θ̃ , η̃). Hence,

d

dt

〈
m̄αβ,(ε), m̄ab,(ε)〉(t)
= εκ

(q̄α + q̄β)(q̄a + q̄b)

N∑
i=1

d∑
γ=1

(
θγα,(ε)(t)z

β,(ε)
i − θγβ,(ε)(t)z

α,(ε)
i

)

× (
θγ a,(ε)(t)z

b,(ε)
i − θγ b,(ε)(t)z

a,(ε)
i

) + o(1)

= δαaδβb − δαbδβa

q̄α + q̄β
+ o(1), t ≤ σ (ε),

asε ↓ 0 for every 1≤ α,β, a, b ≤ d . The error termso(1), which come from the
errors in (4.24), tend to 0 uniformly int andω [an element of the probability space
on whichm̄(ε)(t) are defined]. This proves (4.17) form̄(ε)(t).

Step 3. Finally, to show property (i), compute the quadratic variational processes
of m̄αβ,(ε)(t) andηγ,(ε)(t) from (4.15), (4.20) and (4.24):

d

dt

〈
m̄αβ,(ε), ηγ,(ε)〉(t)
= ε

N

N∑
i=1

θγα,(ε)(t)z
β,(ε)
i − θγβ,(ε)(t)z

α,(ε)
i

q̄α + q̄β
+ o(1), t ≤ σ (ε).

However, sincez(ε) is centered, the sum vanishes and this proves property (i).�

PROOF OFCOROLLARY 4.4. Theorem 4.3 combined with Theorem 3.4 shows
that 〈f,µ(ε)(t)〉 weakly converges to〈f,µ(t)〉 asε ↓ 0 in the spaceC([0, T ],R)
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for everyf ∈ Cb(R
d), where〈f,µ〉 := ∫

Rd f (y)µ(dy). Therefore, to conclude the
corollary, it suffices to show the tightness of the family of laws of{µ(ε)(t); 0 <

ε < 1} on the spaceC([0, T ],Mρ̃ ). But this can be deduced from:

1. For eachδ > 0, there exists a compact setK in Mρ̃ such thatP (µ(ε)(t) ∈ K
for everyt ∈ [0, T ]) ≥ 1− δ.

2. For every f ∈ Cb(R
d), {〈f,µ(ε)(t)〉; 0 < ε < 1} is tight on the space

C([0, T ],R).

Condition 2 follows from what we mentioned above. Condition 1 is also easy,
since the support ofµ(ε)(t) is in the ball with centerη(ε)(t) and radiusR as long
ast ≤ σ (ε) andη(ε)(t) �⇒ η(t), which is the time changed Brownian motion, as
ε ↓ 0. �

The solutionθ(t) of the SDE (4.12) is called the left Brownian motion on
SO(d); see [15, 16]. A coordinate satisfying the relation like (4.2) was used by
Katzenberger [9] to make a cancellation for diverging terms as we have seen in
deriving (4.16).

EXAMPLE 4.1. (i) Let D be a bounded domain inRd(d = 2 or 3) having a
smooth boundary∂D and letz(ε) be the infinitesimally rigid crystal constructed
from ε−1D ∩ a� on thed-dimensional triangular lattice as in Example 2.3. The
configurationz(ε) is the microscopic crystal consisting of atoms arranged in an
equal distancea andD is the corresponding macroscopic body. The macroscopic
density function ofz(ε) is given by

ρ(y) = 1D(y)

ad |detA| ,
whereA = (e1e2 · · · ed) ∈ M(d) is the matrix consisting ofd column vectors{eα}α
used for the definition of the triangular lattice. In this sense,D is the high density
region and the outside ofD is the empty region.

(ii) In higher dimensions, one can constructz(ε) based on the idea explained in
Example 2.1.

5. Proof of Proposition 4.5. This section gives the proof of Proposition 4.5.
Consider an operator� on the spaceso(d) defined by�X = Proj(Q̄X) for
X ∈ so(d). Then, as we have seen in (4.23),� is invertible and the operator norm
of �−1 can be dominated by

‖�−1‖ ≤ C̄ := max
1≤α �=β≤d

2

q̄α + q̄β
.(5.1)

Recall thatQ(x) ≡ Q(ε)(x) is determined fromz(ε) and setQ̄(ε)(x) = εκQ(ε)(x).
Then, we haveQ̄ = limε↓0 Q̄(ε)(z(ε)); see (4.22). We introduce another operator
�(ε)(x) on so(d) by

�(ε)(x)X = Proj
(
Q̄(ε)(x)θ(x)X

)
, X ∈ so(d).
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In the following, we denoteM(ε)∞ (εν−1 ∧ c̄(z(ε))) simply byM(ε)∞ (εν−1), since we
only use the bound‖h(x)‖∞ ≤ εν−1 for x.

LEMMA 5.1. (i) For every ν > 0, there exists ε0 > 0 such that

sup
0<ε≤ε0

sup
x∈M(ε)∞ (εν−1)

∥∥�(ε)(x)−1∥∥ < ∞.

(ii) For every ν > 0,

lim
ε↓0

sup
x∈M(ε)∞ (εν−1)

∥∥�(ε)(x)−1 − �−1∥∥ = 0.

PROOF. We first assume thatx ∈ M(ε)∞ (εν−1) satisfiesz(x) = z(ε). Then, we
have ∣∣Q̄(ε)(x) − Q̄

∣∣ ≤ r(ε),(5.2)

with somer(ε) → 0 asε ↓ 0. Indeed, the left-hand side of (5.2) is dominated by∣∣Q̄(ε)(x) − Q̄(ε)
(
z(ε)

)∣∣ + ∣∣Q̄(ε)
(
z(ε)

) − Q̄
∣∣,

and the first term is further bounded as

∣∣εκqαβ(x) − εκqαβ
(
z(ε)

)∣∣ ≤ εκ
N∑

i=1

∣∣zα,(ε)
i

∣∣∣∣xβ
i − z

β,(ε)
i

∣∣
≤ εκ · N · Rε−1εν−1 ≤ Cεν,

while the second term tends to 0 asε ↓ 0.
Denoting by� = �(ε)(x) − �, �(ε)(x)−1 can be expressed as

�(ε)(x)−1 = (I + �−1�)−1�−1 =
∞∑

k=0

(−�−1�)k�−1.

Sinceθ(x) = θ(z(ε)) = I , we have�X = 1
2{Q̄(ε)(x) − Q̄}X + 1

2X
t {Q̄(ε)(x) − Q̄}

and therefore‖�‖ ≤ r(ε) from (5.2). Accordingly, (5.1) implies∥∥∥∥∥
∞∑

k=0

(−�−1�)k

∥∥∥∥∥ ≤ 1

1− C̄r(ε)
≤ 2,

so ‖�(ε)(x)−1‖ ≤ 2C̄ for sufficiently smallε > 0 such thatr(ε) ≤ 1/(2C̄). By
acting rotation and translation, similar estimate can be derived for‖�(ε)(x)−1‖ for
everyx ∈ M(ε)∞ (εν−1) [without assumingz(x) = z(ε)] and this concludes the proof
of (i). The second assertion (ii) follows from

∥∥�(ε)(x)−1 − �−1∥∥ =
∥∥∥∥∥

∞∑
k=1

(−�−1�)k

∥∥∥∥∥ ≤ C̄r(ε)

1− C̄r(ε)
.

�
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PROOF OF(4.13)IN PROPOSITION4.5. By Proposition 4.2,

∂θ

∂x
γ
i

(x) = εκθ(x)�(ε)(x)−1 Proj
{(

θ(x)−1
eγ

) ⊗ z
(ε)
i

}
,

and therefore (4.13) follows from Lemma 5.1(i) noting|z(ε)
i | ≤ Rε−1. �

LEMMA 5.2. For every 1≤ γ, γ ′ ≤ d ,

sup
0<ε≤ε0

sup
x∈M(ε)∞ (εν−1)

sup
1≤i,i′≤N(ε)

ε−2κ+2
∣∣∣∣ ∂2θ

∂x
γ
i ∂x

γ ′
i′

(x)

∣∣∣∣ < ∞.

PROOF. The identity (4.9) may be rewritten as(
Q(ε)(x)

∂θ

∂x
γ
i

(x) + (
z
(ε)
i ⊗ eγ

)
θ(x), Y

)
= 0.

Hence, taking the derivative of this identity inxγ ′
i′ , we have

(
Q(ε)(x)

∂2θ

∂x
γ
i ∂x

γ ′
i′

(x) + (
z
(ε)
i′ ⊗ eγ ′

) ∂θ

∂x
γ
i

(x) + (
z
(ε)
i ⊗ eγ

) ∂θ

∂x
γ ′
i′

(x), Y

)
= 0.

This implies

∂2θ

∂x
γ
i ∂x

γ ′
i′

(x) = −εκθ(x)�(ε)(x)−1

× Proj
{(

z
(ε)
i′ ⊗ eγ ′

) ∂θ

∂x
γ
i

(x) + (
z
(ε)
i ⊗ eγ

) ∂θ

∂x
γ ′
i′

(x)

}
.

The conclusion follows from Lemma 5.1(i) and (4.13) by noting that|z(ε)
i′ |,

|z(ε)
i | ≤ Rε−1. �

PROOF OF(4.14) IN PROPOSITION 4.5. Applying the mean value theorem,
we have, from Lemma 5.2,

∣∣∣∣ ∂θ

∂x
γ
i

(x) − ∂θ

∂x
γ
i

(z(x))

∣∣∣∣ ≤
N∑

i′=1

d∑
γ ′=1

∣∣∣∣ ∂2θ

∂x
γ
i ∂x

γ ′
i′

(x∗)
∣∣∣∣∣∣xγ ′

i′ − (z(x))
γ ′
i′

∣∣

≤ CN · ε2κ−2 · εν−1 ≤ C′εd+ν+1,

where x∗ is a certain point on the segment connectingx and z(x). This
shows (4.14). �
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6. Concluding remarks.

6.1. We have studied in Section 4 the case where the macroscopic body
is d-dimensional, but one can consider thin bodies and derive their motion as
well. Assume that, for ann-dimensional Riemannian manifoldM in R

d, n < d ,
a sequence of infinitesimally rigid crystalsz(ε) = (z

(ε)
i )Ni=1 is given and it has a

macroscopic limit density functionρM(y) onM in the sense that

lim
ε↓0

εn
N∑

i=1

δ
εz

(ε)
i

(dy) = ρM(y) dyM,(6.1)

wheredyM denotes the volume element ofM . Then, comparing (6.1) with the
condition 2 forz(ε) in Section 4.2, we see thatρ(y) = 0 for the sequencez(ε),
which we are considering here, under the scaling (4.10), and thereforeρ̄ = q̄α = 0
in Theorem 4.3. This means that a different time scaling is required forx(t) to
have a nontrivial macroscopic limit. Indeed, one can show that the right scaling is
x(ε)(t) := x(ε−(n+2)t), and under this scaling, random motion of the body(M,ρM)

is obtained in the limit. Note that the affine hull ofz(ε) should bed-dimensional
to be infinitesimally rigid (see [2], page 174) and therefore, even for obtaining an
n-dimensional macroscopic body in the limit,d-dimensional configurations should
be considered microscopically. High polymers or membranes studied in physical
chemistry usually have the above structures withn = 1 or 2 inR

3.

6.2. If the Hamiltonian is suitably modified, the notion of rigidity for
the microscopic configurations may change. LetV ∈ C2

0(R) be a symmetric
function having a deep well at 0 satisfyingV ′′(0) > 0 and consider the modified
Hamiltonian ofH(x) by adding a three-body interaction term:

H̃ (x) = H(x) + ∑
i,j,k

V

(∣∣∣∣xi + xj

2
− xk

∣∣∣∣
)
1{diam{xi,xj ,xk}≤a0},

where the sum is taken fori, j, k different anda0 is a constant smaller than 4a.
We assumeb < 2a for the potentialU in H(x). Then, one-dimensional straight
chainsz = (zi)

N
i=1 in R

d : zi − z0 = i(z1 − z0), 1 ≤ i ≤ N , arranged in an equal
distancea (i.e., |z1 − z0| = a) are local minima ofH̃ . The proper time change is
x(ε)(t) := x(ε−3t), which is the same as takingn = 1 in Section 6.1. The particles’
numberN should behave as̄ρ = limε↓0 εN exists. Introducing an energy different
from ours, Kotani and Sunada [10] characterize the equilibrium configurations of
crystals.
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