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APPROXIMATION OF SUBADDITIVE FUNCTIONS

AND CONVERGENCE RATES IN
LIMITING-SHAPE RESULTS1

BY KENNETH S. ALEXANDER2

University of Southern California

For a nonnegative subadditive function h on �d, with limiting approx-
Ž . Ž .imation g x � lim h nx �n, it is of interest to obtain bounds on then

Ž . Ž . � ��discrepancy between g x and h x , typically of order x with � � 1. For
Ž .certain subadditive h x , particularly those which are expectations associ-

ated with optimal random paths from 0 to x, in a somewhat standardized
way a more natural and seemingly weaker property can be established:
every x is in a bounded multiple of the convex hull of the set of sites
satisfying a similar bound. We show that this convex-hull property implies
the desired bound for all x. Applications include rates of convergence in

Žlimiting-shape results for first-passage percolation standard and ori-
.ented and longest common subsequences and bounds on the error in the

exponential-decay approximation to the off-axis connectivity function for
subcritical Bernoulli bond percolation on the integer lattice.

1. Introduction. Suppose h is a nonnegative subadditive function on
�d:

h x � y � h x � h y , x , y � �d .Ž . Ž . Ž .
� Ž . 4Then for fixed x, the sequence h nx , n � 0 is subadditive, so by standard

methods the limit
1.1 g x � lim h nx �nŽ . Ž . Ž .

n

exists, and it is approached from above: for all x � �d,
1.2 g x � h x .Ž . Ž . Ž .

In fact, for x � �d, if we restrict n to those values for which nx � �d, then
Ž . dthe limit in 1.1 exists, so g extends to � .

If desired, one can restrict the domains of h and g to �d and �d , where� �
� 4 � 4� � i � �: i � 0 and � � q � �: q � 0 . To avoid cumbersome wording� �

and notation, we will present the main result for h with domain �d, but it
remains valid if �d, �d and � d are replaced throughout by �d , �d and � d .� � �
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� � � � pLet � denote the Euclidean norm; we use � for other L norms.p

Elements of �d are called sites. By a nearest-neighbor bond we mean a pair
² : � � dx, y of sites with x � y � 1. The ith unit vector in � is denoted e . Wheni
we use the term ‘‘lattice path’’ we always implicitly mean a self-avoiding one.

It is of interest in a variety of contexts to bound the discrepancy between g
and h. The following examples will be analyzed below in detail.

EXAMPLE 1.1. In first-passage percolation, a nonnegative passage time tb
is attached to each nearest-neighbor bond b; these passage times are i.i.d.

Ž .The passage time T x, y is the minimum total passage time among all
Ž . Ž .lattice paths from site x to site y. Here we let h x � ET 0, x . First-passage

percolation is an example of a growth model�the object at time t is
d� 	B t � x � �1�2, 1�2 : T 0, x � t .Ž . Ž .� 4

Ž .This object has an asymptotic shape; Cox and Durrett 1981 showed that
�1 Ž .under mild hypotheses, t B t converges to a compact convex set B . One0

aspect of interest in the physics of growth models is boundary roughness�the
Ž .order of magnitude of the discrepancy between B t and tB . Setting0

d� 	G t � x � �1�2, 1�2 : ET 0, x � t ,Ž . Ž .� 4
we see that this discrepancy really has two parts�the random part, between
Ž . Ž . Ž .B t and G t , and the nonrandom part, between G t and tB , which can be0

Ž .expressed in terms of the discrepancy between g and h. From 1.2 one has
Ž .G t 
 tB , meaning that the growth is no faster than its asymptotic rate, up0

to any finite t. Under hypotheses on the distribution of the times t , Kestenb
Ž .1993 obtained an exponential bound for the random part of the discrepancy
and bounded the nonrandom part by showing that for some C, for all x,

Ž .1� d�21�1�Ž2 d�4.� � � �g x � h x � g x � C x log x .Ž . Ž . Ž . Ž .
Ž .The value � � g e is called the time constant, the time per unit of growth1

Ž .along an axis. Here a sharper bound is available: Alexander 1993 showed
that for some C, for all n � 1,

n� � ET 0, ne � n� � Cn1�2 log n ,Ž .1

or equivalently,

g ne � h ne � g ne � Cn1�2 log n.Ž . Ž . Ž .1 1 1

EXAMPLE 1.2. Oriented first-passage percolation is similar to first-passage
percolation except that lattice paths are restricted to those in which each step
is from x to x � e for some x and i; we call such lattice paths oriented. Thei

d Ž . Ž .domain of h is � . Again h x � ET 0, x .�

� 	EXAMPLE 1.3. In Bernoulli bond percolation at density p � 0, 1 , each
nearest-neighbor bond is independently occupied with probability p; other-

Ž . Ž . � 	wise it is vacant. Here we let h x � h x � �log P 0 � x . This probabil-p p
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ity is called the connectivity function; � denotes connection by a path of
Ž .occupied bonds and P denotes probability at density p. Alexander 1990p

showed that in dimensions 2 and 3, for values of p below the critical point,
Ž . Ž . � �for some c � c p, d and r � r d , for all x with x � 1,

� � � ��r � �� 	1.3 exp �� p , � x � P 0 � x � c x exp �� p , � x ,Ž . Ž . Ž .Ž . Ž .p

� � Ž . Ž . � � Ž .where � � x� x and � p, � � g x � x which depends on x only through �
is the inverse correlation length in direction � . In the present formulation

Ž . � �this means that for some C � C p, d , for all x with x � 1,

� �1.4 g x � h x � g x � C log x .Ž . Ž . Ž . Ž .
Ž .The result 1.3 is related to the more general phenomenon of power-law

corrections to exponential decay of correlations and other analogs of the
connectivity, in a wide variety of statistical mechanical models, as discussed

Ž .by Ornstein and Zernike 1914 . The heuristic is roughly as follows. Consider
x on an axis and let H be the hyperplane through x perpendicular to thex
axis. For connection to H , one expects to need essentially no correction tox
exponential decay, that is,

� � � �� 	P 0 � H � 1 � o 1 exp �� p , � x as x � �.Ž . Ž .Ž . Ž .p x

� 	 Ž Ž . � �.Therefore the correction factor P 0 � x �exp �� p, � x can be inter-p
preted as the probability that there is a connection to x, given there is a
connection to H . Since connections to H are rare, given one exists, the pathx x
from 0 probably hits H at only a few nearby sites, so it makes loose sense tox
talk about ‘‘the location where the path hits H .’’ If the transverse fluctua-x

� �1�2tions in the path are Gaussian, with standard deviations of order x , then
� ��Ž d�1.�2the probability of hitting x given one hits H is of order x ; this isx

therefore the desired correction factor. Such ‘‘Ornstein�Zernike behavior’’ for
Bernoulli bond percolation was established by Campanino, Chayes and

Ž .Chayes 1991 , but only for x near a coordinate axis, where symmetry can be
Ž .exploited. By contrast, 1.3 covers all x, but with r much larger than

Ž .d � 1 �2. Ornstein�Zernike behavior is expected to hold for a wide variety
of systems in statistical mechanics, but there are only a few other rigorous

Ž .results. Bricmont and Frohlich 1985a, b consider systems at extreme tem-¨
Ž .peratures, and Chayes and Chayes 1986 consider self-avoiding random

walk.

EXAMPLE 1.4. Let X Ž i.X Ž i. . . . , i � 1, . . . , d, be i.i.d. sequences of letters1 2
selected from a finite alphabet A. A sequence of letters which is a subse-
quence of X Ž i. ��� X Ž i. for every i � d is called a common subsequence of1 ni

Ž .these sequences; L n , . . . , n denotes the length of a longest common subse-1 d
Ž . Ž1. Ž1. Žd . Žd .quence abbreviated LCS of the sequences X ��� X through X ��� X .1 n 1 n1 d

Ž . Ž .Define U n , . . . , n � n � ��� �n � dL n , . . . , n . For general d,1 d 1 d 1 d
Ž .U n , . . . , n represents the number of letters from the d sequences which1 d

Ž .are ‘‘unused’’ for a given choice of LCS. For d � 2, U n , n is an edit1 2
distance between X Ž1. ��� X Ž1. and X Ž2. ��� X Ž2.; it is the minimal number of1 n 1 n1 2
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deletions plus insertions needed to change either sequence to the other one.
Ž . Ž . dFor the LCS problem we let h x � EU x , x � � . This problem can be�

reformulated as an oriented first-passage percolation model with dependent
Ž .passage times; see Arratia and Waterman 1994 and Section 4. For d � 2,

Ž .sequences of equal length are considered in Alexander 1994 , where it is
Ž .shown that for c � lim EL n, n �n and for some C, for all n � 1,n

1�21.5 cn � EL n , n � cn � C n log n ,Ž . Ž . Ž .

which is equivalent, with a different C, to

1�2g n , n � h n , n � g n , n � C n log n .Ž . Ž . Ž . Ž .
Ž .Let 	 denote the set of all positive nondecreasing functions on 1, � .

Motivated by the preceding examples, we make the following definition.

DEFINITION. For � � 0 and 
 � 	 we say that the subadditive function h
Ž .satisfies the general approximation property or GAP with exponent � and

correction factor 
 if there exist M � 1 and C � 0 such that for all x � �d

� �with x � M,

� �� � �g x � h x � g x � C x 
 x .Ž . Ž . Ž . Ž .

When we want to specify the relevant constants, we say h satisfies
Ž .GAP � , 
, M, C .

The following is similar to Proposition 3.2 of Alexander, Chayes and
Ž .Chayes 1990 .

LEMMA 1.5. Suppose h is subadditive on �d and the corresponding limit
Ž . d dg x is finite for all x � � . Then g extends to a function on � which is

continuous, convex, and positive-homogeneous of order 1. In particular, if h
is symmetric, then g is a norm.

PROOF. Clearly g is subadditive. Directly from the definition we have

1.6 g � x � �g x for x � �d and � � � .Ž . Ž . Ž . �

Therefore

g � x � 1 � � y � �g x � 1 � � g yŽ . Ž . Ž . Ž .Ž .
1.7Ž .

d � 	for x � � and � � � � 0, 1 .

Hence

� � � �g x � x max g e , g �e � ��� � x max g e , g �eŽ . Ž . Ž . Ž . Ž .Ž . Ž .1 1 1 d d d

for x � �d ,

so g is bounded on �d � R for bounded R. This and subadditivity show that
g is uniformly continuous on �d. Thus g extends by continuity, and the

Ž . Ž .rationals can be replaced by the reals in 1.6 and 1.7 . �
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If g is symmetric with respect to interchanges of coordinates and reflec-
tions across all coordinate hyperplanes, it is easy to show using subadditivity
that

� � � �1.8 x � g x �g e � x for all x � 0.Ž . Ž . Ž .� 11

� Ž . 4 dLet B � x: g x � 1 . For x � � let H denote a hyperplane tangent to0 x
Ž .� g x B at x; note that if � B is not smooth, there is not necessarily a0 0

unique choice of H . Let H 0 denote the hyperplane through 0 parallel to H .x x x
There is a unique linear functional g on � d satisfyingx

g y � 0 for all y � H 0 , g x � g x .Ž . Ž . Ž .x x x

d Ž .Note that for y � � , g y is the g-length of a projection of y onto the linex
through 0 and x. By convexity of g we have g � g, and if g is symmetric,x

� � d1.9 g y � g y for all y � � .Ž . Ž . Ž .x

Ž . ŽThe value g y may be thought of as the amount of progress measured inx
.the norm g toward x made by a vector increment of y; for fixed x,

Ž . Ž .h y � g y is a measure of the error or inefficiency associated with such anx
increment, as we will now illustrate. For x � � d we define a set of vector

� ��increments for which this ‘‘error’’ is of order at most roughly x :

Q � , 
 , C , KŽ .x

d � � � � � �� � �� y � � : y � K x , g y � g x , h y � g y � C x 
 x .Ž . Ž . Ž . Ž . Ž .� 4x x

Since h is subadditive and g is linear, one way to establish GAP withx
exponent � and correction factor 
 is to show that for some m, K and C,
every x � �d can be expressed as

m

1.10 x � y with y � Q � , 
 , C , K ;Ž . Ž .Ý i i x
i�1

Ž . Ž .specifically this establishes GAP � , 
, 1, Cm . Thus 1.10 says that x can be
built from a bounded number of ‘‘good’’ increments. Unfortunately the suffi-

Ž .cient condition 1.10 does not seem to be natural, in that we have no
canonical procedure for trying to verify it in the examples of interest. We next
define a related condition which is much less clearly sufficient for GAP, but
which we will see is quite natural.

DEFINITION. We say that the subadditive function h satisfies the convex-
Ž .hull approximation property or CHAP with exponent � and correction factor


, if there exist M � 0, C � 0, K � 0, a � 1 and 
 � 	 such that

x�
 � Co Q � , 
 , C , KŽ .Ž .x1.11Ž .
d � �� 	for some 
 � 1, a , for all x � � with x � M ,

Ž .where Co � denotes the convex hull. When we want to specify the relevant
Ž .constants, we say h satisfies CHAP � , 
, M, C, K, a .
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Ž .In d dimensions, z � Co A for some A implies that z is in the convex
Ž .hull of some subset of A consisting of at most d � 1 points, so 1.11 is

equivalent to
d�1 d�1

� 	x � 
 y with 
 � 0, 
 � 1, a andÝ Ýi i i i
i�1 i�1

d � �y � Q � , 
 , C , K for all x � � with x � M .Ž .i x

The following result illustrates why CHAP is natural. Roughly, it says that
in expressing x�
 as a convex combination, one can take the coefficient of
each y � Q to be proportional to the number of times the increment yx
occurs when a path from 0 to nx is cut up into increments with each
increment in Q .x

LEMMA 1.6. Let h be a nonnegative subadditive function on �d and let
� � 0, 
 � 	, M � 1, C � 0, K � 0 and a � 1. Suppose that for each x � �d

� �with x � M, there exist n � 1, a lattice path � from 0 to nx and a sequence
of sites 0 � v , v , . . . , v � nx in � such that m � an and v � v �0 1 m i i�1

Ž . Ž .Q � , 
, C, K for all 1 � i � m. Then h satisfies CHAP � , 
, M, C, K, a .x

Ž .PROOF. Given y � Q � Q � , 
, C, K , n � 1 as in the lemma statement,x
Ž .and a corresponding path � , let � y, � be the number of indices i such thatn

v � v � y. Theni i�1

1.12 nx � � y , � y ,Ž . Ž .Ý n
y�Q

and
� y , � � an,Ž .Ý n

y�Q

so

 � n�1� y , � � a,Ž .Ý n

y�Q

Ž . Ž .and x�
 � Co Q . Applying g to both sides of 1.12 yieldsx

ng x � � y , � g y � g x � y , � ,Ž . Ž . Ž . Ž . Ž .Ý Ýn x n
y�Q y�Q

from which we obtain 
 � 1, and the lemma follows. �

REMARK 1.7. Let us call the m � 1 sites in Lemma 1.6 marked sites. If m
is unrestricted, it is easy to find inductively a sequence of marked sites for
any path � from 0 to nx�one can start at v � 0, and given v , let v� be0 i i�1

Ž . � Ž .the first site if any in � such that v � v � Q � , 
, C, K ; then let vi�1 i x i�1
be the last site in � before v� if v� exists; otherwise let v � nx andi�1 i�1 i�1
end the construction. We call the sequence of marked sites, obtained from a

Ž .self-avoiding path � in this way, the Q � , 
, C, K -skeleton of � . The diffi-x
Ž .culty is that the Q � , 
, C, K -skeleton of a typical � may have far morex
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than an � 1 marked sites. Roughly, one would like many of the marks to be
� �made at a distance at least of order x beyond the previous mark, to keep the

number of marks of order n. One method of controlling the number of marked
sites is summarized following the proof of Theorem 3.1.

Ž . Ž Ž . .In Alexander 1990 , GAP 0, log � , M, C is established for the connectivity
function of Bernoulli bond percolation in dimensions d � 2 and 3, by first

Ž Ž . .proving CHAP 0, log � , M, C, 2 d, 3 by roughly the method of Lemma 1.6 and
Remark 1.7. The existence of an appropriate � is established by showing that,
conditionally on there being a path of occupied bonds from 0 to nx, the
probability that it and its x-skeleton fail the conditions in Lemma 1.6 is less
than 1. That is, we show that a certain nonrandom structure exists by
showing that an event built on this structure has positive probability, so is
nonempty. We will see that this method has analogs for other models; see the
remarks following the proof of Theorem 3.1.

Ž . � �We say that h has sublinear growth if h x � r x for all x for some r � 0.
The following is our main result; the proof is in Section 2.

THEOREM 1.8. Suppose h is a nonnegative subadditive function on �d

which has sublinear growth. If h satisfies CHAP with exponent v and correc-
tion factor 
 for some � � 0, then h satisfies GAP with exponent � and
correction factor 
.

When h satisfies CHAP with exponent � � 0, Theorem 1.8 yields only that
h satisfies GAP with arbitrarily small positive exponent. In particular, it
gives a far from optimal result for the connectivity function of Bernoulli bond

Ž .percolation Example 1.3 . The proof of GAP from CHAP, for that connectivity
Ž .function, in Alexander 1990 is completely different from that of Theorem

1.8; it allows � � 0 but makes use of a purely geometric lemma about splicing
segments of curves which is only known for dimension d � 2 and 3. For
general h satisfying CHAP with exponent 0, the next result shows we can
obtain GAP but at the expense of a log factor in the correction factor 
. The
result is not optimal, because the extra log factor is unnecessary in Example
1.3. The proof is in Section 5.

THEOREM 1.9. Suppose h is a nonnegative subadditive function on �d

which has sublinear growth. If h satisfies CHAP with exponent 0 and
correction factor 
, then h satisfies GAP with exponent 0 and correction factor
Ž . Ž .
 � log � .

Ž2. Proof of the main result. Observe that if h satisfies CHAP � , 
,
.M, C, K, a , then CHAP remains satisfied if M and C are replaced by larger

constants. If h has sublinear growth, then clearly h satisfies GAP with
exponent 1. This will allow us to prove Theorem 1.8 by iterating the following
result.



APPROXIMATION OF SUBADDITIVE FUNCTIONS 37

Ž .PROPOSITION 2.1. Suppose C � 1, K � 1, M � 1, a � 1, � � 0, 1 , 
 �
d Ž . � �	 and h is a nonnegative subadditive function on � with h x � r x for

˜ Ž .all x for some r � 1. There exists a constant C � , 
, C, K, a, r, d, M such0
˜ ˜ ˜Ž 	 Ž .that if C � C , � � � , 1 , and h satisfies both GAP �, 
, M, C0

˜Ž . Ž .and CHAP � , 
, M, C, K, a , then h satisfies GAP ��, 
, M, C where �� �
Ž .�� 1 � � � � � �.

Loosely, this proposition says that CHAP enables one to reduce the expo-
˜Ž .nent � in GAP �, 
, M, C ‘‘for free,’’ that is, without having to increase M

˜ ˜or C. It is essential that C does not depend on �, so that this reduction can0
be iterated.

� �PROOF. We begin with a sketch of the proof, at least for x large relative
Ž . � �to M Case 1 . Let q be large, but much smaller than x . Applying CHAP to

Ž .x�q we express x�q as a convex combination up to a bounded constant of
Ž .d � 1 ‘‘good’’ increments y �see 2.3 . We then decompose x into an linearqi

combination x* of the y ’s, with nonnegative integer coefficients, plus aqi
remainder x � x*; see Figure 1. Because the coefficients are nonnegative

Ž . Ž . Ž .integers, subadditivity bounds the error h x* � g x* ; see 2.6 . Then GAPx
Ž . Ž . Ž .is used to bound h x � x* � g x � x* ; see 2.8 . We then optimize over qx

to obtain the result.
Now to the details. Throughout this proof, c , c , . . . denote constants0 1

which may depend on � , C, K, a, d and�or r, but not on M or �.

FIG. 1. The situation with y � 0 is shown; x* is a corner of the cell containing x in the gridq3
generated by y and y .q1 q2
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Define
c � C d � 1 ,Ž .0

c � Ca,1

c � K d � 1Ž .22.1Ž .
c � 1 � � c � c c2�2���Ž . Ž .3 1 0 2

c � 2� 1 � � c � c .Ž . Ž .4 1 0

˜Since multiplying 
 by a positive constant and dividing C and C by the
same constant does not alter the result, let us assume for now that

2.2 
 M � 1.Ž . Ž .
� �Fix M � 1 and x with x � M. We consider two cases.

˜ 1����� � � � � 	Case 1. x � c c CM . Let q � c , x �M � �; later we will opti-2 4 2
� �mize over q. The optimal q will be of the order of a small power of x . Since

� �x �q � M, we can apply CHAP to x�q to obtain
d�1

x�q � 
 y with 
 � 0,Ý qi q i q i
i�1

d�1

� 	
 � 1, a and y � Q � , 
 , C , K .Ž .Ý qi q i x � q
i�1

2.3Ž .

Note that
2.4 g � g .Ž . x � q x

Let
d�1

x* � q
 y .� �Ý qi q i
i�1

� �where � denotes the integer part, and

� � q
 � q
 � 0, 1 ,� � .qi q i q i

so that
d�1

2.5 x � x* � � y .Ž . Ý qi q i
i�1

Figure 1 illustrates d � 2; we have shown the case y � 0, which makes theq3
Ž .picture more clear but not alter the basic idea. By subadditivity, 2.3 and

Ž .2.4 ,
d�1

h x* � q
 h yŽ . � � Ž .Ý qi q i
i�1

d�1
�� � � �� q
 g y � C x�q 
 x�q� � Ž . Ž .Ý qi x qi

i�1

2.6Ž .

1�� � �� � �� g x* � c q x 
 x .Ž . Ž .x 1
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Ž .To bound h x � x* we consider two subcases.

� �Case 1a. x � x* � M. Observe that
�� � �� � �g y � g y � h y � g y � Cq x 
 x �qŽ . Ž . Ž . Ž . Ž .qi x qi q i x qi

so that
d�1

��� � � � �2.7 � g y � g y � c q x 
 x .Ž . Ž . Ž . Ž .Ý qi q i x qi 0
i�1

Ž .Now by 2.5 ,
d�1

� � � � � �x � x* � y � c x �q.Ý qi 2
i�1

so applying GAP to x � x* and using linearity of g and subadditivity of g,x
we obtain

˜ �� � � �h x � x* � g x � x* � C x � x* 
 x � x*Ž . Ž . Ž .
d�1

� g x � x* � � g y � g yŽ . Ž . Ž .Ýx qi q i x qi
i�1

2.8Ž .

˜ � �� �� � � �� Cc q x 
 c x �q .Ž .2 2

Ž . Ž . Ž .Therefore using 2.6 , 2.8 and 2.7 ,

h x � h x* � h x � x*Ž . Ž . Ž .
1�� � �� � ˜ � �� �� � � � � � � � � � � �� g x � c q x 
 x � c q x 
 x � Cc q x 
 xŽ . Ž . Ž . Ž .1 0 2

1�� � ˜ � �� �� � � � � � � �� g x � c � c q x 
 x � Cc q x 
 x .Ž . Ž . Ž . Ž .1 0 2

� �Case 1b. x � x* � M. Observe that
�� � �� � �0 � h y � g y � Cq x 
 x �qŽ . Ž . Ž .qi x qi

Ž . � Ž . 4so that, letting I q � i � d � 1: g y � 0 , we havex qi

d�1

g x � x* � � g yŽ . Ž .Ýx qi x qi
i�1

� �� � g yŽ .Ý x qi
Ž .i�I q

�� � �� � �� �c q x 
 x .Ž .0

Therefore
h x � x* � rMŽ .

�� � �� � �� g x � x* � c q x 
 x � rM ,Ž . Ž .x 0

Ž .which with 2.6 yields

h x � h x* � h x � x*Ž . Ž . Ž .
1�� � �� � �� g x � c � c q x 
 x � rM .Ž . Ž . Ž .1 0
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Thus in both Case 1a and Case 1b we have
1�� � �� � �h x � g x � c � c q x 
 xŽ . Ž . Ž . Ž .1 0

2.9Ž .
˜ � �� �� � � � � �� Cc q x 
 x � rM
 x .Ž . Ž .2

Ž . � � � 	Since the inequality 2.9 is valid for all rational q in c , x �M , it is also2
Ž .valid for all real q in the same interval. To minimize the right side of 2.9

over q we set
Ž .1� 1���� Ž ��� .�Ž1���� .�˜ � �q � c �Cc x .Ž .4 2

˜� � � 	Let us verify that q � c , x �M . Assume C � c . Since c � 1 and 1 � � �2 3 2
� , it follows that

˜ � ˜ � 2�� 1����2.10 c �Cc � c � Cc � c � c .Ž . 4 2 4 2 2 2

� �Since x � 1, it follows that q � c . By the assumption of Case 1,2

� � � �1�Ž1���� . � � Ž ��� .�Ž1���� .x � x x
Ž .1� 1���� Ž ��� .�Ž1���� .˜ � �� c c C M x � qM ,Ž .2 4

2.11Ž .

� � � 	and the desired conclusion q � c , x �M follows.2
We next bound the second and third terms on the right-hand side of

˜Ž . Ž . Ž .Ž .2.9 . Let c � 1�c � c � c and c � 1 � c c � c . Assume C � c �5 4 1 0 6 5 1 0 7
1�� ˜Ž Ž ..2c 1 � c c and C � 1; then since � � � ,6 2 4

Ž . Ž .1�� � 1����� �Ž1���� . �˜ ˜C � C � 2c c cŽ .6 2 4

and so
Ž . Ž .1�� � 1����˜ ˜2.12 C � 2c c c C .Ž . Ž .6 2 4

We have also

1���� ˜ � ��� ˜ � ���� � � �q � c �Cc x � Cc �c c � c xŽ .Ž .4 2 2 5 1 0

so that, rearranging,

˜ � �� � 1�� �� � � �Cc q x � c c � c q x .Ž .2 5 1 0

Ž .Using this, � � 1 and 2.12 , we obtain

1�� � ˜ � �� �� � � �c � c q x � Cc q xŽ .1 0 2

1�� � ��� c q x6
2.13Ž . Ž . Ž .1�� � 1���� � �Ž1���� .˜ � �� c c c C xŽ .6 2 4

˜ ��Ž1���� .� �� C x �2.

Ž .Next we bound the last term on the right-hand side of 2.9 . Let c �8
Ž2�� .�Ž3�� . �1�Ž3�� . ˜ Ž1�� .Ž2�� .�� Ž3�� . ˜Ž . Ž .2r c c and assume that C � c M , C �2 4 8
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˜1�c c and C � 2r. Then2 4

Ž . Ž .1��1� 1���� 1� 2��˜ ˜ ˜ ˜c c C C�2r � c c C C�2rŽ .Ž . Ž .2 4 2 4

Ž .1� 2�� Ž3�� .�Ž2�� .˜� c c C �2rŽ .2 4

� M Ž1�� .��

� M Ž1�� .� � ,
˜where the second inequality uses the first lower bound assumed for C.

Rearranging gives
Ž . 1��1� 1����˜ ˜c c C M � 2rM�C .Ž .Ž .2 4

which using the assumption of Case 1 yields
Ž .1���� ��1����˜ ˜� �x � c c CM � 2rM�C .Ž .2 4

Another rearrangement then shows that

˜ ��Ž1���� .� �2.14 rM � C x �2.Ž .
Ž . Ž . Ž .Combining 2.9 , 2.13 and 2.14 we obtain

˜ ��Ž1���� .� � � �2.15 h x � g x � C x 
 x .Ž . Ž . Ž . Ž .

˜ 1���� 1�� Ž1�� .��� � Ž Ž . .Case 2. M � x � c c CM . Let c � r 1 � c c and as-2 4 9 2 4
˜ Ž1�� .��sume C � c M . Then since � � � , this assumption yields9

Ž .1�� ��Ž1���� .� � Ž1�� .Ž1���� .� �C̃ � r c c M ,Ž .2 4

which is equivalent to
Ž . Ž .1�� � 1����� �Ž1���� . Ž1�� .C̃ � r c c MŽ .2 4

and thus also to
Ž . Ž .1�� � 1���� Ž1�� .˜ ˜C � r c c C M .Ž .2 4

Using this and the assumption of Case 2 we obtain
� �h x � r xŽ .
� � Ž1�� .�Ž1���� . � � ��Ž1���� .� r x x

Ž . Ž .1�� � 1���� � �Ž1���� .Ž1�� .˜ � �� r c c C M xŽ .2 42.16Ž .
˜ ��Ž1���� .� �� C x

˜ ��Ž1���� .� � � �� g x � C x 
 x .Ž . Ž .
Ž . Ž .This and 2.15 prove the proposition under 2.2 , with

˜ Ž1�� .Ž2�� .�� Ž3�� . Ž1�� .��C � max 1, 1�c , 1�c c , c , 2r , c M , c M .Ž .0 3 2 4 7 8 9

Ž .If 2.2 does not hold, then the result is obtained by applying the result under
˜ ˜Ž . Ž . Ž . Ž . Ž .2.2 to 
 � �
 M , 
 M C and 
 M C in place of 
, C and C, respectively.

�
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Ž .PROOF OF THEOREM 1.8. Suppose h satisfies CHAP � , 
, M, C, K, a . We
˜may assume that C � 1, K � 1, � � 1, r � 1 and M � 1. Let C �

˜Ž Ž . Ž .. Ž . � �max r�
 M , C � , 
, C, K, a, r, d, M . Since h x � r x , h satisfies0
˜Ž Ž .. Ž . � 	GAP 1, 
, M, r�
 M and hence also GAP 1, 
, M, C . For � � � , 1 set

Ž . Ž . Ž . Ž 	f � � �� 1 � � � � ; then f � � � for � � � , 1 and the unique fixed
Ž .point of f is at � . Set � � 1 and � � f � , so � � � . We have that h0 n�1 n n

˜Ž .satisfies GAP � , 
 , M, C , and by Proposition 2.1 if h satisfies0
˜ ˜Ž . Ž .GAP � , 
, M, C then h satisfies GAP � , 
, M, C . Therefore, taking then n�1

˜Ž .limit, h satisfies GAP � , 
, M, C . �

3. First-passage percolation. In this section we will apply Theorem
1.8 to Example 1.1 on first-passage percolation. Recall that there is a bond

d ² :between each nearest-neighbor pair of sites in � , that is, each pair x, y
� �with x � y � 1. Attached to each bond b is a random passage time t � 0;b

these passage times are i.i.d. with d.f. F. For a lattice path � , the passage
Ž .time T � is the sum of the passage times of the bonds comprising � . Then

T x , y � inf T � : � a lattice path from x to y , x , y � �d .� 4Ž . Ž .

To visualize this, one may imagine injecting liquid at the origin at time 0, and
assume that the passage time t of each bond b tells how long the liquidb
takes to pass through that bond. For each time t � 0 there is then a set of
sites which are wet at time t; centering a unit cube at each of these sites
determines the wet region

d� 	B t � x � �1�2, 1�2 : T 0, x � t .Ž . Ž .� 4
Ž . Ž .Richard 1973 and Cox and Durrett 1981 showed that under mild condi-

tions there is a nonrandom compact convex symmetric set B 
 � d such that0
�1 Ž .t B t converges to B , in the sense that for every � � 0, with probability 1,0

for sufficiently large t,

3.1 1 � � B 
 t�1B t 
 1 � � B .Ž . Ž . Ž . Ž .0 0

Here we investigate the speed of this convergence, or more specifically, the
�1 Ž .nonrandom part of the discrepancy between t B t and B . Throughout this0

section, C , C , . . . will denote constants which depend only on F and�or d.1 2
Ž .Kesten 1993 has shown that under a moment condition on F there are

Ž .constants C � C F, d such that with probability 1, for sufficiently large t,i i

Ž .1� d�2�1�Ž2 d�4. �11 � C t log t B 
 t B tŽ . Ž .ž /1 0
3.2Ž .


 1 � C t�1�2 log t B .Ž .2 0

Ž . Ž .Note that the inner bound for B t in 3.2 is weaker than the outer bound.
This is related to subadditivity of the function

h x � ET 0, x ,Ž . Ž .
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which is a consequence of the inequality

T x , y � T x , z � T z , y for all x , y , z � �d .Ž . Ž . Ž .
Ž . Ž .Specifically, subadditivity yields the one-sided bound 1.2 for ET 0, x , mak-

ing it easier to bound passage times from below than to bound them from
above.

Ž . Ž .To remedy this asymmetry, one must bound ET 0, x � g x for the
Ž . Ž . Ž .function g x of 1.1 . Kesten 1993 shows that

Ž .1� d�21�1�Ž2 d�4.� � � �ET 0, x � g x � C x log x ,Ž . Ž . Ž .3

Ž .which is GAP with exponent 1 � 1� 2 d � 4 . Our main effort will be to
improve this exponent to 1�2, or more precisely, to show that

� �1�2 � �3.3 ET 0, x � g x � C x log x ,Ž . Ž . Ž . 4

Ž .then use this to obtain an almost sure bound improving 3.2 . For x on an
Ž . Ž .axis, 3.3 was proved in Alexander 1993 . But the reflection argument

therein uses the symmetry of the lattice about the hyperplane perpendicular
to x, which does not exist for off-axis x. Therefore we will use Lemma 1.6 and
Remark 1.7 to help establish CHAP, then apply Theorem 1.8.

In view of Lemma 1.5, the limiting set can be described by

B � x � � d : g x � 1 .� 4Ž .0

Ž .An almost sure analog of 1.1 is the fact that

3.4 lim T 0, nx �n � g x a.s.Ž . Ž . Ž .
n

provided the passage times have a finite first moment. This follows from the
Ž .subadditive ergodic theorem of Kingman 1968 .

Ž d .Let p � denote the critical probability for Bernoulli bond percolation onc
�d; this means the probability that the origin is part of an infinite connected

Ž d .set of occupied bonds is positive at densities p � p � and zero at densitiesc
Ž d . Ž .p � p � . Kesten 1993 showed that ifc

3.5 F 0 � p �dŽ . Ž . Ž .c

and

3.6 e� x dF x � � for some � � 0,Ž . Ž .H
then

1�2 �C u6� � � � � �3.7 P T 0, x � ET 0, x � u x � C e for u � C x .Ž . Ž . Ž . 5 7

Ž .The condition 3.5 is natural because it is equivalent to the positivity of the
Ž .time constant � and to the compactness of B ; see Kesten 1986 .0

Here now is the main theorem, to be proved later in this section.

Ž . Ž .THEOREM 3.1. Under the hypotheses 3.5 and 3.6 , for some constants
Ž .C F, d , with probability 1, for all sufficiently large t,i

1 � C t�1�2 log t B 
 t�1B t 
 1 � C t�1�2 log t B .Ž .Ž . Ž .8 0 9 0
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Ž . Ž .In the Eden model, examined by Eden 1961 and Richardson 1973 , one
� 	 dbegins with the cube �1�2, 1�2 and adds one cube at a time, chosen from

among the unselected cubes which are adjacent to the set of cubes selected so
far, with probability proportional to the number of adjacent already selected

� 	 d dcubes. All cubes are of form x � 1�2, 1�2 with x � � . Except for a time
Ž .change, this is identical to the growth of B t when the passage times are

Ž . Ž .exponential. Richardson 1973 proved an asymptotic shape result like 3.1
for the Eden model, and Theorem 3.1 for exponential passage times gives a
rate of convergence in Richardson’s result.

The t�1�2 log t rate in Theorem 3.1 may well not be optimal. Simulations
� Ž . 	 �2�3see Kesten 1993 for references and comments suggest that t may be
the right rate. In our method, increasing the exponent beyond 1�2 in Theo-

Ž .rem 3.1 would require a similar increase in 3.7 .
For x, y � �d, a route from x to y is a lattice path � of minimal total

Ž . Ž .passage time, that is, T � � T x, y . Routes always exist; see Smythe and
Ž .Wierman 1977 .

As we have described, the main ingredient in proving Theorem 3.1 will be
the establishment of GAP with exponent 1�2, which we now state as a
separate theorem.

Ž . Ž .THEOREM 3.2. Under the hypotheses 3.5 and 3.6 , for some constant
Ž . d � �C F, d , for all x � � with x � 1,4

� �1�2 � �3.8 g x � ET 0, x � g x � C x log x .Ž . Ž . Ž . Ž . 4

Before proving this we need some preliminary definitions and results.
Define

s y � ET 0, y � g y , y � �d .Ž . Ž . Ž .x x

Ž . Ž .By 1.2 and 1.9 , s is nonnegative. From subadditivity of h and linearity ofx
g we obtainx

s y � z � s y � s z for all y , z � �d .Ž . Ž . Ž .x x x

Ž . Ž .As in the discussion preceding 1.10 , we can view s y as a measure of thex
Ž .inefficiency of an increment of y when trying to reach x. With C from 3.7 ,6

Ž .1�2 Ž .let C � 32 d 8d �C , 
 t � log t,10 6

Q � Q 1�2, 
 , C , 2 d � 1 ,Ž .x x 10

G � y � �d : g y � g x ,Ž . Ž .� 4x x

� � y � Q : y adjacent to �d � Q , y not adjacent to G ,� 4x x x x

� 4D � y � Q : y adjacent to G .x x x

Ž .The next lemma, which is analogous to Lemma 2.2 of Alexander 1990 ,
summarizes some basic properties of the quantities we have defined. Let mF
denote the mean of the distribution F.
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Ž . Ž .LEMMA 3.3. Assume that conditions 3.5 and 3.6 hold. There exists a
� �constant C such that if x � C then the following hold.11 11

Ž . Ž . Ž . � � � �i If y � Q , then g y � 2 g x and y � 2 d x .x
Ž . Ž . � �1�2Ž � �.ii If y � � , then s y � C x log x �2.x x 10
Ž . Ž . Ž .iii If y � D , then g y � 5g x �6.x x

Ž . Ž . Ž . Ž . Ž . Ž .PROOF. i Suppose g y � 2 g x and g y � g x . Then using 1.2 andx
Ž .1.9 ,

2 g x � g y � ET 0, y � g y � s y � g x � s y ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .x x x

Ž . Ž . Ž . � �1�2 � � � �so from 1.8 , s y � g x � C x log x , provided x � C . Thus y � Qx 10 11 x
Ž .and the first conclusion in i follows. The second conclusion then follows from

Ž .1.8 .
Ž . d c c Ž .ii Note that z � y 	 e for some z � � � Q � G and i � d. From ii x x

� � � � � � Ž . � � � �we have y � 2 d x , so z � 2 d � 1 x , provided x � 1. Since z � Q wex
Ž . � �1�2 � � Ž .must then have s z � C x log x , while using 1.9 ,x 10

m � ET 0, 	 e � s 	e � g 	e � s 	e � �.Ž . Ž . Ž . Ž .F i x i x i x i

Consequently

� �1�2 � � � �1�2 � �s y � s z � s 	e � C x log x � m � � � C x log x �2.Ž . Ž . Ž . Ž .x x x i 10 F 10

Ž . Ž . diii As in ii we have z � y 	 e for some z � � � G and i � d. There-i x
Ž .fore using 1.9 ,

g y � g z � g 	e � g x � � � 5g x �6. �Ž . Ž . Ž . Ž . Ž .x x x i

The notion of the Q -skeleton of a lattice path from 0 to nx was defined inx
Ž . Ž .Remark 1.7. Given such a skeleton v , . . . , v , abbreviated v , of some0 m i

lattice path, we divide the corresponding indices into two classes, correspond-
ing to ‘‘short’’ and ‘‘long’’ increments:

� 4S v � i : 0 � i � m � 1, v � v � � ,Ž .Ž .i i�1 i x

� 4L v � i : 0 � i � m � 1, v � v � D .Ž .Ž .i i�1 i x

Ž .Note that the final index m is in neither class, and by Lemma 3.3 ii ,

� �1�2 � �3.9 j � S v implies s v � v � C x log x �2.Ž . Ž . Ž . Ž .Ž .i x j�1 j 10

Ž .The next result is analogous to Lemma 2.3 of Alexander 1990 , though the
proof is significantly different. Lemma 1.6 shows that it is the main ingredi-
ent in establishing CHAP.

Ž . Ž .PROPOSITION 3.4. Assume that conditions 3.5 and 3.6 hold. There exists
� �a constant C such that if x � C then for sufficiently large n there exists a12 12

lattice path from 0 to nx with Q -skeleton of 2n � 1 or fewer vertices.x

Ž .PROOF. Let v , . . . , v be a Q -skeleton of some lattice path and let0 m x

Y � ET v , v � T v , v .Ž . Ž .i i i�1 i i�1
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We need an exponential bound for Y . We havei

� � 1�2 � �Y � ET v , v � m v � v � m d v � v ,Ž . 1i i i�1 F i�1 i F i�1 i

� �so there exists a constant C such that if x � C and13 13

1�2 � �u � 2 d C v � vŽ . 7 i�1 i

Ž Ž ..with C from 3.7 then7
1�2� �P Y � u x � 0.i

Ž .By Lemma 3.3 i ,
� � � �v � v � 2 d x ,i�1 i

Ž .1�2 � � Ž .so for 0 � u � 2 d C v � v , by 3.7 ,7 i�1 i

�1�21�2 1�2� � � �P Y � u x � P Y � 2 d u v � vŽ .i i i�1 i

�1�2� C exp � 2 d C u .Ž .Ž .5 6

Ž .�1�2It follows that, for � � 2 d C ,6

�1�2 �1�21�2� �E exp � Y � x � C 2 d C � 2 d C � � .Ž . Ž .Ž . Ž .i 5 6 6

Ž .�1�2In particular, for � � 8d C ,0 6

� �1�23.10 E exp � Y � x � 2C .Ž . Ž .0 i 5

Let Y � , . . . , Y � be independent r.v.’s with Y � having the distribution of Y .0 m�1 i i
Ž Ž ..Let T 0, w; v be the minimum passage time among all lattice paths from 0j

Ž . Ž . Ž .to site w with Q -skeleton v . By 4.13 of Kesten 1986 , or Theorem 2.3 ofx j
Ž .Alexander 1993 , for all t � 0,
m�1 m�1

�P Y � t � P ET v , v � T 0, v ; v � t .Ž . Ž .Ž .Ý Ýi i i�1 m jž / ž /
i�0 i�0

Ž .1�2 Ž .Therefore for C � 2 d 8d �C , by 3.10 ,14 6

m�1
1�2� � � �P ET v , v � T 0, v ; v � C m x log xŽ . Ž .Ž .Ý i i�1 m j 14

i�0

m�1
1�2� � � � �� P exp � Y � x � exp � C m log xŽ .Ý0 i 0 14ž /

i�0

3.11Ž .

m
� �� 2C exp �� C log x .Ž .Ž .5 0 14

Ž . Ž � � d .mBy Lemma 3.3 i , for some constant C there are at most C x Q -15 15 x
Ž .skeletons with m � 1 vertices. Since � C � d, with 3.11 this shows that0 14
� �for some constants C and C , for all m � 1 and all x � C ,16 17 17

m�1
1�2� � � �P ET v , v � T 0, v ; v � C m x log xŽ . Ž .Ž .Ý i i�1 m j 14

i�0

� �for some Q -skeleton with m � 1 vertices � exp �C m log x .Ž .x 16
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� �This in turn yields that for some constant C , for all x � C ,18 18

m�1
1�2� � � �P ET v , v � T 0, v ; v � C m x log xŽ . Ž .Ž .Ý i i�1 m j 14

i�0

for some m � 1 and some Q -skeleton with m � 1 verticesx

3.12Ž .

� �� 2 exp �C log x .Ž .16

� d4Now let � � t : b a nearest-neighbor bond in � be a fixed configurationb
Ž . Ž .of passage times to be further specified later and let v , . . . , v be the0 m

Q -skeleton of a route in � from 0 to nx. Then since v � v � Q ,x i�1 i x

m�1

mg x � g v � v � g nx � ng xŽ . Ž . Ž . Ž .Ý x i�1 i x
i�0

so
3.13 n � m.Ž .

Ž .By 3.4 ,
P T 0, nx � ng x � n � 1 as n � �,Ž . Ž .

Ž .so by 3.12 if n is large we can choose � so that

3.14 T 0, nx ; v � T 0, nx � ng x � nŽ . Ž . Ž . Ž .Ž .j

and
m�1

1�2� � � �ET v , v � T 0, nx ; v � C m x log x .Ž . Ž .Ž .Ý i i�1 j 14
i�0

� � Ž . Ž .Then for some constant C , if x � C then by 3.13 and 3.14 ,19 19

m�1
1�2� � � �ET v , v � ng x � n � C m x log xŽ . Ž .Ý i i�1 14

3.15Ž . i�0

� �1�2 � �� ng x � 2C m x log x .Ž . 14

Ž .But by 3.9 ,
m�1 m�1

ET v , v � g v � v � s v � vŽ . Ž . Ž .Ž .Ý Ýi i�1 x i�1 i x i�1 i
i�0 i�0

� � � �1�2 � �� g nx � S v C x log x �2,Ž . Ž . Ž .Ž .x i 10

Ž .which with 3.15 yields

� �3.16 S v � 4C m�C � m�4.Ž . Ž .Ž .i 14 10

Ž .At the same time, using Lemma 3.3 iii ,
m�1 m�1

ET v , v � g v � v � s v � vŽ . Ž . Ž .Ž .Ý Ýi i�1 x i�1 i x i�1 i
i�0 i�0

� �� 5 L v g x �6.Ž . Ž .Ž .i
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Ž . Ž .With 3.15 and 1.8 this yields that there is a constant C such that,20
� �provided x � C ,20

1�2� � � � � �L v � 6n�5 � 2C m d� x log x � 6n�5 � m�8.Ž . Ž .Ž .i 14

Ž .This and 3.16 give
� � � �m � L v � S v � 1 � 6n�5 � 3m�8 � 1,Ž . Ž .Ž . Ž .i i

which, for n large, implies m � 2n, which proves the proposition. �

PROOF OF THEOREM 3.2. By Proposition 3.4 and Lemma 1.6, h satisfies
Ž .CHAP 1�2, 
, C , C , 2 d � 1, 2 . By Theorem 1.8, it follows that for some C12 10 4

Ž . d � �and M, 3.8 is valid for all x � � with x � M. By increasing C if4
necessary, we may assume M � 1. �

It is perhaps worth summarizing how we found a lattice path as in the
statement of Proposition 3.4. Let us call a lattice path � from 0 to nx fast if
Ž . Ž . � Ž .	T � � ng x � n see 3.14 and call the Q -skeleton of a path from 0 to nxx

good if it consists of 2n � 1 or fewer vertices, and bad otherwise. Note that
‘‘fast’’ is a property depending on the random configuration of passage times,
but ‘‘good’’ and ‘‘bad’’ are deterministic properties. To show that good Q -x
skeletons exist, we show roughly that the probability that there exists a fast
lattice path which follows a bad Q -skeleton is strictly less than the probabil-x
ity that there exists a fast lattice path. This is essentially the same method

Ž .that was used in Alexander 1990 to establish CHAP for the connectivity
Ž .function of Bernoulli bond percolation, on the way to the result 1.3 of

Example 1.3, provided we replace ‘‘fast’’ with ‘‘consisting entirely of occupied
bonds.’’ We will see in the next section that this method also works for longest
common subsequences and for oriented first-passage percolation. Analogs of

Ž .the method may well work in other problems in which h x involves an
expected value or probability associated with an optimal path of some kind
from 0 to x.

Ž . Ž .PROOF OF THEOREM 3.1. The outer bound for B t is part of the result 3.2
Ž .from Kesten 1993 , but we include a short proof here for convenience.

Suppose c, t � 0 and

3.17 there exists x � B t � �d with x � t � ct1�2 log t B .Ž . Ž . Ž . 0

Ž .Then T 0, x � t, but

ET 0, x � g x � t � ct1�2 log t ,Ž . Ž .
so
3.18 ET 0, x � T 0, x � g x � t � ct1�2 log t .Ž . Ž . Ž . Ž .

Ž . Ž . � � Ž .If g x � 2 t then by 1.8 x �2 d � t so 3.18 yields
�1 1�2� � � �ET 0, x � T 0, x � 2 d c x log x .Ž . Ž . Ž .

Ž . Ž . � �If g x � 2 t then by the first inequality in 3.18 , provided x is large,
�1 1�2� � � �ET 0, x � T 0, x � g x �2 � 2 d c x log x .Ž . Ž . Ž . Ž .
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Ž .Thus if 3.17 occurs for arbitrarily large t then
�1 1�2� � � �ET 0, x � T 0, x � 2 d c x log x for infinitely many x .Ž . Ž . Ž .

� � Ž .However, for x large, by 3.7 ,
�1 1�2� � � �P ET 0, x � T 0, x � 2 d c x log xŽ . Ž . Ž .

�1 � �� C exp �C 2 d c log x ,Ž .Ž .5 6

which is summable over x if we choose

c � C � 2 d d � 1 �C .Ž .21 6

Thus with probability 1, for sufficiently large t,

3.19 B t 
 t � C t1�2 log t B .Ž . Ž . Ž .21 0

Ž .Turning to the inner bound for B t , suppose c � 0 and suppose that for
d Ž 1�2 .arbitrarily large t there exists x � � with x � t � ct log t B but x �0

Ž .B t . Then

� � 1�2x �d � t , T 0, x � t and g x � t � ct log tŽ . Ž .
� �and for large t we must have x � 1. Hence by Theorem 3.2,

1�2 � �1�2 � �ET 0, x � t � ct log t � C x log xŽ . 4

� �1�2 � �� t � c�d � C x log x ,Ž .4

so that

� �1�2 � �T 0, x � ET 0, x � c�d � C x log x .Ž . Ž . Ž .4

Ž .Since x � B t and t is arbitrarily large, this must be true for infinitely many
Ž .x. But as in the proof of 3.19 , with probability 1 this does not happen

infinitely often if c is chosen large enough. �

4. Longest common subsequences and oriented first-passage per-
colation. In this section we apply Theorem 1.4 to Examples 1.2 and 1.4 on
oriented first-passage percolation and the LCS problem. As observed by

� Ž .	several authors see, e.g., Arratia and Waterman 1994 , the LCS problem
can be reformulated as a dependent version of oriented first-passage percola-

Ž . dtion, as follows. We use the notation of Example 1.4. Let e* � 1, . . . , 1 � � .
In the positive quadrant of the integer lattice with all nearest-neighbor
bonds, we add a diagonal bond b from x � e* to x for each x with strictlyx
positive coordinates. We define the passage time of each vertical and horizon-
tal bond to be 1, and define the passage time of b to be 0 if X Ž1. � ��� � X Žd .,x x x1 d

and � otherwise. For purposes of the LCS problem, we extend the definition
of oriented lattice paths from Example 1.2 by allowing them to include

Ž . Ž .diagonal bonds b traversed from x � e* to x. We then have T 0, x � U x .x
Ž . Ž . Ž .This enables us to use h x � ET 0, x , and to define B t as in Section 3,

for both independent oriented first-passage percolation and the LCS prob-
� d Ž . 4lem. Again, B � x � � : g x � 1 . Note that for both models, if 0 �0
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Ž .v , v , . . . , v � nx are a sequence of sites in order in an oriented lattice0 1 m
Ž .path from 0 to nx, then the passage times T v , v , i � 0, . . . , m � 1, arei i�1

independent.
For independent oriented first-passage percolation, we replace the hypoth-
Ž .esis 3.5 with

4.1 F 0 � p �d .Ž . Ž . Ž .c , or �

Ž d .where p � denotes the critical probability for the existence of infinitec, or �
Ž .oriented lattice paths consisting of occupied bonds. Given z � z , . . . , z �1 d

d Ž . Ž .� , let z � z � ��� �z �d. The natural time constant is � � g e* . The1 d or
Ž . Ž .proof of Kesten 1986 that 3.5 is equivalent to positivity of the time

Ž . Ž . Ž .constant � � g e , and the proof in Kesten 1993 of 3.7 then carry over1
Ž .essentially without change to their oriented analogs. Inequalities 1.8 and

Ž .1.9 are no longer necessarily valid, but we still have g � g. Since g isx
Ž .convex and symmetric about the diagonal through 0 and e*, we have g z �

Ž . Ž . � � Ž .g ze* � g e* z �d. From subadditivity and symmetry we have g z �1
Ž . � � Ž .g e z . Therefore we can replace Lemma 3.3 i with the statement that if11

Ž . Ž . � � 3�2 Ž . � � Ž .y � Q then g y � 2 g x and y � 2 d g e x �g e* . The rest of Lemmax 1
3�2 Ž . Ž .3.3 carries over provided that 2 d � 1 is replaced with 2 d g e �g e* � 11

in the definition of Q preceding that lemma, and then the proofs of Theo-x
rems 3.1 and 3.2 carry over. Thus we obtain the following.

THEOREM 4.1. For independent oriented first-passage percolation in d
Ž . Ž . Ž .dimensions, under the hypotheses 4.1 and 3.6 , for some constants C F, d ,i

d � �for all x � � with x � 1,

� �1�2 � �g x � ET 0, x � g x � C x log x .Ž . Ž . Ž . 22

Further, with probability 1, for all sufficiently large t,

1 � C t�1�2 log t B 
 t�1B t 
 1 � C t�1�2 log t B .Ž .Ž . Ž .23 0 24 0

Turning to longest common subsequences, we observe first that there is no
Ž . Ž .analog of 3.6 . The proof of Proposition 5.8 of Kesten 1986 shows that the

Ž .natural time constant � � g e* is positive provided the letter distribu-LCS
Ž .tion is nondegenerate, so there is no need for an analog of 4.1 . Finiteness of

� means that for d letter sequences each of length n, the LCS length as aLCS
fraction of n is asymptotically strictly less than 1. Further, as in Lemma 2.3

Ž . Ž . Ž .of Alexander 1994 , by an inequality of Azuma 1967 , 3.7 can be replaced
by

2� � � �P U x � EU x � � � 2 exp �� �2 xŽ . Ž . Ž .1

Ž .for all � � 0. But in fact the use of 3.7 in the proof of the analog of
Proposition 3.4 can be avoided altogether, as Azuma’s inequality yields

Ž .directly the following replacement for 3.11 : for all � � 0,
m�1

2 � �P ET v , v � T 0, v ; v � � � exp �� �2 v .Ž . Ž . Ž .Ž .Ý 1i i�1 m j m
i�0
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In particular, when the final site v � nx and m � n, for all c � 0,m

m�1
1�2� � � �P ET v , v � T 0, v ; v � cm x log xŽ . Ž . Ž .Ž .Ý i i�1 m j

i�0

2 1�2 � �� exp �c d m log x .Ž .
Ž . � �This yields an analog of 3.12 , with the following changes: log x is replaced

Ž � �.1�2by log x , including in the definition of Q ; m � 1 is replaced by m � n,x
and the restriction that v � nx is added. The rest of the proof of Propositionm

� � Ž � �.1�23.4 remains similar, with log x replaced by log x . We then obtain the
following analog of Theorems 3.1, 3.2 and 4.1; rather than formulate it

Ž .entirely in terms of g x , it is more natural for the LCS problem to use the
function

� �� x � lim EL nx �n � x � g x �d.Ž . Ž . Ž .Ž .1
n

THEOREM 4.2. Let X Ž i.X Ž i., . . . , i � 1, . . . , d, be d i.i.d. sequences of letters1 2
selected from a finite alphabet A, with each letter having the nondegenerate

Ž . ddistribution 
 . There exist constants C 
 , d as follows. For all x � � withi
� �x � 1,

1�2� � � �4.2 � x � EL x � � x � C x log x .Ž . Ž . Ž . Ž . Ž .25

� �With probability 1, uniformly in x as x � �,

1�2� � � � � �L x � � x � O x log x .Ž . Ž . Ž .Ž .
Finally, with probability 1, for all sufficiently large t,

4.3 1 � C t�1�2 log t B 
 t�1B t 
 1 � C t�1�2 log t B .Ž . Ž .Ž . Ž .26 0 27 0

Ž . Ž . Ž .Taking d � 2 and x � n, n in 4.2 reproduces the result 1.5 , though
Ž .unlike the proof in Alexander 1994 , the present proof does not readily yield

� 4an explicit value for C . For the coin-tossing case of alphabet A � 0, 1 and25
Ž . Ž . Ž .
 0 � 
 1 � 1�2, the value of � e* , particularly for d � 2, has been an

Ž . Ž .object of some study; see Dancık and Paterson 1995 , Deken 1979 and˘́
Ž . Ž . Ž .Sankoff and Kruskal 1983 . For d � 2, � e* is the c of 1.5 , and simula-

� Ž .	tions performed by Eggert and Waterman see Alexander 1994 suggest that
its value is near 0.81.

Ž . Ž . Ž .There is no shape result for L x analogous to the result 4.3 for U x ,
� d Ž . 4 � dbecause x � � : L x � t includes the unbounded set x � � : x � t for� � i

4some i � d for all t � 0.

5. The case of � � 0. We will prove Theorem 1.9. We begin with an
analog of Proposition 2.1. Note that here, however, the reduction in the

˜exponent � is not quite ‘‘for free,’’ as the analog of the C of Proposition 2.1 is
˜z��, which unlike C does increase as � decreases.
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PROPOSITION 5.1. Suppose C � 1, K � 1, M � 1, a � 1, 
 � 	 and h is a
d Ž . � �nonnegative subadditive function on � with h x � r x for all x for some

Ž .r � 1. There exists a constant z 
, C, K, a, r, d, M such that if z � z ,0 0
Ž 	 Ž .� � 0, 1 , and h satisfies both GAP � , 
 , M , z�� and
Ž . Ž .CHAP 0, 
, M, C, K, a , then h satisfies GAP ��, 
, M, z��� where �� �

Ž .�� 1 � � � �.

Ž .PROOF. Let c , c and c be as in the proof of Proposition 2.1, assume 2.10 1 2
� Ž .holds, and let c � 1� c � c .4 1 0

� �Fix M � 1 and x with x � M. Again we consider two cases.

� � � � 1��Case 1. x � c c zM . Let2 4

Ž .1� 1�� � �Ž1�� .�� � �q � c c z x .Ž .2 4

� Ž .Assume z � c �c ; then analogously to 2.11 , using the assumption of2 4
� �Case 1, we obtain x � qM. Further, we have q � c � 1. As in the proof of2

Ž .Proposition 2.1, we obtain the analog of 2.9 with � � 0:

� � �1 � �� � � � � � � �5.1 h x � g x � c � c q
 x � z� c q x 
 x � rM
 x .Ž . Ž . Ž . Ž . Ž . Ž . Ž .1 0 2

Now
Ž1�� . � � � �c � c q � c z xŽ .1 0 2

Ž .so, analogously to the first line of 2.13 ,
�1 � �� � � � �15.2 c � c q � z� c q x � 1 � � c � c q.Ž . Ž . Ž .Ž .1 0 2 1 0

2 � Ž .Ž1�� .� � 2Assume z � c e �c ; using 1 � � � e , we obtain2 4

Ž . Ž .1�� �1�� 1��� � � 1��c � c 1 � � c zc � c � c 1 � � zc � z ,Ž . Ž . Ž . Ž .1 0 4 2 1 0 2

Ž .so, taking the 1� 1 � � power and then dividing by �,
Ž .1� 1����1 � �1c � c 1 � � c c z � z� .Ž . Ž . Ž .1 0 2 4

Ž .Therefore, analogously to the latter part of 2.13 ,
�1 �1 � � ��Ž1�� .5.3 1 � � c � c q � z� x .Ž . Ž .Ž . 1 0

Ž . Ž . Ž . Ž .Assume z � rM; then by 5.1 , 5.2 and 5.3 , analogously to 2.15 ,
�1 � � ��Ž1�� . � � � �h x � g x � z� x 
 x � z
 xŽ . Ž . Ž . Ž .

5.4Ž .
�1 � �� � � �� g x � z �� x 
 x .Ž . Ž . Ž .

� � � � 1�� Ž � 2 2 .Case 2. M � x � c c zM . Assume z � exp c c r M �e . Since2 4 2 4
Ž .1� � u � e� u � e for all �, u � 0, we then have

1��� �� 2 2 ��c c rM � �c c r M � zŽ .2 4 2 4

so that
1�� 1���� 1��� �x � c c zM � z�r �� � z�r�Ž . Ž .2 4
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Ž .and then, analogously to 2.16 ,

� � � �1�Ž1�� . � � ��Ž1�� .h x � r x � r x xŽ .
�1� �Ž1�� . � ��1 � � � � � �� z� x � g x � z �� x 
 x .Ž . Ž . Ž .

Ž . Ž .This and 5.4 prove the proposition under 2.2 , with

z � max exp c c� r 2M 2�e , rM , c e2�c� .Ž .Ž .0 2 4 2 4

Ž .The result without 2.2 then follows as in the proof of Proposition 2.1. �

Ž .PROOF OF THEOREM 1.9. Suppose h satisfies CHAP 0, 
, M, C, K, a . In
the notation of Proposition 5.1, we may assume that C � 1, K � 1, r � 1 and

Ž Ž . Ž .. Ž . � �M � 1. Let z � max r�
 M , z 
, C, K, a, r, d, M . Since h x � r x , h0
Ž Ž .. Ž .satisfies GAP 1, 
, M, r�
 M and hence also GAP 1, 
, M, z . By Proposi-

Ž .tion 5.1, if h satisfies GAP 1�n, 
, M, nz for some n then h also satisfies
Ž Ž . Ž . . Ž .GAP 1� n � 1 , 
, M, n � 1 z . Therefore h satisfies GAP 1�n, 
, M, nz for

all n, that is,

� �1� n � �g x � h x � g x � nz x 
 xŽ . Ž . Ž . Ž .
d � �for all x � � with x � M and all n � 1.

� � ��Taking n � 1 � log x completes the proof. �

6. The connectivity function for bond percolation. In this section
we will apply Theorem 1.9 to Example 1.3 on the connectivity function for
Bernoulli bond percolation. Let x � y denote the event that site x is con-

Ž d .nected to site y by a path of occupied bonds, and fix 0 � p � p � . Herec
Ž d .p � denotes the percolation critical point, above which there exists a.s. anc

infinite connected component of occupied bonds. From the Harris�FKG in-
� Ž .	 � 	 � 	 � 	equality Harris 1960 we have P 0 � x � y � P 0 � x P x � x � y ;p p p

Ž .from this and translation invariance it follows that the function h x �
� 	 Ž .�log P 0 � x is subadditive. Recall that � p, � denotes the inverse corre-p

Ž d . �lation length in direction � , which is strictly positive for all p � p � seec
Ž . 	 � � Ž . Ž . � �Grimmett 1990 , Theorem 5.78 ; for � � x� x we have � p, � � g x � x ,

which depends on x only through � . One would expect that something like
Ž . Ž .1.3 , or equivalently 1.4 , is true in all dimensions, and in fact Lemma 2.4 of

Ž .Alexander 1990 shows that in all dimensions h satisfies CHAP with expo-
Ž . � Ž .nent 0 and correction factor 
 t � log t. Strictly speaking, 1.11 is only

Ž .established in Alexander 1990 with Q replaced by a set of sites adjacent tox
Ž .Q . This is because, in the notation of Remark 1.7, in Alexander 1990 , vx i�1

is defined to be v� rather than the last site in � before v� . But since thei�1 i�1
values of h at adjacent sites do not differ by more than a factor of p, slight

Ž .technical modifications to the proof in Alexander 1990 yield CHAP exactly
Ž . 	 Ž . Ž .in the form 1.11 . Theorem 1.9 only comes close to 1.3 and 1.4 , yielding an

� �extra factor of log x in the result, but it applies to all dimensions.
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THEOREM 6.1. For Bernoulli bond percolation on the d-dimensional inte-
Ž d . � �ger lattice, for each 0 � p � p � , uniformly in x as x � �,c

2� � � � � �� 	�� p , � x � log P 0 � x � �� p , � x � O log x .Ž . Ž . Ž .Ž .p

� � Ž .where � � x� x and � p, � is the inverse correlation length in direction � .
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