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CONCENTRATION INEQUALITIES USING
THE ENTROPY METHOD

BY STÉPHANE BOUCHERON,1 GÁBOR LUGOSI2 AND PASCAL MASSART

CNRS-Université Paris-Sud, Pompeu Fabra University and Université Paris-Sud

We investigate a new methodology, worked out by Ledoux and Massart,
to prove concentration-of-measure inequalities. The method is based on
certain modified logarithmic Sobolev inequalities. We provide some very
simple and general ready-to-use inequalities. One of these inequalities may
be considered as an exponential version of the Efron–Stein inequality. The
main purpose of this paper is to point out the simplicity and the generality
of the approach. We show how the new method can recover many of
Talagrand’s revolutionary inequalities and provide new applications in a
variety of problems including Rademacher averages, Rademacher chaos, the
number of certain small subgraphs in a random graph, and the minimum of
the empirical risk in some statistical estimation problems.

1. Introduction. Concentration inequalities bound tail probabilities of gen-
eral functions of independent random variables. Several methods have been known
to prove such inequalities, including martingale methods (see the surveys of
McDiarmid [26, 27]), information-theoretic methods (see Alhswede, Gács and
Körner [1], Marton [20–22], Dembo [7], Massart [23] and Rio [28]), Talagrand’s
induction method [32–34], and various problem-specific methods; see Janson,
Łuczak and Ruciński [11] for a survey.

A novel way of deriving powerful inequalities, the “entropy method,” based
on logarithmic Sobolev inequalities, was developed by Ledoux [17, 16], Bobkov
and Ledoux [3], Massart [24], Rio [28] and Bousquet [5] for proving sharp
concentration bounds for maxima of empirical processes. Recently Boucheron,
Lugosi and Massart [4] pointed out that the methodology may be used effectively
outside of the context of empirical process theory as well.

In this paper we follow the line of [4] to develop new easy-to-apply inequalities
for general functions of independent random variables. These inequalities may be
considered as exponential versions of the well-known Efron–Stein inequality. One
of the goals of this paper is to point out that the methodology based on logarithmic
Sobolev inequalities provides a transparent and general way of obtaining powerful
results in a large variety of applications. The proofs are elementary, and are
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all based on variations of the same theme. We work out several applications.
We show that the new method can recover a version of Talagrand’s celebrated
“convex-distance” inequality. We give a new and simple proof of a revolutionary
and very difficult result of Talagrand [33] for the concentration of the suprema
of Rademacher chaos. We also provide new applications concerning the number
of certain small subgraphs present in a random graph and the minimum of the
empirical risk in nonparametric statistical problems.

The paper is organized as follows. In Section 2 the basic logarithmic Sobolev
inequality is presented, which is used to derive the main inequalities. The proofs
of these inequalities are given in a separate Section 3. In Section 4 we review
the relationship of the new results with some of the existing work. In particular,
we point out that Talagrand’s [32] “convex distance” inequality may be recovered
easily from some of the new inequalities. Sections 5–7 are devoted to concrete
applications. In Section 5 we show how the concentration of Rademacher averages
and Rademacher chaos can be derived from the new inequalities in a very simple
way. In particular, we offer a new and simple proof for a difficult and important
result of Talagrand [33] for the concentration of Rademacher chaos. In Section 6
we study upper tail estimates for the number of occurrences of certain small
subgraphs in a random graph and show that the new method often compares
favorably with the large variety of other methods surveyed by Janson and Ruciński
in [13]. Finally, in Section 7 we derive new sharp concentration inequalities for the
minimum of the empirical risk in statistical estimation problems, which may have
important consequences in efficient model selection.

2. Main inequalities. We begin by introducing some notation that is used
throughout the paper. We assume that X1, . . . ,Xn are independent random
variables taking values in a measurable space X. Denote by Xn

1 the vector of
these n random variables. Let f :Xn → R be some measurable function. We are
concerned with concentration of the random variable

Z = f (X1, . . . ,Xn).

Throughout, X′
1, . . . ,X

′
n denote independent copies of X1, . . . ,Xn, and we write

Z(i) = f (X1, . . . ,Xi−1,X
′
i ,Xi+1, . . . ,Xn).

One of the first concentration inequalities was proved by Efron and Stein [8],
and further improved by Steele [30]:

PROPOSITION 1 (Efron–Stein inequality).

Var(Z) ≤ 1
2E

[
n∑

i=1

(Z − Z(i))2
]
.
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Note that the inequality becomes an equality if f is the sum of its components.
This result provides a simple and often sharp way of bounding the variance of
complicated functions of independent random variables. While extremely useful,
this result fails to capture the exponential nature of tails, present under many
circumstances. Our purpose is to discover simple additional conditions under
which the Efron–Stein inequality can be converted into exponential upper bounds
for either P[Z > EZ + t] or P[Z < EZ − t] where t > 0.

Define the random variables V+ and V− by

V+ = E

[
n∑

i=1

(Z − Z(i))21Z>Z(i)

∣∣∣Xn
1

]
and

V− = E

[
n∑

i=1

(Z − Z(i))21Z<Z(i)

∣∣∣Xn
1

]
.

Then the Efron–Stein inequality may be rewritten as

Var(Z) ≤ E[V+] = E[V−].
Our first main result shows that if the random variables V+ and V− behave “nicely”
in the sense that their moment generating function can be controlled, then, indeed,
we may obtain an exponential version of the Efron–Stein inequality:

THEOREM 2. For all θ > 0 and λ ∈ (0,1/θ),

log E
[
exp
(
λ(Z − E[Z]))]≤ λθ

1 − λθ
logE

[
exp
(

λV+
θ

)]
.(2.1)

On the other hand, we have for all θ > 0 and λ ∈ (0,1/θ),

logE
[
exp
(−λ(Z − E[Z]))]≤ λθ

1 − λθ
logE

[
exp
(

λV−
θ

)]
.(2.2)

The value of θ appearing in the upper bounds is a free parameter that can be
optimized. Roughly speaking, if V+ (or V−) has small tails, small values of θ may
give better results. In the next two corollaries two different choices of θ appear.
The simplest, but already quite powerful, corollary is obtained if V+ (or V−) is
bounded by a constant:

COROLLARY 3. Assume that there exists a positive constant c such that,
almost surely, V+ ≤ c. Then, for all t > 0,

P [Z > EZ + t] ≤ e−t2/4c.

Moreover, if V− ≤ c almost surely, then for all t > 0,

P [Z < EZ − t] ≤ e−t2/4c.
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PROOF. To prove the first inequality, note that (2.1) now implies

log E
[
exp
(
λ(Z − E[Z]))]≤ λθ

1 − λθ

λc

θ
.

Thus, letting θ approach zero, we obtain

E
[
exp
(
λ(Z − E[Z]))]≤ eλ2c.

Hence, by Markov’s inequality, for all λ > 0 and t > 0,

P [Z > EZ + t] ≤ eλ2c−λt .

Optimizing the value of λ yields the first inequality. The second inequality is
implied by (2.2) similarly. �

In the next corollary of Theorem 2 we describe a situation when even though
V+ (or V−) cannot be bounded by a constant, it is concentrated around its
mean value. We will face such situations frequently below when we describe
applications. For brevity we only state the upper-tail version.

COROLLARY 4. Assume that the random variable V+ is such that there exists
a positive constant a such that for λ ∈ (0,1/a),

log E
[
eλ(V+−EV+)

]≤ λ2aE[V+]
1 − aλ

.

Then

logE
[
exp
(
λ(Z − E[Z]))]≤ λ2

E[V+]
1 − (a + 1)λ

and, in particular,

P[Z > EZ + t] ≤ exp
( −t2

4E[V+] + 2(a + 1)t/3

)
.

PROOF. Taking θ = 1 in (2.1) and using the condition on the moment
generating function of V+, we obtain

logE
[
exp
(
λ(Z − E[Z]))]

≤ λ

1 − λ

(
λEV+ + λ2aEV+

1 − aλ

)
= λ2

EV+
(1 − λ)(1 − aλ)

≤ λ2
EV+

1 − (a + 1)λ
.

The bound on the tail probability is now obtained by straightforward calculations
summarized in Lemma 11 in Section 3. �

In applications we often face situations when V+ or V− may be bounded as
some function of Z itself. In many of these cases Theorem 2 is useless, yet a slight
modification of the same proof methodology proves to be useful. The next result
considers a frequent situation.
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THEOREM 5. Assume that there exist positive constants a and b such that

V+ ≤ aZ + b.(2.3)

Then, for λ ∈ (0,1/a),

logE
[
exp
(
λ(Z − E[Z]))]≤ λ2

1 − aλ
(aEZ + b)

and for all t > 0,

P[Z > EZ + t] ≤ exp
( −t2

4aEZ + 4b + 2at

)
.

Bounds for the lower tail P [Z < EZ − t] may be easily derived under much
more general conditions on V− due to a simple association inequality:

THEOREM 6. Assume that for some nondecreasing function g,

V− ≤ g(Z).

Then, for all t > 0,

P[Z < EZ − t] ≤ exp
( −t2

4E[g(Z)]
)
.

In some situations no suitable bound for V− is available while V+ is manageable
and furthermore we may have the guarantee that |Z − Z(i)| remains bounded.
Without loss of generality, we assume that the bound is 1. In such cases we obtain
an exponential lower-tail inequality by controlling V+ only.

THEOREM 7. Assume that there exists a nondecreasing function g such that
V+ ≤ g(Z) and for any value of Xn

1 and Xi
′, |Z − Z(i)| ≤ 1. Then, for all K > 0,

λ ∈ [0,1/K)

logE
[
exp
(−λ(Z − E[Z]))]≤ λ2 ψ(K)

K2 E[g(Z)],
and for all t > 0, with t ≤ (e − 1)E[g(Z)] we have

P[Z < EZ − t] ≤ exp
(
− t2

4(e − 1)E[g(Z)]
)
.

Our last general result deals with a situation we have often faced in applications.
In these cases V+ may be bounded by the product of Z and another random
variable W with well-behaved moment generating function. The following
theorem provides a way to deal with such functionals in an efficient and rather
painless way.
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THEOREM 8. Assume that f is nonnegative. Assume that there exists a
random variable W , such that

V+ ≤ WZ.

Then, for all θ > 0 and λ ∈ (0,1/θ),

log E
[
exp
(
λ(

√
Z − E[√Z]))]≤ λθ

1 − λθ
log E

[
exp
(

λW

θ

)]
.

Bounds for the upper-tail probability of Z may be easily derived using
Theorem 8. Indeed, since

√
E[Z] ≥ E[√Z], writing x = √

E[Z] + t − √
E[Z],

we have, for λ > 0,

P
[
Z > E[Z] + t

]≤ P
[√

Z > E[√Z] + x
]

≤ E
[
exp
(
λ(

√
Z − E[√Z]))]e−λx

by Markov’s inequality. Some concrete examples are worked out in Section 6.
We close this section by an extension of Theorem 5 which shows that if V+ is

bounded by a sub-quadratic polynomial of Z, then Z is concentrated. Once again,
we obtain bounds for the moment generating function of Zp for some p < 1 which
may be converted into tail bounds for Z as noted above.

THEOREM 9. Assume that f is nonnegative. Assume that there exist constants
a > 0 and α ∈ (0,2) such that V+ ≤ aZα . Then, for all λ > 0,

logE
[
exp
(
λ(Z(2−α)/2 − EZ(2−α)/2)

)]≤ λ2a

and for all λ ∈ (0,1/a),

logE
[
exp
(
λ(Z2−α − EZ2−α)

)]≤ λ2aEZ2−α

1 − αλ
.

3. Proofs of the main inequalities. In this section we derive the main
inequalities of the paper. All of them follow from the next logarithmic Sobolev
inequalities, which are straightforward variations of an inequality proposed by
Massart [24].

PROPOSITION 10 (Logarithmic Sobolev inequalities). For any function
f :Xn → R, noting Z = f (X1, . . . ,Xn) and for all λ ∈ R,

λE[ZeλZ] − E[eλZ] logE[eλZ] ≤
n∑

i=1

E
[
eλZψ

(−λ(Z − Z(i))
)
1Z>Z(i)

]
,

λE[ZeλZ] − E[eλZ] logE[eλZ] ≤
n∑

i=1

E
[
eλZψ

(
λ(Z(i) − Z)

)
1Z<Z(i)

]
,

where ψ(x) = x(ex − 1).
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Now we are prepared to derive our main theorems.
Before proceeding to the proof of Theorem 2, we recall the following

decoupling device that is described in [24]. For any W such that E[exp(λW)] < ∞,
and for any λ ∈ R,

E[λWeλZ]
E[eλZ] ≤ E[λZeλZ]

E[eλZ] − logE[eλZ] + logE[eλW ].(3.1)

(This inequality may be proved easily by recalling the variational formulation of
the Kullback–Leibler divergence between the probability measures Q and P

K(Q‖P ) = sup
[
EQ[W ] − logEP [eW ]]

where the supremum is taken over all random variables W such that EQ[W ] < ∞
and EP [exp(W)] < ∞. Taking dQ

dP
= eλZ

EP [eλZ ] and the fact that K(Q‖P ) ≥ 0
imply (3.1).)

PROOF OF THEOREM 2. We first prove inequality (2.1). Let λ ≥ 0 and
introduce F(λ) = E[exp(λZ)]. Observe that for x > 0, ψ(−x) ≤ x2, and
therefore, for any λ > 0, the first inequality in Proposition 10 implies

λF ′(λ) − F(λ) logF(λ)

≤
n∑

i=1

λ2
E
[
eλZ(Z − Z(i))21Z>Z(i)

]
= λ2

E[V+eλZ].
Define G(λ) = log E[exp(λV+)]. Note that G(0) = 0 and that G is convex.
Moreover, G is differentiable in some neighborhood of 0. Applying (3.1) with
W = V+/θ , and noting that F ′(λ) = E[Z exp(λZ)], we obtain

λF ′(λ) − F(λ) logF(λ)

≤ λ2θ

(
F ′(λ) + 1

λ
F (λ)G(λ/θ) − 1

λ
F (λ) logF(λ)

)
.

Dividing both sides by λ2F(λ) this may be rearranged as

1

λ

F ′(λ)

F (λ)
− 1

λ2
log F(λ) ≤ θG(λ/θ)

λ(1 − λθ)
.

Here we observe that the left-hand side is just the derivative of H(λ) =
(1/λ) logF(λ). Thus, the obtained differential inequality may be integrated.
Recalling that H(λ) → E[Z] as λ → 0, we obtain

H(λ) ≤ EZ +
∫ λ

0

θG(s/θ)

s(1 − sθ)
ds.
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In order to simplify the obtained expression, we note that the convexity of G

implies that G(s/θ)/s(1 − sθ) is a nondecreasing function of s and therefore

log F(λ) ≤ λEZ + λθG(λ/θ)

(1 − λθ)
,

proving (2.1).
Inequality (2.2) follows similarly by replacing Z by −Z and noting that a bound

on V− for Z is equivalent to a bound on V+ for −Z. �

Before proceeding to the proof of Theorem 5, we state a useful technical lemma
which summarizes some of the straightforward computations carried out in [24].
Introduce

h(x) = 1 + x − √
1 + 2x = 1

2

(
1 − √

1 + 2x
)2

.

One can check that

h(x) ≥ x2

2 + 2x/3
if x ≥ 0

and

h(x) ≥ x2

2
if x ≤ 0.

Then we have the following.

LEMMA 11. Let C and a denote two positive real numbers. Then

sup
λ∈[0,1/a)

(
λt − Cλ2

1 − aλ

)
= 2C

a2
h

(
at

2C

)
≥ t2

2(2C + at/3)

and the supremum is attained at

λ = 1

a

(
1 −

(
1 + at

C

)−1/2
)
.

Also,

sup
λ∈[0,∞)

(
λt − Cλ2

1 + aλ

)
= 2C

a2
h

(−at

2C

)
≥ t2

4C

if t < C/a and the supremum is attained at

λ = 1

a

((
1 − at

C

)−1/2

− 1

)
.
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PROOF OF THEOREM 5. Let λ > 0. The same way as in the first steps of the
proof of Theorem 2, we have

λE[ZeλZ] − E[eλZ] log E[eλZ]
≤ E[eλZV+] ≤ λ2(aE[ZeλZ] + bE[eλZ]),

where at the last step we used assumption (2.3).
Denoting, once again, F(λ) = E[eλZ], the above inequality becomes

λF ′(λ) − F(λ) logF(λ) ≤ aλ2F ′(λ) + bλ2F(λ).

After dividing both sides by λ2F(λ), once again we see that the left-hand side is
just the derivative of H(λ) = λ−1 logF(λ), so we obtain

H ′(λ) ≤ a
(
logF(λ)

)′ + b.

Using the fact that H(0) = F ′(0)/F (0) = EZ and logF(0) = 0, and integrating
the inequality, we obtain

H(λ) ≤ EZ + a logF(λ) + bλ,

or, if λ < 1/a,

logE
[
λ(Z − E[Z])]≤ λ2

1 − aλ
(aEZ + b),

proving the first inequality. The inequality for the upper tail now follows by
Markov’s inequality and Lemma 11. �

PROOF OF THEOREM 6. To prove lower-tail inequalities we obtain upper
bounds for F(λ) = E[exp(λZ)] with λ < 0. By the second inequality of
Proposition 10,

λE[ZeλZ] − E[eλZ] logE[eλZ]

≤
n∑

i=1

E
[
eλZψ

(
λ(Z(i) − Z)

)
1Z<Z(i)

]

≤
n∑

i=1

E
[
eλZλ2(Z(i) − Z)21Z<Z(i)

]
[using λ < 0 and that ψ(−x) ≤ x2 for x > 0]

= λ2
E[eλZV−]

≤ λ2
E[eλZg(Z)].

Since g(Z) is a nondecreasing and eλZ is a decreasing function of Z, Chebyshev’s
association inequality (see, e.g., [9]) implies that

E[eλZg(Z)] ≤ E[eλZ]E[g(Z)].
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Thus, dividing both sides of the obtained inequality by λ2F(λ) and writing
H(λ) = (1/λ) logF(λ), we obtain

H ′(λ) ≤ E[g(Z)].
Integrating the inequality in the interval [λ,0) we obtain

F(λ) ≤ exp
(
λ2

E[g(Z)] + λE[Z])
Markov’s inequality and optimizing in λ now implies the theorem. �

PROOF OF THEOREM 7. The key observation is that the function ψ(x)/x2 is
increasing if x > 0. Choose K > 0. Thus, for λ ∈ (−1/K,0), the first inequality
of Proposition 10 implies that

λE[ZeλZ] − E[eλZ] log E[eλZ]

≤
n∑

i=1

E
[
eλZψ

(−λ(Z − Z(i))
)
1Z>Z(i)

]

≤ λ2 ψ(K)

K2
E

[
eλZ

n∑
i=1

(Z − Z(i))21Z>Z(i)

]

≤ λ2 ψ(K)

K2 E[g(Z)eλZ],
where at the last step we used the condition on V+.

Just as in the proof of Theorem 6, we bound E[g(Z)eλZ] by E[g(Z)]E[eλZ].
The rest of the proof is identical to that of Theorem 6. �

PROOF OF THEOREM 8. Introduce Y = √
Z and Y (i) as

√
Z(i). Then

E

[∑
i

(Y − Y (i))21Y>Y (i)

∣∣∣Xn
1

]

= E

[∑
i

(√
Z −

√
Z(i)

)21Z>Z(i)

∣∣∣Xn
1

]

≤ E

[∑
i

(
Z − Z(i)

√
Z

)2

1Z>Z(i)

∣∣∣Xn
1

]

≤ 1

Z
E

[∑
i

(Z − Z(i))21Z>Z(i)

∣∣∣Xn
1

]
≤ W.

Thus, applying Theorem 2 for Y proves the statement. �
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PROOF OF THEOREM 9. For any p > 0,

E

[∑
i

(
Zp − (Z(i))p

)21Z>Z(i)

∣∣∣Xn
1

]

= E

[∑
i

(
Z

Z1−p
− Z(i)

Z(i)1−p

)2

1Z>Z(i)

∣∣∣Xn
1

]

≤ 1

Z2−2p
E

[∑
i

(Z − Z(i))21Z>Z(i)

∣∣∣Xn
1

]

≤ aZα+2p−2

where at the last step we used the condition of the theorem. The first inequality
is obtained by choosing p = (2 − α)/2 and invoking Corollary 3. The choice
p = 2 − α and Corollary 4 give the second inequality. �

4. Corollaries, relation to previous results. This section is devoted to
surveying some of the existing general concentration inequalities and to pointing
out their relationship to the inequalities presented in Section 2.

We first mention a classical inequality whose simplicity and the transparency of
its conditions have made it one the most useful concentration result. However, the
inequality is too rigid in many situations, as it does not take variance information
into account. It was proven explicitly first by McDiarmid [26].

PROPOSITION 12 (Bounded difference inequality). Assume that

sup
x1,...,xn,x′

i∈X

∣∣f (x1, . . . , xn) − f (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)

∣∣≤ ci,

1 ≤ i ≤ n.

Then, for all t > 0,

P[Z ≥ EZ + t] ≤ exp

{
−2t2

/ n∑
i=1

c2
i

}

and

P[Z ≤ EZ − t] ≤ exp

{
−2t2

/ n∑
i=1

c2
i

}
.

It is immediate to see that Corollary 3 implies (up to constant factors in the
exponent) the bounded difference inequality.

In a remarkable series of papers (see [32–34]), Talagrand developed an
induction method to prove powerful concentration results in many cases when the
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bounded difference inequality fails. Perhaps the most widely used of these is the
so-called “convex distance inequality” which we recall here:

PROPOSITION 13 (Convex distance inequality). For any subset A ⊆ Xn with
P[Xn

1 ∈ A] ≥ 1/2 and t > 0,

P[dT (Xn
1 ,A) ≥ t] ≤ 2e−t2/4,

where for any xn
1 = (x1, . . . , xn) ∈ Xn,

dT (xn
1 ,A) = sup

α∈[0,∞)n : ‖α‖=1
dα(xn

1 ,A)

denotes the convex distance of xn
1 from the set A. Here

dα(xn
1 ,A) = inf

yn
1 ∈A

dα(xn
1 , yn

1 ) = inf
yn

1 ∈A

∑
i : xi 
=yi

|αi |.

Even though at first sight it is not obvious how Talagrand’s result can be
used to prove concentration for general functions f of Xn

1 , apparently with
relatively little work, the theorem may be converted into very useful inequalities.
Talagrand [32] and Steele [31] survey a large variety of applications. Here we show
that Corollary 3 and Theorem 7 imply the convex distance inequality, though with
a worse constant in the exponent.

Define the random variable Z = dT (Xn
1 ,A). It is known [32] that dT (·, ·) can be

represented as a saddle point. Let M(A) denote the set of probabilities on A. Then

dT (Xn
1 ,A) = inf

ν∈M(A)
sup

α : ‖α‖2≤1

∑
j

αjEν

[
1Xj 
=Yj

]
= sup

α : ‖α‖2≤1
inf

ν∈M(A)

∑
j

αjEν

[
1Xj 
=Yj

]
,

where the saddle point is achieved. This follows from Sion’s minmax theorem [29]:
let f (x, y) denote a function from X × Y to R that is convex and lower-
semicontinuous with respect to x, concave and upper-semicontinuous with respect
to y, if X is convex and compact, then

inf
x

sup
y

f (x, y) = sup
y

inf
x

f (x, y) = min
x

sup
y

f (x, y).

The summation is indeed linear with respect to its two arguments. Moreover, let
us fix Xn

1 for a moment. Rather than minimizing in the large space M(A), we may
as well perform minimization on a convex closed set of probabilities on {0,1}n by
mapping yn

1 ∈ A on (1yj 
=Xj
)1≤j≤n. Let us denote this mapping by χ (note that the

mapping depends on Xn
1 , we omit this dependence to alleviate notation). The set
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M(A) ◦ χ−1 of image probability measures on {0,1}n coincides with M(χ(A)).

It is convex and compact. We may rewrite dT (Xn
1 ,A) as

sup
α : ‖α‖2≤1

inf
µ∈M(A)◦χ−1

∑
j

αjEµ[ωj ] = inf
µ∈M(A)◦χ−1

sup
α : ‖α‖2≤1

∑
j

αjEµ[ωj ]

where ω denotes a generic element of {0,1}n. Then the summation is continuous
with respect to its arguments, and the extrema are taken in compact spaces. If
(µ̂, α̂) is a saddle point in M(A)◦χ−1 ×R

n, then any ν̂ ∈ M(A) with ν̂ ◦χ−1 = µ̂

is such that (̂ν, α̂) is a saddle point.
Let (̂ν, α̂) be a saddle point for Xn

1 . We have

Z(i) = inf
ν∈M(A)

sup
α

∑
j

αjEν

[
1X

(i)
j 
=Yj

]≥ inf
ν∈M(A)

∑
j

α̂jEν

[
1X

(i)
j 
=Yj

]
.

Let ν̃ denote the distribution on A that achieves the infimum in the latter
expression. Now we have

Z = inf
ν

∑
j

α̂jEν

[
1Xj 
=Yj

]≤∑
j

α̂jEν̃

[
1Xj 
=Yj

]
.

Hence we get

Z − Z(i) ≤∑
j

α̂jEν̃

[
1Xj 
=Yj

− 1X
(i)
j 
=Yj

]= α̂iEν̃

[
1Xi 
=Yi

− 1X
(i)
i 
=Yi

]≤ α̂i .

Therefore V+ ≤∑i α̂
2
i = 1. Therefore, by Corollary 3, for any t > 0,

P
[
dT (Xn

1 ,A) − EdT (Xn
1 ,A) ≥ t

]≤ e−t2/4.

Note that by Efron–Stein inequality Var[dT (Xn
1 ,A)] ≤ E[V+] ≤ 1. Writing

P (A) = P[Xn
1 ∈ A], as by Chebyshev inequality:

P
[
dT (Xn

1 ,A) − EdT (Xn
1 ,A) ≤ −t

]≤ Var[dT (Xn
1 ,A)]

t2 ≤ 1

t2 ,

we get

EdT (Xn
1 ,A) ≤ 1√

P (A)
,

which is less than
√

2 if P (A) ≥ 1/2. Let a = √
2, plugging this into the upper-tail

inequality for dT (Xn
1 ,A) above, we get

P[dT (Xn
1 ,A) ≥ t + a] ≤ e−t2/4

but, for t > a, (t − a)2 ≤ t2/2 − 4 log2 and thus for such t’s,

P[dT (Xn
1 ,A) ≥ t] ≤ 2e−t2/8,

which, for P[Xn
1 ∈ A] ≥ 1/2, is Talagrand’s convex distance inequality except that

the constant 4 in the exponent is now replaced by the worse value 8.
Next we recall one of the corollaries of Proposition 13 which is at the basis of

many successful applications of the convex distance inequality.
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COROLLARY 14 (Configuration function bound). Assume that f :X → R
+ is

a configuration function, that is, for all x = (x1, . . . , xn) ∈ Xn, there exists a set
I ∈ {1, . . . , n} of indices such that f (x) = |I | and for all y = (y1, . . . , yn) ∈ Xn,
f (y) ≥∑i∈I 1xi=yi

. Then, for all t > 0, if MZ denotes the median of Z,

P[Z ≥ MZ + t] ≤ 2 exp
[
− t2

4MZ + 4t

]
and

P[Z ≤ MZ − t] ≤ 2 exp
[
− t2

4MZ

]
.

The configuration function bound has proved useful in obtaining sharp concen-
tration results for functions such as the length of the longest increasing subse-
quence in a random permutation, the length of the longest common subsequence
of two random strings, the number of occupied bins in “bins-and-balls” occupancy
problems, etc.

An improved version of the configuration function bound follows from the
following inequality which was proved in [4] using the logarithmic-Sobolev-
inequality approach.

PROPOSITION 15. Assume that f is nonnegative and that there exists a
function g :Xn−1 → R+ such that, for all x1, . . . , xn ∈ X:

(i) 0 ≤ f (x1, . . . , xn)−g(x1, . . . , xi−1, xi+1, . . . , xn) ≤ 1 for all i = 1, . . . , n;
(ii)

∑n
i=1 [f (x1, . . . , xn) − g(x1, . . . , xi−1, xi+1, . . . , xn)] ≤ f (x1, . . . , xn).

Then, for any t > 0,

P[Z ≥ EZ + t] ≤ exp
[
− t2

2EZ + 2t/3

]
and

P[Z ≤ EZ − t] ≤ exp
[
− t2

2EZ

]
.

It is easy to see that configuration functions satisfy the conditions of Proposi-
tion 15, and so the proposition is a generalization (and improvement) of the con-
figuration function bound. It is also shown in [4] that Proposition 15 may be used
to prove concentration bounds for other types of functions such as certain combi-
natorial entropies.

It is also clear that a function f satisfying the conditions of Proposition 15
satisfies the condition of Theorem 5 as well with b = 0 and a = 1. Thus, Theorem 5
may be considered as a generalization of Proposition 15, though the constants in
the bound of Proposition 15 are somewhat better.

In the next sections we present some new applications in which none of the cited
methods give satisfactory answers.
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5. Rademacher averages and chaos. The first applications we present
concern Rademacher averages and Rademacher chaos, quantities which play an
important role in empirical process theory and in the theory of probability in
Banach spaces; see, for example, Ledoux and Talagrand [19] and van der Vaart
and Wellner [35]. We start with investigating Rademacher averages of independent
Banach-space-valued random variables. We obtain a sharp concentration inequal-
ity as a simple application of Proposition 15. Second, we investigate the supremum
of Rademacher chaos and provide a simple and transparent proof of Talagrand’s
concentration inequality published in [33].

5.1. Rademacher averages. Let B denote a separable Banach space and let
X1, . . . ,Xn be independent and identically distributed bounded B-valued random
variables. Without loss of generality we assume that ‖X1‖ ≤ 1 almost surely. The
quantity of interest is the conditional Rademacher average

Z = E

[∥∥∥∥∥
n∑

i=1

εiXi

∥∥∥∥∥∣∣∣Xn
1

]

where the εi are independent centered {1,−1}-valued random variables. We offer
the following concentration inequalities for Z:

THEOREM 16. For any t > 0,

P[Z ≥ EZ + t] ≤ exp
[
− t2

2EZ + 2t/3

]
and

P[Z ≤ EZ − t] ≤ exp
[
− t2

2EZ

]
.

PROOF. It suffices to prove that the function f :Bn → R
+ defined by f (xn

1 ) =
E
[∥∥∑n

i=1 εixi

∥∥] satisfies the conditions of Proposition 15. Introduce

Zi = g(X1, . . . ,Xi−1,Xi+1, . . . ,Xn) = E

[∥∥∥∥∥
n∑

j=1,j 
=i

εjXj

∥∥∥∥∥∣∣∣Xn
1

]
.

Clearly, by monotonicity, Z ≥ Zi , and since the Xj are bounded, Z − Zi ≤ 1.
Let D denote a dense countable collection in the unit ball of the dual B∗ of B .

Then, for each choice of the εj , the Hahn–Banach theorem implies that there exists
some element vε ∈ D such that∥∥∥∥∥

n∑
i=1

εiXi

∥∥∥∥∥=
〈
vε,

n∑
j=1

εjXj

〉
.
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Then, for the same realization of the Rademacher variables,∥∥∥∥∥
n∑

j=1,j 
=i

εjXj

∥∥∥∥∥≥
〈
vε,

n∑
j=1,j 
=i

εjXj

〉
.

Hence, for any given realization of the Rademacher variables,

n∑
i=1

(Z − Zi) =
n∑

i=1

[∥∥∥∥∥
n∑

i=1

εiXi

∥∥∥∥∥−
∥∥∥∥∥

n∑
j=1,j 
=i

εjXj

∥∥∥∥∥
]

≤
n∑

i=1

〈vε, εiXi〉

=
∥∥∥∥∥

n∑
i=1

εiXi

∥∥∥∥∥= Z,

concluding the proof. �

Deriving (upper and lower) tail inequalities for conditional Rademacher
averages using Proposition 15 was previously carried out using the “control by
q-points” concentration inequality derived by Talagrand [19, 35] or the bounded
difference inequality. The first method did not seem to provide bounds for lower
tails and the second method provided a conservative inequality and did not seem to
be able to capture the fact that the conditional Rademacher averages may be much
smaller than

√
n. This point may be important in statistical applications.

5.2. Rademacher chaos. In this section F denotes a collection of n × n

symmetric matrices M , and ε1, . . . , εn are i.i.d. Rademacher variables. We assume
that if M ∈ F , then −M ∈ F . To avoid problems with measurability we assume
that F is a finite set. For convenience assume that the matrices M have zero
diagonal, that is, M(i, i) = 0 for all M ∈ F and i = 1, . . . , n. We investigate
concentration of the random variable

Z = sup
M∈F

∑
i,j≤n

εiεjM(i, j).

Suppose the supremum of the L2 operator norm of matrices (M)M∈F is finite, and
without loss of generality we assume that this supremum equals one, that is,

sup
M∈F

sup
α :
∑n

i=1 α2
i ≤1

α†Mα = 1

where α† denotes the transpose of the vector α = (α1, . . . , αn) ∈ R
n.

The next result is now obtained easily as a consequence of Corollary 4
and Theorem 5. A similar inequality appears in the revolutionary paper of
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Talagrand [33]. We believe that the proof presented here is more transparent than
Talagrand’s. Note also that Ledoux [17] already used the logarithmic-Sobolev-
inequality approach to prove a version of Talagrand’s theorem, but first Ledoux’s
constants are significantly worse than the ones obtained here, and second the tail
bound does not have exactly the same shape.

THEOREM 17. For all t > 0,

P{Z ≥ E[Z] + t} ≤ exp
(
− t2

32E[Y 2] + 65t/3

)
where the random variable Y is defined as

Y = sup
M∈F

(
n∑

i=1

(
n∑

j=1

εjM(i, j)

)2)1/2

.

PROOF. In order to apply Corollary 4, we need to obtain a suitable upper
bound for V+. This will be achieved by appealing to Theorem 5. If M∗ denotes
an element of F such that Z =∑

i,j : i 
=j εiεjM
∗(i, j) then by a straightforward

argument we see that for each k = 1, . . . , n,

E
[
(Z − Z(k))21Z>Z(k)

∣∣εn
1
]≤ 8

(
n∑

i=1

εiM
∗(i, k)

)2

and therefore

V+ = E

[
n∑

k=1

(Z − Z(k))21Z>Z(k)

∣∣∣εn
1

]

≤ 8 sup
M∈F

n∑
k=1

(
n∑

i=1

εiM(i, k)

)2

= 8Y 2.

We may now apply Corollary 4 if we can obtain a suitable bound for the moment
generating function of 8Y 2. We do this by applying the same method to the
variable Y 2. First, using the Cauchy–Schwarz inequality, note that

Y 2 = sup
M∈F

sup
α∈Rn : ‖α‖2≤1

(
n∑

i=1

εi

n∑
k=1

αkM(i, k)

)2

.

Introducing the notation bi = bi(M,α) = ∑n
k=1 αkM(i, k) we may rewrite the

expression of Y 2 as

Y 2 = sup
b

(
n∑

i=1

εibi

)2
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where the supremum is taken over all vectors b = b(M,α) = (b1(M,α), . . . ,

bn(M,α)) with M ∈ F and α :‖α‖2 ≤ 1. Let Y (i) be defined as

sup
b

(
n∑

j=1

ε
(i)
j bj

)2

.

Clearly, for all i ≤ n, (
Y 2 − Y (i)2)

1
Y 2>Y (i)2 ≤ 2Y (Y − Y (i)).

Hence, denoting by b∗ the vector that achieves Y 2 = (∑n
i=1 εib

∗
i

)2,

E

[(
Y 2 − Y (i)2)21

Y 2>Y (i)2
∣∣εn

1

]
≤ 4Y 2

E
[
(Y − Y (i))21Y>Y (i)

∣∣εn
1
]

≤ 4Y 2(b∗
i )

2
E[(εi − εi

′)2|εn
1 ]

≤ 8Y 2(b∗
i )

2.

From this it follows that

E

[
n∑

i=1

(
Y 2 − Y (i)2)21

Y 2>Y (i)2

∣∣∣εn
1

]
≤ 8Y 2 sup

b

n∑
i=1

b2
i .

But

sup
b

n∑
i=1

b2
i = sup

M∈F
sup

α∈Rn : ‖α‖2≤1

n∑
i=1

(
n∑

k=1

αkM(i, k)

)2

is just the maximal norm of the matrices M which we assumed to be equal to one.
Therefore,

E

[
n∑

i=1

(
Y 2 − Y (i)2)21

Y 2>Y (i)2

∣∣∣εn
1

]
≤ 8Y 2

hence Y 2 satisfies the conditions of Theorem 5 with a = 8 and b = 0. Thus, we
obtain

logE
[
exp
(
λ(Y 2 − E[Y 2]))]≤ λ2

1 − 8λ
8E[Y 2].

This bound is exactly of the form required by Corollary 4 which, in turn, implies
the stated inequality. �

Next we study lower-tail inequalities for Z. In this case we have been unable to
recover Talagrand’s bound which states a bound of the same form as that for the
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upper tail. Here we summarize an alternative bound which is an easy consequence
of Theorem 7.

Let U ′ denote

U ′ = sup
M∈F

max
i

∑
j

|M(i, j)| = sup
M∈F

sup
εn

1

max
i

∑
j

εjM(i, j).

Thus, U ′ is the supremum of the norms of the operators 	n∞ → 	n∞ defined by
the matrices M . Note that as the supremum of the L2 operator norm of matrices
(M)M∈F is at most U ′, U ′ ≥ 1.

In order to apply Theorem 7, we need first an upper bound on Z − Z(i) when
Z > Z(i). Let again M∗ denote an element of F such that

∑
i,j εiεjM

∗(i, j) =
supM∈F

∑
i,j εiεjM(i, j). Then

(Z − Z(i))1Z>Z(i) ≤ 4

∣∣∣∣∣∑
j

εjM
∗(i, j)

∣∣∣∣∣
≤ 4 sup

M∈F
sup
εn

1

max
i

∑
j

εjM(i, j)

≤ 4U ′.
Thus for λ ∈ [0,1/(4U ′)), using the same notation as above for Y ,∑

i

E
[
e−λZψ

(
λ(Z − Z(i))

)
1Z>Z(i)

]≤∑
i

λ2ψ(1)E
[
e−λZ(Z − Z(i))21Z>Z(i)

]
≤ λ2ψ(1)8E[e−λZY 2].

Hence for λ ∈ [0,1/(4U ′)),

logE[e−λ(Z−E[Z])] ≤ λ28ψ(1)E[Y 2]
1 − (8ψ(1))λ

.

Using Lemma 11, this leads to the following lower tail bounds. If either U ′≤ 2ψ(1)

or U ′ ≥ 2ψ(1) and t ≤ E[Y 2]((1 − 2ψ(1)/U ′)−2 − 1), then

P{Z ≤ E[Z] − t} ≤ exp
( −t2

16ψ(1)(2E[Y 2] + t/3)

)
.

On the other hand, if U ′ ≥ 2ψ(1) and t ≥ E[Y 2]((1 − 2ψ(1)/U ′)−2 − 1), then

P{Z ≤ E[Z] − t} ≤ exp
( −t

8U ′
U ′ − 2ψ(1)

U ′ − ψ(1)

)
.

These bounds should be compared with Theorem 1.2 in [33]. According to this
theorem, there exists a universal constant K such that

P{|Z − M[Z]| > t} ≤ 2 exp
(
− 1

K
min

(
t2

E2[Y ] , t
))

.
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As Y is concentrated around its mean, E[Y 2] and E
2[Y ] scale in the same way, and

deviations from above in Theorem 17 are controlled essentially in the same way
as in [33]. When U ′ is of the same order of magnitude as U this is also true for
deviations from below.

Theorem 17 should also be compared with Theorem 3.1 in Ledoux [17].
Ledoux’s tail bound has the form

P{Z + E[Z] + t} ≤ 2 exp
(
− 1

K
min

(
t,

t2

E[Z] + E2[Y ]
))

.

The term E[Z] in the denominator of the exponent appears because of the way
E[Y 2 exp(λZ)] is dealt with. Instead of using the decoupling device (3.1), Ledoux
uses a truncation argument and integration by parts.

For more information on related results on Rademacher chaos we refer the
reader to Ledoux and Talagrand [19] and Giné and de la Peña [6].

6. Counting small subgraphs in random graphs. Recently an important
body of work has been dedicated to the concentration of the number of occurrences
of certain small subgraphs in a random graph; see Kim and Vu [14], Vu [36, 37],
Janson and Ruciński [12, 13] and the references therein. The purpose of this
section is to point out that the inequalities presented in this paper provide a
convenient and often sharp tool for deriving such results. In particular, we study
two simple examples. First, we consider the number of triangles in a random
graph, and show how the best-known inequalities can be recovered by the new
methodology. Second, new concentration inequalities are derived for the number
of cycles of length four which improve the best-known results in a certain range of
the parameters.

Throughout the section, we consider the Erdös–Rényi G(n,p) model of a
random graph. Such a graph has n vertices and for each pair (u, v) of vertices
an edge is inserted between u and v with probability p, independently. We write
m = (n2), and denote the indicator variables of the m edges by X1, . . . ,Xm.

REMARK 1 (Janson’s inequality). For problems of the type studied in this
section, Janson’s inequality [10] provides a sharp tool to obtain upper bounds for
the lower tail. More precisely, let I denote a family of subsets of the edges and
define the number of occurrences of elements of I in the random graph by

Z =∑
α∈I

∏
i∈α

Xi .

One typical example is when I contains all triples of edges which form a triangle.
Write

Iα

=∏

i∈α

Xi.
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Then expectation and variance of Z can be computed easily:

E[Z] = ∑
α∈I

E[Iα],

Var[Z] =∑
α

(E[Iα] − E[Iα]2) + ∑
α,β : α∩β 
=∅

[
E[IαIβ] − E[Iα]E[Iβ ]].

Define

δ =
∑

α,β : α∩β 
=∅ E[IαIβ]
E[Z] .

Note that

Var[Z] ≤∑
α

E[Iα] + ∑
α,β : α∩β 
=∅

E[IαIβ] = (1 + δ)E[Z].

On the other hand, let k be the maximum cardinality of the sets in I. Then the
Efron–Stein estimate of the variance becomes

E[V−] =∑
i

E
[
(Z − Z(i))21Z<Z(i)

]

≤∑
i

E

[ ∑
α : i∈α

(Iα)2

]

=∑
i

E

[ ∑
α : ∈i∈α

Iα + ∑
α 
=β : i∈α∩β

IαIβ

]

=∑
α

∑
i∈α

E[Iα] + ∑
α 
=β

∑
i∈α∩β

E[IαIβ]

≤ k(1 + δ)E[Z]
which is k times larger than the direct bound on the variance.

Janson’s inequality states that for all t ∈ [0,EZ],

P[Z < EZ − t] ≤ exp
( −t2

2(1 + δ)E[Z]
)
.

This nice and elegant result is basically unimprovable. It is quite straightforward
to derive a similar inequality using the methods of this paper. More precisely (the
details are omitted), one obtains, using Theorem 6,

P[Z < EZ − t] ≤ exp
( −t2

4k(1 + δ)E[Z]
)
.

In typical cases k is a small constant (e.g., k = 3 in the case when I is the class of
all triangles) and we come within a constant factor of Janson’s inequality, though
we do not quite achieve it. The reason is that, as we have seen it above, the Efron–
Stein estimate is at least k times larger than the true value of the variance. This
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explains the appearance of the extra factor of k in the exponential version of the
Efron–Stein inequality.

In contrast to lower-tail bounds, obtaining sharp bounds for P[Z > EZ + t]
remains a challenge. Janson and Ruciński [12] give an excellent overview of the
different attempts that have been made to derive bounds for the upper tail. In the
next two subsections our aim is to demonstrate that the method of this paper may
be a serious contender to get sharp results.

6.1. Counting triangles. In this section we consider the number of triangles in
a random graph. A triangle is a set of three edges defined by vertices u, v,w such
that the edges are of the form {u, v}, {v,w} and {w,u}. Let Z denote the number
of triangles in a random graph. Note that

E[Z] = n(n − 1)(n − 2)

6
p3 ≈ n3p3

6
and

Var(Z) =
(

n

3

)
(p3 − p6) +

(
n

4

)(
4
2

)
(p5 − p6).

We offer the following exponential inequality for the upper tail probabilities of Z,
which matches the best results announced in [13].

THEOREM 18. Let K > 1. Then, for all 0 ≤ t ≤ (K2 − 1)EZ,

P{Z > E[Z] + t}

≤ exp
(
− t2

(K + 1)2E[Z](24np2 + 24 logn + 14t/((K + 1)
√

E[Z]))

∨ t2

12nE[Z] + 6nt

)
.

PROOF. We apply Theorem 8. First we derive a suitable bound for V+. If
v and u denote the extremities of edge i (1 ≤ i ≤ m), then we denote by Bi the
number of vertices w such that edges (u,w) and (v,w) exist in the random graph.
Then

V+ =
m∑

i=1

E
[
(Z − Z(i))21Z>Z(i) | Xm

1
]

=
m∑

i=1

Xi(1 − p)B2
i

≤
m∑

i=1

XiB
2
i .
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Since
∑m

i=1 XiBi = 3Z, we have

V+ ≤
m∑

i=1

Xi

(
max

j=1,...,m
Bj

)
Bi ≤

(
max

j=1,...,m
Bj

) m∑
i=1

XiBi ≤ 3
(

max
j=1,...,m

Bj

)
Z.

Using the trivial upper bound maxj Bj ≤ n and Theorem 5, one gets the second
upper bound in the theorem.

To obtain the first bound, we use Theorem 8. In order to do so, we need to bound
the moment generating function of W


= 3 maxj=1,...,m Bj . Observe that∑
i

(W − W(i))21W>W(i) ≤ 18W.

Hence, by Theorem 5,

logE
[
eλ(W−E[W ])]≤ 18λ2

E[W ]
1 − 18λ

.

Denote Y = √
Z. Theorem 8 leads to

log E
[
exp
(
λ(Y − E[Y ]))]≤ λ

1 − λ

(
18λ2

E[W ]
1 − 18λ

+ λE[W ]
)

≤ λ2
E[W ]

1 − 19λ
.

This, by Lemma 11, implies

P{Y > E[Y ] + t} ≤ exp
(
− t2

4E[W ] + 14t

)
.

W/3 is the maximum of m = (n
2

)
binomial random variables with parameters

(n,p2). In order to upper bound E[W/3], it is convenient to use the following
device which we learned from G. Pisier. Let Si with i ≤ m denote a sequence of
binomially distributed random variables with parameters n and p2. By Jensen’s
inequality,

E[W/3] ≤ log
(

E

[
max
i≤m

eSi

])
≤ log

(
E[meS1])

= logm + log
(
E[eS1])

≤ logm + (e − 1)np2

≤ 2 logn + 2np2.

Hence, we obtain the following bound for the tail of Y :

P{Y ≥ E[Y ] + t} ≤ exp
(
− t2

24(np2 + log n) + 14t

)
.



1606 S. BOUCHERON, G. LUGOSI AND P. MASSART

Now it is straightforward to get tail bounds for the number Z of triangles. Let
K > 1 be arbitrary, and assume that t ≤ (K2 − 1)E[Z]. Then

P{Z > E[Z] + t}
≤ P

{
Y ≥

√
E[Y 2]

√
1 + t/E[Y 2]

}
≤ P

{
Y ≥

√
E[Y 2](1 + t/

(
(K + 1)E[Y 2]))} (

since t ≤ (K2 − 1)E[Z])
≤ P

{
Y ≥ E[Y ] + t/

(
(K + 1)

√
E[Z])}

≤ exp
(
− t2

(K + 1)2E[Z](24np2 + 24 logn + 14t/((K + 1)
√

E[Z]))
)

as desired. �

To understand the inequality, we summarize some of its consequences for
different choices of t and for different ranges of the parameter p. For different
ranges of t , we obtain the following bounds:

(a) 0 ≤ t ≤ √
E[Z](np2 + log n):

P{Z ≥ E[Z] + t} ≤ exp
(
− t2

256E[Z](np2 + logn)

)
.

This is the “Gaussian” range. Note that, up to the log n term, the denominator
coincides with the variance.

(b)
√

E[Z](np2 + logn) ≤ t ≤ E[Z] ∧ n
√

E[Z]:

P{Z ≥ E[Z] + t} ≤ exp
(
− t

256
√

E[Z]
)
.

(c) E[Z] ∧ n
√

E[Z] ≤ t ≤ n2 ∨ E[Z], then, if n ≥ √
E[Z] and np2 + log n <√

E[Z]:

P{Z ≥ E[Z] + t} ≤ exp
(
−

√
t

256

)
,

otherwise

P{Z ≥ E[Z] + t} ≤ exp
(
− t2

18nE[Z]
)
.

(d) n2 ∨ E[Z] < t ,

P{Z ≥ E[Z] + t} ≤ exp
(
− t

18n

)
.
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REMARK 2. In [13], Table 2, Janson and Ruciński compare tail bounds
obtained by different methods for t = E[Z]. They actually relate the exponents
in tail bounds with n and p. Their results are best appreciated by letting n go to
infinity while keeping npα constant for some fixed α. The best relation they get is
obtained using some tailored version of the “deletion method.” They show that

−max
(

n

E[Z] ,
1√

E[Z]
)

logP{Z ≥ 2E[Z]}

remains bounded away from 0. This also follows from the bounds described above.

6.2. Counting occurrences of C4 in random graphs. A cycle C4 of length 4 is
a list of 4 vertices u, v,w, s such that edges (u, v), (v,w), (w, s) and (s, u) exist.
Let Z denote now the number of occurrences of C4 in a random graph and let
again m = (n2) and Xi = 1 if edge i exists in the random graph. If i denotes the pair
of vertices (u, v), let

Bi

= ∑

(w,s)

X(u,w)X(w,s)X(s,v),

where the sum is over pairs of vertices. This is not a sum of independent random
variables as it was the case when dealing with triangles. Note that

E[Z] = n!
8(n − 4)!p

4 ≈ n4p4

8
,

and that ∑
i

E
[
(Z − Z(i))2]≤∑

i

2p(1 − p)E[B2
i ].

We first apply Theorem 8 and observe that for some range of p, it provides
meaningful results.

In order to be able to apply Theorem 8, note that

E

[∑
i

(Z − Z(i))21Z>Z(i)

∣∣∣Xm
1

]
≤∑

i

XiB
2
i ≤ 4

(
max

i
Bi

)
Z.

Let now W = 4 maxi Bi .
Observe that for each i, Bi is dominated by a binomial with parameters n2

and p, and thus, by the union bound,

logE[eλW ] ≤ log E

[∑
i

e4λBi

]

≤ 2 logn + logE[eλB1]
≤ 4 logn + n2p(e4λ − 1).
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Here again, we define Y = √
Z. Using Theorem 8 and taking θ = λ, we get the

following upper bound:

logE
[
eλ(Y−E[Y ])]≤ λ2

1 − λ
log E[eW ].

Therefore,

P{Y ≥ E[Y ] + t} ≤ exp
(
− t2

2(2 logE[exp(W)] + t/3)

)
.

This leads, for example, to

P{Z ≥ 2E[Z]} ≤ exp
(
− n4p4

2(64e4n2p + 2n2p2)

)

≤ exp
(
− n2p3

128e8

)
.

As of this writing, this is the best available upper bound for p > n−1/3. In [13],
Table 2, when p > n−1/3 while n tends to infinity, the best bounds obtained using
the deletion method are of the form exp(−Cn4/3p), and this bound is weaker than
the one presented here since n4/3p < n2p3 is equivalent to p > n−1/3.

7. Minimum of the empirical risk. Concentration inequalities have been
used as a key tool in recent developments of model selection methods in non-
parametric classification. In this section we describe an application of logarithmic
Sobolev inequalities in this framework, which reveals a new phenomenon provid-
ing deeper insight into the model selection problem. In this section we simply
present the main result, the reader can consult the background in the recent work
of Koltchinskii and Panchenko [15], Massart [25] and Bartlett, Boucheron and
Lugosi [2].

Let F denote a class of {0,1}-valued functions on some space X. For simplicity
of the exposition we assume that F is finite. The results remain true for general
classes as long as the measurability issues are taken care of. Given an i.i.d.
sample Dn = (〈Xi,Yi〉)i≤n of n pairs of random variables 〈Xi,Yi〉 taking values
in X × {0,1}, for each f ∈ F we define the empirical risk

Ln(f ) = 1

n

n∑
i=1

	
(
f (Xi), Yi

)
where the loss function 	 is defined on {0,1}2 by

	(y, y′) = |y − y′|.
In nonparametric classification and learning theory it is common to select an
element of F by minimizing the empirical risk. The quantity of interest in this
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section is the minimal empirical risk

L̂ = inf
f ∈F

Ln(f ).

The bounded difference inequality (Proposition 12) immediately implies that
|L̂ − E[L̂]| is with overwhelming probability at most of the order of 1/

√
n. In

this section, we show that L̂ may be much more concentrated than predicted by
Proposition 12 if EL̂ is small and the class F is not too large. Getting tight results
for the fluctuations of L̂ provides better insight into the calibration of penalties in
certain model selection methods.

In the sequel W denotes the supremum of the empirical process indexed by F :

W = n sup
f∈F

|Ln(f ) − ELn(f )|.

Also, introduce

v = E

[
sup
f ∈F

n∑
i=1

(
	
(
f (Xi), Yi

)− 	
(
f (Xi

′), Yi
′))2].

v plays a key role in Theorem 19 below. It is shown in [24] that

v ≤ 2n

(
sup
f ∈F

L(f )
(
1 − L(f )

))+ 16E[W ]

≤ n

2
+ 16E[W ].

The main result of this section is the following.

THEOREM 19. Let a = 33
8 + (e−1)v

8nE[L̂]+4E[W ] . Then, for all t > 0,

P
[
L̂ > E[L̂] + t

]≤ exp
(
− nt2

25E[L̂]/2 + 25E[W ]/(4n) + 2at/3

)
and for t ∈ [0,E[L̂]),

P
[
L̂ < E[L̂] − t

]≤ exp
(
− nt2

4E[L̂] + 4E[W ]/n + 4tv(e − 1)/(nE[L̂] + E[W ])
)
.

It is well known that if F is, for example, a Vapnik–Chervonenkis class
then E[W ]/n is bounded by c

√
d/n where d is the VC dimension of F and

c is a constant (see, e.g., [35]). Thus, the main message of Theorem 19 is that

typical fluctuations of L̂ are of the order of
√

E[L̂]/n + d1/4n−3/4 (at least when

E[L̂] ≥ n−1) which may be significantly smaller than the n−1/2 suggested by the
bounded difference inequality, since in typical applications E[L̂] is small.

In the proof we make use of a recent result of Massart [24] for the concentration
of W :
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LEMMA 20. Let φ(λ) = exp(λ) − λ − 1. Then, for all λ ∈ (0,1),

logE
[
eλ(W−E[W ])]≤ λ2v

1 − λ

(
1 + φ(λ)

λ

)
≤ λ2(e − 1)v

1 − λ
.

PROOF OF THEOREM 19. Introduce Z = nL̂. The analysis is based on the
second inequality of Proposition 10. Let

Z(i) = min
f ∈F

[∑
j 
=i

	
(
f (Xj ), Yj

)+ 	
(
f (Xi

′), Yi
′)]

where 〈Xi
′, Yi

′〉 is independent of Dn and has the same distribution as 〈Xi,Yi〉.
Let g denote a (possibly nonunique) minimizer of the empirical risk. The key
observation is that

(Z(i) − Z)21Z(i)>Z ≤ (	(g(Xi
′), Yi

′)− 	
(
g(Xi), Yi

))21Z(i)>Z

= 	
(
g(X′

i ), Y
′
i

)
1	(g(Xi),Yi)=0.

Thus,

V− ≤ ∑
i : 	(g(Xi),Yi)=0

EX′
i ,Y

′
i

[
	
(
g(X′

i ), Y
′
i

)]≤ nL(g).

Since

nL(g) = Z + (nL(g) − Z) ≤ Z + n sup
f∈F

(
ELn(f ) − Ln(f )

)≤ Z + W,

we obtain

V− ≤ Z + W.(7.1)

This upper bound fits neither entirely in the framework of Corollary 4 nor
completely in the framework of Theorem 5, but a simple modification of their
proofs yields the desired result. For the sake of completeness we detail the proof
in the sequel.

First we derive the upper-tail inequality, proceeding similarly as in the proof of
Theorem 7. Assume that λ ∈ [0,4/5). By the second inequality in Proposition 10,
and the fact that x−2ψ(x) is increasing and that ψ(4/5) < 1 we obtain

λE[ZeλZ] − E[eλZ] logE[eλZ] ≤ 25
16

n∑
i=1

λ2
E
[
eλZ(Z(i) − Z)21Z(i)>Z

]
= 25

16λ2
E[V−eλZ]

≤ 25
16λ2

E[eλZ(Z + W)].
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The right-hand side may be further bounded as follows:

E[eλZ(Z + W)]
= E[ZeλZ] + E[W ]E[eλZ] + E[(W − E[W ])eλZ]
≤ 2E[ZeλZ] + E[W ]E[eλZ]

+ E[eλZ]
λ

logE
[
eλ(W−E[W ])]− E[eλZ]

λ
logE[eλZ] [by (3.1)]

≤ 2E[ZeλZ] +
(

E[W ] + (e − 1)vλ

1 − λ

)
E[eλZ]

where at the last step we used Lemma 20 and the fact that logE[eλZ] ≥ 0. This
leads, for λ < 8/25, to(

1

λ
− 25

8

)
E[ZeλZ]
E[eλZ] − 1

λ2
logE[eλZ] ≤ 25

16

(
E[W ] + (e − 1)vλ

4(1 − λ)

)
.

Denoting F(λ) = E[eλZ], this translates into the differential inequality(
1

λ
− 25

8

)
F ′(λ)

F (λ)
− 1

λ2 logF(λ) ≤ 25

16

(
E[W ] + (e − 1)v

4

λ

1 − λ

)
.

Now observe that the left-hand side is just the derivative of 1−25λ/8
λ

logF(λ). Thus,
by integrating both sides of the inequality, we have

log F(λ) ≤ λ

1 − 25λ/8

(
E[Z] + 25

16
λE[W ] + 25(e − 1)v

64

(
log

1

1 − λ
− λ

))

≤ λ

1 − 25λ/8

(
E[Z] + 25

16
λE[W ] + 25(e − 1)v

64

λ2

1 − λ

)
.

After centering, we get

log E
[
eλ(Z−E[Z])]≤ λ2

1 − 25λ/8

25

16

(
2E[Z] + E[W ] + (e − 1)v

4

λ

1 − λ

)
.

To bring the bound into a manageable form, after elementary calculations, we
obtain

logE
[
eλ(Z−E[Z])]≤ 25

16

λ2

1 − (25/8 + (1 ∨ (e − 1)v/(4E[2Z + W ])))λ
× (E[2Z + W ]).

Introducing a = (25
8 +1∨ (e − 1)v/(4E[2Z + W ])) ≥ 4/5 and applying Markov’s

inequality we obtain

P[Z > E[Z] + t] ≤ exp
(
− sup

λ∈[0,1/a]

[
λt − λ2

1 − aλ

25

16
E[2Z + W ]

])
.

Lemma 11 now yields the first inequality of the theorem.
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The lower-tail inequality also follows from (7.1), but now we use the second
inequality of Proposition 10 for negative values of λ. For all λ < 0, we have

λE[ZeλZ] − E[eλZ] logE[eλZ] ≤
n∑

i=1

λ2
E
[
eλZ(Z(i) − Z)21Z(i)>Z

]
=

n∑
i=1

λ2
E[V−eλZ]

≤ λ2
E[eλZ(Z + W)].

Note that for λ < 0, (3.1) gives

E[eλZW ] = E[e−λ(−Z)W ]
≤ −1

λ

(
E[λZeλZ] − E[eλZ] log E[eλZ] + E[eλZ] log E[e−λW ]).(7.2)

Once again, using (3.1) and Lemma 20, we have, for all λ ∈ (−1,0),

E[eλZ(Z + W)] ≤ E[ZeλZ] + E[W ]E[eλZ] + E
[
(W − E[W ])eλZ

]
≤ E[ZeλZ] + E[W ]E[eλZ] − E[ZeλZ]

+ E[eλZ]
λ

logE[eλZ] − E[eλZ]
λ

logE
[
e−λ(W−E[W ])]

≤ E[W ]E[eλZ] + E[eλZ]
λ

logE[eλZ] − E[eλZ]λ(e − 1)v

1 + λ

which leads to
1

λ

E[ZeλZ]
E[eλZ] − 1 + λ

λ2 log E[eλZ] ≤ E[W ] − λ(e − 1)v

1 + λ
.

Now letting H(λ) = e−λ

λ
log F(λ) with F(λ) = log E[exp(λZ)], the preceding

inequality translates into the differential inequality

eλH ′(λ) ≤ E[W ] − λ(e − 1)v

1 + λ

which, after integrating both sides, gives

E[Z] − H(λ) ≤ −E[W ](1 − e−λ) + v(e − 1)

2

λ2e−λ

1 + λ
.

Finally, for all λ ∈ (−1,0),

logE
[
eλ(Z−E[Z])]≤ λ(eλ − 1)E[Z + W ] − v(e − 1)

2

λ3

1 + λ

≤ λ2
E[Z + W ]

(
1 − v(e − 1)

2E[Z + W ]
λ

1 + λ

)
,

where in the last line we used the fact that λ(exp(λ) − 1) ≤ λ2 for λ ≤ 0. Now,
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assuming λ ∈ (−1/2 ∧ E[Z + W ]/(2v(e − 1)),0) we may deduce the following
upper bound:

logE
[
eλ(Z−E[Z])]≤ λ2

E[Z + W ]
1 + λv(e − 1)/E[Z + W ] .(7.3)

Once again, Markov’s inequality for λ ∈ (−1/2 ∧ 2E[Z + W ]/(v(e − 1)),0]
and invoking Lemma 11 completes the proof of the second inequality of
Theorem 19. �
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