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NONDIFFERENTIABILITY OF THE TIME CONSTANTS
OF FIRST-PASSAGE PERCOLATION

BY J. MICHAEL STEELE AND YU ZHANG

University of Pennsylvania and Colorado State University

We study the paths of minimal cost for first-passage percolation in two
dimensions and obtain an exponential bound on the tail probability of the
ratio of the lengths of the shortest and longest of these. This inequality
permits us to answer a long-standing question of Hammersley and Welsh on
the shift differentiability of the time constant. Specifically, we show that for
subcritical Bernoulli percolation the time constant is not shift differentiable
when p is close to one-half.

1. Introduction and main results. As usual in percolation theory, we view
the two-dimensional rectangular lattice Z

2 as a graph with an edge e between
each pair of vertices u and v in Z

2 for which ‖u − v‖ = 1 where the norm is
defined by ‖u − v‖ = |u1 − u2| + |v1 − v2|. We identify the edge e = (u, v)

with the open line segment in R
2 from u to v, and to each edge we associate a

random variable x(e) that one may view as the amount of time that is needed to go
from u to v. In general, the random variables {x(e)} are assumed to be independent
with a common distribution F that has a finite mean, but, in fact, we are mainly
concerned with Bernoulli random variables and shifted Bernoulli variables (i.e.,
random variables that take the values t and t + 1 with probability p and 1 − p,
respectively).

A path γ from the vertex u to the vertex v is understood to be an alternating
sequence of distinct vertices and edges {v0, e1, v1, . . . , en, vn} such that ei is the
edge between vi−1 and vi , and the terminal vertices are v0 = u and vn = v; so, for
us, a path is always a self-avoiding path. Finally, we use |γ | to denote the length,
or, more precisely, the number of edges in the path γ .

For any path γ , the passage time of γ is defined to be the sum

τ (γ ) = ∑
e∈γ

x(e),

and the first-passage time from u to v is defined as the infimum of τ (γ ) over
all γ paths in Z

2 from u to v. When u = (m,0) and v = (n,0), the first-
passage time is denoted by am,n, and a key property of the random variables
{am,n : 0 ≤ m < n < ∞} is that they form a subadditive process in the sense of
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Kingman, so Kingman’s subadditive ergodic theorem then tells us that there exists
a finite constant µ(F ) such that

lim
n→∞a0,n/n = µ(F ) almost surely and in L1.(1.1)

The time constant µ(F ) defined by the limit (1.1) has been studied extensively,
but much remains unknown about its behavior. The main idea pursued here is that
useful information about µ(F ) may be obtained by studying the ratio of lengths of
the longest path and the shortest path that are contained in a set of minimum cost
paths from u to v.

Lengths of shortest routes. The set of all paths from u to v in Z
2 is denoted

by P [u, v], and a path from u to v that attains the minimal cost over all possible
paths is called a route. Hammersley and Welsh (1965) observed that since P [u, v]
is infinite, the set of such optimal time paths can be empty, but they proved that
if the edge times {x(e)} are bounded then the set of routes R[u, v] is nonempty
with probability 1. Hammersley and Welsh also conjectured that the boundedness
hypothesis could be dropped, and this was later confirmed by results of Smythe
and Wierman (1977) and Wierman and Reh (1978).

One of the many useful quantities introduced in Hammersley and Welsh (1965)
is the length Nn of the shortest route from (0,0) to (n,0), or

Nn = min
{|γ | :γ ∈ R[(0,0), (n,0)]}.

The asymptotic behavior of Nn is not as well understood as one might like,
but some basic facts are known. In particular, in the supercritical case when
F(0) > 1/2, Zhang and Zhang (1984) proved that there is a finite constant λ(F )

such that

lim
n→∞Nn/n = λ(F ) almost surely and in L1.

It is still not known if Nn/n converges when F(0) ≤ 1/2, but Kesten (1980) proved
that for F(0) < 1/2 there are constants h = h(F ) < ∞ and C = C(F ) > 0 such
that

P (Nn ≥ hn) ≤ exp(−Cn),(1.2)

so for F(0) < 1/2 we at least know

1 ≤ lim inf Nn/n ≤ lim supNn/n ≤ h almost surely.(1.3)

Although these results may seem to suggest that one also has a genuine limit
for Nn/n in the subcritical case F(0) < 1/2, a proof of this conjecture still seems
far away. Moreover, the behavior of Nn/n in the critical case F(0) = 1/2 suggests
that the problem may be quite subtle. For example, Kesten [(1986), page 259]
conjectures that the ratio Nn/n should diverge to infinity when F(0) = 1/2.
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The Hammersley–Welsh differentiation principle. Hammersley and Welsh
(1965) also studied the problem of the convergence of Nn/n, and they discovered
a remarkable connection between this convergence problem and the smoothness
of the function µ(F ) under certain perturbations of F . More precisely, their idea
was to relate their original percolation problem with edge weights {x(e)} to a new
percolation problem with edge weights x′(e) = x(e) + t for some small t ∈ R.

If we use F ⊕ t = F(x − t) to denote the distribution of x(e) + t and write
µ(F ⊕ t) to denote the corresponding time constant, then Hammersley and Welsh
[(1965), page 101] proved that µ(F ⊕ t) is a concave function of t on any open
interval I where µ(F ⊕ t) is finite. As a consequence of this concavity, one sees
that the left derivative D−µ(F ⊕ t) and the right derivative D+µ(F ⊕ t) both
exist for all t ∈ I . More notably, Hammersley and Welsh discovered that in some
important cases that the convergence of Nn/n would follow if one could show
the smoothness of µ(F ⊕ t) as a function of t . This convergence criterion was
subsequently refined by Smythe and Wierman [(1978), pages 129–130] and Kesten
(1980) who proved that if F(0) < 1

2 then with probability one we have

D+µ(F ⊕ t)
∣∣
t=0 ≤ lim inf

n→∞ Nn/n ≤ lim sup
n→∞

Nn/n ≤ D−µ(F ⊕ t)
∣∣
t=0.(1.4)

This result naturally implies that Nn/n must converge with probability one if the
time constant µ(F ⊕ t) is differentiable at t = 0.

For many years, the convergence criterion of Hammersley and Welsh has
offered a tantalizing approach to the asymptotic behavior of Nn, but even long-
standing prospects may prove illusory. The main result obtained here reveals that
the Hammersley–Welsh criterion faces a fundamental limitation. We will show
that the function φ(t) = µ(F ⊕ t) fails to be differentiable at zero for the most
interesting choices of the edge weight distribution F .

THEOREM 1 (Nondifferentiability of the time constant). There exist constants
δ > 0 and ρ > 1 such that for all 1

2 − δ ≤ p < 1
2 , the Bernoulli percolation with

F(0) = p satisfies

D−µ(F ⊕ t)
∣∣
t=0 ≥ ρD+µ(F ⊕ t)

∣∣
t=0.(1.5)

Moreover, D+µ(F ⊕ t) ≥ 1 for all t ≥ 0, so the function φ(t) = µ(F ⊕ t) is not
differentiable at zero.

For Bernoulli percolation one often writes µ(p) in place of µ(F ), and
one should take care not to misread Theorem 1 as an assertion about the
nondifferentiability of µ(p) as a function of p. The theorem rather addresses
the nondifferentiability of the time constant φ(t) = µ(F ⊕ t) of the t-shifted
Bernoulli distribution with edge probability parameter p. Specifically, it tells us
that for subcritical p close to one-half the t-shifted Bernoulli time constants are
not differentiable as a function of the shift size t . This is precisely the type of
nondifferentiability that one needs in order to show that the Hammersley–Welsh
program for proving the convergence of Nn/n cannot be completed.
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Organization of the arguments. The proof of Theorem 1 requires the devel-
opment of several tools that may be useful for other problems of two-dimensional
first-passage percolation. Our main technical results, Theorems 2 and 3, tell us that
one has considerable flexibility in the choice of a minimal cost path. The first of
these shows how one can find a large number of opportunities for “surgeries” that
change the length of a path, and the second shows how such surgeries can be used
in near-critical, subcritical Bernoulli percolation to find minimum cost paths that
have greatly different lengths. Once Theorem 3 is obtained, the nondifferentiabil-
ity theorem can be proved by easy estimates of the difference quotient inequalities
that one finds from an elementary optimality argument.

The next two sections develop technical results that permit us to restrict our
attention to paths that have minimal cost among the paths that are confined to stay
within certain rectangles, rather than paths that may wander all over Z

2. Section 3
then develops geometric features of the dual lattice that lead to an essential device
for exploiting the independence of the edges above and below a fixed path, while
Section 4 shows how a theorem of Turán from graph theory can be used to find a
large number of disjoint boxes along any path.

Our main structural arguments are then given in Sections 5 and 6. The first
of these helps us see that one can either perform a “surgery-to-lengthen” or a
“surgery-to-shorten” many times on almost any path. These arguments are largely
combinatorial (or topological). Section 6 then brings probability back into play and
assembles all of the pieces that are needed in order for us to complete the proof of
Theorem 3 in Section 7.

2. Cylinder variables. For any integers 0 ≤ m < n and any h ∈ R
+ ∪ {∞},

we let S(m,n,h) denote the set of all paths from the point (m,0) to the point (n,0)

with edges that are contained in the open real rectangle (m,n)× (−h,h). If we let

tm,n(h) = inf{τ (γ ) :γ ∈ S(m,n,h)},
then the process {tm,n(h) : 0 ≤ m < n < ∞} is a natural “rectangular” analog of
the point-to-point passage time process {an,m}. As before, one can easily check
that {tm,n(h)} is a subadditive process, and the next lemma confirms that if h goes
to infinity linearly with n then the process {tm,n(h)} behaves much like {an,m}. In
this lemma (and subsequently), we write an,m(F ) or tm,n(h;F) whenever there
is reason to emphasize the dependence of these processes on the underlying edge
weight distribution F .

LEMMA 1. If the edge weights {x(e)} are nonnegative and have a distribu-
tion F with a finite mean, then for all α > 0 we have

µ(F )
def= lim

n→∞a0,n(F )/n = lim
n→∞ t0,n(αn;F)/n,

where the convergence takes place almost surely and in L1.
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PROOF. The proof of the lemma combines a general subadditivity argument
with a result of Smythe and Wierman that covers the case of h = ∞. Specifically,
we will use the fact from Smythe and Wierman [(1978), page 79] that

lim
n→∞ t0,n(∞)/n = µ(F ) a.s. and in L1.(2.1)

First, from the limit (2.1), we see that for any ε > 0 there is an N such that

E[t0,N (∞)] ≤ N
(
µ(F ) + ε

)
.

As k → ∞ the bounded random variables t0,N (k) converge to t0,N (∞), and they
are dominated by the integrable random variable t0,N (1), so we can choose a K

such that

E[t0,N (K)] ≤ N
(
µ(F ) + 2ε

)
.(2.2)

Now, by subadditivity we have

t0,n(K) ≤ ∑
1≤j≤
n/N�

t(j−1)N,jN(K) + t
n/N�N,n(K),(2.3)

so the mean bound (2.2), the law of large numbers and the Borel–Cantelli lemma
permit us to deduce that

lim sup
n→∞

t0,n(K)/n ≤ µ(F ) + 2ε a.s.(2.4)

Also, suboptimality gives us the bounds

t0,n(∞) ≤ t0,n(αn) ≤ t0,n(K) for all n ≥ K/α,(2.5)

so, if we use (2.1) to estimate the lower bound and use (2.4) and to estimate the
upper bound, we have

µ(F ) ≤ lim inf
n→∞ t0,n(αn)/n ≤ lim sup

n→∞
t0,n(αn)/n ≤ µ(F ) + 2ε a.s.

Since ε > 0 is arbitrary, the last inequality gives us the required almost sure
convergence. Finally, 0 ≤ t0,n(αn) ≤ t0,n(1) and t0,n(1) is simply a sum of
n i.i.d. random variables with finite mean. For such sums, the set of random
variables {t0,n(1)/n : 1 ≤ n < ∞} is well known to be uniformly integrable. The
collection {t0,n(αn)/n : 1 ≤ n < ∞} is therefore also uniformly integrable, so the
L1 convergence follows from the almost sure convergence. �

The preceding lemma only deals with nonnegative edge weights, but we also
need some information on t0,n(αn;G) with a general edge weight distribution G.
The hypotheses of Lemma 1 can be relaxed slightly, but such relaxations
greatly complicate the proof. Fortunately, we can scrape along with the modest
observation that for any G with finite mean and for any positive α we have

µ(G) ≤ lim inf
n→∞ t0,n(αn;G)/n a.s.,(2.6)

a fact that follows immediately from the suboptimality bound a0,n ≤ t0,n(αn).
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For Bernoulli percolation, one easily obtains a much more precise understand-
ing of t0,n(αn). As the next lemma shows, a generic subadditivity argument is good
enough to give us a useful exponential bound on its upper tail.

LEMMA 2. For Bernoulli percolation with parameter 0 < p < 1 and for any
choice of ε > 0 and α > 0, there exist positive constants C0 = C0(ε,p,α) > 0 and
C1 = C1(ε,p,α) > 0 such that

P
(
t0,n(αn) ≥ n

(
µ(p) + ε

)) ≤ C0 exp(−C1n) for all n ≥ 1.(2.7)

PROOF. The subadditivity inequality (2.3) holds for all natural K and N , so,
if we let K = 
αn�, we find that for all n and N we have

t0,n(αn) ≤ ∑
1≤j≤
n/N�

t(j−1)N,jN(αn) + t
n/N�N,n(αn)

≤ N + ∑
1≤j≤m

Zj ,

where m = 
n/N� and Zj = t(j−1)N,jN(αn). The {Zj : 1 ≤ j ≤ m} are indepen-
dent, and they satisfy |Zj − E(Zj)| ≤ N , so, by the large deviation inequality for
bounded random variables [say, as given by Bennett (1962), Equation 8b], one has
for all λ > 0 that

P
(
Z1 + Z2 + · · · + Zm − mE(Z1) ≥ λ

) ≤ exp(−λ2/2mN2).(2.8)

By Lemma 1, we can choose N so that E(Zj) = E[t0,N (αN)] is bounded above
by N(µ(p) + ε/2), so for all m such that mε ≥ 4, we have

P
(
t0,n(αn) ≥ n

(
µ(p) + ε

)) ≤ P
(
Z1 + Z2 + · · · + Zm ≥ n

(
µ(p) + ε

) − N
)

≤ P
(
Z1 + Z2 + · · · + Zm − mE(Z1) ≥ mNε/2 − N

)
≤ exp

(−1
2m(ε/4)2)

.

Since m ≥ n/N − 1 we have mε > 4 for large n, and the last inequality gives
us our bound (2.7); to cover the smaller values of n, one then just increases C0.
We will not need the explicit values here, but one can check that C0 = e and
C1 = exp(ε2/64N) will suffice for all n ≥ 1. �

Tail bounds for the maximum deviation. Another random variable that will
help us restrict out attention to well-behaved paths is given by

Hn(k) = max
{|y| : (x, y) is a vertex of γ ∈ S(0, n, k) and τ (γ ) = t0,n(k)

}
,

so, Hn(k) is the maximum deviation from the x-axis over all minimum cost paths
in S(0, n, k). To estimate the tail probabilities for Hn(k), first consider the random
variable b′

0,n that we define to be the infimum of the cost τ (γ ) over all paths
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in Z
2 from the vertex (0,0) to any point on the line {(x, n) ∈ Z

2 :x ∈ Z}. The
behavior of this random variable is already well understood, and, after a rotation
of coordinates, the results of Grimmett and Kesten [(1984), pages 343–344] tell us
that for Bernoulli percolation with parameter p and for any ε > 0 that there exist
nonnegative constants C0 = C0(p, ε) and C1 = C1(p, ε) such that

P
(
b′

0,n ≤ n
(
µ(p) − ε

)) ≤ C0 exp(−C1n) for all n ≥ 1.(2.9)

Given this bound, one can get a useful estimate for the tail probabilities of Hn(k)

just by looking at the elementary geometry of paths. The next lemma puts this
observation into the form that will be used later.

LEMMA 3. For subcritical Bernoulli percolation with parameter p, there exist
positive constants C0 = C0(p) and C1 = C1(p) such that

P
(
Hn(3n) ≥ 2n

) ≤ C0 exp(−C1n) for all n ≥ 1.

PROOF. The first observation is that for every

ω ∈ {
t0,n(3n) ≤ n(3µ(p)/2), Hn(3n) ≥ 2n

}
there exists a path with costs bounded by n(3µ(p)/2) that goes from (0,0) to the
line segment {(x,2n) :x ∈ (0, n)} or to the line segment {(x,−2n) :x ∈ (0, n)}.
Since the quantities b′

0,2n and b′
0,−2n defined above have the same distribution, we

therefore find

P
(
t0,n(3n) ≤ n

(
3µ(p)/2

)
,Hn(3n) ≥ 2n

)
≤ 2P

(
b′

0,2n ≤ n
(
3µ(p)/2

))
= 2P

(
b′

0,2n ≤ 2n
(
µ(p) − ε

))
,

where ε = µ(p)/4. The last probability has an exponential bound given by the
Grimmett–Kesten inequality (2.9), and by Lemma 2 we also have an exponential
bound on P (t0,n(3n) ≥ n(3µ(p)/2)). Together these bounds complete the proof
of the lemma. �

3. Grounding paths in the dual lattice. We now let Z
∗2 denote the dual

lattice of Z
2 and we view Z

∗2 as a graph with vertex set

V = {
v :v = w + (1/2,1/2) with w ∈ Z

2}
and with edge set consisting of all pairs of vertices (u, v) such that ‖u − v‖ = 1.
For any subset A of edges in Z

2, we let A∗ denote the subset of edges of Z
∗2

that meet A, and for any edge e of Z
2 we let e∗ denote the unique edge

of Z
∗2 that meets e. Finally, we define the cost x(e∗) of the dual edge e∗ by set-

ting x(e∗) = x(e).
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Next, we let ∂n denote the piecewise linear curve that starts at (0,0) and
that subsequently visits the points (0,−3n), (n,−3n), and (n,0) in that order;
equivalently, ∂n consist of the boundary of the box [0, n] × [0,−3n] minus the
points on the open segment (0, n)×{0}. For each γ ∈ S(0, n,3n), the set ∂n ∪ γ is
a simple closed curve of R

2, and we let int(∂n ∪ γ ) denote the open subset of R
2

bounded by ∂n ∪ γ . For each edge e ∈ γ , the dual edge e∗ has exactly one vertex
in int(∂n ∪ γ ), and we let v(e∗) denote that vertex.

DEFINITION 1 [The event G(γ )]. For each γ ∈ S(0, n,3n), we define the
event G(γ ) to be the set of all ω such that for each e ∈ γ there exists a path γ̃ in
the dual lattice Z

∗2 with the following four properties:

1. γ̃ starts at the vertex v(e∗) in int(∂n ∪ γ ),
2. the last edge of γ̃ is an edge of ∂∗

n ,
3. every edge of γ̃ except its last edge is contained in the open subset of R

2 given
by int(∂n ∪ γ ), and

4. one has x(f ) = 1 for all f ∈ γ̃ , except possibly for the last edge of γ̃ .

The G(γ ) as a “covering partition.” The events G(γ ) with γ ∈ S(0, n,3n)

do not quite form a covering partition of the sample space, but in some ways
they come close. Specifically, Lemma 4 tells us that they have a useful coverage
property, and Lemma 5 tells us that the G(γ ) are disjoint subject to a certain natural
restriction.

LEMMA 4. For any integers 0 ≤ i < ∞ and 1 ≤ n < ∞, we have{
t0,n(3n) = i,Hn(3n) < 2n

} ⊂ ⋃
γ∈S(0,n,2n)

{τ (γ ) = i} ∩ {t0,n(3n) = i} ∩ G(γ ).

The proof of this lemma requires some understanding of the topology of the
closed paths in Z

2. In particular, we need a proposition from Kesten (1982) that
tells us about the structure of a closed path α that is made up out of four arcs (or
subpaths). To be explicit, we recall that an arc is like a path in that it consists of an
alternating sequence of vertices and connecting edges, but, unlike a path, an arc is
not required to begin with a vertex or to end with a vertex. In particular, an arc can
be a single vertex, a single edge, or any contiguous part of a path—such as a path
minus its two end points.

Now consider a closed path α in Z
2 that is made up of four arcs α1, α2,

α3 and α4 that one meets in clockwise order as one traverses α, and let int(α)

denote the bounded open subset of R
2 that has α as its boundary. Proposition 2.2 of

Kesten (1982) tells us that if α1 and α3 each contain at least one vertex of Z
2, and,

if ω is any configuration of zero–one edge weights, then one of the two following
assertions must hold.
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Direct assertion. There exists a path β in Z
2 such that each edge of β is in

int(α) and such that (1) γ starts at a vertex of α1, (2) β ends at a vertex of α3, and
(3) for each edge e ∈ β , one has x(e) = 0.

Dual assertion. There exists a path β in Z
∗2 such that each edge of β except

the first and the last is in int(α) and such that (1) β starts with an edge of α∗
2 ,

(2) β ends with an edge of α∗
4 , and (3) for each edge f ∈ β (except possibly for

the first edge or the last edge of β), one has x(f ) = 1.

To prove Lemma 4, we just need to show for any ω ∈ {t0,n(3n) = i,
Hn(3n) < 2n} we can find a γ ∈ S(0, n,2n) such that τ (γ ) = i and ω ∈ G(γ ).
We will produce such a γ by an algorithm that creates a finite sequence
γ0, γ1, . . . , γk of candidates. To begin the algorithm, we note that the argument
of Lemma 3 tells us that for any ω ∈ {t0,n(3n) = i,Hn(3n) < 2n} there is a
γ0 ∈ S(0, n,2n) such that

τ (γ0) = i and γ0 ∈ S(0, n,2n).

If ω ∈ G(γ0), then γ0 gives us the γ that we need in order to show that ω is an
element of the union in Lemma 4. In this lucky case, the proof of the lemma is
therefore complete.

On the other hand, if ω /∈ G(γ0), we need a more substantial argument. In this
case, the definition of G(γ0) tells us that there exists an edge e ∈ γ0 such that every
path γ̃ in int(∂n ∪ γ0) from the starting vertex v(e∗) to ∂∗

n must have some edge
f ∈ γ̃ other than its last edge for which x(f ) = 0. Moreover, we can also assume
without loss of generality that the candidate edge e ∈ γ0 is not the first edge or the
last edge of γ0, since each of these special edges has a trivial length-two dual path
to ∂∗

n that satisfies properties (1)–(4) required by the definition of G(γ0).
Now, with our candidate edge e in hand, we are ready to construct our new

candidate path γ1. First, we consider four arcs that are defined as follows:

• α1 is the arc that follows γ0, beginning with the first edge of γ0 and ending with
the first vertex of e,

• α2 is the arc that consists of just the single edge e,
• α3 is the arc given by the subpath of γ0 that begins with the second vertex of e

and ends with the edge from (n − 1,0) to (n,0), and
• α4 is the arc that begins with the vertex (n,0), follows the arc defined by ∂n and

ends with the vertex (0,0).

Kesten’s proposition now tells us that there exists a path β with all of its edges
in int(∂n ∪ γ ) that begins with a vertex u of α1 and ends with a vertex v of α3
for which one has x(f ) = 0 for every edge f in β . Now we define a new path
γ1 ∈ S(0, n,3n) by following γ0 from (0,0) to the vertex u, following β from u

to v, and following γ0 from v to (n,0). Since x(f ) = 0 for each f ∈ β , our new
path satisfies τ (γ1) = τ (γ0) = i, and we see that γ1 is again a path of minimal cost.
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Also, since we have ω ∈ {Hn(3n) < 2n}, the argument of Lemma 3 again tells us
that γ1 is in fact an element of S(0, n,2n).

If ω ∈ G(γ1), then we can take γ = γ1 to complete our construction, but if
ω /∈ G(γ1), we need to repeat the preceding process to define another path γ2. In
general, for i = 0,1, . . . so long as ω /∈ G(γi), we simply repeat our process to
define a subsequent path γi+1. Since the number of edges enclosed by ∂n ∪ γi+1 is
strictly less than the number of edges enclosed by ∂n ∪ γi , we see that after a finite
number of steps we must arrive at a k such that ω ∈ G(γk). Finally, once such a
k is found, we can set γ = γk to complete the proof of Lemma 4 just as we have
done twice before.

The G(γ ) and independence. For any fixed γ ∈ S(0, n,2n), we let ABOVE(γ )

denote the set of edges of the Z
2 lattice that are in the interior of the real cylinder

[0, n] × R that are strictly above γ and we let BELOW(γ ) denote those that
are strictly below γ . The key to the constructions that we will use later is the
fact that for a fixed γ the event G(γ ) is measurable with respect to the σ -field
σ {x(e) : e ∈ BELOW(γ )}. Consequently, the event G(γ ) is independent of the
cost τ (γ ) and independent of any event that is measurable with respect to the
σ -field σ {x(e) : e ∈ ABOVE(γ )}.

The G(γ ) and restricted disjointness.

LEMMA 5. The collection of events A(γ ) = G(γ )∩{ω : τ (γ ) = 0} indexed by
γ ∈ S(0, n,2n) is a collection of disjoint events, and, consequently, we have∑

γ∈S(0,n,2n)

P
(
τ (γ ) = 0,G(γ )

) ≤ 1.

PROOF. For any pair of unequal paths γ and γ ′ in S(0, n,2n), one either has
an e ∈ γ and e ∈ ABOVE(γ ′), or one has an e ∈ γ ′ and e ∈ ABOVE(γ ). There is
no loss of generality if we assume that the first case holds.

Now, if ω ∈ A(γ ), the definition of G(γ ) tells us there is a path β in Z
2∗ from e∗

to ∂∗
n such that x(f ) = 1 for all f ∈ β , except possibly for the edge of β that is

in ∂∗
n . Also, since we assume that e ∈ ABOVE(γ ′), the Jordan curve theorem tells

us that the path β must cross γ ′ someplace, and, since γ ′ does not meet any of the
dual edges in ∂∗

n , we see that γ ′ must meet β at an edge of f that has cost one. This
tells us γ ′ contains an edge with cost one, and since τ (γ ′) �= 0 implies ω /∈ A(γ ′),
the proof of the lemma is complete. �

Here we should note that an alternative proof of the Lemma 5 can be based
on Proposition 2.3 of Kesten (1982) which establishes the uniqueness of certain
paths called “lowest zero-crossings.” There is no need to give the details of this
alternative proof, but we should note that Lemma 5 is brought into range of
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Kesten’s Proposition 2.3 by padding the outside of ∂n with edges that have cost one
and by exploiting the uniqueness of the lowest zero-crossing between the outside
vertices (−1,0) and (n + 1,0).

4. Disjoint boxes on a path. In our main argument, we will need to show
that one can often perform a large number of local “surgeries” on the paths of
S(0, n,2n), and for these arguments to be effective we need to know that for any
path γ one can find large number of disjoint boxes with an edge of γ at its “center.”
To make this notion precise, we need to distinguish between horizontal and vertical
edges; specifically, given any horizontal edge e = {(x, y), (x + 1, y)}, we let

T (e) = [x − 2, x + 3] × [y − 2, y + 2],
and for any vertical edge e = {(x, y), (x, y + 1)} we take

T (e) = [x − 2, x + 2] × [y − 2, y + 3].
In either case, we call T (e) the box centered at e, and we regard T (e) as a closed
subset of R

2. The specific dimensions of these boxes have been chosen to fit a
design that will be described shortly. The problem now is to show that one can
always find a set of disjoint centered boxes on γ that has cardinality of order |γ |.

One nice systematic way to show how one can find a large number of disjoint
boxes on a path is to appeal to a bit of graph theory. For any graph (V,E),
a set of vertices A ⊂ V is said to be an independent set (in the graph theoretical
sense) provided that there is no edge of (V,E) that joints two elements of A.
The independence number α(V,E) of the graph (V,E) is then defined to be
the maximum cardinality of any such independent set. One of the most basic
facts about α(V,E) is Turán theorem, which says that if the graph has maximal
degree 
 then

α(V,E) ≥ |V |

 + 1

.(4.1)

This result and many other versions of Turán theorem are covered in the instructive
survey of Aigner (1995). Turán’s theorem gives us a tidy way to find a large
number of disjoint boxes on a path γ ; we just need to define the right graph.

LEMMA 6 (The α0 lemma). There are constants α0 > 0 and N0 < ∞
such that for all n ≥ N0 and all γ ∈ S(0, n,2n) there exists a set of k edges
e1, e2, . . . , ek of γ with k ≥ α0|γ | such that

T (ei) ∩ T (ej ) = ∅ for all 1 ≤ i < j ≤ k

and

T (ei) ⊂ [1, n − 1] × [−2n − 3,2n + 3].
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PROOF. To set up Turán’s theorem, we take the vertex set V to be the set

V = {
T (e) : e ∈ γ,T (e) ⊂ [1, n − 1] × [−2n − 3,2n + 3]}.

The cardinality of this vertex set satisfies |V | ≥ n − 6 simply because γ goes
from (0,0) to (n,0). Next we note that V also satisfies |V | ≥ |γ | − 100n, since
there are fewer than 100n horizontal and vertical edges of the Z

2 lattice in the sets
[0,2]×[−2n,2n] and [n−2, n]×[−2n,2n]. These two bounds and the constraint
n ≥ 3000 imply that

|V | ≥ |γ |/200.(4.2)

Next, we consider the graph with vertex set V and with edge E that we define to be
the set of all the (unordered) pairs of elements of V such that T (ej ) ∩ T (ek) �= ∅.
From the fact that each of the T (e) contains exactly 30 lattice points and each
of these can be a “corner point” of at most four of the neighbors of T (e) in the
graph (V,E), so the maximal degree of (V,E) is certainly not greater than 4 · 30.
We can then conclude by Turán’s theorem that there exists an independent set of
elements of V with cardinality that is at least |V |/(4 ·30+1), so by our bound (4.2)
on |V |, we see that the proof of the lemma is complete and that we have N0 ≤ 3000
and α0 ≥ 1/200 · (4 · 30 + 1). �

5. Surgeries that lengthen or shorten paths. Our argument pivots on the
possibility of performing a large number of surgeries that alter the length of a path
and leave the cost of the path unchanged. To make this notion precise, we need
formal definitions of a surgery-to-lengthen and a surgery-to-shorten. We begin
with the most natural of these, the surgery-to-lengthen.

DEFINITION 2 (Surgery-to-lengthen). If e ∈ γ and γ ∈ S(0, n,2n), we say
that there exists a surgery-to-lengthen γ in T (e) if there exists a set A of edges
e′

1, e
′
2, . . . , e

′
s in the set ABOVE(γ )∩ T (e) and there exists a set D of edges e1, e2,

. . . , es in γ ∩ T (e) such that if one deletes the edges of D from γ and adjoins the
edges of A one obtains a path γ ′ ∈ S(0, n,3n) with |γ ′| > |γ |.

The definition of a surgery-to-shorten is similar, but there is a small difference
that has some important consequences. For a surgery-to-shorten we no longer
require the set of deleted edges to be contained in T (e). This means that a surgery-
to-shorten is not local like a surgery-to-lengthen; the passage from γ to γ ′ in
a surgery-to-shorten may rip out parts of γ that appear almost anywhere in the
rectangle [0, n] × (−2n,2n). The formal definition of a surgery-to-shorten almost
looks redundant, but, given the physical gap between the two types of surgery, it
seems prudent to be explicit.

DEFINITION 3 (Surgery-to-shorten). If e ∈ γ and γ ∈ S(0, n,2n), we say that
there exists a surgery-to-shorten γ in T (e) if there exists a set A of edges e′

1, e
′
2,
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. . . , e′
s in the set ABOVE(γ ) ∩ T (e) and there exist some set D of edges

e1, e2, . . . , es in γ such that if one deletes the edges of D from γ and adjoins
the edges of A one obtains a γ ′ ∈ S(0, n,3n) with |γ ′| < |γ |.

The most important feature of this pair of surgical operations is that either one
or the other is (almost) always available to us.

THEOREM 2 (Surgery theorem). For any path γ ∈ S(0, n,2n) and any e ∈ γ

such that T (e) ⊂ [1, n − 1] × (−2n + 3,2n − 3), the path γ either has a surgery-
to-lengthen in T (e) or has a surgery-to-shorten in T (e).

The proof of Theorem 2 depends on the examination on number of cases, but
the following simple lemma gives us a way to deal quickly with many of these.

LEMMA 7 (Short paths from close-by points). Suppose the vertices v and w

are both on the path γ and ‖v − w‖ = 1, but the edge (v,w) is not in γ . If
(v,w) ∈ ABOVE(γ ) ∩ T (e), then there is a surgery-to-shorten γ in T (e).

PROOF. Since v and w are on γ but (v,w) is not and edge of γ , the number of
edges on γ from v to w is at least three. Thus, the path γ ′ defined by following γ

to v, taking the new edge (v,w) and then following γ from w to (0, n) has at least
two fewer edges than γ . Since we assume that (v,w) ∈ ABOVE(γ ) ∩ T (e), we
therefore meet the definition of a surgery-to-shorten. �

Boxes and cases of boxes: Proof of Theorem 2. First consider a horizontal
edge e and its associated box T (e). If e ∈ γ and γ ∈ S(0, n,2n), we view
e = (u, v) as an ordered pair where u is the first vertex on γ as one goes from
(0,0) to (n,0). When T (e) ⊂ [1, n − 1] × [−2n − 2,2n + 2], there must be edges
e− and e+ that precede and succeed e on γ , and each of these edges can have three
possible orientations. Thus, if we fix e to be a horizontal edge, there are nine cases
that we need to consider. One then needs another set of nine cases to cover the
situation when the center edge is vertical edges, but, by symmetry, we will only
need to consider the case of horizontal edges.

The left-hand column of Figure 1 gives four of the nine cases where the center
edge is horizontal, and the left-hand column of Figure 2 gives two more cases. By
the left-right asymmetry of cases 4–6 given in Figures 1 and 2, we see that the
proof of Theorem 2 will be complete if we show that in each of the six listed cases
we always have either a surgery-to-shorten or a surgery-to-lengthen.

In Figures 1 and 2, the center edge e is labeled e (logically enough), and when
the endpoints of e are needed they are labeled u and v. The edge of γ preceding e
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FIG. 1. The first four cases.

is denoted by (a,u) and the one following e is denoted by (v, b). Only these three
edges of γ are drawn in Figures 1 and 2, but there will be other edges of γ at other
places in the box that are not drawn. The role of the undrawn edges will be made
explicit as they are met in the context of our argument.

The interpretation of the dotted lines and other labeled points of Figures 1 and 2
will also become evident as we investigate the individual cases, but we should
comment on the location of the edge symbol e. We know that the edge e = (u, v)

has the set ABOVE(γ ) on one side and the set BELOW(γ ) on the other. We
use the graphical convention of placing the symbol e on the side of the edge



1042 J. M. STEELE AND Y. ZHANG

FIG. 2. Cases five and six.

e = (u, v) where one finds ABOVE(γ ), and this convention is important for the
enumeration of the cases that we must consider. Our enumeration is designed
to permit us to draw the symbol e directly above the edge e = (u, v), and the
difference between cases 2 and 3 depends precisely on the distinction enforced
by this design. To minimize clutter, we only draw the edge symbol e in the first
columns of Figures 1 and 2.

One useful way to think about the placement of the symbol e is to note that if
there is a continuous path in R

2 from the symbol e to the point z such that the path
does not go through γ or ∂n, then the point z is in ABOVE(γ ). This intuitive test
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for membership in ABOVE(γ ) may sound casual, but it is completely rigorous; it
is nothing more or less than the Jordan curve theorem.

Case 1. In this case, the edges (a,u), (u, v) and (v, b) are all horizontal. To
begin, we consider the vertex c directly above u. We know that the edge (u, c)

is not in γ since γ cannot have a vertex with degree exceeding two. Also, the
edge (u, c) is contained in ABOVE(γ ) because of the orientation indicated by the
label e.

Now, if we have c ∈ γ , then Lemma 7 tell us that we have a surgery-to-shorten
in T (e). Thus, we may assume that c /∈ γ , and, by the same argument, we may
assume that the vertex d that is directly above v is also not an element of γ . These
observations tell us that without loss of generality we may assume that the set
of edges A = {(u, c), (c, d), (d,u)} is contained ABOVE(γ ) and does not meet γ

except at u and v. This makes a surgery-to-lengthen obvious. We simply delete e

from γ and add the edges of A to find a new path that meets all the requirements
of a surgery-to-lengthen in T (e).

As a cautionary point, one should note here that even when we start out with
three horizontal edges in T (e) we have no guarantee that T (e) permits a surgery-
to-lengthen. Here, and in all subsequent cases, we simply argue that we can either
find a surgery-to-lengthen or find a surgery-to-shorten. In every case, Lemma 7 is
used to argue that if there is not a surgery-to-shorten, then we have enough room
to make a surgery-to-lengthen.

Case 2. This is the only completely trivial case. The vertices c and d are on γ ;
they satisfy ‖c − d‖ = 1, and (u, v) is in ABOVE(γ ), so Lemma 7 gives us a
surgery-to-shorten.

Case 3. As we mentioned earlier, this case serves to remind us that the location
of the symbol e in the figure tells us the side of the edge e = (u, v) where one finds
ABOVE(γ ). Our enumeration lists the cases to be considered in a such way that
we can always place the symbol e above the edge e = (u, v). This symbol thus
becomes part of the definition of the case, so, for example, if one were to draw the
symbol e below the edge e = (u, v) in the diagram for Case 2, one would find a
diagram that is in fact equivalent to Case 3.

To deal with Case 3, we first note (as in the Case 1) that we may assume that
c and d are not on γ , since otherwise Lemma 7 would provide a surgery-to-shorten.
Also, there is a trivial path in R

2 from the edge symbol e to the elements of
A = {(u, c), (c, d), (d,u)} so all of these edges are elements of ABOVE(γ ). By
adding the edges of A and deleting the edge e, we find a surgery-to-lengthen.

Case 4. This case is safely skipped since it is completely parallel to Cases
1 and 3.
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Case 5. This is an interesting case. We can argue as before that we may assume
that the vertices d and r are in ABOVE(γ ) and not on γ , yet we need a new
argument to show that we may assume that the indicated vertex s is likewise in
ABOVE(γ ) and not on γ .

First, we note that the edge (v, d) is not in γ since v cannot have degree 3 in γ .
We then see that there is a continuous path from the symbol e to the point s that
does not meet γ or ∂n, so by our earlier discussion of the symbol e, we see that
s ∈ ABOVE(γ ), unless it happens that s is an element of γ .

Suppose to the contrary, that s ∈ γ . If s follows b as one traces γ from (0,0)

to (n,0), we simply replace the path segment along γ from a to s with the edges
(a, d) and (d, s). At least 6 edges have been cut out and only two added, so we
have a surgery-to-shorten. On the other hand, if s precedes a on γ , then the path
along γ from s to a must have length at least 4, and we may this path segment
with (s, d) and (d, a) to get a surgery-to-shorten.

The only remaining possibility is that s is not on γ . In this case, we replace
(a,u) and (u, v) with the path a → d → s → r → v, and we have a surgery-to-
lengthen.

Case 6. As one would expect, the last case is the hardest. We can no longer
drive the argument by just the orientation of three edges (a,u), (u, v) and (v, b).
We also need to consider the orientation of the edge (a′, a) that precedes (a,u)

on γ . The three possibilities are broken out in Figure 2, and the three possible
orientations of (a′, a) are indicated by dashed edges.

In the first possibility, the edges (a′, a), (a,u) and (u, v) are all horizontal.
This is exactly the same circumstance that we studied in Case 1. Here one should
confirm that the construction used before can be used again without stepping out
of the box, but this is an easy check.

In the second possibility, (a′, a) goes north from a. Here we note as usual that
we may assume that c is not on γ , or else we would have a surgery-to-shorten. As
a consequence, we can take the edges (a,c) and (c, b) and delete the segment of γ

given by a′ → a → u → v → b. This gives us a surgery-to-shorten.
In the third possibility, (a′, a) goes south from a as indicated by the dashed line

at the bottom of Figure 2. We first observe that arguments we have given twice
before permit us to assume that r and d are not on γ , or else Lemma 7 would
provide a surgery-to-shorten. Now, since (a, d) /∈ γ there is a path in R

2 from the
edge symbol e to c that does not cross γ , so we see that c ∈ ABOVE(γ ). Lemma 7
therefore tells us that we may assume that c /∈ γ .

The whole focus is now on s. Since (a, d) /∈ γ , there is a path in R
2 from the

edge symbol e to s that does not cross γ , so we see that s ∈ ABOVE(γ ), unless we
happen to have s ∈ γ . Assume for the moment that s ∈ γ . In this case, we need to
ask if s comes before a′ or after b on γ . If s comes before a′, then we can remove
the segment of γ from s to a and replace it with the edges (s, c) and (c, a). At least
three edges are removed and only two are added, so we find a surgery-to-shorten.
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On the other hand, if s comes after b on γ , then we replace the segment of γ

from b to s with the edges (b, r), (r, d), and (d, s). At least five edges are dropped
and only three are added, so again we find a surgery-to-shorten.

At last, we may assume that s /∈ γ . In this case, we may replace the path segment
a → u → v → b with the new segment a → c → s → d → r → b. This alteration
gives us a surgery-to-lengthen, and thus completes the analysis of Case 6 and the
proof of Theorem 2.

6. Geometry of the long and short routes. The random variables at the heart
of our analysis add two small twists to the minimum length variable Nn introduced
by Hammersley and Welsh (1965). First, for technical reasons, we need to consider
cylinder variables. Second, and more important, we consider both the longest and
the shortest routes; specifically, we introduce

N+
n = max

{|γ | : τ (γ ) = t0,n(3n) for γ ∈ S(0, n,3n)
}

and

N−
n = min

{|γ | : τ (γ ) = t0,n(3n) for γ ∈ S(0, n,3n)
}
.

For us, the most important feature of these variables rests in the fact that we can
prove that for certain subcritical values of p, the random variable N+

n is virtually
guaranteed to be larger than N−

n by a factor of at least (1 + ε) for a fixed ε > 0.
The next theorem makes this principle precise.

THEOREM 3 (Long and short routes). There exists a constant δ > 0 such
that for Bernoulli percolation with 1/2 − δ ≤ p < 1/2, we have three constants
C0 = C0(p) > 0, C1 = C1(p) > 0, and ρ = ρ(p) > 1 such that

P (N+
n ≤ ρN−

n ) ≤ C0 exp(−C1n) for all n ≥ 1.

We have already developed most of the facts needed to prove Theorem 3. What
remains is a pleasant calculation that breaks naturally into four steps. The first
step introduces a decomposition that sets up the exploitation of the disjointness
property of the G(γ ).

STEP 1 (A decomposition). We first note that we have the trivial inclusion
{N+

n ≤ ρN−
n } ⊂ An ∪ Bn ∪ Cn where we take

An = {
N+

n ≤ ρN−
n , t0,n(3n) ≤ 2µ(p)n,Hn(3n) < 2n

}
and where we take

Bn = {Hn(3n) ≥ 2n} and Cn = {t0,n(3n) ≥ 2µ(p)n}.



1046 J. M. STEELE AND Y. ZHANG

Lemmas 3 and 2 provide exponential bounds for the events Bn and Cn, so, to prove
Theorem 3, we only need to obtain an exponential upper bound on the event An.
By Lemma 4 we also have the decomposition

An ∩ {t0,n(3n) = k}
⊂ ⋃

γ∈S(0,n,2n)

{
N+

n ≤ ρN−
n , t0,n(3n) = k, τ (γ ) = k

}∩G(γ ).
(6.1)

STEP 2 (A surgery count). Our main task now is to estimate the probability
of the union (6.1), and this is done most easily by introducing three new random
variables ν+

n (γ ), ν−
n (γ ), and νn(γ ). The random variable ν+

n (γ ) is defined to be
the maximum value of k such that there exist k edges e1, e2, . . . , ek of γ such that
for each 1 ≤ i ≤ k one has the four properties:

1. T (ei) ∩ T (ej ) = ∅ if i �= j ,
2. T (ei) ⊂ [1, n − 1] × [−2n − 2,2n + 2],
3. all edges in T (ei) ∩ ABOVE(γ ) have cost 0, and
4. γ has a surgery-to-lengthen in T (ei).

The random variable ν−
n (γ ) is then given by the same recipe as ν+

n (γ ), except that
“surgery-to-lengthen” is replaced by “surgery-to-shorten,” and finally, νn is simply
taken to be the random variable one gets by requiring just the first three conditions
(without any surgery requirements).

The surgery theorem tells us that every box that satisfies the first two conditions
either has a surgery-to-lengthen or a surgery-to-shorten, so we have

max
(
ν+
n (γ ), ν−

n (γ )
) ≥ νn(γ )/2.(6.2)

One of the benefits of the random variable νn(γ ) is that it is easily estimated
from below in terms of a binomial random variable. We first just note that are at
least α0|γ | disjoint boxes on γ and that are contained [1, n − 1] × [−2n − 2,

2n + 2] and for any such box there are certainly not more than 49 edges in
T (e) ∩ ABOVE(γ ). This says that νn(γ ) may be stochastically bounded below
by the sum of α0|γ | independent Bernoulli random variables with parameter p49.
The large deviation bound for Bernoulli sums [say, as given by Hoeffding (1963),
Theorem 2] then gives us

δ ≤ 1
2p49 �⇒ P

(
νn(γ ) ≤ δα0|γ |) ≤ exp(−α0p

98|γ |/8).(6.3)

In our application of this bound, we will need to exploit the uniformity that holds
when the range of p is restricted; the uniform estimate that we use is summarized
in the next lemma.
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LEMMA 8 (Good boxes on a path). There are positive constants C0 and C1
that do not depend on either on ε > 0 or p such that for all n and all γ ∈
S(0, n,2n), we have for all n ≥ 1, all 1/4 ≤ p ≤ 1/2 and all 0 < ε < p50 that

P
(
νn(γ ) ≤ ε|γ |) ≤ C0 exp(−C1|γ |).

STEP 3 (Estimation of the gap N+
n − N−

n ). We now know that we have many
surgical opportunities on any path, but we still need to show that this leads us to
an effective lower bound on the difference between N+

n and N−
n .

LEMMA 9. If we set ε = ρ − 1 > 0, then for any γ ∈ S(0, n,3n) we have{
ω :N+

n < ρN−
n , t0,n(3n) = k, τ (γ ) = k

}
∩G(γ ) ⊂ {

ω : t0,n(3n) = k, τ (γ ) = k, νn(γ ) ≤ 2ε|γ |} ∩ G(γ ).

PROOF. For any ω in the first set, we have

N+
n (ω) − N−

n (ω) ≤ εN−
n (ω),

and we first claim that for all γ ∈ S(0, n,3n) with τ (γ ) = t0,n(3n), we also have
the bound

N+
n (ω) − N−

n (ω) ≥ max
(
ν+
n (γ ), ν−

n (γ )
) ≥ 1

2νn(γ )(ω).(6.4)

To see why this is so, we first note that each surgery-to-lengthen takes place
entirely with in a box and always moves us from a minimal cost path to another
minimal cost path, so we have

N+
n ≥ |γ | + ν+

n (γ ) ≥ N−
n + ν+

n (γ ).(6.5)

The corresponding bound with ν−
n (γ ) is a bit more subtle since the surgery-to-

shorten is no longer local. We do have the parallel inequality,

N−
n ≤ |γ | − ν−

n (γ ) ≤ N+
n − ν−

n (γ ),(6.6)

but the proof is more algorithmic. We know that there are ν−
n (γ ) = k disjoint boxes

T (e1), T (e2), . . . , T (ek) on γ that permit a surgery-to-shorten, so we take the first
of these and perform the surgery. This surgery will shorten the path and move from
a minimal cost path to a minimal cost path, but the surgery may also cut out a an
undetermined number of the other boxes T (e2), T (e3), . . . , T (ek) that are on the
path γ .

What one needs to notice is that if m boxes are cut out by the first surgery, then
our new path is shorter than γ by at least m + 1 edges (actually many more). If
m = k, then our construction is complete, and otherwise the path γ ′ created by the
first surgery has k − m > 0 boxes remaining that permit a surgery-to-shorten. In
the second case, we go to the first of the remaining boxes perform another surgery-
to-shorten. If one continues in this way, one obtains a path that has cost no greater
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than the cost of γ and which as at least k fewer edges. This completes the proof of
the first inequality of (6.6), and the second inequality is obvious.

Finally, when we put the bound (6.4) together with the hypothesis N+
n < ρN−

n ,
we see that

1
2νn(γ )(ω) ≤ εN−

n (ω) ≤ ε|γ |,
and this is precisely the estimate one needs in order to say that ω is in the second
set of the lemma. �

STEP 4 (A final calculation). All of the elements are in place for the proof of
Theorem 3. We first apply the decomposition (6.1), then use Lemma 9, Boole’s
inequality and independence to find

P (An) ≤
2µ(p)n∑

k=0

P

( ⋃
γ∈S(0,n,2n)

{
N+

n ≤ ρN−
n , t0,n(3n) = k, τ (γ ) = k, G(γ )

})

≤
2µ(p)n∑

k=0

P

( ⋃
γ∈S(0,n,2n)

{
νn(γ ) ≤ 2ε|γ |, t0,n(3n) = k, τ (γ ) = k, G(γ )

})

≤
2µ(p)n∑

k=0

∑
γ∈S(0,n,2n)

P
(
νn(γ ) ≤ 2ε|γ |, τ (γ ) = k, G(γ )

)

=
2µ(p)n∑

k=0

∑
γ∈S(0,n,2n)

P
(
νn(γ ) ≤ 2ε|γ |)P (

τ (γ ) = k
)
P (G(γ )).

Now, for 0 < p ≤ 1
2 , we then have

P (τ(γ ) = k)

P (τ (γ ) = 0)
=

(|γ |
k

)(
p

1 − p

)k

≤
(|γ |

k

)
,

and by the entropy bound [say, as given in Engel (1997), Corollary 2.6.2], we have(|γ |
k

)
≤ exp

(|γ |H(k/|γ |))
where H(x) = −x log(x) − (1 − x) log(1 − x) for 0 < x < 1 and H(0) =
H(1) = 0; so for k ≤ 2µ(p)n and 2µ(p) ≤ 1/2, we also have

H(k/|γ |) ≤ H
(
2nµ(p)/|γ |) ≤ H(2µ(p)).

To make the most of this bound, we recall that the map p �→ µ(p) is continuous
and µ(1/2) = 0 by Theorem 6.1, Remark 6.2 and Theorem 6.9 of Kesten (1986),
so we can choose δ > 0 such that

p ∈ (1
2 − δ, 1

2

] �⇒ H(2µ(p)) ≤ C1/2,
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where C1 is the constant of Lemma 8. Here we should underscore that C1 does not
depend on p, except that we require p ≥ 1/4.

When we apply the last estimate in our upper bound on P (An), we find

P (An) ≤
2µ(p)n∑

k=0

∑
γ∈S(0,n,2n)

C0 exp(−C1|γ |) exp(C1|γ |/2)P
(
G(γ ) ∩ {τ (γ ) = 0})

≤ 2µ(p)n exp(−C1|γ |/2),

where in the second inequality we took advantage of Lemma 5. Finally, when we
combine this bound with our exponential bounds on P (Bn) and P (Cn), we then
complete the proof of Theorem 3. �

7. The nondifferentiability of µ(F ⊕ t). The nondifferentiability of the
mapping t �→ µ(F ⊕ t) asserted by Theorem 1 is actually a consequence of
two inequalities for the difference quotients that one obtains from optimality
considerations. The key observation is that if we take r > 0 and look at the passage
times t0,n(3n) = t0,n(3n,F ) and t0,n(3n,F ⊕r) associated with the Bernoulli edge
times {x(e)} and their shifted cousins {x(e) + r}, then we have

t0,n(3n,F ⊕ r) ≤ t0,n(3n,F ) + rN−
n ,(7.1)

since a path γ ∈ S(0, n,3n) that achieves the optimal time t0,n(3n,F ) and the
shortest length N−

n for the Bernoulli edge times {x(e)} will realize a passage
time under the edge times {x(e) + r} that is given by the right-hand side of
inequality (7.1). The required bound then follows from the optimality of the cost
t0,n(3n,F ⊕ r) for the passage problem with the shifted edge times {x(e) + r}.

In exactly the same way, one finds that for any s < 0, we have

t0,n(3n,F ⊕ s) ≤ t0,n(3n,F ) + sN+
n ,(7.2)

and as a consequence we have the two bounds on the difference quotients

t0,n(3n,F ⊕ r) − t0,n(3n)

nr
≤ N−

n

n
and

t0,n(3n,F ⊕ s) − t0,n(3n)

ns
≥ N+

n

n
.

Now, if we let A(n) = {ω :N+
n ≥ ρN−

n } where ρ > 1 is chosen as in Theorem 3,
we then find

t0,n(3n,F ⊕ s) − t0,n(3n,F )

ns

≥ N+
n

n
≥ ρ1A(n)

N−
n

n
≥ ρ1A(n)

t0,n(3n,F ⊕ r) − t0,n(3n,F )

nr
.

If we now let n → ∞, then Lemma 1 and equation (2.6) on the convergence to the
time constant will team up with the almost sure convergence of 1A(n) to 1 given by
Theorem 3 to tell us that for all s < 0 < r we have the difference quotient bound

µ(F ⊕ s) − µ(F )

s
≥ ρ

µ(F ⊕ r) − µ(F )

r
.(7.3)
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Here we should note that µ(F ⊕ s) can be equal to minus infinity for some
values of s, but this possibility does not interfere with the truth of inequality (7.3).
Moreover, for p < 1/2 there is an open interval I = I (p) that depends on p and
contains zero such that µ(F ⊕ s) is a finite concave function on I = I (p). Thus,
the left and right derivatives of φ(t) both exist at t = 0, and the inequality (7.3) for
the difference quotients is more than we need to assert the analogous inequality of
the one-sided derivatives,

D−φ(t)
∣∣
t=0 ≥ ρD+φ(t)

∣∣
t=0.

This inequality almost completes the proof of the nondifferentiability of φ(·), but
we still need to check that D+φ(t)|t=0 �= 0. Actually, we will show the stronger
fact that

D+φ(t)
∣∣
t=0 ≥ 1.

One way to check this assertion is to consider any path γ with τ (γ ) = t0,n(3n,

F ⊕ r) and to note that γ is a suboptimal path for the unshifted Bernoulli
percolation. This observation tells us that for r > 0 we have

t0,n(3n,F ) ≤ τ (γ ) − r|γ |.
By definition, γ is F ⊕ r optimal, so the last inequality implies

t0,n(3n,F ⊕ r) − t0,n(3n,F )

nr
≥ |γ |

n
≥ 1.

Now, when we let n → ∞, we find

µ(F ⊕ r) − µ(F )

r
≥ 1.

This is more than we need to deduce D+φ(t)|t=0 ≥ 1, so the proof of Theorem 1
is complete. �

8. Concluding remarks. The nondifferentiability theorem proved here puts
to rest a long-standing question. It was widely believed that the time constants
φ(t) = µ(F ⊕ t) of shifted subcritical Bernoulli percolation must be differentiable
at t = 0, but now we know that is simply not the case. This closes the door on an
important approach to the convergence problem for Nn/n. Nevertheless, it is still
seems likely that Nn/n converges for subcritical Bernoulli percolation, although
now we suspect that the proof of this natural conjecture may be more subtle that
might have been imagined earlier.

From the monotonicity of φ(t) = µ(F ⊕ t), we know that φ(t) is differentiable
for almost all t in the set Dp = {t :φ(t) > −∞}. We know now that t = 0 is in the
exceptional set for certain subcritical values of p, but we also believe that t = 0
is the only exceptional point. Specifically, we conjecture that φ(t) is differentiable
for all t ∈ Dp = {t :φ(t) > −∞} provided that t �= 0 and p �= 1/2. The result of
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Zhang and Zhang (1984) adds credibility to this conjecture for p > 1/2, but the
fact that Nn/n is likely to diverge for p = 1/2 also suggests that the analysis of
the subcritical and the supercritical cases may be quite different.

The simplest problem suggested by our conjecture is that φ(t) is differentiable
for all p > 1/2 and all sufficiently large values of t . This specific problem may
not be difficult, yet it seems to offer a logical focus for the attack on a larger set of
stubborn analytical questions.

Acknowledgment. The authors are pleased to thank a careful referee who
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