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STRONG APPROXIMATION THEOREMS FOR GEOMETRICALLY
WEIGHTED RANDOM SERIES AND THEIR APPLICATIONS!

By LI-XIN ZHANG

Hangzhou University

Let {X,;n > 0} be a sequence of random variables. We consider its
geometrically weighted series ¢(8) = Y -, 8" X, for 0 < B < 1. This paper
proves that £(B) can be approximated by Y >° ; 7Y, under some suitable
conditions, where {Y,;; n > 0} is a sequence of independent normal random
variables. Applications to the law of the iterated logarithm for () are also
discussed.

1. Introduction and main results. Let {X,; n > 0} be a sequence of
random variables; one can consider its geometrically weighted series £(B) =
Yoo B"X,, 0 < B < 1. The following type of the law of the iterated logarithm
(LIL) was obtained by Bovier and Picco [1]:
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where {X,; n > 0} is a sequence of independent and identically distributed
(i.i.d.) random variables with mean zero and variance one. Recently, in a long
paper, Picco and Vares [9] proved this kind of LIL for a stationary ergodic
martingale difference sequence with finite second moments. If {X,; n > 0} is
not an i.i.d. stochastic sequence, for example, a mixing sequence or a sequence
of independent random variables satisfying the conditions of the Kolmogorov
LIL, to prove a LIL of the type (1.1) will be very complicated if we use the
methods of [1] and [9], and we don’t know whether their methods are effective
or not. It is the purpose of the present paper to look for a general and simple
way to get the LIL of type (1.1). Indeed, we will show that under some suit-
able conditions, &£(B) can be approximated by > 72, 8"Y,, where {Y,; n > 0}
is a sequence of independent normal variables. Then we establish some re-
sults on the LIL of type (1.1) for {X,;n > O} by proving the same results for
normal variables. The results we get on the LIL include not only those of [1]
and [9] with a simple proving method, but also the laws of the iterated log-
arithm for the geometrically weighted series of dependent random variables,
independent but not necessarily identically distributed random variables and
i.i.d. random variables with possibly infinite variances. This section discusses
strong approximations. The laws of the iterated logarithm will be presented
in Section 2. Throughout this paper, C, C,, C4, ¢, ¢, ¢4, . . . Will denote positive
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constants whose values are uninteresting and may vary from line to line. The
expression a, ~ b, means a,/b, - 1 (n - ); a, ~ b, means that there
exist C, C, > 0 such that C; < a,,/b, < C, for n large enough.

The following theorem gives a general result on strong approximations for
random geometric series.

THEOREM 1.1. Let H(x) (x > 0) be a monotone nondecreasing positive
function with H(x) — oo (x — oo0) and H(2n) < CH(n), (n > 0) and
let {¢,; n > 0}, {n,; n > 0} be two sequences of random variables with
E|¢,|P <Cni, E|n,|? <Cni, (n > 0) for some p,q > 0. If

n

| noo |
(1.2) iZ JEDY nki = O(H(n)) (or o(H(n))) as. (n — o),

k=0 k=0
then

| > o0 |
(13) n=0 n=0

-ofo( ) o(a(25) w00

The following corollary comes from Theorem 1.1 immediately.

COROLLARY 1.1. Suppose {X,; n > 0} is a sequence of i.i.d. random vari-
ables, or more generally, a stationary ergodic martingale difference with EX =
0, EX?, = 02, 0 < o < co. Then there exists a sequence of i.i.d. normal random
variables {Y ,; n > 0} with Y, =, N(0, ¢?) such that

Vi B iiB”Xn—iﬁnYni=0 as.
n=0

(1.4)  lim
B/1./2loglog(1/(1 — B2)) =0

By Theorem 1.1 and Theorems 1.1, 1.2 of Shao [11], we have the following
corollary.

COROLLARY 1.2. Let {X,; n > 0} be a stationary stochastic sequence with
EX, =0, EX; <ooand B, = E(Y}_y X;)?> - o (n — o00) satisfying one of
the following conditions:

(i) {X,; n >0} is p-mixing. The mixing coefficients satisfy
p(n) <log™"n for some r > 1;
(i) {X,; n > 0} is ¢-mixing. The mixing coefficients satisfy
> $MA(2") < co.
n=0

Then lim,,_, (B, /n) = o for some 0 < o < oo, and the conclusion of Corollary
1.1. holds true.
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When {X,; n > 0} is a sequence of i.i.d. random variables with higher than
second moments by Theorem 1.1, Theorem 1 of Zhang [14] and the results of
Komlos, Major and Tusnady [6, 7], we have the following conclusion.

COROLLARY 1.3. Suppose that {X,; n > 0} is a sequence of i.i.d. random
variables with EX, = 0, EX3 = 1. Let H(x) (x > 0) be a nondecreasing positive
continuous function such that for some y > 0, x5 > 0, x 2" H(x) (x > x,) is
nondecreasing and x~1log H(x) (x > xy) is nonincreasing.

(a) If EH(|Xg|) < o0, then there exists a sequence of i.i.d. standard normal
random variables {Y,; n > 0} such that

00 oo . 1
n=0 n=0

(b) If x~tlog H(x) — 0 (x — oo0) and EH(¢|X,|) < oo for any ¢ > 0, then
there exists a sequence of i.i.d. standard normal random variables {Y,; n > 0}
such that

i B"X, — i B"Y, = o<ian<1 —1,82>> as. (B /1)

n=0 n=0

The following theorem deals with the sequence of independent but not nec-
essarily identically distributed random variables.

THEOREM 1.2. Let {X,; n > 0} be a sequence of independent random
variables with EX, = 0 and EX2 < oo (n > 0). Set B, = >}_, EX% and
7(B) = Y00, B2"EX?2. Suppose B, — o (n — 00), limsup,_, ., By,/B, <
and for some p > 2,

* E|X,|’I{|X,| > &B,/loglog B,)"?

n=0 n n
Then there exists a sequence of independent normal random variables {Y ,; n >
0} with Y, =, N(0, EX?2) such that

(1.6) fim | 2n=0 B" X0 = Yo BVl _

g1 (27(B)log log 7(B))*?
If (1.5) is replaced by
= E|X,|PI{|X,| > &(B,/loglog B,)"?}

(1.5) > (B. loglog B, )" < oo for some & > 0,

< oo foranye>D0.

n=0
then there exists a sequence of independent normal random variables {Y,; n >
0} with Y, =, N(0, EX?2) such that
0 ny _ yo ny
(16/) Iimsup |Zn=OB n Zn:O Bl . n|
g1 (27(B)loglog 7(B))Y
where T" is a numerical constant.

<T'e a.s,
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ProoF oF THEOREM 1.1. Without loss of generality, we can assume 0 <
p < 1. Note that forany 0 < B < 1,

o0 p 00 00
E<Z B”lfnl) < Y. BYE|§,|P <C ) BPn? < 0.
n=0

n=0 n=0

We know that Y>> , "¢, is a.s. absolutely convergent for any 0 < B < 1.
Similarly, so is 2%, 8"n,. Let N(B8) = [1/(1 — B?)]. (We keep this in mind
in the remainder of this paper.) Note that H(2n) < CH(n) (n > 0) implies
H(kn)/H(n) < Cuk? (n > 0, k > 1) for some Cy, @ > 0; we have proved
Theorem 1.1 by the following lemma immediately.

LEMMA 1.1. Let {a,; n > 0} be a sequence of real numbers, {A,; n >0} a
sequence of monotonous nondecreasing positive numbers satisfying | > ;_oa;| <
A, for n large enough and A,,/A, < Cok® (k > 1, n > 0). Then for any
r>0, Ny =>1, we have

| & | r rCy (> rx
1.7 limsup A: . | e | <~ +—9 [ ex (——)xQ dx,

(1.7) ﬁ/lp N(B)Ingoﬁ " =2 > ) p 5

o0
limsup Ay(p| > BVa,
(18) B/l n=NoN(B)

rCy > rx rNgy Q
ST Noexp(—7>xde+CoeXp(—T)NO.

PrRoOOF. The proof is based on Abel’s partial summation formula. An anal-
ogous idea was used by Horvath [5]. Let S, = Y} _,a; (n > 0), S_; = 0. By
the Abel lemma we have

p p
(L9)  YBVa,=(1- )L RS, ~BS, .y +BPIS,

n=Il n=I[

Note A, < CoAn® (n > 1), we know that

Y BA, < Ag+ CoA; Y Bn9 < oo

n=0 n=0

It follows that Y02, 8BS, is absolutely convergent. So, > 7, 8" a, is also
absolutely convergent. Hence, by letting p — oo in (1.9), we have, for any
>0,

Y Ba,=(1-pB) Y B"S, —B"S; 1

n=l[ n=I[
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Then, note that for B near enough to 1,

(1—B") AN 2 B IS,|
n=0

N(B) 00
=1~ B)Ayp 2 BISH+ Q= B)A¥E X BYIS
n=0 n=N(B)+1

<@-p)NB)+D)

1-BI)NB) 7 -
+a-p (B)N(B)FN%)HGXFJ( 2N(B))AN<B) A,

=@-p)N(B)+1)

(- Bf)N(mﬁ > eXP(—ZNn(rB))C°<N?B))Q

N(B)+1

r rCy ® rX\ g
— > + 7/1 exp(—;)x dx, as g 1.
We have proved (1.7). The proof of (1.8) is similar.

ProoOF OoF THEOREM 1.2. If limsup,,_, ., B,,/B, < oo then B,,/B, < C for
some C > 0. Then there exist Cy, @ > 0 such that B,,/B, < Cok?, B, <
Con® (n >0, k> 1). Hence EX2 < Cyn? (n > 0). By Theorem 1.1, we need
only to show that

(1.10) 7(B) ~ By(p) B /1,

that there exists a sequence of independent normal random variables {Y ,; n >
0} with Y,, =, N(0, EX?2) such that

Y X,-> Y,

k=0 k=0

(1.11) = o((B, loglog B,)'/?) a.s. (n — o)

whenever (1.5) holds, and that there exists a sequence of independent normal
random variables {Y,; n > 0} with Y, =, N(0, EX?2) such that for some
numerical constant T',

Xy =% Y
(lll/) IimSUple:o k Zk:o k| <

r .S.
n—oo (Bn |Og |0g Bn)l/z =1e as

whenever (1.5) is replaced by (1.5).
We prove (1.10) first. First, 7(8) > zflﬁg) B EX?2 > B*N) By implies

1.12 liminf B >e L.
(1.12) Iﬁ/ll 7(B)/Bnpg) > e
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On the other hand, it follows from Lemma 1.1 that

(1.13) lim sup (B

g 1 B

Hence we have proved (1.10).

Now we will prove (1.11). If (1.5) holds, then there exists a sequence
of nonincreasing positive numbers {¢,;n > 0} satisfying 1 > ¢, — 0,
e’ loglog B, / oo, &,(B,/loglog B,)? / 0o (n — oo) such that

& E|X,|PI{|X,| > &,(B,/loglog B,)"?}
< 00

<1+C, /loo exp(—x)x9 dx < occ.

1.14

( ) nZ:O (B, log log B,,)?/?

Let
B 1/2

=X I{|X —
o= Y| = (5o )|

1.15 172

( ) —EX, I||X,|<e, L ,
log log B,

gn = Xn - 'fn
Then &,I{|¢,| < (B,/loglog B,)"?} = £, and

Y. P{l£.| > &(B,/loglog B,)*/?} < oo

n=0
for any ¢ > 0. By Theorem 1.1 of Shao [12] (see also [10]), there exists a
sequence of i.i.d. normal random variables {n,; n > 0} with n,, =, N(0,1)
such that

Z & — Z n;(Var fi)l/z

=0 =0

= O((Ly/z log Zn: W) a.s. (n - o0),

loglog B, b B,

which together with
" (log log B, E¢?

i < Clog B, log log B,

1

i=0

implies that
(1.16) & =Y mi(Var &)Y? = o((B, loglog B,)"?) as. (n — oo).
=0 =0

Set Y, = (Var X,,)?n,, (n > 0). According to (1.15) and (1.16), in order to
prove (1.11) we need only to show that

(1.17) Xn: & =o((B,loglog B,)"?) as. (n — o)
i=0
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and

(1.18) i((Var X2 —(Var £)"*)n; =o((B, loglog B,)"/?) a.s. (n — o0).
1=0

First, we apply Proposition 2.2. of [2] to prove (1.17). Let S, = >}_, I35
a, = (2B, log log B,)Y/2. It is easy to see that hypothesis (2.9) of [2] is fulfilled,
since

1S, 1ES2 1 1
Pl >¢) < — < — .
a, — )~ & a2 ~ & 2loglog B,

From (1.14), it follows that hypothesis (2.3) of [2] is fulfilled. Now, let {n,}
satisfy (2.2) of [2]. That is,
A, <a < A3ank+l

Npy1 —

for some A > 1. Let I(k)={n,+1,...,n;,,,} and

jel(k) a;

< (2loglog Bnkﬂ)*l’ }

For each & € N, we have

1

> EXZI{|X;| > ¢;(B,/loglog B;)"*}

Npi1 jel(k)

<y o B; (loglog B;)?
- B P=2 100 1oq B -
jel(k) ny &5 109109 B

2P/2(log log B, )P
<—5 21 % EXGI{|X;| > ¢;(B;/loglog B;)"?}/a”
En,y, log log Bnk jel(k)

2—p/2

EX§.I{|X]-| > ¢£,(B;/log log Bj)l/z}/af

< ——— >0,
en, loglog B,

which together with (1.14) implies (see [2])

da?
Z eXp { _ k+1 }
k

Y jerr EE;

das |
< Zexp{— s } < 00
k

2 jel(k) EX§I{|XJ'| > ¢;(B;j/log log Bj)l/z}

for every 6 > 0.

(1.19)
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It follows that hypothesis (2.8) of [2] is fulfilled. Thus, by Proposition 2.2 of
[2] we have proved (1.17).
Now, note that

((Var X ;)% — (Var §J-)1/2)2 <VarX;—Var§,
<3EX3I{|X,| > £;(B;/log log B;)"/*}.

We have

P(max| ¥ ((Var X,V - (var 1) | = da, )
4 -

J=n,+1
< 2P< > ((Var X ;)2 — (Var £,)Y?)n | = 8ank+l>
Jel(h)

82a2
f 2 exp{ _ Mgyl }
23 jerny((Var X ;)2 — (Var §j)1/2)2

52a2 }

(1.20)

Npy1

< 2exp{—

It follows from (1.19), (1.20) and the Borel-Cantelli lemma that

lim max | le:nkJrl((V&r X ;)2 — (Var £;)Y?)n|
k—o0 icI(k) a

=0 a.s.

Npy1

which implies (1.18) by the standard methods (cf. [8], page 181, or [13], page
158).

If (1.5') holds, we define {&,} and {£,} by (1.15) with ¢ instead of ¢,. By
Remark 2.1 of [12], {n,} can be constructed such that for some numerical
constant T,

n .y (V )1/2
(116/) Iimsup |Zl=0 §L 1=0 ”fh( argl) |

r S.
n—o00 (B,, loglog B,)/2 =te as

And we also have (1.17) and (1.18). Then (1.11") holds true. The proof of The-
orem 1.2 is complete. O

2. Applications to the law of the iterated logarithm. Using theorems
in Section 1, we can establish some results on the law of the iterated logarithm
for the geometrically weighted random series.

We start with a preliminary proposition, the proof of which will be stated
in the Appendix.

> 0} be a sequence of independent normal
0, B, = YL EY? - 00 (n — o) and

n

PROPOSITION 2.1. Let {Y,; n
random variables with EY, =
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limsup,_, ., By,/B, < co. Set

7(B) = f) B*"EY?2, 0<B<1,
n=0

g _ ;L.O:OBnYn < <
“B)= Grtpyioglog r(pyye 0P =T
Then:
0] c{EBY =[-11] as;
(ii) lim d(&(8), [-1,1) =0 as,

where ¢({£(B)}) denotes the cluster set (set of all limit points) of £(B8) as B
tends to one and d(x, A) =inf, 4 [x — y|.

From Corollary 1.1, Corollary 1.2 and Proposition 2.1 the following theorem
follows immediately.

THEOREM 2.1. Let {X,;n > 0} satisfy the conditions in Corollary 1.1 or
Corollary 1.2. Set

vi-p iB”Xn, 0<pB<1.

B = Bl ma= D) 5

Then
c{&PB)}) =[-0,0] as,

IBi/rH d(é(B),[-0,0])=0 as.

By Theorem 1.2 and Proposition 2.1, we have the following theorem.

THEOREM 2.2. Let {X,;n > 0} be a sequence of independent random vari-
ables with EX, = 0 and EX2 < oo (n > 0). Set B, = Y}, EX? and
7(B) = X2, B*"EX2. Suppose B, — oo (n — o0), limsup,,_, . By,/B, <
and for each ¢ > 0 there exists p > 2 such that

* E|X,|PI{|X,| > B,/ loglog B,)'?}
E < o0
(B, log log B,,)?/2

n=0

Let

Z;L.ozo Ban
(27(B) log log 7(B))*/2’
Then (i) and (ii) in Proposition 2.1 hold true.

£B) =

0<B<l1l.
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In particular, we have the following Kolmogorov type law of the iterated
logarithm.

COROLLARY 2.1. Let {X,; n > 0} be a sequence of independent random
variables with EX, = 0 and EX2 < oo (n > 0). Suppose B, = ¥ ; EX? — o0
(n — oo) and limsup, . B,,/B, < oco. Let 7(B8) and &(B) be defined as in
Theorem 2.2. If there exists a sequence of positive numbers {%,; n > 0} with
k, — 0 (n — o0) such that |X,| < k,(B,/loglog B,)'?, then (i) and (ii) in
Proposition 2.1 hold true.

For the sequence of i.i.d. random variables with possible infinite variance,
we have the following results on the law of the iterated logarithm correspond-
ing to those of Feller [4] (see also [3]).

THEOREM 2.3. Let {X,; n > 0} be a sequence of i.i.d. symmetric random
variables. Suppose the function H(A) = E(X3I{|X,| < A}) (A > 0) satisfies

. H(2))
(2.1) In;‘nﬁsoljp 2O < 00.

For any n > 1, let a,, be the largest solution of the equation

(2.2) A? =nH(A)loglog A

satisfying a, 1 oo. Set 7(B8) = Y2° o B E(X3I{| Xo| < a,}) (0 < B < 1) and
L YR BX,

(22 ‘B = Gryloglog gy 0P T

If

(2.4) © d H(\)

o H(M)loglog A =%
then (i) and (ii) in Proposition 2.1 hold true.

PROOF. Let B, = Y}, E(X3I{|X,| < a;}). From (2.1), it can be shown
that
(2.5) limsupa,,/a, < co.
It can be shown that (2.4) is equivalent to

> P(|X,| = ea,) < oo for some ¢ > 0 (or equivalently for any ¢ > 0).

n=0
Note that X, is symmetric. By Corollary 1.3 of [12] there exists a sequence
of independent normal variables {Y ,; n > 0} with Y, =, N(0, EX3I{|X,| <
a,}) such that

n n

(2.6) X, -> Y, =o0(a,) as. (n— o).

1=0 =0
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It can be also proved that a, ~ (B, log log B,)Y/2. By (2.5), it follows that

(2.7) limsup Ban < 00.

n—o00 n

Hence, by Theorem 1.1 we have

2o B X, =0 BY |
(28) B @r(Byloglog r(p)2 0 &

And so, by Proposition 2.1 and (2.8) we have proved Theorem 2.3. O

APPENDIX

Proof of Proposition 2.1. To prove Proposition 2.1, we need a lemma as
follows.

LEMMA A.1. Let {u,; n > 0} be a nonincreasing sequence of positive num-
bers and {¢,; n > 0} be a sequence of real numbers. Then for each n > 0,

| \ | i |
iZui{iifuomaXiz g‘]i
J=0

: i<n
1=0 -

The proof follows from the usual Abel transformation and so is omitted
here.
To prove Proposition 2.1, we need only to prove that

(A.1) limsup|é(B) <1 as.
B/1

and

(A.2) c({&PB)}) 2[-1.1] as.

We prove (A.1) first. First, limsup,,_, ., B,,/B, < co implies that B, /B, <
Cok®, B, < Con® (n > 0, k > 1) for some Cy, @ > 0. It is easy to show that
7(B) = Y20, B2 EY?2 is a monotonous increasing function of g and 7(8) — o
(8 7 1). Let

(A3) Br=sup{B;0<pB <1, 7(B) <exp(k/loglogk)}, ~ k=1,2,....
Then B, /' 1. Note that EY2 < B, < Cqn?. We have for any 0 < 8, < 1 and
0<B<Boy S2,B7EY2 < Co X2 ,B5"n? < oo. It follows that the series
> o B EY? is uniformly convergent on [0, B,). And so, 7(8) is a continuous
function on [0, 1). This implies 7(B;) = exp(%/log log k). Then

(A.4) T(Br)/T(Br-1) > 1, k— o0

Note that for 8,_; < B < B; we have

SUPo<p=<g, | 2o B"Y

7(Bj-1)loglog 7(B_1))*?’

&8l = 5
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To prove (A.1), we need only to show

. SUPg<g<p, | Yo BY |
A5 limsup <1 as.
(A-5) koo (27(By)log log 7(B))/?

From Lemma A.1, it follows that for any 0 < B < B,,

o0 | o0 n
Y BY, = Z(ﬁ) BLY ,
n=0 | n=0 Bk
(A'G) 0 m m
< (ﬁ) sup Y BrY,| < sup |>. BiY,|
Bk O0<m=oo|,—0 0<m=oo|,—0
This implies
sup i B"Y,| < sup i BrY |-
0<B=Biln=0 O0<m=oolp—0
Then
SUPo<p<g, | >0 B Y |
((%(m) loglog (B2 ~ -+ )
. P( sup | BLY,| = (1+ £)(2r(8;)log log ka))”z)
0<m=oo|p—0
(A7) - zP( S BIY,| = (14 6)(27(By) log log r(ﬁk))m)
n=0

=2P(|N(0,1)| = (1 + &)(2log log 7(B}))"?)

k —(1+s)
< 2exp(—(1+ &) loglog 7(B})) = 2(W> ’

which together with the Borel-Cantelli lemma implies (A.5). We have proved
(A.1).
Now, we show (A.2). Set S, =7 oY, (n>1), S_; =0. We have

: 1S, | : |W(B,)I
limsup ———=—— < limsup ———=—=——
(A8) n—oo /2B, loglog B, = - ./2B,loglog B,
<Ilim sup& <1 as.

t—o00 \/Zt |Og |Og t

where {W(¢); ¢t > 0} is a standard Wiener process.
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From (A.8) and Lemma 1.1, it follows that for any Ny > 1,

lim sup - =n=NoV@:1. 5"V
g1 (27(B)loglog 7(B))*/?

(A.9) < elimsup | Z”=NoN(ﬁ>+1 B"Y |
g1 (2Byg) loglog By g))*?
C 00
< ‘370 exp(—%)xQ dx +eC, exp<_%>N(§2 L 0 (Ny— o).

No

Similarly, we have
. ZOO_ BZnEYZ
limsup Z2=NoN(A)¥1 a
B/1 T(B)
<elimsup Z”=N0N(B)+1 B nEYn
e By(p)

(A.10)

< eCO/ exp(—x)x? dx + eC, exp(—NO)fo — 0 (Ng — o0).
No
To prove (A.2), we need only to show that for any b € (—1,1) and any § > 0
small enough, there exists a subsequent 8, / 1 such that

(A.11) P(é(B,) € (b—28,b+28)i.0)=1.

Set 7y, (B) = Zfﬁé\’('@) B?"EY2. Choose B, such that 1— g2 = exp(—k log log k).

. « NN n
Then N(By_1)/N(Bj)— 0 (k— c0). Define 7y (B)) = S nonip, 111 B EY2.
Noting (A.9) and (A.10), we need only to show that for N large enough,
NoN n
P( Zn:OO ) :BkYn
(27n,(Br) loglog 7, (B))Y/?
From e ' By g) < 7,(B) < 7(B) < CByp), it follows that

NoN(Bi 1) pon
Enlo U BVEYS _ By _ Coe<NoN(Bk_1)

(A.12) e(b—6,b+9) i.o.) =1.

Q
) — 0, k— oo.

7N, (Br) ~ By, N(B)
Then
™, (Br)
0 1(k ,
7, (Br) =1k )

NoN(Br-1) on
fimsup | a0 o BLY |
g1 (27, (Br)loglog 7y, (B:))Y?

Hence, we need only to show that for N, large enough,

NoN(Br)
P( ZnZONoZ\;e(kal)"rl ’BZY”

(27, (Br) log log By (g,))*/?

=0 a.s.

(A.13)

e(b—8,b+9) i.o.) ~ 1.
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Note the independence. By the Borel-Cantelli lemma, we need only to prove

(A.14) > P

. NoN(8y)
< L2 NN (B +1 PR Y n

b - 5 b 6 = .
(27, (Br) log log By g, )2 € ( ,b+ )) 00

k=1

Now, it can be shown that for & large enough

NoN(Br)
< ZniNo]\;(kal)Jrl ’BZY”

(273, (Bx) log log By g,))*2 €(b-9,b+ 6))

= P(N(0,1) € ((b — 8)(2log log By g,))"?, (b + 8)(2log log By s,))"?))
8(2 log log BN(Bk))l/Z

=l
) 27 /-5(2log log By(g,))"/2

exp(—b?log log Co(N(B,))?)

> exp(—b” log log By g,) e 12 dx

=

NIk N

> Zexp(—b*(1+¢&)log k) = %ksz(us)’

which implies (A.14) immediately, where & satisfies b?(1 + &) < 1. Hence we
have proved (A.2). The proof of Proposition 2.1 is complete. O
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