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Let X(t) be the symmetric α-stable process in Rd , α ∈ (0,2),
d ≥ 2. For f : (0,1) → (0,∞) let D(f ) be the thorn {x ∈ Rd :x1 ∈ (0,1),

|(x2, . . . , xd )| < f (x1)}. We give an integral criterion in terms of f for the
existence of a random time s such that X(t) remains in X(s) + D(f ) for all
t ∈ [s, s + 1).

1. Introduction. Let X(t) be the symmetric α-stable process in Rd , that
is, the Markov process with independent and homogeneous increments and the
characteristic function of the form ExeiξX(t) = eixξ−t|ξ |α , x, ξ ∈ Rd, t ≥ 0. We
will consider only pure jump multidimensional stable processes, that is, we will
assume that d ≥ 2 and α ∈ (0,2). We will denote by � the probability space on
which X(t) is defined. We may and will assume that all paths t → X(t,ω), ω ∈ �,
are right continuous with left limits [3].

Let f : (0,1) → (0,∞) be a nondecreasing left continuous function which
satisfies limr→0+ f (r) = 0. For x = (x1, x2, . . . , xd) ∈ Rd we will write x̃ =
(x2, . . . , xd). We define a thorn D(f ) as follows:

D(f ) = {
x ∈ Rd :x1 ∈ (0,1), |x̃| < f (x1)

}
.

The closure of D(f ) will be denoted by D(f ).
The main result of our paper is the following. If a thorn D(f ) is not very thin

then X(t) has D(f )-thorn points at some random times s, that is, the trajectory
stays for t ∈ [s, s + 1) within the (translated) closed thorn whose sharp point is
at X(s). A formal statement of the result is contained in Theorem 1.1.

We will fix some t0 > 0 and often suppress it in the notation. Let

A(f ) = {
ω ∈ � : there exists time s = s(ω) ≥ 0 such that

X(t,ω) ∈ X(s,ω) + D(f ) for all t ∈ [s, s + t0)
}
,

I (f ) =
∫ 1/2

0

(f (r))d+α−1

rd+α
dr.
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THEOREM 1.1. For any t0 > 0, the probability of A(f ) is equal to:

(i) 1 if I (f ) = ∞,
(ii) 0 if I (f ) < ∞.

It is easy to check that if f (r) = r| log r|β then I (f ) = ∞ if and only
if β ≥ −1/(d + α − 1). Local properties of stochastic processes are often
described by comparing process trajectories with “regularly varying” functions.
Our integral criterion allows us to consider very rough thorns, for example, if f is
nondecreasing and for some constant c > 0, there exist arbitrarily small r > 0 with
f (r) > cr , then I (f ) = ∞ and so the stable process has thorn points defined by
such functions f .

If f (r) = cr for some constant c > 0, the set D(f ) is a cone. Brownian motion
has cone points for some but not all values of c > 0. Cone points were discussed
for the first time in [10], [14] and [19]. See [2] for a review of recent results on
Brownian path properties related to cone points.

The existence of cone points on Brownian paths is a nontrivial result which
requires several technical ingredients developed and collected by several authors
over the years. Here is a sketch of a proof of the existence of cone points for
stable processes using a “soft” argument. Fix any c > 0 and let f (r) = cr . Since
X(t) has jumps, with positive probability there will be a jump time s = s(ω)

such that {X(t,ω),0 ≤ t < s} ⊂ X(s,ω) + D(f ). Standard arguments based on
scaling and the strong Markov property can be used to strengthen this claim; one
can show that for every ε > 0, with probability 1, there exists s = s(ω) ∈ (0, ε)

with {X(t,ω),0 ≤ t < s} ⊂ X(s,ω) + D(f ). Fix an arbitrarily small p > 0.
Let δ1 > 0 be so small that with probability greater than 1 − 2−1p, there is a
jump time s = s(ω) ∈ (0,1 − 2−1), such that |X(s,ω) − X(s−,ω)| ≥ δ1 and
{X(t,ω),0 ≤ t < s} ⊂ X(s,ω)+D(f ). Let S1 be the smallest s with this property
(or ∞, if there is no such s). Suppose that S1 < ∞. Since S1 is a stopping time,
by the strong Markov property one can find δ2 > 0 so small that with probability
greater than 1 − 2−2p, there is a jump time s = s(ω) ∈ (S1,1 − 2−2), such that
|X(s,ω) − X(s−,ω)| ≥ δ2 and {X(t,ω), S1 ≤ t < s} ⊂ X(s,ω) + D(f ). We let
S2 be the smallest s > S1 with this property (S2 = ∞, if there is no such s).
By induction, with probability not less than 1 − p, we will have a sequence
of stopping times Sk increasing to S∞ ≤ 1. Elementary geometry shows that
{X(t,ω),0 ≤ t < S∞} ⊂ X(S∞,ω) + D(f ). Let {X̃(t), t ∈ [0,1]} be the cadlag
version of {X(1 − t), t ∈ [0,1]}. The process X̃(t) has the same distribution as
X(t). It is elementary to check that X̃(t) has a cone point at s = 1 − S∞, that is,
the event A(f ) holds for X̃ with s = 1 − S∞ and some t0 > 0. Since p > 0 is
arbitrary, cone points exist with probability 1.

The soft proof of existence of cone points for stable processes had indicated to
us the existence of thorn points before we started our project.
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We would like to point out another case when a “soft” (although clever)
argument can yield a result whose continuous counterpart is quite difficult.
According to Proposition 3 of [17], there is no uniform modulus of continuity for
a “generic” Lévy process, which would apply at all times t at which the process
does not have a jump.

Our study of thorn points has been motivated in several ways. First of all, the
main result seems to have some interest of its own. Second, studying local path
properties of stochastic processes is a test for the corresponding potential theoretic
methods. Finally, it was shown in [18] that Brownian cone points are related to
reflected Brownian motion in a wedge. Hence, one may expect that thorn points
for stable processes might be related to “censored” stable processes, the subject of
a forthcoming paper [7].

One may ask whether stable processes have thorn points with arbitrary (random)
directions unlike those in Theorem 1.1. The corresponding problem for Brownian
cone points is not very hard because cones with small angles fit into some cones
with larger angles and different axes of symmetry. No such inclusion holds for
thorns oriented in different ways and so the problem is much harder when the
direction of the thorn is not fixed. Some preliminary estimates indicate that the
problem is tractable using the same methods as in [1].

We will use many methods and ideas from [10], [12], [13], [15] and [19]. What
we borrowed from those papers is the general structure of the proof—thorn points
(times) are approximated by times when the path starts a relatively long sojourn
inside the (translated) thorn, starting from a point strictly inside the thorn but
close to its tip. The implementation of this idea for Brownian cone points (see,
e.g., [10]) depended on estimates for the hitting time of the cone boundary. The
discontinuity of stable paths requires some essentially new ideas. Informally, one
has to slice the thorn D(f ) into pieces of the form {x ∈ D(f ) :x1 ∈ [2−k,2−k+1)}.
Then one has to estimate probabilities of various possible sequences of jumps of
the stable process between the pieces of the thorn. The main estimates of this type
are contained in Lemmas 3.2 and 4.5.

The paper has three more sections. The next section contains a review of well-
known results on stable processes which are needed in the proof of Theorem 1.1.
Some of these results can be found in [3], a very well written monograph on Lévy
processes. A very useful review of potential theoretic aspects of symmetric stable
processes relevant to our project may be found in [6], [8] and [11]. Section 3
contains the proof of the “easy” part of Theorem 1.1, that is, part (i). Section 4 is the
longest and most technical of all sections—it presents the proof of Theorem 1.1(ii).

2. Preliminaries. Let N = {0,1,2, . . .} denote the set of natural numbers and
N+ = N \ {0}. Let d ∈ N+. By | · | we will denote the Euclidean norm in Rd . For
any subset U ⊂ Rd we will denote its complement by Uc, its closure by U and its
boundary by ∂U . Furthermore, for x ∈ Rd , r > 0 and U , V ⊂ Rd we put B(x, r) =
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{y ∈ Rd : |x − y| < r}, rU = {ry :y ∈ U }, dist(U,V ) = inf{|y − z| :y ∈ U, z ∈ V }
and δU(x) = dist(x, ∂U). We will write m(U) for the d-dimensional Lebesgue
measure of the set U ⊂ Rd . B(Rd) will denote the Borel σ -algebra of Rd .

We will write c = c(α,β, . . . , γ ) to indicate the dependence of a constant c on
parameters, functions, etc. The constants may change their value from one use to
the next, even on the same line in the same formula. However, the set of parameters
on which a constant may depend will not change from its one use to another. The
constants denoted with c will be always assumed finite and strictly positive.

From now on let α ∈ (0,2) and d ∈ N, d ≥ 2, unless stated otherwise. We will
follow terminology and notation from [4] most of the time.

We will assume that the probability space � on which the process X(t) is
defined is the “canonical” space of all functions ω from [0,∞) to Rd such that
t → ω(t) is right continuous and has left limits. X(t,ω) is given by X(t,ω) =
ω(t). Shift operators will be denoted by θt (t ≥ 0), that is, θt :� → �, (θtω)(s) =
ω(t + s). The operators θt are also extended to stopping times T and are denoted
then by θT . Since some of the stopping times may equal ∞ (for some ω ∈ �) it will
be convenient to use the following convention (see [4] for more details). For each
ω ∈ � we put X(∞,ω) = ω(∞) = �, where � is an extra point not in Rd . We also
add to � a point ω� such that for all t ∈ [0,∞] we have X(t,ω�) = ω�(t) = �,
θ∞ω = ω�, ω ∈ �.

A symmetric α-stable process X(t) can be constructed in a formal way so that
it is a standard process ([4], Chapter I, Definition 9.2) and satisfies the following
properties. The distribution of the process starting from x ∈ Rd will be denoted
by P x , and Ex will denote the corresponding expectation. We will assume that
� is equipped with a σ -field M which is “universally complete” in the following
sense: if F ∈ M and P x(F ) = 0 for all x ∈ Rd then every subset of F is in M.

Let F ∈ M and Y be an M-measurable random variable. If we write P (F ) = a

[or E(Y ) = a], this will mean that a is the common value of P x(F ) for all x ∈ Rd

[or Ex(Y ) respectively].
We will denote by p(t, x, y) = pt(x − y), t > 0, x, y ∈ Rd , the transition

densities of X(t), that is, P x(X(t) ∈ U) = ∫
U p(t, x, y) dy, U ∈ B(Rd). For each

t > 0 the function pt(·) is bounded and continuous on Rd and has the following
useful scaling property, pt(x) = t−d/αp1(x/t1/α), x ∈ Rd .

The Lévy measure of the process X(t) is of the form ν(dx) = Cd,−α|x|−α−d dx

where

Cd,γ = �
(
(d − γ )/2

)
/
(
2γ πd/2|�(γ/2)|).

For an open set U ⊂ Rd we define τU = inf{t ≥ 0 :X(t) ∈ Uc}, the first entry
time of Uc. It is well known that τaU and aατU (a > 0) have the same distribution
under P 0. In the sequel we will need the following elementary estimate. If U is an
open bounded set then

P x(τU > t) ≤ c1(α,U) exp
(−c2(α,U)t

)
, t ≥ 0, x ∈ Rd .(2.1)
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We will briefly indicate how to prove (2.1). Since p1(x) is everywhere positive
and U is bounded, P y(τU > 1) ≤ P y(X(1) ∈ U) ≤ c3(α,U) < 1 for all y ∈ Rd .
By the Markov property, P y(τU > k) ≤ ck

3 for all k ≥ 1 and y ∈ Rd , from which
(2.1) follows.

X(1)(t), . . . ,X(d)(t) will denote one-dimensional components of the process
X(t), that is, X(t) = (X(1)(t), . . . ,X(d)(t)). It is known that each component
X(i)(t) is a symmetric α-stable process on the line. For any open set U ⊂ R and
i = 1, . . . , d , we will denote

τ
(i)
U = inf{t ≥ 0 :X(i)(t) ∈ Uc}.(2.2)

For an open set U ⊂ Rd and x ∈ Rd , the distribution P x(τU < ∞;X(τU) ∈ ·)
will be called the α-harmonic measure for U and denoted by µx

U(·). It is well
known that for any a > 0 and V ∈ B(Rd), the following scaling property holds:

P ax
(
X(τaU) ∈ aV

) = P x
(
X(τU ) ∈ V

)
.

In the case of a ball B(0, r), r > 0, for any x ∈ B(0, r), the α-harmonic measure
µx

B(0,r) has a density function Qr (x, ·) (the Poisson kernel) given by the formula

Qr(x, y) =
{

Cd
α(r2 − |x|2)α/2(|y|2 − r2)−α/2|x − y|−d, for |y| > r ,

0, for |y| ≤ r ,
(2.3)

where Cd
α = �(d/2)π−d/2−1 sin(πα/2) [5]. This formula holds also for d = 1.

Similarly, in the case of the complement of the ball B(0, r), for any x ∈
(B(0, r))c, the α-harmonic measure µx

(B(0,r))c
has a density

Q̂r(x, y) =
{

Cd
α(|x|2 − r2)α/2(r2 − |y|2)−α/2|x − y|−d, for |y| < r ,

0, for |y| ≥ r .
(2.4)

We would like to point out that this formula does not apply when d = 1 and α > 1.
We can easily derive a formula for the density of the α-harmonic measure

for the half-space H = {x ∈ Rd :x1 < 0} using (2.3) and (2.4). Fix some
x = (x1, . . . , xd) ∈ H . One can use (2.3) applied with d = 1 to show that
P x1(X(1)(τ

(1)
(−n,0)) = 0) = 0 for all integer n ≥ 1. This easily implies that

P x1(X(1)(τ
(1)
(−∞,0)) = 0) = 0. Hence P x(X(τH ) ∈ ∂H) = 0. Next, for any n ∈ N+

let vn = (−n,x2, . . . , xd), wn = (n, x2, . . . , xd), V (n) = B(vn,n) and W(n) =
(B(wn,n))c. For any U ⊂ (H)c, U ∈ B(Rd), we have

P x(
X(τW(n)) ∈ U ∩ (W(n))c

) ≥ P x(
X(τH ) ∈ U ∩ (W(n))c

)
≥ P x

(
X(τV (n)) ∈ U ∩ (W(n))c

)
.

These inequalities combined with (2.3) and (2.4) yield upon passing to the
limit, when n → ∞, the following formula for the density of the α-harmonic
measure µx

H :

QH (x, y) =
{

Cd
αδ

α/2
H (x)δ

−α/2
H (y)|x − y|−d, for y ∈ (H)c,

0, for y ∈ H ,
(2.5)
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for x ∈ H .
We define the potential kernel u(x, y) of the process X(t) by

u(x, y) =
∫ ∞

0
p(t, x, y) dt, x, y ∈ Rd .

According to [4] we have u(x, y) = Cd,α|x − y|α−d (the Riesz kernel). For any
open set U ⊂ Rd we define

GU(x, y) = u(x, y) − Ex
(
τU < ∞;u

(
X(τU ), y

))
, x, y ∈ Rd, x �= y,(2.6)

and call GU(x, y) the Green function for U . We put GU(x, x) = ∞ if x ∈ U

and GU(x, x) = 0 if x /∈ U . It is well known that if U1 ⊂ U2 are open sets then
we have GU1(x, y) ≤ GU2(x, y), x, y ∈ Rd . For any open set U and nonnegative
Borel measurable function h, the Green function satisfies

Ex
∫ τU

0
h(X(t)) dt =

∫
U

GU(x, y)h(y) dy, x ∈ Rd .

In particular, we have

Ex(τU) =
∫
U

GU(x, y) dy.(2.7)

Suppose that U ⊂ Rd is an open, nonempty, bounded set, V ∈ B(Rd) and
dist(U,V ) > 0. The following formula recovers the α-harmonic measure from
the Green function. A connection between the Lévy measure and the harmonic
measure established in [16] yields for x ∈ U ,

P x
(
X(τU ) ∈ V

) =
∫
U

GU(x, y)

∫
V

Cd,−α

|y − z|d+α
dz dy.(2.8)

We can combine (2.7) and (2.8) to obtain

P x
(
X(τU) ∈ V

) ≤ c(d,α)Ex(τU) sup
{|y − z|−d−α :y ∈ U,z ∈ V

}
m(V ).(2.9)

Using (2.8) we can express Qr (x, z), r > 0, x ∈ B(0, r), z ∈ Rd , |z| > r , in
terms of the Green function for B(0, r), namely,

Qr (x, z) =
∫
B(0,r)

GB(0,r)(x, y)
Cd,−α

|y − z|d+α
dy.

Recall (2.3), multiply both sides of the last formula by |z|d+α and let |z| → ∞ to
see that

ExτB(0,r) =
∫
B(0,r)

GB(0,r)(x, y) dy

(2.10)
= Cd

α(Cd,−α)−1(r2 − |x|2)α/2, |x| < r.

This formula holds also for d = 1.
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It will be convenient to use a summability condition for a series in place of the
integral criterion given in Theorem 1.1. Let

J (f ) =
∞∑

k=1

(f (2−k))d+α−1

(2−k)d+α−1
.

We leave the proof of the following elementary result to the reader.

LEMMA 2.1. I (f ) < ∞ if and only if J (f ) < ∞.

3. Proof of Theorem 1.1(i). Recall that t0 > 0 is fixed and assume that
I (f ) = ∞. Let g(x) = f (x) ∧ x. It is elementary to see that I (f ) = ∞ implies
that I (g) = ∞. To prove Theorem 1.1(i), it will suffice to show that P (A(g)) = 1.

We need some more notation. Let {an}∞n=1 be a sequence of natural numbers
satisfying a1 = 2, an+1 > an, n ∈ N+. The values of an’s will be chosen later in
this section. For n ∈ N+ we denote

W(n) = {
x ∈ D(g) :x1 ∈ (0,2−an)

}
,

V (n) = {
x ∈ D(g) :x1 ∈ [2−an+1,2−an)

}
.

Additionally, we put

W(0) = W(1) ∪ {
x ∈ Rd :x1 ∈ (1/2,1), |x̃| < g(1/2)

}
,

V (0) = {
x ∈ Rd :x1 ∈ (4/6,5/6), |x̃| < g(1/2)/2

}
.

For n ∈ N we denote

U(n) = {
x ∈ Rd :x1 ∈ [2−n−1,2−n), |x̃| < g(2−n−2)/2

}
.

LEMMA 3.1. (i) For all x ∈ U(n), n ∈ N, n ≥ 3, we have

P x(
X(τW(1)) ∈ V (0)

) ≥ c(α, d)gα(2−n−2).

(ii) For all x ∈ W(n), n ∈ N+, and k ≤ an − 2, k ∈ N, we have

P x
(
X(τW(n)) ∈ U(k)

) ≥ c(α, d)Ex(τW(n))g
d−1(2−k−2)(2−k−2)−d−α+1.

PROOF. For each x ∈ U(n) we have B = B(x,g(2−n−2)/2) ⊂ W(1), for
n ≥ 3. Hence P x(X(τW(1)) ∈ V (0)) ≥ P x(X(τB) ∈ V (0)). By (2.8) the last
expression is greater than or equal to

c(α, d)

∫
B

GB(x, y) dy = c(α, d)Ex(τB) = c(α, d)2−αgα(2−n−2)E0(τB(0,1)).

This proves the first part of the lemma.
Using (2.8) again we obtain

P x(
X(τW(n)) ∈ U(k)

)
≥ c(α, d)Ex(τW(n))

(
sup{|y − z| :y ∈ W(n), z ∈ U(k)})−d−α

m(U(k)).
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Note that

sup{|y − z| :y ∈ W(n), z ∈ U(k)} ≤ 2−k+1

and

m(U(k)) = c(α, d)2−k−2gd−1(2−k−2).

Part (ii) of the lemma follows from the three formulae. �

Consider the following events:

F1 = {X(τW(1)) ∈ V (0)},
Fn+1 = {X(τW(n+1)) ∈ V (n)} ∩ θ−1

τW(n+1)
Fn, n ∈ N+.

Note that on the set {X(τW(n+1)) ∈ V (n)} we have

θ−1
τW(n+1)

{X(τW(k)) ∈ V (k − 1)} = {X(τW(k)) ∈ V (k − 1)}
for any n ≥ k ≥ 1, k, n ∈ N, so that Fn+1 = ⋂n+1

k=1{X(τW(k)) ∈ V (k − 1)}.
Recall that {an} is a sequence of natural numbers satisfying a1 = 2, an+1 > an,

n ∈ N+.

LEMMA 3.2. One can find a sequence {an}∞n=1 depending on α,d and g such
that, for all n ∈ N+ and x ∈ W(n),

P x(Fn) ≥ 1
2P x(F1).(3.1)

PROOF. Let Hn = F1 \ Fn and cn = n/(n + 1), n ∈ N+. We will show that
there exists a sequence {an}∞n=1 such that

P x(Hn) ≤ cnP
x(Fn), x ∈ W(n),n ∈ N+.(3.2)

Clearly (3.1) follows from (3.2).
We will prove (3.2) by induction. For n = 1, (3.2) is trivial. Assume that we have

chosen a1, a2, . . . , am for some m ∈ N+ and that (3.2) holds for n = 1,2, . . . ,m.
Consider some am+1 ∈ N with am+1 > am, whose value will be chosen later in the
proof.

For any x ∈ W(m + 1) we have

P x(Fm+1) ≥
am+1−2∑
k=am∨3

Ex(
X(τW(m+1)) ∈ U(k);P X(τW(m+1))(Fm)

)
.

For z ∈ U(k), where k ∈ N, am ∨ 3 ≤ k ≤ am+1 − 2, we obtain from (3.2) and
Lemma 3.1(i),

P z(Fm) ≥ 1
2P z(F1) ≥ c(α, d)gα(2−k−2).
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From this and Lemma 3.1(ii) we get

P x(Fm+1) ≥ c(α, d)Ex(τW(m+1))

am+1−2∑
k=am∨3

(g(2−k−2))d+α−1

(2−k−2)d+α−1 ,

(3.3)
x ∈ W(m + 1).

On the other hand, for any x ∈ W(m + 1), we have

P x(Hm+1) = P x(
F1;X(τW(m+1)) ∈ V (m); (θ−1

τW(m+1)
Fm)c

)
+ P x

(
F1;X(τW(m+1)) /∈ V (m)

)
(3.4)

= I + II.

Applying (3.2) with n = m we obtain

I = Ex(
X(τW(m+1)) ∈ V (m);P X(τW(m+1))(F c

m ∩ F1)
)

(3.5)
≤ cmEx(

X(τW(m+1)) ∈ V (m);P X(τW(m+1))(Fm)
) = cmP x(Fm+1).

Using (2.9) we get

II ≤ P x
(
X(τW(m+1)) ∈ W(0) \ V (m)

)
≤ c(α, d)(2−am − 2−am+1)−α−dEx(τW(m+1))

≤ c(α, d)(2−am)−α−dEx(τW(m+1)).

We have J (g) = ∞. Hence, in view of (3.3) we can take am+1 large enough so
that II ≤ (cm+1 − cm)P x(Fm+1), x ∈ W(m + 1). This, (3.5) and (3.4) give (3.2)
for n = m + 1. This completes the proof of the induction step. �

For the remainder of this section, let {an}∞n=1 be a fixed sequence chosen as in
Lemma 3.2. For each n ∈ N+ fix a point yn ∈ V (n) ∩ {x ∈ Rd : |x̃| = 0}.

For n ∈ N+ and k = 1,2, . . . , n consider the following stopping times:

Sn
k = inf

{
t ≥ 0 :X(t) /∈ X(0) − yn + W(n − k + 1)

}
.

We will define another sequence of stopping times Rn. We let Rn be the first of
these times Sn

1 , Sn
2 , . . . , Sn

n for which X(Sn
k ) /∈ X(0) − yn + V (n − k). If there is

no such Sn
k , then we put Rn = inf{t ≥ 0 :X(t) /∈ X(0) − yn + W(0)}.

LEMMA 3.3. There exists a constant c = c(α, d, g, t0) such that

P (Rn ≥ t0) ≥ cE(Rn), n ∈ N+.



STABLE PROCESSES HAVE THORNS 179

PROOF. We have

E(Rn) = Eyn(Rn)

≤ Eyn(τW(0))

= Eyn(τW(1)) + Eyn
(
X(τW(1)) ∈ W(0) \ W(1);EX(τW(1))(τW(0))

)
.

The last term can be bounded by c(α, d)Eyn(τW(1)) using (2.9). Hence,

E(Rn) ≤ c(α, d)Eyn(τW(1)).

On the other hand, we have

P (Rn ≥ t0) = P yn(Rn ≥ t0)

≥ P yn

(
n⋂

j=1

{X(τW(j)) ∈ V (j − 1)} ∩ {τW(0) ◦ θτW(1)
≥ t0}

)
.

This is equal to

Eyn
(
Fn;X(τW(1)) ∈ V (0);P X(τW(1))(τW(0) ≥ t0)

)
.

Note that infx∈V (0) P
x(τW(0) ≥ t0) is strictly positive so the last expression is

greater than c(α, d, g, t0)P
yn(Fn). By Lemma 3.2 and (2.8), this is greater than

cEyn(τW(1)). We have shown that P (Rn ≥ t0) ≥ cEyn(τW(1)). The argument can
be completed by combining this inequality with an upper bound for ERn obtained
earlier in the proof. �

For j, l ∈ N and n ∈ N+ let us define the following stopping times:

T (0, n, l) = 2lt0,

T (j + 1, n, l) =
{

T (j,n, l) + (Rn ∧ t0) ◦ θT (j,n,l), if T (j,n, l) < 2lt0 + t0,
T (j,n, l), if T (j,n, l) ≥ 2lt0 + t0.

Next, for j, n, l as above define events

F(j,n, l) = {T (j + 1, n, l) − T (j, n, l) = t0}.
Let us also put Hl

n = ⋃∞
j=0 F(j,n, l), l ∈ N, n ∈ N+.

The proof of the following lemma is based on ideas from [12], Section 2,
and [10].

LEMMA 3.4. There exists n0 = n0(α, d, t0) ∈ N+ such that, for all n ≥ n0,
n ∈ N, and all l ∈ N, we have P (H l

n) ≥ c(α, d, g, t0).

PROOF. First note that E(Rn) → 0 as n → ∞. Indeed, Eyn(Rn) ≤ Eyn(τU ),
where U = {x ∈ Rd :x1 ∈ (0,1)}. But Eyn(τU ) equals c(α, d)((1/2)2 − |1/2 −
|yn||2)α/2, by (2.10).
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Hence, for all n ≥ n0(α, d, t0) ∈ N+, n ∈ N, there exists mn ∈ N such that

t0/3 ≤ mnE(Rn) ≤ t0/2.(3.6)

It follows that

E
(
T (mn,n, l) − 2lt0

) = E

(
mn∑
j=1

[T (j,n, l) − T (j − 1, n, l)]
)

≤ mnE(Rn) ≤ t0/2.

Hence

P
(
T (mn,n, l) − 2lt0 ≥ t0

) ≤ 1/2.(3.7)

Since F(j1, n, l) ∩ F(j2, n, l) = ∅ for j1 �= j2,

P (H l
n) ≥ P

(
mn⋃
j=1

F(j,n, l)

)

=
mn∑
j=1

P
(
F(j,n, l)

)

=
mn∑
j=1

P
(
T (j,n, l) < 2lt0 + t0

)
P (Rn ≥ t0)

≥ mnP
(
T (mn,n, l) < 2lt0 + t0

)
P (Rn ≥ t0).

By Lemma 3.3 and (3.7) this is bounded from below by c(α, d, g, t0)mnE(Rn).
This proves the lemma in view of (3.6). �

PROOF OF THEOREM 1.1(i). For any l ∈ N let Hl = lim supn→∞ Hl
n and

define the following subset of �:

Al = {
ω ∈ � : ∃ s = s(ω) ∈ [2lt0,2lt0 + t0] such that

X(t,ω) ∈ X(s,ω) + D(g) for all t ∈ [s, s + t0)
}
.

We will show that Hl ⊂ Al for all l ∈ N. Assume that ω ∈ Hl . Then there
exist strictly increasing sequences {jk}∞k=1 and {nk}∞k=1 (both depending on ω)
such that ω ∈ ⋂∞

k=1 F(jk, nk, l). We may assume by passing to a subsequence,
if necessary, that the sequence T (jk, nk, l,ω) is convergent to s as k → ∞ for
some s = s(ω) ∈ [2lt0,2lt0 + t0]. We can also assume that {T (jk, nk, l,ω)}∞k=1 is
either strictly increasing or nonincreasing. We will write sk = T (jk, nk, l,ω) for
short.

First consider the case when this sequence is strictly increasing to s. Recall that
all paths have left-hand limits and are right continuous. We will argue that the path
t → X(t,ω) is continuous at s, that is, limt→s X(t,ω) = X(s,ω).
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If ω ∈ F(jk, nk, l) then, for t ∈ [sk, sk + t0), the path X(t,ω) stays in X(sk,ω)−
ynk

+ W(0). Moreover, for t ∈ [sk, sk + t0) and each m = 0,1, . . . , nk − 1, if the
path X(t,ω) leaves X(sk,ω)− ynk

+ W(nk − m) then it goes to X(sk,ω) − ynk
+

V (nk − m − 1). Note also that X(sk,ω) − ynk
tends to limt↑s X(t,ω) as k → ∞.

Suppose that X(t,ω) has a jump at t = s, that is limt↑s X(t,ω) �= X(s,ω).
Then for large k, since sk ↑ s, the path X(t,ω) would have to jump at time
t = s from one of the sets X(sk,ω) − ynk

+ W(nk − m) to a point in the
complement of X(sk,ω) − ynk

+ V (nk − m − 1), for some m ∈ {0,1, . . . , nk − 1}.
This contradiction shows that X(t,ω) is continuous at t = s if {sk}∞k=1 is strictly
increasing. Thus limk→∞ X(sk,ω) = X(s,ω) in this case.

The same holds if {sk}∞k=1 is nonincreasing, by the right continuity of the
trajectories.

In both cases we have

X(t,ω) ∈ X(sk,ω)−ynk
+W(0) ⊂ X(sk,ω)−ynk

+D(g) for t ∈ [sk, sk + t0).

Since limk→∞ X(sk,ω) = X(s,ω) and limk→∞ ynk
= 0, we conclude that

X(t,ω) ∈ X(s,ω) + D(g) for all t ∈ [s, s + t0). This completes the proof of
Hl ⊂ Al .

Note that (A(g))c ⊂ ⋂∞
l=0(A

l)c ⊂ ⋂∞
l=0(H

l)c. By Lemma 3.4, we have
P (H l) ≥ c(α, d, g, t0). The events {(H l)c}∞l=0 are independent so
P (

⋂∞
l=0(H

l)c) = 0. Hence, we obtain P (A(g)) = 1. �

4. Proof of Theorem 1.1(ii). We will start by deriving some estimates for the
α-harmonic measure of a d-dimensional cylinder. The estimates in Lemmas 4.2
and 4.3 are more or less standard. Similar estimates were obtained in [9], Lemma 3.
However, since we could not find a direct reference for our estimates, we will spell
out their proofs in detail.

We put

C(r) = {
x ∈ Rd :x1 < 0, |x̃| < r

}
, r > 0.

The “unit” cylinder C(1) will be denoted C for short. Let �(a,b) = {x ∈ Rd :a <

x1 < b, |x̃| < 1}, and similarly, �[a, b) = {x ∈ Rd :a ≤ x1 < b, |x̃| < 1}. We will
write H = {x ∈ Rd :x1 < 0}.

Our next lemma says that although C is not bounded, (2.8) holds for C in place
of U .

LEMMA 4.1. Let V ⊂ Hc be a Borel set such that dist(C,V ) > 0. For any
x ∈ C we have

P x
(
X(τC) ∈ V

) =
∫
C

GC(x, y)

∫
V

Cd,−α

|y − z|d+α
dz dy

(4.1)
≤ c(α, d)Ex(τC) sup

{|y − z|−d−α : y ∈ C, z ∈ V
}
m(V ).

We also have Ex(τC) ≤ c(α), x ∈ C.
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PROOF. Recall (2.2), put Fn = (X(1)(τ
(1)
(−n,0)) ∈ (−∞,−n]), n ∈ N+, and note

that Fn+1 ⊂ Fn, n ∈ N+. Fix any x ∈ C. By (2.3) applied with d = 1 we have
limn→∞ P x(Fn) = 0.

Therefore for P x-almost all ω ∈ � there exists N = N(ω) ∈ N such that for
all n ≥ N , n ∈ N, we have ω /∈ Fn and consequently τ�(−n,0)(ω) = τC(ω). It
follows from (2.6) that G�(−n,0)(x, y) increases to GC(x, y), y ∈ Rd as n ↑ ∞.
Consequently, by letting n ↑ ∞ in the formula (2.8) for �(−n,0) and V we get
(4.1).

The last assertion of the lemma follows from the inequality Ex(τC) ≤
Ex2(τ

(2)
(−1,1)). �

LEMMA 4.2. For any x = (x1, . . . , xd) ∈ C we have

P x
(
X(τC) ∈ �[0, |x1|)) ≤ c(α, d)|x1|−d−α+1.

PROOF. Let l = |x1|/5. By taking c(α, d) large enough we may and will
assume that l ≥ 1. We have

P x
(
X(τC) ∈ �[0, |x1|))
≤ P x(

X(τ�(−∞,−4l)) ∈ �[−3l,5l)
)

+ P x
(
X(τ�(−∞,−2l)) ∈ �[−l,5l)

)
+ P x

(
X(τ�(−∞,−4l)) ∈ �[−4l,−3l);
X(τ�(−∞,−2l)) ∈ �[−2l,−l);X(τ�(−∞,0)) ∈ �[0,5l)

)
= I + II + III.

The three terms on the right-hand side represent three possible ways in which
the process can go from C to �[0, |x1|). The first two terms represent direct
jumps while the last term corresponds to three jumps. Applying (4.1) we get
I + II ≤ c(α, d)l−d−α+1. By the strong Markov property we obtain

III = Ex
[
X(τ�(−∞,−4l)) ∈ �[−4l,−3l);
EX(τ�(−∞,−4l))

[
X(τ�(−∞,−2l)) ∈ �[−2l,−l);
P X(τ�(−∞,−2l))

(
X(τ�(−∞,0)) ∈ �[0,5l)

)]]
.

Note that for any y ∈ �[−2l,−l) we get, by (2.5),

P y
(
X(τ�(−∞,0)) ∈ �[0,5l)

) ≤ P y
(
X(τH ) ∈ �[0,5l)

)
≤ c(α, d)lα/2−d

∫
�[0,5l)

δ
−α/2
H (z) dz

≤ cl−d+1 ≤ cl(−d−α+1)/3.
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Similarly, for y ∈ �[−4l,−3l), putting y′ = y + (2l,0, . . . ,0) and using transla-
tion invariance of X we obtain

P y(
X(τ�(−∞,−2l)) ∈ �[−2l,−l)

) ≤ P y′(
X(τH ) ∈ �[0, l)

) ≤ cl(−d−α+1)/3.

For the same reason,

P x
(
X(τ�(−∞,−4l)) ∈ �[−4l,−3l)

) ≤ cl(−d−α+1)/3.

We can combine the last three estimates to show that III ≤ c(α, d)l−d−α+1. This
and similar estimates for I and II prove the lemma. �

LEMMA 4.3. Let V ⊂ Hc be an arbitrary Borel set, r > 0 and x =
(x1, . . . , xd) ∈ C(r) be such that x1 ≤ −r . We have

P x
(
X(τC(r)) ∈ V

) ≤ c(α, d)

∫
V

rα

|x − z|d+α

(
rα/2

δ
α/2
H (z)

∨ 1

)
dz.(4.2)

PROOF. By scaling we have P x(X(τC(r)) ∈ V ) = P x/r(X(τC(1)) ∈ r−1V ).
The right-hand side of (4.2) has a similar scaling property so we may and will
assume that r = 1.

Let V1 = {z ∈ V : 3|x| < |z−x|} and V2 = V \V1. For z ∈ V1 we have |z| > 2|x|,
|z− x| < 2|z| and δC(z) ≥ |z|/2. Clearly, dist(C,V1) > 0. Throughout the proof R

will denote the integral on the right-hand side of (4.2). By (4.1) for C and V1 we
obtain

P x
(
X(τC) ∈ V1

) ≤ c(α, d)Ex(τC)

∫
V1

|z|−d−α dz

≤ c(α, d)

∫
V1

(|z − x|/2)−d−α dz ≤ cR.

Next we will estimate P x(X(τC) ∈ V2). Our argument will be similar to that in
the proof of Lemma 4.2. We will bound the probability in question by the sum of
three terms which represent different ways in which the process can jump from C
to V2. Let l = |x1|/3. We have

P x(
X(τC) ∈ V2

)
≤ P x(

X(τ�(−∞,−2l)) ∈ V2
)

+ Ex(
X(τ�(−∞,−2l)) ∈ �[−l,0);P X(τ�(−∞,−2l))

(
X(τH ) ∈ V2

))
+ Ex(

X(τ�(−∞,−2l)) ∈ �[−2l,−l);P X(τ�(−∞,−2l))
(
X(τH ) ∈ V2

))
= I + II + III.

To complete the proof it will suffice to show that each of the three terms on the
right-hand side is bounded by cR. The inequality I ≤ cR follows easily from (4.1).
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By (4.1) applied with �(−∞,−2l) and �[−l,0) in place of C and V , and
using (2.5),

II =
∫
�(−∞,−2l)

G�(−∞,−2l)(x, v)

∫
�[−l,0)

Cd,−α

|v − y|d+α
P y

(
X(τH ) ∈ V2

)
dy dv

≤ c(α, d)

ld+α

∫
�(−∞,−2l)

G�(−∞,−2l)(x, v) dv

∫
�[−l,0)

P y
(
X(τH ) ∈ V2

)
dy

= c

ld+α
Exτ�(−∞,−2l)

∫
�[−l,0)

P y(
X(τH ) ∈ V2

)
dy

≤ c

ld+α

∫
�[−l,0)

P y
(
X(τH ) ∈ V2

)
dy

≤ c

ld+α

∫
�[−l,0)

∫
V2

δ
α/2
H (y)

|y − z|dδ
α/2
H (z)

dz dy.

For z ∈ V2 we have∫
�[−l,0)

δ
α/2
H (y)

|y − z|d dy ≤
∫
�[−l,0)

|y − z|α/2−d dy ≤ c(α, d),

so

II ≤ c(α, d)

ld+α

∫
V2

1

δ
α/2
H (z)

dz ≤ c(α, d)

∫
V2

1

|x − z|d+αδ
α/2
H (z)

dz ≤ cR.

Now, let us consider III. We have

III ≤ P x
(
X(τ�(−∞,−2l)) ∈ �[−2l,−l)

)
sup

y∈�[−2l,−l)

P y
(
X(τH ) ∈ V2

)
.

The first factor can be bounded using Lemma 4.2:

P x
(
X(τ�(−∞,−2l)) ∈ �[−2l,−l)

) ≤ c(α, d)l−d−α+1.

For any y ∈ �[−2l,−l) we get, from (2.5),

P y
(
X(τH ) ∈ V2

) ≤ c(α, d)

∫
V2

lα/2 dz

|y − z|dδ
α/2
H (z)

≤ c

ld−α/2

∫
V2

dz

δ
α/2
H (z)

.

Recall that d ≥ 2, α < 2 and l ≥ 1/3. This implies that l−2d−α/2+1 ≤ c(α, d)l−d−α .
It follows that

III ≤ c(α, d)
l−d−α+1

ld−α/2

∫
V2

dz

δ
α/2
H (z)

≤ c

ld+α

∫
V2

dz

δ
α/2
H (z)

≤ c

∫
V2

dz

|x − z|d+αδ
α/2
H (z)

≤ cR.

The proof is complete. �
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We will assume from now on that I (f ) < ∞. Let g(x) = 2f (x) and note
that I (g) < ∞. If for all x ∈ (0,1/2] we have g(x) < x/2 then we set K1 = 2.
Otherwise we set

K1 = sup
{
k ∈ N :k ≥ 2, ∃x ∈ (2−k,2−k+1] such that g(x) ≥ x/2

}
.

It is elementary to check that the condition I (g) < ∞ implies that K1 < ∞. In the
sequel we will use the fact that g(x) < x/2 for all x ∈ (0,2−K1].

For l ∈ N+ we put

W(l) = {
x ∈ D(g) :x1 ∈ (0,2−l)

}
,

V (l) = {
x ∈ D(g) :x1 ∈ [2−l−1,2−l)

}
,

U(l) = {
x ∈ Rd :x1 ∈ (0,2−l), |x̃| < g(2−l)

}
,

Û (l) = {
x ∈ Rd :x1 ∈ (0,2−l−1), |x̃| < g(2−l)

}
.

For l, n ∈ N+, n ≥ l, let

W(l,n) = W(l) ∪ U(n).

Note that the sets W(l),V (l) and U(l) are similar to but not identical to sets
denoted by the same letters in Section 3.

Recall our convention concerning the constants—they can change their values
from line to line. We will need two constants whose values cannot change in this
way. To emphasize the different nature of these genuine constants, we will denote
them c̃1 and c̃2. They will appear for the first time in Lemmas 4.4 and 4.5.

LEMMA 4.4. For any k, l ∈ N+, k ≥ K1, and x ∈ Û (l) we have

P x
(
X(τU(l)) ∈ V (k)

) ≤ c̃1(α, d)gα(2−l)gd−1(2−k)(2−k)−α−d+1.

It follows that for k, l as above, n ∈ N+, n > l and x ∈ W(l + 1, n) we have,

P x
(
X(τW(l,n)) ∈ V (k)

) ≤ c̃1(α, d)gα(2−l)gd−1(2−k)(2−k)−α−d+1.

The last inequality is also true for k, l as above, n = l and x ∈ Û (n).

PROOF. We begin by proving the first inequality. Note that for l ≤ k we have
V (k) ⊂ U(l) so P x(X(τU(l)) ∈ V (k)) = 0. Therefore we can and do assume that
l > k.

Let v = (2−l ,0, . . . ,0). By Lemma 4.3,

P x
(
X(τU(l)) ∈ V (k)

) ≤ P x−v
(
X(τC(g(2−l ))) ∈ V (k) − v

)
≤ c(α, d)

∫
V (k)−v

gα(2−l)

|x − v − z|d+α

(
gα/2(2−l)

δ
α/2
H (z)

∨ 1

)
dz

≤ cgα(2−l)(2−k)−α−d
∫
V (k)−v

(
gα/2(2−l)

δ
α/2
H (z)

∨ 1

)
dz.
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For k = l − 1, direct calculations show that the last integral is bounded from above
by c(α, d)2−l+1gd−1(2−l+1). For k < l−1, the last integral is bounded from above
by m(V (k)). These estimates easily imply the first inequality in the statement of
the lemma.

Since W(l,n) ⊂ U(l), W(l + 1, n) ⊂ Û(l) for n > l, and W(n,n) = U(n), the
second inequality in the lemma is a direct consequence of the first one. �

For any n ∈ N+ we will define inductively a sequence of stopping times
S(m,n), starting with S(0, n) = 0 and S(1, n) = τW(n,n). For any m,n ∈ N+ we
define

S(m + 1, n) =
{

τW(i−1,n), if X
(
S(m,n)

) ∈ V (i), for some i ≥ 2, i ∈ N,
S(m,n), if X

(
S(m,n)

)
/∈ W(2).

The following lemma gives an estimate for the probability that the process
starting from x ∈ Û (n) will end up in V (k) at time S(m,n), and, moreover,
0 < S(1, n) < · · · < S(m,n).

LEMMA 4.5. Let K0 = K0(α, d, g) ∈ N be the smallest constant satisfying
K0 ≥ K1 and

J (g,K0) := c̃1

∞∑
j=K0

(g(2−j+1))d+α−1

(2−j )d+α−1 <
1

2
,(4.3)

where c̃1 = c̃1(α, d) is the constant from Lemma 4.4. For any m ∈ N+, n ≥ k ≥ K0,
n, k ∈ N and x ∈ Û (n) we have

P x
(
S(m − 1, n) < S(m,n);X

(
S(m,n)

) ∈ V (k)
) ≤ c̃2g

α(2−n)2−m,(4.4)

where c̃2 = 2c̃1g
d−1(2−k)(2−k)−α−d+1.

PROOF. The constant K0 is finite because I (g) < ∞ (see Lemma 2.1).
First note that for m ∈ N+, we have P x(X(S(m,n)) ∈ V (n)) = 0. This follows

from the fact that S(m,n) = τW(j,n) for some j ≤ n, j ∈ N+ and V (n) ⊂ W(j,n)

(j may depend on x, ω and m). This gives (4.4) for k = n. So from now on we will
assume that k ≤ n − 1.

We will prove (4.4) by induction on m. For m = 1, (4.4) follows from the second
inequality in Lemma 4.4 for l = n.

Suppose we have proved (4.4) for some m ∈ N+ and all n, k ∈ N, n − 1 ≥
k ≥ K0. We will show (4.4) for m + 1. For any n, k ∈ N, n − 1 ≥ k ≥ K0, and
x ∈ Û (n) we have

P x(
S(m,n) < S(m + 1, n);X

(
S(m + 1, n)

) ∈ V (k)
)

=
n−1∑
j=k

Ex
(
S(m − 1, n) < S(m,n);X

(
S(m,n)

) ∈ V (j);

P X(S(m,n))
(
X(τW(j−1,n)) ∈ V (k)

))
.
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By our induction hypothesis and Lemma 4.4 this is bounded from above by

n−1∑
j=k

2c̃1
gd−1(2−j )

(2−j )α+d−1
gα(2−n)2−m c̃1g

d−1(2−k)gα(2−j+1)

(2−k)α+d−1

= 2c̃1g
α(2−n)2−m gd−1(2−k)

(2−k)α+d−1

n−1∑
j=k

c̃1g
d−1(2−j )gα(2−j+1)

(2−j )α+d−1

≤ c̃2g
α(2−n)2−m

∞∑
j=K0

c̃1g
α+d−1(2−j+1)

(2−j )α+d−1

≤ c̃2g
α(2−n)2−m−1.

The last inequality is due to (4.3). We have shown that (4.4) holds for m + 1. �

Now we will define inductively stopping times S(m,n, x). They are “translated”
versions of S(m,n)’s so their definition is analogous to the definition of S(m,n).

For n ∈ N+ we will write yn = (2−n−2,0, . . . ,0) ∈ Rd . For x ∈ Rd , n ∈ N+ we
set S(0, n, x) = 0 and

S(1, n, x) = τx−yn+W(n,n) = inf{t ≥ 0 :X(t) /∈ x − yn + W(n,n)}.
For m,n ∈ N+ and x ∈ Rd we define S(m + 1, n, x) to be

τx−yn+W(i−1,n) = inf{t ≥ 0 : X(t) /∈ x − yn + W(i − 1, n)},
if X(S(m,n, x)) ∈ x − yn + V (i) for some i ≥ 2, i ∈ N. If X(S(m,n, x)) /∈
x − yn + W(2) then we define S(m + 1, n, x) to be S(m,n, x).

For n ≥ k, k,n,m ∈ N+, consider the following events:

H(n,m,k, x) = {
S(m − 1, n, x) < S(m,n, x);X

(
S(m,n, x)

) ∈ x − yn + V (k)
}
.

LEMMA 4.6. For n ≥ k ≥ K0, k, n, m ∈ N+, x ∈ Rd , we have

P x
(
H(n,m,k, x)

) ≤ c(α, d, g, k)gα(2−n)2−m.

PROOF. We have P x(H(n,m, k, x))=P yn(H(n,m, k, yn)) and S(m,n, yn)=
S(m,n). Also note that yn ∈ Û (n). Therefore Lemma 4.6 is a direct consequence
of Lemma 4.5. �

LEMMA 4.7. Let {Zi}∞i=1 be i.i.d. random variables such that Zi ≥ 0,
E(Zi) > 0 and E(Zi)

4 < ∞. There exists a constant c depending only on the
distribution of Z1 such that, for any M ≥ 1, M ∈ R, we have

∞∑
j=1

P

(
j∑

i=1

Zi ≤ M

)
≤ cM.
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PROOF. Let µ = EZi . Let j0 be the smallest integer with j0µ > 2M . We have

E

( j∑
i=1

(Zi − µ)

)4

≤ jE(Zi − µ)4 + 3j2E(Zi − µ)2 ≤ cj2,

because all terms which contain E(Zi − µ) are equal to zero.
For j ≥ j0,

P

( j∑
i=1

Zi ≤ M

)
≤ P

(∣∣∣∣∣
j∑

i=1

(Zi − µ)

∣∣∣∣∣ ≥ jµ − M

)

= P

(( j∑
i=1

(Zi − µ)

)4

≥ (jµ − M)4

)

≤ E

(
j∑

i=1

(Zi − µ)

)4

(jµ − M)−4 ≤ cj2(jµ/2)−4 ≤ cj−2.

It follows that

∞∑
j=1

P

( j∑
i=1

Zi ≤ M

)
≤

j0−1∑
j=1

P

( j∑
i=1

Zi ≤ M

)
+

∞∑
j=j0

P

( j∑
i=1

Zi ≤ M

)

≤ j0 +
∞∑

j=j0

cj−2 ≤ 2M/µ + 1 + 2c.

This clearly implies the lemma. �

For any n ∈ N+ and x ∈ Rd let

�(n,x) = x + {
z ∈ Rd : z1 ∈ (−2−n−2,2−n−2), |z̃| < g(2−n)/2

}
.

For j ∈ N and n ∈ N+ we define the following stopping times: T (0, n) = 0,

T (j + 1, n) = T (j,n) + τ�(n,X(0)) ◦ θT (j,n).

An alternative but equivalent definition is

T (j + 1, n) = inf
{
s > T (j,n) :X(s) /∈ �

(
n,X

(
T (j,n)

))}
.

LEMMA 4.8. For any N ∈ N+, n ≥ k ≥ K0, k,n,m ∈ N+ we have

P

( ∞⋃
j=0

[{T (j,n) ≤ N} ∩ θ−1
T (j,n)H

(
n,m,k,X(0)

)]) ≤ c(α, d, g, k)N2−m.

We also have P (limj→∞ T (j, n) < ∞) = 0 for n ∈ N+.
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PROOF. By the strong Markov property applied at T (j,n) and Lemma 4.6,

P
({T (j, n) ≤ N} ∩ θ−1

T (j,n)H
(
n,m,k,X(0)

))
≤ c(α, d, g, k)P

(
T (j,n) ≤ N

)
gα(2−n)2−m.

Therefore, to prove the first part of the lemma it will be sufficient to show that

∞∑
j=0

P
(
T (j, n) ≤ N

) ≤ c(α, d)Ng−α(2−n).(4.5)

We have T̂ (j + 1, n) ≤ T (j + 1, n) for stopping times T̂ (j + 1, n) defined by

T̂ (j + 1, n) = T (j,n) + τB(X(0),g(2−n)/2) ◦ θT (j,n), j ∈ N.

Let Yi = g−α(2−n)2α[T̂ (i, n) − T (i − 1, n)], i ∈ N+, and note that {Yi}∞i=1 are
i.i.d. random variables with the same distribution as τB(X(0),1). We have

∞∑
j=0

P
(
T (j,n) ≤ N

) ≤ 1 +
∞∑

j=1

P

( j∑
i=1

(
T (i, n) − T (i − 1, n)

) ≤ N

)

≤ 1 +
∞∑

j=1

P

( j∑
i=1

(
T̂ (i, n) − T (i − 1, n)

) ≤ N

)
(4.6)

= 1 +
∞∑

j=1

P

( j∑
i=1

Yi ≤ g−α(2−n)2αN

)
.

It is easy to show that E(Yi)
4 < ∞ using (2.1). So we can apply Lemma 4.7 to

estimate the right-hand side of (4.6). This gives (4.5).
The last claim in the lemma follows easily from the fact that the series in (4.5)

is convergent for every fixed N . �

Let

�1 = {
ω ∈ � : ∃ s = s(ω) ≥ 0,∃ t1 = t1(ω) > 0 such that

X(t,ω) = X(s,ω) for all t ∈ [s, s + t1)
}
.

We have

P (�1) = 0,(4.7)

because for every pair of rationals s1 �= s2, P (X(s1) �= X(s2)) = 1.

PROOF OF THEOREM 1.1(ii). For any n ∈ N+ and x ∈ Rd let

U(n,x) = x + {
z ∈ Rd : z1 ∈ (−2−n,2−n), |z̃| < g(2−n)

}
.
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For s ≥ 0 and n ∈ N+ we define stopping times

Q(s,n) = inf
{
t > s :X(t) /∈ U

(
n,X(s)

)}
.

By the right continuity of paths we obtain Q(s,n) > s for all s. For ω ∈ � \�1 we
also have limn→∞ Q(s,n,ω) = s and limn→∞ X(Q(s,n,ω)) = X(s,ω) for all s.

Next, let us write Û (n, x) = U(n,x) \ U(n + 1, x), n ∈ N+, x ∈ Rd , and for
ω ∈ � \ �1, s ≥ 0 and t > 0 define

Z(s, t,ω) = {
l ∈ N+ : ∃a ∈ N+ such that Q(s, a,ω) ∈ (s, s + t),

X
(
Q(s, a,ω),ω

) ∈ Û
(
l,X(s,ω)

)}
.

Our remarks about Q(s,n) imply that for all ω ∈ � \ �1, s ≥ 0 and t > 0 the
number of elements of Z(s, t,ω) is infinite.

Let �2 = �1 ∪⋃∞
n=1{limj→∞ T (j, n) < ∞}. By Lemma 4.8 and (4.7) we have

P (�2) = 0.
Recall that X(1)(t), . . . ,X(d)(t) denote the components of X(t). We will write

D(f, k) = {x ∈ D(f ) :x1 ∈ (0,2−k)}, k ∈ N . For any N ∈ N+ and k ≥ K0 + 1,
k ∈ N, let us denote

A(f, [0,N ], k) =
{
ω ∈ � \ �2 : ∃ s = s(ω) ∈ [0,N ], ∃ t1 = t1(ω) > 0 such that

(i) X(t,ω) ∈ X(s,ω) + D(f,K0 + 2) for all t ∈ [s, s + t1),

(ii) sup
t∈[s,s+t1)

|X(1)(t,ω) − X(1)(s,ω)| ∈ [2−k−1,2−k)

}
.

Recall A(f ) and a fixed time t0 > 0 from the Introduction. By the right continuity
of paths we have

A(f ) ⊂ �2 ∪
∞⋃

N=1

∞⋃
k=K0+1

A(f, [0,N ], k).

To prove Theorem 1.1(ii) it will suffice to show that for any N ∈ N+ and k ≥
K0 + 1, k ∈ N, we have P (A(f, [0,N ], k)) = 0.

Fix N and k. For s ≥ 0, t > 0, ω ∈ � \ �1 and i > k, i ∈ N, we will write

Z(s, t, i, k,ω) = Z(s, t,ω) ∩ {k, k + 1, . . . , i − 1}.
Let # denote the number of elements of a set. For i > k, m ∈ N+ and � = [0,N ]
or � = [0,N ] ∩ [T (j,n), T (j + 1, n)), j ∈ N, n ≥ i, let

A(f,�, i,m, k) =
{
ω ∈ � \ �2 : ∃ s = s(ω) ∈ �,∃ t1 = t1(ω) > 0 such that

(i) X(t,ω) ∈ X(s,ω) + D(f,K0 + 2) for all t ∈ [s, s + t1),

(ii) sup
t∈[s,s+t1)

|X(1)(t,ω) − X(1)(s,ω)| ∈ [2−k−1,2−k),

(iii) #Z(s, t1, i, k,ω) ≥ m

}
.
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We claim that, if

ω ∈ A
(
f, [0,N ] ∩ [

T (j,n), T (j + 1, n)
)
, i,3m,k

)
,(4.8)

and j, n, i ∈ N, n ≥ i > k, m ∈ N+, then

ω ∈ {T (j,n) ≤ N} ∩ θ−1
T (j,n)

[ ∞⋃
l=m

k+1⋃
b=k−1

H
(
n, l, b,X(0)

)]
.(4.9)

To show that the above claim is true is straightforward but tedious so we defer the
argument to the end of the proof.

Assume that (4.8) implies (4.9). If ω ∈ A(f, [0,N ], i,3m,k) then

ω ∈ F(n,m, k) :=
∞⋃

j=0

[
{T (j, n) ≤ N} ∩ θ−1

T (j,n)

[ ∞⋃
l=m

k+1⋃
b=k−1

H
(
n, l, b,X(0)

)]]
.

Consequently,
∞⋃

i=k+1

A(f, [0,N ], i,3m,k) ⊂ lim inf
n→∞ F(n,m, k).(4.10)

Lemma 4.8 easily implies that

P
(
F(n,m, k)

) ≤ c(α, d, f, k)N2−m, n > k, n,m ∈ N+.(4.11)

Since for any s ≥ 0, t > 0 and ω ∈ � \ �1 the set Z(s, t,ω) has infinitely many
elements, we have

A(f, [0,N ], k) ⊂
∞⋂

m=1

∞⋃
i=k+1

A(f, [0,N ], i,3m,k).(4.12)

From (4.11) we obtain P (
⋂∞

m=1 lim infn→∞ F(n,m, k)) = 0. This, (4.10), (4.11)
and (4.12) imply that P (A(f, [0,N ], k)) = 0. Consequently, P (A(f )) = 0.

Now what is left is to prove that (4.8) implies (4.9). Assume that ω satisfies
(4.8). Then there exist s = s(ω) ∈ [T (j,n), T (j + 1, n)) and t1 = t1(ω) > 0 such
that X(t,ω) ∈ X(s,ω) + {x ∈ D(f ) :x1 ∈ [0,2−k)} for all t ∈ [s, s + t1). This
follows from conditions (i) and (ii) in the definition of A(f,�, i,3m,k). We will
define G1-jumps and, later, G2-jumps. Here G stands for “good” and subscripts
indicate two different but closely related types of jumps. A G1-jump occurs if at
the first time t ∈ [s, s + t1) when the path X( · ,ω) leaves

U
(
q1,X(s,ω)

) ∩ (
X(s,ω) + {

x ∈ D(f ) :x1 ∈ [0,2−k)
})

= X(s,ω) + {
x ∈ D(f ) :x1 ∈ [0,2−q1)

}
it jumps to

Û
(
q2,X(s,ω)

) ∩ (
X(s,ω) + {

x ∈ D(f ) :x1 ∈ [0,2−k)
})

= X(s,ω) + {
x ∈ D(f ) :x1 ∈ [2−q2−1,2−q2)

}
,
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for some particular q1, q2 ∈ N+, which are chosen below. We say that the first
G1-jump occurs if q1 ≥ i and i > q2 ≥ k. For the “consecutive” G1-jumps, the
corresponding condition is i − 1 ≥ q1 > q2 > k. Note that the numbers q1 and q2
are chosen so that G1-jumps corrrespond to Z(s, t1, i, k,ω).

The fact that ω satisfies (4.8) implies that for t ∈ [s, s + t1), the path X(t,ω) has
at least 3m G1-jumps.

Next we define a G2-jump. We will say that the first G2-jump occurs if at the
first time t > T (j, n) when the path X( · ,ω) leaves the set X(T (j,n)) − yn +
W(n,n), it jumps to

X
(
T (j,n)

) − yn + V (q) = X
(
T (j,n)

) − yn + {
x ∈ D(g) :x1 ∈ [2−q−1,2−q)

}
for some q ∈ N+, n > q ≥ b. We will say that consecutive G2-jumps occur if for
some q1, q2 ∈ N+, n > q1 > q2 ≥ b, q1 −q2 > 1, at the first time t > T (j, n) when
the path X( · ,ω) leaves

X
(
T (j,n)

) − yn + W(q1 − 1, n)

= X
(
T (j,n)

) − yn + ({
x ∈ D(g) :x1 ∈ (0,2−q1+1)

} ∪ U(n)
)
,

it jumps to

X
(
T (j,n)

) − yn + V (q2) = X
(
T (j, n)

) − yn + {
x ∈ D(g) :x1 ∈ [2−q2−1,2−q2)

}
.

G2-jumps correspond to H(n, l, b,X(0)) and S(l, n,X(0)).
If ω satisfies (4.9) then for t > T (j, n), the path X(t,ω) has at least m

G2-jumps.
Recall we have assumed that ω satisfies (4.8) and let

z = (z1, z2, . . . , zd) = X(s,ω) − (
X

(
T (j,n)

) − yn

)
.

Since s ∈ [T (j,n), T (j + 1, n)) the vector X(s,ω) − X(T (j,n)) belongs to
�(n,0), so in particular |z̃| = |(z2, . . . , zd)| < g(2−n)/2 = f (2−n). Put z′ = (0, z̃)

and z′′ = (z1,0, . . . ,0). We may think of z′ as the vertical part of the vector z

and of z′′ as the horizontal part. Recall that W(n,n) = U(n) = {x ∈ Rd :x1 ∈
(0,2−n), |x̃| < g(2−n)}.

For s ∈ [T (j,n), T (j + 1, n)), we have

X(s,ω) ∈ �
(
n,X

(
T (j, n)

)) ⊂ X
(
T (j,n)

) − yn + U(n),(4.13)

X(s,ω) + D(f,K0 + 2) ⊂ X
(
T (j,n)

) − yn + (
D(g,K0) ∪ U(n)

)
.(4.14)

We also have

z′ + X
(
T (j,n)

) − yn + {
x ∈ D(f ) :x1 ∈ (0,2−q)

}
(4.15)

⊂ X
(
T (j,n)

) − yn + ({
x ∈ D(g) :x1 ∈ (0,2−q)

} ∪ U(n)
)
,
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for q ∈ N+, n ≥ q and

z′ + X
(
T (j,n)

) − yn + {
x ∈ D(f ) :x1 ∈ [2−q−1,2−q)

}
(4.16)

⊂ X
(
T (j,n)

) − yn + {
x ∈ D(g) :x1 ∈ [2−q−1,2−q)

}
,

for q ∈ N+, n−1 ≥ q . It follows from (4.13)–(4.16) that (4.8) implies (4.9), except
for two fine points of the argument, which are discussed below.

Let us denote D̃(q) = {x ∈ D(f ) :x1 ∈ [2−q−1,2−q)} and recall V (q) = {x ∈
D(g) :x1 ∈ [2−q−1,2−q)}, q ∈ N.

(i) There is a difference between G1-jumps and G2-jumps. Suppose that during
some G1-jump, the process jumps to the set X(s,ω) + D̃(q). Then during the
next G1-jump, the process may jump to the “nearest neighbor” of this set, that
is, the set X(s,ω) + D̃(q − 1). On the other hand if during some G2-jump the
process jumps to the set X(T (j,n)) − yn + V (q) then during the next G2-jump
the process cannot jump to the “nearest neighbor” of this set, that is, the set
X(T (j,n)) − yn + V (q − 1). We indicate how to resolve this problem below.

(ii) Recall that z′′ = (z1,0, . . . ,0) is the horizontal part of the vector z =
X(s,ω) − (X(T (j, n)) − yn). There is a “small horizontal translation” by the
vector z′′ between the sets X(s,ω)+ D̃(q) and X(T (j,n))−yn +V (q). Since the
vector X(s,ω) − X(T (j,n)) belongs to �(n,0) we have |z′′| < 2−n−2 + |yn| =
2−n−1 so the vector z′′ is relatively small in comparison to the sets D̃(q) and V (q)

for n − 1 ≤ q .
The way we can deal with problems in (i) and (ii) is by having at least 3m

G1-jumps in (4.8). This guaranties, in spite of the difference between G1-jumps
and G2-jumps and the “small horizontal translations,” that the path X(t,ω) has at
least m G2-jumps.

Similarly in (4.9) we consider an auxiliary parameter b = k −1, k or k +1. This
parameter is chosen so that the condition (ii) in the definition of A(f,�, i,3m,k)

implies that after one of the G2-jumps, the path is in X(T (j,n)) − yn + V (b) (for
b = k − 1, k or k + 1). �
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50-370 WROCŁAW

POLAND

E-MAIL: tkulczyc@kac.im.pwr.wroc.pl


