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ON THE LOWER TAIL PROBABILITIES
OF SOME RANDOM SERIES1

BY M. A. LIFSHITS

Mancomtech Center, St. Petersburg and Universite L. Pasteur´
� 4The behavior of tail probabilities P S � r , r � 0 is investigated,

where S is a series S � Ý� Z generated by some sequence of positivej j
� 4 � 4numbers � and by a sequence Z of independent copies of a positivej j

random variable Z.
� 4We present the exact asymptotic expression for P S � r by means of

Ž . � 4Laplace transform � � � E exp ��S under weak assumptions on the
behavior of the tail probabilities of Z in the vicinity of zero. The bounds of
accuracy are also given, and under weak supplementary smoothness
conditions the asymptotic properties of the density of S are investigated.

1. Introduction. The main subject of our interest is the behavior of the
tail probabilities

� 41.1 P S � r , r � 0Ž .
where S is a series
1.2 S � � ZŽ . Ý j j

� 4generated by some nonincreasing sequence of positive numbers � , Ý� � �j j

� 4and by a sequence Z of independent copies of positive random variable Zj
with finite variance and absolutely continuous distribution. We present the

Ž . Ž .exact asymptotic expression for 1.2 by means of Laplace transform � � �
� 4E exp ��S under mild polynomial assumptions on the tail probabilities of Z

in the vicinity of zero.
Ž .The history of the investigation of the tail probabilities in 1.1 is curious.

The question of this kind appeared initially in the theory of Gaussian vectors
in Hilbert space. Indeed, let � be a standard normal variable and Z � � 2.

� 4Then, P S � r represents the probability of the hitting in the ball of radius
1�2 � 4r for Hilbert space-valued centered Gaussian random vector such that � j

coincides with the spectrum of the corresponding covariance operator. It was
� � Ž .G. N. Sytaya 14 who found the asymptotics of 1.1 for the Gaussian case.

� � � � Ž � � � �.Her result was rediscovered in 7 and 18 cf. also 5 and 13 , where
further estimates of Gaussian probabilities of small balls in Hilbert space

� � � � � �were proposed. Moreover, in 6 , 9 and 11 , the noncentered balls were
� � � �treated, and in 10 and 19 the Gaussian measure of l -balls was consid-p

ered. All these works use difficult complex integration procedures. Therefore,
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the probabilistic background of the correspondent results remains partially
� �obscured. An alternative approach appeared recently in 8 for general Gauss-

ian settings. It is based on the relation of the probabilities of small balls and
the entropy numbers of the unit ball of the kernel of Gaussian measure. This
approach looks very robust but it is not precise enough to provide exact
bounds. On the other hand, some general results and surprising examples

� � � 4were discovered for the Gaussian case in 12 for P S � r , r � �, by means
of a kind of Laplace transform.

Several essential concepts were introduced by R. Davis and S. Resnick in
� � Ž .4 . First, they started to investigate 1.1 for the general case, without any
relation to Gaussian specifics. Second, they observed a deep connection

Ž . Ž .between the asymptotics of 1.1 and the central limit theorem CLT for
Žsums of nonidentically distributed random variables. Though we also discov-

� �ered the role of CLT before being informed about the existence of 4 , we
.acknowledge the priority of the mentioned article. Third, Davis and Resnick

noticed that the CLT mechanism works well for the case of polynomial tails of
the distribution of Z. Unfortunately, apart from the indispensable polynomial

� �restriction, a supplementary condition is also imposed in 4 on the density of
Z, and this one turns out to be so restrictive that the Gaussian case falls out

� �of the frame of 4 . Meanwhile, the ideas related to the CLT arrived also in
� � � �Gaussian context; see 1 , 5 .

This situation determines our goal. We aim to obtain a version of the
ŽDavis�Resnick theorem, which contains the Sytaya Gaussian result as well

� �.as the Gaussian result from 19 as a particular case. Moreover, the polyno-
mial restrictions on Z, that we assume to be fulfilled, are essentially weaker

� �than their counterparts from 4 . In particular, regular variation conditions
are not supposed to take place. We are also able to avoid any assumption on
the spectral sequence � and on the density of Z. Under mild smoothness
assumptions, the asymptotic behavior of the density of S at zero is investi-
gated. We also give the bounds of accuracy for the proposed asymptotics. It
turns out that the accuracy rate depends on a polynomial index related to
lower tails of Z. If the tails are too thin, the rate may be worse than one could
expect from general CLT heuristics.

Ž .Our approach is mainly based on a small part of the powerful and
transparent CLT technique developed recently by A. Yu. Zaitsev for other

Ž .purposes see Section 5 below . The application of this technique looks
promising; also it is far outside the scope treated here. One could apply the
same ideas to the case of nonidentically distributed variables, consider para-

Ž .metric schemes like � � � � with some external parameter �, and so on.j j
� � � �For example, we give an extension of the basic result from 9 and 11

concerning the Gaussian probabilities of strongly shifted small balls in
Hilbert space.

2. Notation. Denote F and f respectively the distribution function and
the density of Z. Let the Laplace transform of S be defined as

� 4� � � E exp ��S .Ž .
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Throughout the following, current constants depending only on F are
denoted by c , c , . . . . Notations � , � , . . . symbolize different real or complex1 2 1
remainder terms, always not exceeding one in absolute value. For any

Ž . 0random variable Y, we denote LL Y the distribution of Y, Y � Y � EY and
ˆŽ . � 4 Ž . Ž .Y v � E exp ivY . We write X � Y iff LL X � LL Y .LL

Ž . Ž .For any nonnegative r.v. Y with distribution U dr and � � 0, let Y �

� 4 Ž . � 4denote a random variable with distribution exp �� r U dr �E exp �� Y .
The corresponding operation in the space of distributions is sometimes re-
ferred to as the Esscher transform. It is widely used in the theory of large
deviations for sums of random variables. All the sums of r.v. will be consid-
ered as the sums of independent r.v. In particular, we need the following

Ž . Žobjects for the investigation of 1.1 notice that the index � in their notation
.is suppressed for simplicity :

	 � � Z , 
 2 � Var 	 ,Ž .Ž .j j j j j�

2.1 � � Ý	 � Ý � Z � Ý� Z � S ,Ž . Ž .Ž . Ž . �j j j LL j j� �


 2 � Var � � Ý
 2 .Ž . j

We will need a smoothing procedure. To this aim, we fix some auxiliary r.v.
� �� with symmetric infinitely differentiable density concentrated on �1, 1 .

Ž . Ž . Ž . Ž .One could take, for example, � � 2�
 arctan g , with LL g � NN 0, 1 .
Let p, q, q , q denote the densities of r.v. S, � , � 0�
 and � 0�
 �0 0 s

Ž .����
 , respectively, where index zero stands for centering and index s
Ž .denotes smoothing smoothing parameter � will be specified later .

3. Polynomial conditions and main results. The following two condi-
tions provide the polynomial behavior of the lower tail probabilities for Z. The
first condition gives an inferior bound for the tail probability, the second one

Ž .gives a superior bound. We assume that there exist b � 0, 1 , c � 1, c �1 2
Ž .0, 1 , c � 0 such that for each r � c ,3 3

� F r � c F brŽ . Ž . Ž .1

and
�� F br � c F r .Ž . Ž . Ž .2

The validity of both conditions is completely determined by the behavior of
Ž . Ž .F in any vicinity of 0. Moreover, it follows easily from � and �� that for

r � c inequalities,3

c r �1 � F r � c r �2Ž .4 5

hold with
� �3.1 � � log c � log bŽ . 1 1

Ž . Ž .�1 Ž . Ž .�2and � � log c �log b, c � F c � b�c , c � F c � bc . Thus, the2 2 4 3 3 5 3 3
Ž . Ž .conditions � , �� imply a polynomial lower tail behavior of the distribution

Ž . Ž .of Z, although they do not provide its regularity. On the other hand, � , ��
Ž . � Ž .can be verified immediately if f r � r h r , where h is a slowly varying
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� �function and � � �1. This situation was considered in 4 . It concerns, of
� � p Ž . Ž .course, the Gaussian case Z � � , LL � � NN 0, 1 , p � 0 where

1�2 �1 1� p�1f r � 2�
 p r .Ž . Ž .

Ž . � Ž .Moreover, if F r � r h r with h slowly varying at zero, then the parameter
� can be chosen arbitrarily close to � . This remark is significant in view of1
the subsequent appearance of � in our accuracy rates.1

Our first result is rather technical. It provides a local CLT for the smoothed
Ž .convolution of the transformed terms from 1.1 .

Ž . Ž .THEOREM 1. Let the conditions � and �� hold for the distribution F
Ž . Ž .and � be defined in 3.1 . Let � and 
 be defined in 2.1 for each � � 0. Let1

Ž . Ž . Ž .�Ž2 �� .� �1� � 0, 2 and � � � � � �
 . Then, when � tends to infinity, the
following hold.

Ž . 0 Ž .a The distributions of � �
 converge weakly to NN 0, 1 .
Ž . Ž 0 .b The distribution densities of smoothed random variables � � ���� �


Ž .converge uniformly on R to the distribution density of NN 0, 1 , namely

�1�2 23.2 sup q u � 2
 exp �u �2 � 0.� 4Ž . Ž . Ž .0 s
u

Moreover, if EZ3 � �, then

�1�2 �123.2a sup q u � 2
 exp �u �2 � O �
 .� 4Ž . Ž . Ž . Ž .Ž .0 s
u

The next theorem represents the main result of the article. It provides the
exact asymptotic expression for tail probabilities with sharp estimate of its
accuracy.

Ž .THEOREM 2. Let S be the sum of series 1.2 generated by r.v. Z, which
Ž . Ž . Ž .distribution function obeys � and �� . Let the parameter � � � r be

chosen from the equation

3.3 r � E S .Ž . Ž .�

Then,

�1�2 �1� 4 � 43.4 P S � r � 2
 �
 exp � r � � 1 � o 1 , r � 0.Ž . Ž . Ž . Ž . Ž .

3 Ž . Ž .Moreover, if EZ � �, then for � defined in 3.1 and each � � 0, 2 ,1

�1�2 �1� 4 � 4P S � r � 2
 �
 exp � rŽ . Ž .
Ž .�1 � 2�� ��1�� � 1 � O �
 � �
 , r � 0.Ž . Ž . Ž .Ž .

3.4aŽ .
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Ž . Ž .COMMENTS. i According to the definition 1.2 of S, our basic function �
and its derivatives can be expressed in terms of Z:

� � � E exp ��� Z ,� 4Ž . Ł j

E� Z exp ��� Z� 4j j�� log � � � � E	 � E� � E S ,Ž . Ž . Ž .�Ý Ý jE exp ��� Z� 4j

22E � Z exp ��� Z E� Z exp ��� Z� 4 � 4Ž .j j j j�log � � � �Ž . Ž . Ý ž /E exp ��� Z E exp ��� Z� 4 � 4j j

� Var 	 � Var � � 
 2 .Ž . Ž .Ý j

Ž .These representations can be effectively used for advanced analysis of 3.3
Ž . � �and 3.4 in many specific cases; see, for example, 18 for corresponding

results and examples of asymptotics of Gaussian small ball probabilities.
Ž .ii It follows from the just-mentioned identities that both right-hand sides
Ž . Ž .of 3.3 and 3.4 are explicitly defined by means of Laplace transform � and

we really have a Laplace description for asymptotics of tail probabilities.
Ž .iii The statement of Theorem 2 remains true if the parameter � is only

Ž .an approximate solution of 3.3 , that is,

3.5 lim r � E S �
 � 0.Ž . Ž .Ž .�
r�0

Ž .See the precise statement below in 6.19 .
Ž .iv We did not impose in Theorem 2 any assumptions either on the

Ždensity f , or on the sequence �, or on Laplace transforms in contrast to
.previous works . Our assumptions are explicitly related to the lower tails of

d.f. F.
Ž . Ž .v If � � 2, then choosing � sufficiently small, we obtain in 3.4a the1

� ŽŽ .�1 .�expected accuracy rate 1 � O �
 . It is the same case, for example, as
in the Hilbert�Gaussian situation where � � 1�2. It may look surprising1
but for thin polynomial lower tails � � 2, the accuracy rate seems to be of1

� ŽŽ .�2�� .� �1.�bad order 1 � O �
 , at least for r.v. Z with sufficiently irregular
density.

The following result describes the asymptotic behavior of the density of S.

Ž .THEOREM 3. Let S be the sum of series 1.2 generated by r.v. Z, which
Ž . Ž .distribution function F obeys � and �� . Moreover, assume that there exist

some positive C, � , K and p � 1 such that the density f of F satisfies
�2f y � f x � CF x x y � x ,Ž . Ž . Ž . Ž .

3.6Ž .
� x , y : 0 � x � y 	 K , 0 � y � x � �

and
� p

3.7 f x dx � �.Ž . Ž .H
K
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Ž .Let � and 
 be defined in 2.1 . Then

Ž . Ž . 0a the distribution densities q � of r.v. � �
 converge uniformly to the0
standard normal density.

Ž . Ž . Ž . Ž .b If � � � r is chosen from equation 3.3 , the distribution density p � of
r.v. S admits an asymptotic representation

�1�2 �1 � 4p r � 2
 
 exp � r � � 1 � o 1 , r � 0.Ž . Ž . Ž . Ž .Ž .

Our technique turns out to be flexible enough to work also in the more
sophisticated situation with S dependent on external parameter. We mention
here only one result in this direction. This result concerns Gaussian mea-
sures. It is interesting to compare it with the corresponding recent results

� � � �obtained by different methods in 9 and 11 .
Let H be a separable Hilbert space and let X be an infinite-dimensional

H-valued centered Gaussian random vector. Then there exist an orthonormal
� 4 � 4base e 
 H, a positive sequence � and an i.i.d. standard normal sequencej j

� 4 1�2� such that X � Ý� � e .j j j j

Ž . Ž . Ž . � .Let a t � Ý� t e � H and R t � 0 be defined on some interval T, � .j j

We are interested in the asymptotic estimation of the probabilities of noncen-
tered balls:

22 1�2� �P X � a t � R t � P � � � � t � R t , t � �.Ž . Ž . Ž . Ž .� 4 Ž .Ý½ 5j j j

The main ingredient of the corresponding asymptotic expression is again the
Laplace transform,

� � 2
� � , t � E exp �� X � a tŽ . Ž .� 4

�1�2 2� 1 � 2�� exp �� �� 1 � 2�� .Ž . Ž .� 4Ł j j j

The asymptotic expression, as in the previous cases, involves an additional
Ž .parameter � � � t . For any � � 0, t � T, we define

2
� � tŽ .j j

� t , y � � ,Ž . Ý 21 � 2�� 1 � 2��j Ž .j
222� 4� � tŽ .j j j2


 t , � � � .Ž . Ý 2 3
1 � 2�� 1 � 2�Ž . Ž .j j

Ž .THEOREM 4. Assume that a choice of the parameters � � � t provides
that the relations

3.8 lim �
 t , � � �Ž . Ž .
t��

and

3.9 lim R t � � t , � �
 t , � � 0Ž . Ž . Ž . Ž .Ž .
t��
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are satisfied. Then

�1�1�22� �P X � a t � R t � 2
 �
 t , �Ž . Ž . Ž . Ž .Ž .� 4
3.10Ž .

�exp � R g � � 1 � o 1 .� 4Ž . Ž . Ž .Ž .

This theorem is a slight generalization of a result due to W. V. Li and W.
� � Ž . Ž . Ž .Linde 11 , who considered the particular case � t � f t � 0 , that is, thej j

centers of the balls are supposed to be located on a line; compare also a
� �previous version of the same result in 9 .

Ž . � Ž .� 2 Ž . Ž .If we put S � S t � X � a t , it is easy to calculate that � t, � � E S �

Ž .2 Ž . Ž . Ž .and 
 t, � � Var S . Therefore, we observe that 3.9 is a version of 3.5 .�

Ž .The assumption 3.8 is also natural and cannot be omitted. Moreover, the
Ž .�1quantity �
 naturally appears in the accuracy rate of the presented

asymptotics.
The next two sections provide the technical background for the proofs of

our theorems given in Section 6.

4. Properties of exponential families. Some useful properties of two
� Ž . 4 �Ž . 4families of random variables, XX � � Z , � � 1 and XX � Z , 0 � � � 11 � 2 �

Ž .will be established now. In view of the definition of Z , it is natural to call�

XX and XX exponential families. We will show that both families XX and XX1 2 1 2
are uniformly bounded and nondegenerate. The following lemma represents
the properties that we need in the sequel.

LEMMA 1. There exist positive constants c �c such that6 12

� 0 �4.1 a sup E exp 1 � b X � c ,� 4Ž . Ž . Ž . 6
X�XX1

4.2 b c � inf E X � sup E X � c ,Ž . Ž . 7 8
X�XX �XX1 2 X�XX �XX1 2

4.3 c c � inf Var X � sup Var X � c ,Ž . Ž . Ž . Ž .9 10
X�XX �XX1 2 X�XX �XX1 2

Ž . Ž . Ž . �1d For each x � 0, 1 and each � � c � 1 � 2c c , the inequality12 8 3

� � �14.4 P � Z � bx , x � c x� 4Ž . Ž .� 11

is true.

The ‘‘scholar’’ proof of Lemma 1 is omitted. We shall often combine Lemma
1 with the following scaling property of exponential families:

4.5 a �Z � a�Z ,Ž . Ž . Ž .� ��aLL

which holds for all positive a, �, � and r.v. Z. In particular, we have

4.6 	 � � Z � � Z .Ž . Ž .��Ž . jj j j LL j�
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Sometimes we use the same relation in the form

4.7 	 � ��1 � �� Z .Ž . Ž .�� jj LL j

Ž . Ž .In particular, it follows from 4.6 and 4.7 that

��1 
 � 	 � XX � XX .Ž .j j 1 2

Ž . Ž . Ž .LEMMA 2. Let � � � r be such that the equation 3.3 holds. Let 
 � 
 �
Ž .be defined in 2.1 . Then

4.8 lim �
 � �Ž .
r�0

and for each r � 0 the inequality
4.9 r � c 
Ž . 13

holds with c � c �c1�2.13 7 10

Ž . Ž .PROOF. If �� � 1, then 4.7 yields �	 � �� Z � XX and we obtainj j LL j �� 1j
Ž .from 4.3 that

� 2
 2 � � 2 Var 	 � Var �	 � c � j 	 �� � 1 � �.� 4Ž . Ž .Ý Ýj j 9 j
�� �1j

Ž . Ž . Ž . Ž .Similarly, 3.3 , 2.1 , 4.2 , and 4.3 yield
2 22 2r �
 � E	 � Var 	 � E	 � Var 	Ž . Ž .Ž .Ž . Ž . Ž .Ý Ý Ý Ýj j j j

2 2 2� inf E	 �Var 	 � inf E X �Var X � c �cŽ . Ž . Ž .� 4Ž .½ 5j j 7 10
X�XX �XX1 2

Ž .and 4.9 is verified. �

The last result of this section treats again the problems of the nondegener-
acy of XX and XX , this time on the level of characteristic functions.1 2

Ž . Ž . Ž .LEMMA 3. a For any positive � there exists D � � D � , F such that1 1
� Ž . Ž .�for all X � XX and v � �D � , D � the ch. f. of the corresponding centered2 1 1

r.v. admits a representation

Var XŽ .
0 2ˆ4.10 X v � exp � 1 � �� vŽ . Ž . Ž .½ 52

Ž . � � 3with some complex � � � X, v , � � 1. Moreover, if M � EZ � �, then a3
similar representation

Var XŽ .
0 �1 1�2 2ˆ4.10a X v � exp � 1 � � M c � c v vŽ . Ž . � 4Ž .3 9 10½ 52
� 1�2 1�2 �holds for v � �c , c .10 10

Ž . Ž � Ž . Ž .b For any � � 0, 1 there exists a positive D � � D � , F such that for2 2
� �each real v, v � � and each X � XX � XX ,1 2

�� 1ˆ � �4.11 X v � 1 � D � vŽ . Ž . Ž .2

Ž .with � defined in 3.1 .1
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Ž .REMARK. The estimate 4.11 looks bad for large values of the variable v
but simple examples show that nothing better can be obtained without
supplementary smoothness assumptions on F.

Ž .PROOF. a It follows from the classic inequality
k�1

j k� � � �� 4exp ix � ix �j! � x �k!Ž .Ý
j�0

Ž .applied with k � 2 and k � 3 that for any centered r.v. Y with finite
variance and any v � R, D � 0,

2v D
2 2ˆ4.12 Y v � 1 � Var Y � Var Y � EY 1 v .Ž . Ž . Ž . Ž . � �Y � � D � � v �4ž /2 6

0 � � 2 Ž 2 .�1�2Let now Y � X , v � D and D � EZ . Then
1�2 1�22 2 �1�E X � � E X � � EZ � �D ,Ž . Ž .

Y � X � E X � �D�1 ,
EY 21 � EY 21 �1 � E X 21 �1 � EZ 21 �1 .� �Y � � D � � v �4 �Y � D 4 �X � D 4 �Z � D 4

Ž . 2
�1Choose now D � D � so small that D � ��2 and EZ 1 � �c �6.�Z � D 4 9

Ž .Then, 4.12 yields the estimate

ˆ0 2 2� �X v � 1 � Var X v �2 � Var X � v �4.Ž . Ž . Ž .
Ž . .1�4 � Ž . �Moreover, if D � � 	 1 �c , we can apply the inequality log 1 � h � h10

2 ˆ0 2� � Ž . Ž . Ž .� h to h � X v � 1 and obtain 4.10 with D � � D . We omit the1
Ž . Ž .proof of 4.10a which is essentially the same as that of 4.10 .

Ž . Ž . Ž .b First, let � � c and X � � Z � XX the critically difficult case .12 � 1
ˆŽ Ž .. � .Denote h � arg X v � 0, 2
 . Then

ˆ ˆ � 41 � X v � 1 � X v exp �ih � E 1 � cos vX � h .Ž . Ž . Ž .Ž .
Define four auxiliary intervals

k�1 k� � � �I � � b � v , � b � v , k � 0, 1, 2, 3.k

� . � �It is easy to see that for each h � 0, 2
 there exists k � 0 . . . 3 such that
3 4 Ž1.inf 1 � cos vx � h � 1 � cos � b � b � D � , b .Ž . Ž . Ž .Ž . 2

x�Ih

Ž .Therefore, the application of 4.4 from Lemma 1 yields
Ž1. � 4E 1 � cos vX � h � D P X � IŽ .Ž . 2 k

�1 ��Ž1. 3 Ž2. 1� � � �� c D � b � v � D � , b v .Ž .Ž .11 2 2

The consideration of other X � XX � XX is easier. In fact, the mapping1 2
�Ž . 4� � LL Z is continuous in variation metric. This fact implies the continuity�

�Ž .	Ž . �of the function � � 1 � sup Z v . The values of this function are all� v � � � �
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Ž .positive due to the absolute continuity of LL Z . Hence,

� � Ž3.1 � sup sup Z v � D � , F � 0Ž . Ž . Ž .�̂ 2
� � � ��� 0, c v ��12

Ž . Ž2. �1 Ž3.and we can put D � � D 	 � D . �2 2 2

5. Zaitsev estimate in CLT. We need some appropriate tools from CLT
theory in order to obtain the statements of Theorem 1. For this aim, we use a

� �powerful and convenient approach due to A. Yu. Zaitsev 2, 16, 17 . Essential
concepts of this approach are traced below.

Ž .Let � � 0. Let AA � be the class of all r.v. 	 whose characteristic functions
Ž . � 4� u � E exp iu	 satisfy the condition

Ž .35.1 log � u � � Var 	Ž . Ž . Ž . Ž .
� � �1for each complex u, u � � . Parameter � is a measure of proximity of the

Ž .distribution of 	 to the family of normal laws. In particular, if 	 � AA 0 , then
Ž .LL 	 is normal. We need only a few quite elementary basic properties of

Ž .classes AA � .

Ž .1. Each class AA � is closed with respect to convolution.
Ž . Ž . Ž .2. If � � � , then AA � 
 AA � , that is, AA � is monotone family.1 2 1 2

Ž . Ž � � .3. If 	 � AA � , c � R, then c	 � AA c � . This is a scaling property.

ŽThe single Zaitsev result which we need actually it is available even in a
.multivariate setting can be represented by the following ch.f. estimate:

� �Var 	 � u �Ž .
25.2 log � u � � u 1 �Ž . Ž . ž /2 3

Ž . � �1 �1 � � �for each centered 	 � AA � , u � �� , � , with some complex � , � � 1.
Ž . � 4 � 4It follows immediately from 5.2 that for each sequence 	 with E 	 � 0,n n

Ž . Ž . Ž . Ž .Var 	 � 1, 	 � AA � , � � 0, the weak convergence of LL 	 to NN 0, 1n n n n n
holds.

Ž .There are several possibilities in using this approach. The condition 5.1
Žrequires the knowledge of ch.f. which is easy to calculate, for example, in the

2 .� case and nothing else. On the other hand, if the information about the
moments is available, we have an alternative starting point for calculations
via Cramer or Bernstein conditions. We use the Cramer condition, as the´ ´

� �simplest one for verification. Namely, combining the statements from 2 ,
� �page 33, and 16 , page 205, the first one concerning the relation between

Cramer and Bernstein conditions, the second one concerning the relation
Ž .between the Bernstein condition and AA � classes, one obtains that for some

absolute constant c ,14

� � 35.3 	 	 E	 � 0, E exp a 	 � a , Var 	 � a 
 AA c a � a a� 4� 4Ž . Ž . Ž .Ž .1 2 3 14 2 1 3

holds for all positive a , a , a .1 2 3
The same results hold for classes of multidimensional random vectors. We

do not need this extension in the current context, but it may be a useful tool
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for more sophisticated problems, for example, such as a mixed problem of
� �‘‘large deviations in the small ball’’ from 3 .

6. Proofs of main results.

PROOF OF THEOREM 1. Recall that � 0 � � 0 � ���� , Our goal is to proves
two following statements about the characteristic functions of � 0 and � 0

s
Ž . Ž .which imply statements a and b of Theorem 1, respectively.

Ž �.a For each u � R

ˆ0 26.1 lim � u�
 � exp �u �2 ,� 4Ž . Ž .
���

Ž �.b
�

0 2ˆ6.2 lim � u�
 � exp �u �2 du � 0.� 4Ž . Ž .H s
��� ��

Moreover, if M � EZ3 � �, then3

� �10 2ˆ6.2a � u�
 � exp �u �2 du � O �
 .� 4Ž . Ž . Ž .Ž .H s
��

First, we deal with moderate values of parameter u. We show that for an �
� �large enough and u such that u � �
 ,

ˆ6.3 ���� u�
 � 1 � � u��
 ,Ž . Ž . Ž .
� �with � � 1.

ˆ 2� Ž . �Indeed, for each v we have � v � 1 � Var � v �2. By Lemma 2, we have
� �� � 0 when � tends to infinity; hence, the inequality u � �
 implies,

ultimately for large � , that

ˆ ˆ � ����� u�
 � 1 � � � u��
 � 1 � u ��
 .Ž . Ž . Ž .
Ž .This calculation proves 6.3 .

Ž � Ž .Next, we show that for each fixed � � 0, 1 there exists small enough
Ž . � � Ž .positive D � such that for all � large enough and for all u, u � D � �
 ,

ˆ0 26.4 � u�
 � exp �u 1 � �� �2� 4Ž . Ž . Ž .
� � Ž .with � � 1. If M � �, we have a stronger version of 6.4 ; namely, for some3

� �small D � 0 and all u, u � D �
 ,0 0

ˆ0 26.4a � u�
 � exp �u 1 � � u�D �
 �2 ,Ž . Ž . Ž .� 40

� �with � � 1.
Ž .In order to establish 6.4 , let us look at the ch.f. of the terms 	 of the sumj

Ž .� in definition 2.1 .
Ž . �1First, let �� � 1. We observed in 4.7 that 	 � � X, X � XX . Moreover,j j LL 1

Ž . Ž . Ž . 0 Ž . Ž .34.1 , 4.3 and 5.3 imply that X � AA c with c � c c � 1 � b c . By15 15 14 6 9
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Ž .the Zaitsev representation 5.2 , we have

� �Var X c � vŽ . 150 2X̂ v � exp � v 1 �Ž . ½ 5ž /2 3

� � �1for any v such that v � c . We put v � u��
 and see that15

� �u u Var 	 c � uŽ .j 150 0 2ˆ	 � X � exp � u 1 � .ˆj 2ž / ½ 5ž / ž /
 �
 3�
2


� � Ž .In particular, for u � ��c �
 , we have the desired representation15

u Var 	Ž .j0 26.5 	 � exp � u 1 � � � .Ž . ˆ Ž .j j2½ 5ž /
 2


Ž .Let now �� � 1. In this case we use 4.6 and interpret it asj

	 � � X , X � XX .j LL j 2

According to Lemma 3, we have

Var XŽ .
0 2X̂ v � exp � v 1 � ��Ž . Ž .½ 52

� � Ž .for any X � XX and v � D � . We set v � � u�
 and observe that2 1 j

u � u Var 	Ž .j j0 0 2ˆ6.6 	 � X � exp � u 1 � � �Ž . ˆ Ž .j j2½ 5ž / ž /
 
 2


� � Ž . � � Ž . Ž .whenever u � D � �
 and v � D � �� � D � . Finally we infer from1 1 j 1
Ž . Ž . � � � �1 Ž .46.5 and 6.6 that for u � �c 	 D � �
 ,15 1

ˆ0 0 2� u�
 � 	 u�
 � exp �u 1 � �� �2 .� 4Ž . Ž . Ž .ˆŁ j
j

Ž .Thus, the representation 6.4 is proved.
Under assumption M � �, we may use the stronger version of Lemma 33

Ž . � � �1�2and apply 4.10a . Then, for the case �� � 1, u � c �
 , we havej 10

u � uj0 0ˆ	 � Xˆj ž / ž /
 


Var 	 uŽ .j 2 �1 1�2� exp � u 1 � � M c � c .Ž .j 3 9 102½ 5ž /�
2


6.6aŽ .

� � � �1 �1�24By the old arguments, we obtain now for u � c 	 c �
 ,15 10

ˆ0 2� u�
 � exp �u 1 � � u�D �
 �2 ,Ž . Ž .� 40

�1 Ž �1 1�2 . �1 Ž .if D � M c � c and D � c �3. Thus, the representation 6.4a is0 3 9 10 0 15
also proved.
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Ž . Ž .It is plain that 6.4 implies the CLT statement 6.1 . On the other hand,
ˆ0 ˆ0 ˆŽ . Ž . Ž .the identity � � � � ���� combined with 6.3 , 6.4 and with elementarys

� Ž . � � � Ž � �.estimate exp x � 1 � x exp x easily yields

0 2�̂ u�
 � exp �u �2 du� 4Ž .H s
� � � Ž . 4u � D � 	1 �
6.7Ž .

1�2 �3�2 �1� 2
 1 � � � � 2 �
 .Ž . Ž . Ž .
Ž . Ž .Similarly, if M � �, we use 6.4a instead of 6.4 and obtain3

�10 2 �1ˆ6.7a � u�
 � exp �u �2 du � 16D � 2 �
 .� 4Ž . Ž . Ž .Ž .H s 0
� � � 4u � 1	D �2 �
0

Ž . Ž .Thus, 6.2 and 6.2a boil down to the demonstration of the tail estimate
for ch.f.:

�10ˆ6.8 � u�
 du � O �
Ž . Ž . Ž .Ž .H s
� �u �D�


for each D � 0, and we can from now concentrate our considerations on the
�proof of this estimate. For this aim, we introduce two index sets, J � j 	 � 
1

�1 4 �1 4 Ž .� � m , J � j 	 � 
 � � m , and choose the median m � m � as thej 2 j
unique integer value providing both inequalities:


 2 � 
 2�2, 
 2 � 
 2�2 .Ý Ýj j
J J1 2

� �1 Ž .4 Ž . Ž .Put c � min c , D 1�3 , where D � was defined in statement a of16 15 1 1
Lemma 3. The crucial point is now to show that for each j � J and each u1

� �such that u � c m
 , the estimate16

2 2u �
 uj06.9 	 � expŽ . ˆj 2ž / ½ 5
 3


holds. Provided that this is true, we have immediately
2 2 2u u 
 u �uj0 0�̂ � 	 � exp � � expˆŁ Ýs j 2ž / ž / ½ 5½ 5
 
 63
J J1 1

and, using Lemma 2,
2�u

0�̂ u�
 du � exp duŽ .H Hs ½ 56� � � �D�
� u �c m
 D�
� u16
6.10Ž .

D2� 2
 2

� O exp � .½ 5ž /2

Ž .Consider now two separate cases in order to obtain 6.9 .

Ž . Ž .a �� � 1. We have already deduced from 4.7 thatj

	 0 � ��1 X 0 , X 0 � AA c .Ž .j LL 15
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0 Ž .Hence, 	 � AA c �� . Notice also that in the considered domain,j 15

� � �1u �
 � c m � c � 
 � � c � � ��c .Ž .16 16 j 16 15

Ž .Therefore, the Zaitsev estimate 5.2 yields
2 2 � � 2 2�
 u c u 
 uj 15 j0� �	 u�
 � exp 1 � � exp � .Ž .ˆj 2 2½ 5½ 5ž /3�
2
 3


Ž . Ž .b �� � 1. Making use of decomposition 4.6 , we obtainj

0 ˆ0	 u�
 � X u� �
 , X � XX ,Ž .ˆ Ž .j j 2

and

� � �1u � �
 � c m� � c � 
 � � � c � D 1�3 .Ž .Ž .j 16 j 16 j j 16 1

Ž . Ž . Ž .Now the direct application of 4.10 proves 6.9 and 6.10 .
� � �Next, consider the integration domain U � u � R, c m
 � u �16

�Ž1 �� �2. 4� �
 . We can apply here the chain of estimates

0 0 0 �1ˆ ˆ� �� u�
 � 	 u�
 � X � 	 � u�
Ž . Ž .ˆ Ž .Ł Ł ž /s j j j
J J2 2

with some X � XX � XX . Observe that for u � U, j � J we havej 1 2 2

�Ž1 �� �2. �Ž1�� �2. �1 �1 � �� � � �
 � 	 � �
 � � 	 � u �
Ž . Ž .j j

� c m� � 
 ��1 � c .Ž .16 j 16

Ž .Thus, we can apply Lemma 3 and 4.11 yields the estimate

0 Ž1�� �2.� Ž1�� �2.�1 1ˆ � 4� u�
 � 1 � c � � exp �c � j � J �Ž . � 4Ž .Łs 17 17 2
J2

Ž . Ž .with c � D c 	 1 where the function D was defined in 4.11 .17 2 16 2
The number of integers in J also can be estimated:2

2 2 � 4 2 � 4 2
 �2 � 
 � � j � J sup 
 � � j � J sup Var X ��Ž .Ý j 2 j 2
J XX �XXJ 2 1 22

� 4 2� � j � J c �� .2 10

Ž .Finally, by the definition of � and 4.8 , we have

0 �Ž1�� �2. 2 2 Ž1�� �2.�1�̂ u�
 du � 2� �
 exp �c � 
 � �2cŽ . � 4H s 17 10
U

� 2�2�Ž1�� �2.� 2� �
 exp �c �
 �2cŽ .½ 517 10
6.11Ž .

�1� O �
 .Ž .Ž .
� � � � �Ž1 �� �2. 4For the last domain U � u � R, u � � �
 we apply a smoothing

argument. Namely, we use the trivial estimate

0ˆ ˆ ˆ� �� u�
 � ���� u�
 � � � u��
 .Ž . Ž . Ž . Ž .s
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Since the characteristic function of smooth compact distribution decreases
faster than any polynomial of negative degree, we have for any n � 1,

�1 �1 nˆ ˆ6.12 � � u��
 du � �
� � v du � �
� o � .Ž . Ž . Ž . Ž .H H
� �1� �U v ��

ŽŽ .�1 . Ž .This quantity is O �
 if n � 1 � 2� � 2 � � .1
Ž .Now the statement 6.8 is proved completely and the statements of
Ž . Ž . Ž .Theorem 1 follow from 6.1 , 6.2 and 6.2a . �

PROOF OF THEOREM 2. Recall that p, q, q , q are the densities of r.v. S,0 0 s
0 0 Ž .� , � �
 and � �
 � ����
 , respectively, while index zero stands for

centering and index s denotes smoothing. By the definition of p, � and �, we
have

� 46.13 q u � p u exp �� u �� �Ž . Ž . Ž . Ž .
and

r r
� 4 � 4P S � r � p u du � � � exp � u q u duŽ . Ž . Ž .H H

�� ��

r u � r du
� 4� � � exp � u qŽ .H 0 ž /
 
��

0� 4 � 4� � � exp � r exp �
 v q v dv.Ž . Ž .H 0
��

Ž . Ž .In order to verify 3.4 and 3.4a , we need now only to check the equivalen-
cies

0 �1�2 �1� 46.14 exp �
 v q v dv � 2
 �
 1 � o 1Ž . Ž . Ž . Ž . Ž .Ž .H 0
��

and

0 � 4exp �
 v q v dvŽ .H 0
��6.14aŽ .

�1�2 �1 �1� 2
 �
 1 � O �
 � O � ,Ž . Ž . Ž . Ž .Ž .ž /
0 Ž .�Ž2 �� .� �1 Ž .respectively. Let X � � �
 , � � �
 , Y � ����
 . In view of the

� �boundedness of � , the estimate Y � ���
 is true and we can rewrite and
Ž .treat the integral 6.14 as follows.

� 4 � 4 � 4E exp �
 X 1 � E exp �
 X 1 exp �
 Y � ��X � 04 �X�Y � � ��
 4

� 4� E exp �
 X � Y 1 exp �� 4Ž . �X�Y � � ��
 46.15Ž .
���
� 4 � 4� exp � exp �
 v q v dv.Ž .H 0 s

��
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The similar lower bound also holds:

����
� 4 � 4 � 46.16 E exp �
 X 1 � exp �� exp �
 v q v dv.Ž . Ž .H�X � 04 0 s
��

Thus, we have reduced the problem to the investigation of smoothed distribu-
Ž .tions. By statement b of Theorem 1 we have

�1�2 2� �sup q v � 2
 exp �v �2 � o 1� 4Ž . Ž . Ž .0 s
� �v� �� , ���


and

���
 � 4exp �
 v q v dvŽ .H 0 s
��

���
 � 4� exp �
 v dvH
��

�1�2 �1�2 2� 2
 � sup q v � 2
 exp �v �2� 4Ž . Ž . Ž .0 sž /
v

6.17Ž .

�1 �1�2� 4� exp � �
 2
 � o 1Ž . Ž . Ž .Ž .
�1 �1�2� �
 2
 1 � o 1 � O � .Ž . Ž . Ž . Ž .Ž .

The corresponding lower bound holds by the same reasons. Therefore, we
Ž . Ž . Ž .have verified that 6.14 is true. One obtains 6.14a from 3.2a by the same

reasoning. �

Sometimes the following extension of Theorem 2 may be useful. Given
Ž . Ž .x � x � � o �
 , let r � r � x�� . Then, by virtue of arguments used in thex

proof of Theorem 2, we can obtain for r � 0 that

� 4P S � rx

�1�2 �1 � 4� 2
 �
 exp � rŽ . Ž . x6.18Ž .

�
Ž .�1 �2� 2�� �� 21� � 1 � O �
 � �
 � �
 x .Ž . Ž . Ž . Ž .Ž .

Ž .This relation boils down to 3.4 when x � 0. It also enables substituting the
Ž .restrictive equality assumption 3.3 in Theorem 2 by the weaker approxi-

Ž . Ž . Ž .mate relation 3.5 . Indeed, provided 3.5 holds, we may apply 6.18 with
� Ž . �x � � r � E S and after trivial variable change we obtain for r � 0,�

�1�2 �1� 4 � 4P S � r � 2
 �
 exp � rŽ . Ž .

�
Ž .�1 � 2�� ��1� � 1 � O �
 � �
Ž . Ž . Ž .ž6.19Ž .

2�2�
 r � E S .Ž .Ž .� /
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Ž .PROOF OF THEOREM 3. In order to obtain the local limit statement a of
Theorem 3, it suffices to prove that

�
0 2ˆ� �lim � u�
 � exp �u �2 du � 0,� 4Ž .H

��� ��

Ž .which is equivalent, up to smoothing of � , to the statement 6.2 . Therefore,
Ž .we can simply repeat the arguments of the proof of 6.2 with � � 0, that is,

without smoothing. The single difficulty that we must avoid is the estimate of
the integral over high-frequency domain,

� �Ž1�� �2.ˆ � �� u�
 du, U � u � R, u � � �
 ,� 4Ž .H 0�U

Ž .which was previously treated by a smoothing argument in 6.12 . Now we
Ž .replace it by another reasoning based on supplementary assumptions 3.6

Ž .and 3.7 . Namely, by the definition of � and � , we can write
n

ˆ ˆ6.20 � u�
 du � �
 X v dv,Ž . Ž . Ž .ŁH H0 j2� Ž2�� �2.� �1� � Ž .U v � �
 j�1

where n will be a large but fixed integer, and X � �	 � XX , wheneverj j 1
Ž . Ž .�� � 1. Moreover, making use of 3.6 and 3.7 , we can derive for each j aj

decomposition

ˆ ˆ ˆX v � X v � X v ,Ž . Ž . Ž .j j0 j1

ˆŽ .such that smoothness assumption 3.6 yields the polynomial decrease of X ;j0
that is,

���ˆ � � � �6.21 sup X v � C v , v � v ,Ž . Ž .j0 0 0
j

� ˆwith C and � depending only on C and � . On the other hand, each X0 1 j1
turns out to be Fourier transform of some positive function f such that1 j
� � Ž .f � 1. Moreover, we have, due to assumption 3.7 ,1

� �p p� �pK� p�1sup f x dx � C f x dx e � � �.Ž . Ž .H H1 j 1
�� Kj

We may assume, without loss of generality, that p � 2. In this case we can
Ž� � .apply a classic Titchmarsch theorem 15 , Section 4 extending Parseval

Ž . � Židentity and thus obtain omitting the details for adjoint index p � p� p �
.1 ,

p��p�� �p �p� � p �1ˆ6.22 sup X v dv � C f x dx exp �p K�� �Ž . Ž . Ž . Ž .H H1 j 2 n½ 5
�� Kj

with C� depending only on F, p.2
Ž . Ž .Finally, the simple combination of 6.21 and 6.22 shows that the integral

Ž . Ž .6.20 vanishes when � tends to infinity. Thus, statement a of Theorem 3 is
established.
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Ž . Ž .Statement b of this theorem follows immediately from statement a and
Ž .identity 6.13 , that is,

� 4 �1 � 4p r � q r exp � r � � � q 0 
 exp � r � � ,Ž . Ž . Ž . Ž . Ž .0

where p, q, q are the densities of r.v. S, � , � , respectively, and, as we have0 0
Ž . Ž .�1�2just proved, lim q 0 � 2
 . �� �� 0

PROOF OF THEOREM 4. We only give an idea of the proof, which follows the
scheme used in Theorems 1 and 2, but is easier, since the explicit formulas
for ch.f. are known. Namely, for each fixed t, we must investigate the lower

Ž 1�2 .2tail probabilities of r.v. S � Ý � � � � . It is easy to see thatj j j

21�2S � � � � �Ž .� Ž .ÝLL j j j

Ž .�1 Ž .�1 2with � � � 1 � 2�� , � � � 1 � 2�� . The calculation of � -char-j j j j j j
acteristic functions shows that for each � � 0, � � R and standard normal
r.v. � , we have

21�2� � � � � AA k� ,Ž .Ž .
Ž .where AA � is the Zaitsev class introduced in Section 5 and k is an absolute

constant. It is remarkable that the same value of parameter appears for all
real �. The scaling properties of Zaitsev classes yield

S � AA k sup � 
 AA 2k��1 .Ž . Ž .� jž /
j

Ž .Moreover, we infer from 3.8 that
�1�1
 S � AA 2k 
� � AA 0 ,Ž . Ž . Ž .Ž .�

Ž .which means that the central limit theorem holds for S and that the�

corresponding estimates of convergence rates of characteristic functions are
Ž .valid cf. the proof of Theorem 2 . In this case we do not need smoothing

2 Žprocedures, since � -characteristic functions decrease with known poly-
. Ž .nomial rate at infinity. The passage from the CLT for S to the final�

Ž .asymptotics 3.10 is the same as in the proof of Theorem 2. �
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