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A UNIVERSAL FORM OF THE CHUNG-TYPE LAW
OF THE ITERATED LOGARITHM1

By Harry Kesten

Cornell University

Let �Xi�i≥1 be i.i.d. random variables with common distribution func-
tion F, and let Sn =

∑n
1 Xi. We find a necessary and sufficient condition

(directly in terms of F) for the existence of sequences of constants �αn� and
�βn�with βn ↑∞ such that 0 < lim inf β−1

n maxj≤n 	Sj−αj	<∞w.p.1., and
such that for any choice of α̃n, it holds w.p.1 that lim inf β−1

n maxj≤n 	Sj −
α̃j	 > 0. The latter requirement is added to rule out sequences �βn� which
grow too fast and entirely overwhelm the fluctuations of Sn.

1. Introduction. Let X, Xi, i ≥ 1, be i.i.d. random variables with com-
mon distribution function F, and let

Sn =
n∑
i=1

Xi�

If


1�1�
∫
xdF
x� = 0� σ2 =

∫
x2 dF
x� <∞�

then the classical law of the iterated logarithm in the form of Hartman and
Wintner (1941) states that

lim sup
n→∞

Sn√
n log log n

= σ
√

2 w.p.1��(1.2)

lim inf
n→∞

Sn√
n log log n

= −σ
√

2 w.p.1�(1.3)

This tells us in some sense how large the fluctuations of Sn are. In 1948
Chung proved an “other law of the iterated logarithm” to describe the “small
fluctuations” of Sn. More precisely, he proved under (1.1) and the existence of
a third absolute moment for F, that


1�4� lim inf
n→∞

√
log log n
n

max
j≤n

	Sj	 = σ
π√
8

w.p.1

(but Chung also considers nonidentically distributed Xi). Jain and Pruitt
(1975) proved that (1.1) suffices for (1.4).
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There have been numerous investigations of replacements for (1.2) and (1.3)
when (1.1) fails; see in particular Feller (1968). Typically, such articles found,
under some conditions on F, sequences �αn�, �βn� such that


1�5� −∞ < lim inf
n→∞

Sn − αn
βn

< lim sup
n→∞

Sn − αn
βn

<∞ w.p.1�

Beginning with Rogozin (1968) and Heyde (1969), the focus of attention shifted
somewhat. They found necessary conditions on F for the existence of “decent”
�αn� and �βn� such that (1.5) holds. Kesten (1972) then proved that a n.a.s.c.
for the existence of some �βn� for which (1.5) holds with an αn which satisfies


1�6� lim inf
n→∞ P�Sn ≤ αn� > 0 and lim inf

n→∞ P�Sn ≥ αn� > 0�

is that F belongs to the domain of partial attraction of the normal law. Various
extensions and variations on such a “universal law of the iterated logarithm”
[this term seems to be due to Klass (1976)] have been given; for a rather incom-
plete list we mention Klass (1976, 1977, 1982), Kuelbs and Zinn (1983), Maller
(1988), Martikainen (1980, 1993), Pruitt (1981) (and some of their references).

In this article we prove a result of this general form for the other law of
the iterated logarithm, that is, we find (under some side conditions) a n.a.s.c.
for the existence of sequences �αn� and �βn� such that


1�7� 0 < lim inf
n→∞

1
βn

max
j≤n

	Sj − αj	 <∞ w.p.1�

For a precise statement of our result we need the following definitions:


1�8� uj �= 1 if P�	X	 > ej� = 0�


1�9�
uj �= P�	X	 ≤ ej+1

∣∣ 	X	 > ej�
= F
ej+1� −F
−ej+1−� − 
F
ej� −F
−ej−��

1−F
ej� +F
−ej−� if P�	X	 > ej� > 0�

The integer rj is defined as the rank of uj in a decreasing rearrangement of
the uj. Any j with uj < lim supl→∞ ul or with uj = 0 has to appear at the
end; that is, it has rj = ∞. It is even possible that rj = ∞ for all j.

Our principal result is as follows.

Theorem. Assume that F is not concentrated on a single point. Then there
exist sequences �αn� and �βn� such that


1�10� βn ↑ ∞�
(1.7) holds, and such that for every sequence �α̃n�,


1�11� lim inf
n→∞

1
βn

max
j≤n

	Sj − α̃j	 > 0 w.p.1�
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if and only if


1�12� lim sup
j→∞

uj log rj = ∞�

Remarks. (i) If there exist infinitely many uj ≥ lim supl→∞ ul, and us1
≥

us2
≥ · · · is a decreasing rearrangement of those uj, then (1.12) is equivalent

to


1�13� lim sup
k→∞

usk log k = ∞�

(ii) Few people will quibble with condition (1.10) for the βn. This is a stan-
dard condition, and if F is not concentrated on one point, then one cannot
expect any interesting limit behavior of β−1

n maxj≤n 	Sj − αj	 when βn does
not tend to ∞. This is so, because maxj≤n 	Sj − αj	 → ∞ w.p.1. This, in turn,
follows from the fact that for each fixed L,

sup
a
�a ≤ Sj ≤ a+L� → 0 as j→∞

[see Esseen (1968)]. Also, if (1.7) holds for some βn →∞, but not necessarily
monotonically increasing, then (1.7) also holds with βn replaced by

β̃n �= sup
k≤n

βk�

which is increasing.
However, condition (1.11) needs some explanation. We want to forbid se-

quences �βn� which grow too rapidly, because without such a restriction our
problem becomes trivial. Indeed, it is always possible to choose �βn� such that
(1.10) holds and


1�14� 	Sn	
βn

→ 0 w.p.1�

For such a choice of βn, the lim inf in (1.7) equals

lim inf
1
βn

max
j≤n

	αj	�

and this can be given any value by choosing �αn� appropriately. One may also
argue that if (1.11) fails for some �α̃n�, so that


1�15� lim inf
n→∞

1
βn

max
j≤n

	Sj − α̃j	 = 0 w.p.1

(note that this lim inf is constant w.p.1 by the Hewitt–Savage zero–one law),
then βn is too large; at least along a (random) subsequence βn is much larger
than the possible fluctuations in Sj for j ≤ n, and (1.7) wouldn’t hold if we
centered Sj better (i.e., at α̃j instead of αj). Nevertheless it might be more
appealing to forbid only sequences �βn� for which


1�16� lim
n→∞

1
βn

max
j≤n

	Sj − α̃j	 = 0 w.p.1�
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or equivalently [under (1.10)]


1�17� lim sup
n→∞

1
βn
	Sn − α̃n	 = 0�

for some sequence �α̃n�. We do not know whether (1.12) is still necessary for
the existence of sequences �αn�, �βn� for which (1.10) holds, but (1.16) fails
for all �α̃j�. In any case there seems to be value in proving the rather weak
condition (1.12) sufficient for the existence of �αn�, �βn� which satisfy (1.7),
(1.10) and (1.11).

Apart from the question what the n.a.s.c. is if one rules out only those �βn�
which satisfy (1.17) for some �α̃n�, there is also the open problem of finding a
n.a.s.c. when the �αn� are restricted. Natural choices for αn are zero or median

Sn�. In other words, what is a n.a.s.c. for the existence of �βn� such that (1.10)
and (1.7) hold for αn ≡ 0, or for αn = median 
Sn�?

(iii) Einmahl and Mason (1994) gave specific arrays �αk�n� and sequences
�βn� in terms of F for which one always has


1�18� lim inf
n→∞

1
βn

max
j≤n

	Sj − αj�n	 <∞ w.p.1�

However, they only showed that this lim inf is strictly positive if F is in the
Feller class, that is, if F satisfies


1�19� lim sup
x→∞

x2P�	X	 > x�∫
	y	≤x y

2 dF
y� <∞�

For F in the Feller class, they also prove that their βn satisfy (1.11), even
when one allows α̃ to depend on j and n (under some restrictions). Thus, for
F in the Feller class the results of Einmahl and Mason (1994) tell us more
than our theorem. On the other hand, it is well known [see Lemma 2.5 in
Pruitt (1981) or Lemma 1 below] that (1.19) rules out that


1�20� G
x� �= P�	X	 > x� = F
−x−� + 1−F
x�
is slowly varying at ∞. It is also easy to see that P�	X	 > x� is slowly vary-
ing at ∞ if and only if uj → 0 as j → ∞. In other words (1.19) implies
lim supj→∞ uj > 0, and hence (1.19) is far more restrictive than (1.12).

(iv) In the case when X ≥ 0 w.p.1 and αn ≡ 0, (1.7) is equivalent to


1�21� 0 < lim inf
n→∞

1
βn
Sn <∞�

In a most remarkable paper, Pruitt (1990) showed that (1.12) is a n.a.s.c. for
(1.21) if X ≥ 0 w.p.1. Pruitt also discusses the condition (1.12) and illustrates
it with some examples. He further observed that (1.12) is also a n.a.s.c. for


1�22� Mn �= max
1≤i≤n

	Xi	
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to be “normable”, that is for the existence of a sequence �βn� which satisfies
(1.10) and


1�23� lim inf
n→∞

1
βn
Mn = 1 w.p.1�

This observation also provides some further insight into the meaning of (1.12).
If we restrict ourselves to sequences �βn� for which


1�24� nG
βn� → ∞�
[in addition to (1.10)], then we see from the result of Klass (1985) that (1.23)
occurs if and only if for all ε > 0,


1�25� ∑
n

G
βn
1− ε�� exp
−nG
βn
1− ε��� <∞

and


1�26� ∑
n

G
βn
1+ ε�� exp
−nG
βn
1+ ε��� = ∞�

Thus (1.12) has to be a n.a.s.c. for the existence of a sequence �βn� which
satisfies (1.25) and (1.26) [under the side conditions (1.10) and (1.24)]. Pruitt
(1990) proves explicitly that no such �βn� exists if (1.12) fails [see the lines
following display (4.18) of Pruitt (1990)]. However, in the opposite direction the
situation is slightly more complicated because of the side condition (1.24). But
there is a complete converse for slowly varyingG. For suchG, the construction
below shows that if (1.12) holds, then there exists a sequence �βn� which
satisfies (1.10), (1.24)–(1.26). This is not shown explicitly, but can easily be
seen from (4.21), (4.29) and the proof of Lemma 11 below.

The proof of our theorem is closely modeled after Section 4 of Pruitt (1990).
Many steps are lifted directly from this paper. Lemmas 5 and 7 below may be
of some independent interest. They give lower bounds forP�maxk≤n 	Tk−ζk	 ≤
x� for a random walk �Tn� and suitably chosen constants ζk.

(v) Klass and Zhang (1994) shows that one cannot expect a result similar
to ours for


1�27� lim inf
n→∞

1
βn

max
k≤n


Sk − αk�

(without the absolute value around Sk − αk). For instance, in the symmetric
case, when αk ≡ 0 is the most reasonable choice of centering constants, Theo-
rem 5.1 of Klass and Zhang (1994) shows that (1.27) with αk ≡ 0 is always 0
or ∞.

2. The necessity of (1.12) In this section we give an indirect proof of
the necessity of (1.12) for the existence of some �αn�, �βn� which satisfy (1.7),
(1.10) and (1.11). We shall assume in this section that


2�1� uj log rj ≤ C1 <∞
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for some constant C1 and that βn satisfies (1.10) and show that at least one
of (1.7) or (1.11) must fail. Throughout this paper Ci will denote some strictly
positive and finite constant;Ci may have different values in different formulas.
Also G
x� is as defined in (1.20).

The necessity proof basically follows Pruitt (1990). By his Theorem 3, ap-
plied to our 	Xi	, we have under (2.1) and (1.10) that


2�2� lim inf
n→∞

1
βn

n∑
1

	Xi	 = 0 w.p.1

if and only if


2�3� ∑
n


G
βn� ∨ n−1� exp
−nG
βn�� = ∞�

In particular, if (2.3) holds, then

lim inf
n→∞

1
βn

max
j≤n

	Sj	 = 0 w.p.1�

so that (1.11) fails for α̃j ≡ 0.
To take care of the case in which (2.3) fails, the following known lemma [see

Lemma 2.5 of Pruitt (1981)] is useful. We nevertheless give its simple proof,
because the same method will be needed for some explicit estimates later (see
Lemma 8).

Lemma 1. If G
x� > 0 for all x > 0 and G is slowly varying at ∞, then

E
{	X	 ∣∣ 	X	 ≤ A} = o
AG
A��� A→∞�(2.4)

E
{
X2

∣∣ 	X	 ≤ A} = o
A2G
A��� A→∞�(2.5)

Proof.


2�6� �1−G
A��E{	X	 ∣∣ 	X	 ≤ A} = − ∫
�0�A�

ydG
y� =
∫ A

0
�G
y�−G
A��dy�

Now let k0 be such that

exp
k0� ≤ A < exp
k0 + 1��
Then there exists for each ε > 0 some C2 = C2
ε� <∞ such that


2�7�
∣∣∣∣G
y�G
A� − 1

∣∣∣∣ ≤ C2
ε�
(
A

y

)ε
� 1 ≤ y ≤ exp
k0 + 1��

and


2�8� G
y�
G
A� ≥ �C2
ε��−1

(
A

y

)ε
� y ≥ A�
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because G is slowly varying [see Bingham, Goldie and Teugels (1987), Theo-
rem 15.6]. Moreover for each fixed j0,


2�9� sup
exp
−j0�A≤y≤exp
j0�A

∣∣∣∣G
y�G
A� − 1
∣∣∣∣→ 0� A→∞�

Therefore, the right-hand side of (2.6) is at most

1+
k0∑
j=0

exp
k0 − j+ 1� sup
exp
k0−j�≤y≤exp
k0−j+1�

	G
y� −G
A�	

≤ 1+ exp
k0 + 1�G
A�
j0∑
j=0

exp
−j� sup
exp
k0−j�≤y≤exp
k0−j+1�

∣∣∣∣G
y�G
A� − 1
∣∣∣∣

+ exp
k0 + 1�G
A� ∑
j>j0

C2 exp
−j+ ε
j+ 1��

= 1+ o
AG
A�� + exp
k0 + 1�G
A� ∑
j>j0

C2 exp
−j+ ε
j+ 1���

Here j0 ≥ 1 is an arbitrary fixed integer and ε some number greater than 0.
Since yεG
y� → ∞ by (2.8) [with ε replaced by ε/2], also 1 = o
AG
A��, and
(2.4) follows.

Equation (2.5) is immediate from (2.4) and the fact that X2 ≤ A	X	 on
�	X	 ≤ A�. ✷

Let us now treat the special case that there exist some subsequence n1 <
n2 < · · · and a constant C3 <∞ such that


2�10� nkG
βnk� ≤ C3�

Then, for large k,


2�11� P�Mnk
≤ βnk� = P

{
max
i≤nk

	Xi	 ≤ βnk
}
= �1−G
βnk��nk ≥ exp
−2C3��

Moreover, by (2.1), uj → 0, whence G is slowly varying. Thus by (2.5), for
fixed ε > 0, η > 0 and k large,


2�12� E�X2
∣∣ 	X	 ≤ βnk� ≤ ηβ2

nk
G
βnk��

Finally, let


2�13� µ
z� = E{
X

∣∣ 	X	 ≤ z}�
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Then, by Kolmogorov’s inequality,

P
{

max
j≤nk

	Sj − jµ
βnk�	 ≤ εβnk
}

≥ P�Mnk
≤ βnk�P

{
max
j≤nk

	Sj − jµ
βnk�	 ≤ εβnk
∣∣ 	Xi	 ≤ βnk� 1 ≤ i ≤ nk

}

≥ exp
−2C3�
[
1− nkE�X

2
∣∣ 	X	 ≤ βnk�
ε2β2

nk

]

≥ exp
−2C3�
[
1− ηC3

ε2

]
[by (2.10) and (2.12)]

for large k. By taking ηC3 < ε
2/2 and applying the Hewitt–Savage zero–one

law, we obtain for any ε > 0


2�14� lim inf
k→∞

1
βnk

max
j≤nk

	Sj − jµ
βnk�	 ≤ ε w.p.1�

Since µ
z� = o
z�, we can thin out the sequence �nk� (if necessary) so that


2�15� 1
βnk

nk−1 max
j≤nk−1

	µ
βnk� − µ
βj�	 → 0� k→∞�

If we now take n0 = 0,

γp = µ
βnj� for nj−1 < p ≤ nj�
and

α̃n =
n∑
p=1

γp�

then (2.14) and (2.15) show that (1.11) fails for this α̃n.
It remains to investigate the case where (2.3) fails and also (2.10) does not

occur. Then we have [in addition to (1.10) and (2.1)] that nG
βn� → ∞ and∑
n

G
βn� exp
−nG
βn�� <∞�

As noted by Pruitt (1990), his Lemmas 2 and 3 now imply that for everyA > 0,


2�16� ∑
n

G
Aβn� exp
−nG
Aβn�� <∞�

Since also nG
Aβn� → ∞ because G is slowly varying, we see from Klass
(1985) that for each A


2�17� lim inf
n→∞

Mn

βn
≥ A w.p.1�

The following simple lemma will now show that


2�18� lim inf
n→∞

1
βn

max
j≤n

	Sj − αj	 = ∞ w.p.1�
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for any choice of �αj�. Thus in this case (1.7) cannot hold, and again �βn�
is not an acceptable norming sequence. This will complete the proof of the
necessity of (1.12).

Lemma 2. Assume that �βn� satisfies (1.10). Then for every sequence �αn�
it holds almost everywhere on the event �lim infn→∞Mn/βn ≥ A� that

lim inf
n→∞

1
βn

max
j≤n

	Sj − αj	 ≥ 2−5A�

Proof. Let �αn� be given. Define further α0 = 0 and

jr = inf�k ≥ 1� 2r ≤ αk − αk−1 < 2r+1��
jr = ∞ if no such k exists. Then∑

r with jr<∞
P�	Xjr

	 ∈ �2r−1�2r+2��

≤∑
r

P�	X	 ∈ �2r−1�2r�� +∑
r

P�	X	 ∈ �2r�2r+1��

+∑
r

P�	X	 ∈ �2r+1�2r+2�� ≤ 3�

so that

	Xjr
	 /∈ �2r−1�2r+2� eventually w.p.1.

Hence


2�19�
	Xjr

− 
αjr − αjr−1�	
	αjr − αjr−1	

≥ 1
2

or jr = ∞

for all but finitely many r� w.p.1�

Next define

nr = min�n� Aβn ≥ 2r��
By (1.10), nr is always well defined. Let p = p
r� be such that


2�20� 2p
r� ≤ Aβnr < 2p
r�+1�

and consider the following two cases:

	αk − αk−1	 ≤ 2p
r�−1 for all k ≤ nr�(2.21)

	αk − ak−1	 > 2p
r�−1 for some k ≤ nr�(2.22)

Let 0 < ε < 1
4 be fixed and let us restrict ourselves to sample points with

lim inf Mn/βn ≥ A and for which (2.19) holds. Also take r so large that

Mnr
≥ 
1− ε�Aβnr ≥ 
1− ε�2p
r��
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or equivalently,


2�23� 	Xj	 ≥ 
1− ε�Aβnr for some j ≤ nr�
First assume that (2.21) holds for such an r. Then for a j satisfying (2.23),

	Xj − 
αj − αj−1�	 ≥ 
1− ε�Aβnr − 2p
r�−1 ≥ ( 1
2 − ε

)
Aβnr

[see (2.20)], and for any nr ≤ n < np
r�+1


2�24�
max
j≤n

	
Sj − αj� − 
Sj−1 − αj−1�	 = max
j≤n

	Xj − 
αj − αj−1�	

≥ ( 1
2 − ε

)
Aβnr ≥ 1

2

( 1
2 − ε

)
Aβn

[since n < np
r�+1 implies Aβn < 2p
r�+1 ≤ 2Aβnr�. A fortiori, for nr ≤ n <
np
r�+1,


2�25� 1
βn

max
j≤n

	Sj − αj	 ≥
A

4

(
1
2
− ε

)
�

Next assume that (2.22) holds. Now we have for some l ≥ p
r� − 1 that
jl ≤ nr, and hence, by (2.19), if r is large enough,

	Xjl
− 
αjl − αjl−1�	 ≥ 1

2 	αjl − αjl−1	 ≥ 2p
r�−2 ≥ 2−3Aβnr [see (2.20)]�

Then for nr ≤ n < np
r�+1, as above,

max
j≤n

	Xj − 
αj − αj−1�	 ≥ 2−4Aβn

and


2�26� 1
βn

max
j≤n

	Sj − αj	 ≥ 2−5A�

But, by definition, p
r� ≥ r and np
r�+1 ≥ nr+1, so that⋃
r≥s

�nr� np
r�+1� ⊃ �ns�∞��

Thus, (2.25) and (2.26) prove that for large s and all n ≥ ns, (2.26) holds. ✷

3. Sufficiency of (1.12) in the nonslowly varying case. As in Pruitt
(1990), the sufficiency of (1.12) is proven differently in the two cases, G not
slowly varying and G slowly varying. In this section we treat the former case.
Then (1.12) is fulfilled and we have to find �αn� and �βn� so that (1.7), (1.10)
and (1.11) hold. We shall construct deterministic sequences xk ↑ ∞, nk ↑ ∞,
sk ↑ ∞ and constants αn such that, roughly speaking, for any choice of �α̃n�,

3�1� P

{
max
n≤sknk

	Sn − α̃n	 ≤ xk
}

is much smaller than


3�2� P
{

max
n≤sknk

	Sn − αn	 ≤ 
128t+ 1�xk
}
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for a suitably large t [compare (3.16) and (3.55)]. We then choose


3�3� βn = xk for sknk ≤ n < sk+1nk+1�

The fact that (3.1) is much smaller than (3.2) makes it believable that we can
arrange matters so that (1.7) and (1.11) hold with those βn.

Before we start our construction proper, let us take care of the simple case
when X has bounded support. We then take


3�4� αn = nEX� βn =
(

n

log log n

)1/2

�

The results of Chung (1948) and Jain and Pruitt (1975) [cf. (1.4)] now tell us
that (1.7) holds and (1.10) is trivial. As for (1.11), this is of course included in
the results of Einmahl and Mason (1994). One can also use the following crude
concentration function argument, which works for any F not concentrated on
one point, when the βn are given by (3.4). Let


3�5� �p = σ-field generated by X1� � � � �Xp�

Then uniformly in �α̃n� and p we have for ε1� ε2 > 0, r = �ε12k/ log k�,


3�6�
P�	Sp+r − α̃p+r	 ≤ ε2β2k 	 �p� ≤ sup

α
P�	Sp+r −Sp − α	 ≤ ε2β2k�

≤ C1
ε2β2k√
r
≤ C2

ε2√
ε1
�

for some Ci = Ci
F� < ∞ [see Esseen (1968), Theorem 3.1] (note that the
constants Ci in this section are not the same as in the previous sections).
Choose


3�7� ε1 = 4C2
2ε

2
2

so that the right-hand side of (3.6) equals 1/2. Equation (3.6) then implies for
large k,

P
{

max
j≤2k

	Sj − α̃j	 ≤ ε2β2k

}
≤ P

{
max
j≤2k/r

	Sjr − α̃jr	 ≤ ε2β2k

}
≤ 2−�2

k/r�

≤ 2−�log k/ε1��

If ε1 is taken small enough, and ε1, ε2 satisfy (3.7), then we obtain∑
k

P
{

max
j≤2k

	Sj − α̃j	 ≤ ε2β2k

}
<∞

and

lim inf
n→∞

1
βn

max
j≤n

	Sj − α̃j	 ≥ lim inf
k→∞

1
β2k+1

max
j≤2k

	Sj − α̃j	 ≥
1√
2
ε2 w.p.1�

Thus with βn = 
n/ log log n�1/2, (1.11) always holds.
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From now on we assume that the support of X is unbounded; that is,


3�8� G
x� > 0 for all x�

To find βn when G is not slowly varying, we first note that there exist xk ↑ ∞
and 0 < π ≤ 1 such that


3�9� G
10xk�
G
5xk�

≤ 1− π�

Now for each n find γ
j�n�xk�, 1 ≤ j ≤ n, which maximize


3�10� P
{

max
1≤j≤n

	Sj − γ
j�n�xk�	 ≤ xk
}
�

Next we choose nk such that for k→∞,


3�11� P
{

max
1≤j≤nk

	Sj − γ
j�nk� xk�	 ≤ xk
}
→ 1

2 �

Such nk exist, because the probability in (3.10) tends to 0 as n→∞ (for fixed
k), but it can only make small downward jumps (as a function of n) when k
is large, because, for any fixed λ,

P
{

max
j≤n+1

	Sj − γ
j�n+ 1� xk�	 ≤ xk
}

≥ P
{

max
j≤n

	Sj − γ
j�n�xk�	 ≤ xk� 	Sn+1 − γ
n�n�xk�	 ≤ xk
}


by the maximizing property of γ
·�n+ 1� xk��
≥ P

{
max
j≤n

	Sj − γ
j�n�xk�	 ≤ xk
}

−P�xk − λ ≤ 	Sn − γ
n�n�xk�	 ≤ xk� −P�	Xn+1	 > λ�

≥ P
{

max
j≤n

	Sj − γ
j�n�xk�	 ≤ xk
}
−C3

λ√
n
−G
λ��

The last inequality uses again the concentration function inequality in Esseen
(1968), Theorem 3.1. By taking λ large, we conclude that for n greater than
or equal to some n0
ε�,
P
{

max
j≤n+1

	Sj − γ
j�n+ 1� xk�	 ≤ xk
}
≥ P

{
max
j≤n

	Sj − γ
j�n�xk�	 ≤ xk
}
− ε�

From this, one quickly deduces that there exist nk which satisfy (3.11). By
thinning out our sequences �xk� and �nk�, we may further assume that

nk ↑ ∞�
It is now easy to choose sk so that (1.11) holds, at least with n restricted to

�sknk�. In fact, we take


3�12� sk =
⌊

1+ η
log 2

log k
⌋
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for some fixed


3�13� 0 < η <
[
1− log
1+ π/16�

2 log 2

]−1

− 1�

Lemma 3. For any choice of �α̃n� we have


3�14� ∑
k

P
{

max
1≤j≤sknk

	Sj − α̃j	 ≤ xk
}
<∞�

Proof. Let �p be as in (3.5). Then for l ≥ 0,

P
{

max
1≤j≤
l+1�nk

	Sj − α̃j	 ≤ xk 	 �lnk
}

≤ P
{

max
lnk≤j≤
l+1�nk

	Sj −Slnk − 
α̃j −Slnk�	 ≤ xk 	 �lnk
}

≤ P
{

max
1≤p≤nk

	Sp − γ
p�nk� xk�	 ≤ xk
}
�by the optimality of γ
· �nk� xk���

Thus, if we set


3�15� P
{

max
1≤p≤nk

	Sp − γ
p�nk� xk�	 ≤ xk
}
= 1

2 + ρk�

then


3�16� P
{

max
1≤j≤sknk

	Sj − α̃j	 ≤ xk
}
≤ [ 1

2 + ρk
]sk �

But by (3.11), ρk→ 0 as k→∞, and (3.14) now follows easily from (3.12). ✷

By the Borel–Cantelli lemma, (3.14) implies for each �α̃n�,


3�17� 1
xk

max
1≤j≤sknk

	Sj − α̃j	 ≥ 1 eventually, w.p.1�

As we shall see, this will suffice for (1.11), and for the time being we turn to
an upper bound on

lim inf
k→∞

1
xk

max
1≤j≤sknk

	Sj − αj	

for a good choice of �αj�. To obtain a good �αj�, begin with αj = 0 for j ≤ s1n1
and now assume that for some k, αj has already been chosen for j ≤ sknk. By
discarding some of the xp, np with p > k, we may assume that


3�18� nk+1 ≥ sknk
and


3�19� P
{

max
j≤sknk

	Sj − αj	 ≥ xk+1

}
≤ 1
k2
�
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(3.19) can be achieved, because xp → ∞ as p→ ∞. Discarding some xp, np
can only improve (3.14) and (3.17) and is therefore permissible. We now want
a lower bound on

P
{

max
j≤sk+1nk+1

	Sj − αj	 ≤ xk+1

}
for suitable αj. We will find such αj which behave like γ
j− lnk+1�nk+1� xk+1�
on the block lnk+1 < j ≤ 
l + 1�nk+1. Some modification is necessary for
l = 0, because αj has already been fixed for j ≤ sknk. It is convenient to
introduce auxiliary quantities τ
j� = τ
j� k� for j ≥ 0. We take τ
0� = 0 and
for j = lnk+1 + p ≥ 1 with 1 ≤ p ≤ nk+1, we set


3�20� τ
lnk+1 + p�k� �= lγ
nk+1�nk+1� xk+1� + γ
p�nk+1� xk+1��
We shall be interested in the following events:


3�21� E
k+ 1�0� t� �=
{

max
sknk≤j≤tnk+1

	Sj− τ
j�−Ssknk + τ
sknk�	 ≤ 32txk+1

}
�

for 1 ≤ t ≤ sk+1, and


3�22�
E
k+ 1� l� t� �=

{
max

1≤q≤tnk+1

∣∣Slnk+1+q− τ
lnk+1 + q�−Slnk+1
+ τ
lnk+1�

∣∣
≤ 32txk+1

}
for 1 ≤ t ≤ sk+1 and 0 ≤ l ≤ sk+1.

Lemma 4. There exists some k0 <∞ such that k ≥ k0 and 1 ≤ t ≤ sk+1,


3�23� P�E
k+ 1�0� t�� ≥
[

1
2
+ π

32

]t
�

and for 1 ≤ t ≤ sk+1, 0 ≤ l ≤ sk+1,


3�24� P�E
k+ 1� l� t�� ≥
[

1
2
+ π

32

]t
�

Proof. We prove (3.23); the proof of (3.24) is similar, in fact a little simpler.
We introduce the further events


3�25�
L
σ� = L
σ �k� = {	Sj − τ
j� −Ssknk + τ
sknk�	 ≤ σxk+1

for sknk < j ≤ nk+1
}
�


3�26�
M
σ� r� =M
σ� r�k�

= �	Srnk+1+p − τ
rnk+1 + p� −S
rnk+1� + τ
rnk+1�	
≤ σxk+1 for 1 ≤ p ≤ nk+1��
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for 0 ≤ r ≤ sk+1. If L
σ� and M
σ� r� occur for 1 ≤ r ≤ t − 1, then for
j = qnk+1 + p ≥ sknk with 1 ≤ p ≤ nk+1, q ≤ t− 1,

	Sj − τ
j� −Ssknk + τ
sknk�	
≤ 	Sqnk+1+p − τ
qnk+1 + p� −Sqnk+1

+ τ
qnk+1�	

+
q∑
r=2

	Srnk+1
− τ
rnk+1� −S
r−1�nk+1

+ τ

r− 1�nk+1�	

+ 	Snk+1
− τ
nk+1� −Ssknk + τ
sknk�	

≤ 
q+ 1�σnk+1 ≤ tσnk+1�

Therefore


3�27� E
k+ 1�0� t� ⊃ L
32� ∩
t−1⋂
r=1

M
32� r��

Moreover,

L
σ� ⊂M
(
σ

2
�0

)
�

because

	Sj − τ
j� −Ssknk + τ
sknk�	 ≤ 	Sj − τ
j�	 + 	Ssknk − τ
sknk�	�
Finally, M
σ0�0�� � � � �M
σt−1� t− 1� are independent for any choice of σi and
increasing in the σi, so that


3�28� P�Ek+1�0� r� ≥
t−1∏
r=0

P�M
16� r���

It therefore suffices for (3.23) to prove for 0 ≤ r ≤ sk+1,


3�29� P�M
16� r�� ≥ 1
2
+ π

32
�

One also easily sees that P�M
σ� r�� is the same for all r, by the periodicity
property (3.20) of τ
·�. We therefore restrict ourselves to r = 0 in (3.29).

For the remainder of this proof we abbreviate γ
p�nk+1� xk+1� to γ
p�. Now
τ and γ have been chosen so that [see (3.15)]


3�30� P�M
1�0�� = P�	Sp − γ
p�	 ≤ xk+1 for 1 ≤ p ≤ nk+1� = 1
2 + ρk+1�

We are finally going to use (3.9) to show that P�M
16�0�� exceeds P�M
1�0��
by a nonnegligible amount. To do this we observe that M
16�0� occurs when-
ever for some R ∈ �1� � � � � nk+1� the following three events occur:


3�31R� 	Sp − γ
p�	 ≤ xk+1 for 1 ≤ p ≤ R− 1�
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3�32R� xk+1 < 	SR − γ
R�	 ≤ 14xk+1�


3�33R� 	Sp − γ
p� −SR + γ
R�	 ≤ 2xk+1 for R < p ≤ nk+1�

It is clear that the events

H
R� = �(3.31R)–(3.33R) occurs�
are disjoint for different R, and all of them are disjoint from M
1�0�. There-
fore,


3�34� P�M
16�0�� ≥ P�M
1�0�� +
nk+1∑
R=1

P�H
R���

Now, for given R,

P�(3.33R) occurs 	 �R�

= P
{∣∣∣∣

p∑
R+1

Xi − γ
p� + γ
R�
∣∣∣∣ ≤ 2xk+1� R < p ≤ nk+1

}

≥ P
{∣∣∣∣

q∑
1

Xi − γ
q�
∣∣∣∣ ≤ xk+1� 1 ≤ q ≤ nk+1

}
= P�M
1�0���

Since P�M
1�0�� → 1/2 [see (3.11)] we may asume k so large that


3�35� 1
4 ≤ P�M
1�0�� ≤ 3

4 �

Then


3�36�
nk+1∑
R=1

P�H
R�� ≥ 1
4

nk+1∑
R=1

P�(3.31R) and (3.32R) occur��

Next we observe that for p ≤ nk+1,


3�37�
P�	Xp − 
γ
p� − γ
p− 1��	 ≤ 2xk+1�

= P�	Sp − γ
p� −Sp−1 + γ
p− 1�	 ≤ 2xk+1�
≥ P�M
1�0�� ≥ 1

4 �

We may therefore also assume that k is so large that


3�38� 	γ
p� − γ
p− 1�	 ≤ 3xk+1 for 1 ≤ p ≤ nk+1�

This implies that (3.32R) will occur if (3.31R) occurs and


3�39R� 5xk+1 < 	XR	 ≤ 10xk+1�

For instance, for the left-hand inequality in (3.32R) we have, under (3.31R)
and (3.39R) [use (3.38)],

	SR−γ
R�	 ≥ −	SR−1−γ
R−1�	+	XR	−	γR−γR−1	 > −xk+1+5xk+1−3xk+1�



1604 H. KESTEN

Now, by virtue of (3.36),


3�40�

nk+1∑
R=1

P�H
R��

≥ 1
4

nk+1∑
R=1

P�(3.31R) occurs� 	SR − γ
R�	 > xk+1� 	XR	 ≤ 5xk+1�

+ 1
4

nk+1∑
R=1

P�(3.31R) occurs and 5xk+1 < 	XR	 ≤ 10xk+1��

The second sum in the right-hand side equals
nk+1∑
R=1

P�(3.31R) occurs��G
5xk+1� −G
10xk+1���

and by virtue of (3.9) this is at least

π
nk+1∑
R=1

P�(3.31R) occurs� 	XR	 > 5xk+1�

= π
nk+1∑
R=1

P�(3.31R) occurs� 	SR − γ
R�	 > xk+1� 	XR	 > 5xk+1�

[see the lines following (3.39R)]. Combining this with (3.40) and taking into
account that π ≤ 1, we find that


3�41�

nk+1∑
R=1

P�H
R�� ≥ π
4

nk+1∑
R=1

P�(3.31R) occurs, but 	SR − γ
R�	 > xk+1�

= π

4
P�M
0�1� fails� ≥ π

16
[by (3.35)]�

Finally, substituting this estimate into (3.34) and using (3.30) gives

P�M
16�0�� ≥ 1
2
+ ρk+1 +

π

16
�

For large k this implies (3.29) and (3.23) [via (3.28)]. ✷

A naive application of (3.23) with t = sk+1 gives (for small n) that


3�42�
max

sknk<j≤sk+1nk+1

	Sj − τ
j� k� −Ssknk + τ
sknk� k�	

≤ 32sk+1xk+1 for infinitely many k w.p.1�

This, however, is not strong enough; we want the max in the left-hand side to
be less than some fixed multiple of xk+1 for infinitely many k. The following
general lemma will allow us to improve our estimate sufficiently to achieve
this, by means of breaking up the interval 
sknk� sk+1nk+1� into �sk+1/t� inter-
vals of length tnk+1, for a suitable bounded t.
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Lemma 5. Let U1�U2� � � � be independent random variables and let

Tk =
k∑
1

Ui�

Let m1�m1� � � � �ml be some integers greater than or equal to 1, N0 = 0, Ni =
m1 +m2 + · · · +mi, i ≥ 1, and x ≥ 0. Then there exist constants ζk such that
for l ≥ 1,


3�43� P
{

max
k≤Nl

	Tk − ζk	 ≤ 4x
}
≥ 2−l+1

l∏
i=1

P
{

max
k≤mi

	TNi−1+k −TNi−1
	 ≤ x

}
�

Proof. Introduce the events


3�44� Ai =
{

max
k≤mi

	TNi−1+k −TNi−1
	 ≤ x

}
�

Define further


3�45� med
i� = a conditional median of TNi
−TNi−1

� given Ai� i ≥ 1�

and the events


3�46�
Bi =

{
sgn�TNi

−TNi−1
−med
i��

× sgn
[
TNi−1

−
i−1∑
j=1

med
j�
]
≤ 0

}
� i ≥ 2�

Finally, take


3�47� ζk =
i−1∑
j=1

med
j� + k−Ni−1

mi

med
i� for Ni−1 < k ≤Ni�

Now the only information relevant to the occurrence of Bi which we can obtain
from the occurrence of

⋂i
1 Aj∩

⋂i−1
2 Bj is in the occurrence of Ai and the sign

of

TNi−1
−
i−1∑
j=1

med
j��

Therefore

P

{ l⋂
1

Ai ∩
l⋂
2

Bi

}
= P

{ l⋂
1

Ai ∩
l−1⋂

2

Bi

}
P

{
Bl

∣∣∣∣ l⋂
1

Ai ∩
l−1⋂

2

Bi

}

≥ 1
2P

{ l⋂
1

Ai ∩
l−1⋂

2

Bi

}
= 1

2P�Al�P
{l−1⋂

1

Ai ∩
l−1⋂

2

Bi

}
· · ·

≥ 2−l+1
l∏
1

P�Ai��

(3.48)
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We shall now prove by induction on l that on A1 ∩ · · · ∩Al ∩B2 ∩ · · · ∩Bl,

3�49� 	TNl

− ζNl
	 ≤ 2x�

This is clear for l = 1, since on A1, 	TN1
	 ≤ x, and hence also its conditional

median, med
1�, satisfies

	med
1�	 = 	ζN1
	 ≤ x�

For the same reasons 	med
j�	 ≤ x and


3�50�
∣∣∣∣ζk − i−1∑

j=1

med
j�
∣∣∣∣ ≤ x� Ni−1 ≤ k ≤Ni�

Now for the induction step assume (3.49) holds and Al+1 ∩Bl+1 occurs. If


3�51� TNl
> ζNl

=
l∑
1

med
j��

then the occurrence of Bl+1 implies that

TNl+1
−TNl

−med
l+ 1� ≤ 0�

Since Al+1 occurs as well, it holds that

−2x ≤ −x−med
l+ 1� ≤ TNl+1
−TNl

−med
l+ 1� ≤ 0�

Together with (3.49) and (3.51), this proves that

	TNl+1
− ζNl+1

	 ≤ 2x on Al+1 ∩Bl+1�

A similar argument applies when the > sign in (3.51) is replaced by ≤. This
completes the proof by induction of (3.49).

Finally, on A1 ∩ · · · ∩Al ∩B2 ∩ · · · ∩Bl, for i < l,

max
Ni≤k≤Ni+1

	Tk − ζk	 = max
Ni≤k≤Ni+1

	TNi
− ζNi

+ �Tk −TNi
− 
ζk − ζNi

��	

≤ 2x+ max
Ni≤k≤Ni+1

	Tk −TNi
− 
ζk − ζNi

�	

≤ 3x+ max
Ni≤k≤Ni+1

	Tk −TNi
	 [by (3.50)]

≤ 4x 
on Ai+1��
Thus, on A1 ∩ · · · ∩Al ∩B2 ∩ · · · ∩Bl,

max
k≤Nl

	Tk − ζk	 ≤ 4x�

and (3.43) follows from (3.48). ✷
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We now apply Lemma 5 to

Uj =Xj+sknk −
(
τ
j+ sknk� k� − τ
j− 1+ sknk� k�

)
�

with

m1 = tnk+1 − sknk� mi = tnk+1� i ≥ 2�

for some positive integer t which satisfies


3�52� 1
t
≤ log
1+ π/16�

2 log 2

and x = 32txk+1. Then Tn becomes

Sn+sknk −Ssknk −
(
τ
n+ sknk� k� − τ
sknk� k�

)
�

The events Ai of (3.44) are now the events E
k+1� 
i−1�t� t� of (3.21), (3.22).
Lemmas 4 and 5 therefore show that there exist constants ζj = ζj
k�, sknk <
j ≤ sk+1nk+1 such that


3�53�

P
{

max
sknk<j≤sk+1nk+1

	Sj − ζj −Ssknk 	 ≤ 128txk+1

}

≥ 2−sk+1/t
�sk+1/t�∏
l=0

P�E
k+ 1� lt� t��

≥ 2−sk+1/t

(
1
2
+ π

32

)sk+1+t
�

We have chosen t and sk+1 in (3.12), (3.13) and (3.52) so that


3�54� 2−sk+1/t

(
1
2
+ π

32

)sk+1+t
≥ C3k

−1+C4

for some constants C3, C4 > 0. Finally we take

αj = ζj
k� + αsknk for sknk < j ≤ sk+1nk+1�

With this choice of αj, we see from (3.53), (3.54) that for large k,


3�55� P
{

max
sknk<j≤sk+1nk+1

	Sj − αj − 
Ssknk − αsknk�	 ≤ 128txk+1

}
≥ C3k

−1+C4 �

By successively choosing the αj in the intervals 
sknk� sk+1nk+1� in the above
way we obtain (3.55) for all large k. Since the events in the left-hand side of
(3.55) for different k are independent, it follows that w.p.1,

max
sknk<j≤sk+1nk+1

	Sj − αj − 
Ssknk − αsknk�	 ≤ 128txk+1 for infinitely many k�

By virtue of (3.19) and the Borel–Cantelli lemma, we then also have w.p.1


3�56� max
j≤sk+1nk+1

	Sj − αj	 ≤ 
128t+ 1�xk+1 for infinitely many k�
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or


3�57� lim inf
k→∞

1
xk+1

max
j≤sk+1nk+1

	Sj − αj	 ≤ 
128t+ 1� w.p.1�

Inequalities (3.57) and (3.17) are the desired (1.7) and (1.11) along the
subsequence sknk with βsknk = xk. The extension to the full sequence, and
therefore the completion of the proof when G is not slowly varying, is now
immediate from one more simple general lemma.

Lemma 6. Assume that xk ↑ ∞ and that m1 < m2 < · · · is a sequence of
integers such that for some �αj�,


3�58� lim inf
k→∞

1
xk

max
j≤mk

	Sj − αj	 <∞ w.p.1�

and that for any choice of �α̃j�,


3�59� lim inf
k→∞

1
xk

max
j≤mk

	Sj − α̃j	 > 0�

Then (1.7) and (1.11) hold for the �αj� in (3.58) and


3�60� βn = xk for mk ≤ n < mk+1�

Proof. Clearly, by (3.58),

lim inf
n→∞

1
βn

max
j≤n

	Sj − αj	 ≤ lim inf
k→∞

1
βmk

max
j≤mk

	Sj − αj	

= lim inf
k→∞

1
xk

max
j≤mk

	Sj − αj	 <∞ w.p.1�

On the other hand, for any �α̃j� and mk ≤ n < mk+1,

1
βn

max
j≤n

	Sj − α̃j	 =
1
xk

max
j≤n

	Sj − α̃j	 ≥
1
xk

max
j≤mk

	Sj − α̃j	�

so that (1.11) follows from (3.59). ✷

4. Sufficiency of (1.12) when G is slowly varying. To complete the
proof of our theorem, we now construct �αn� and �βn�which satisfy (1.7), (1.10)
and (1.11) when (3.8) holds and G is slowly varying at ∞ (so that uj→ 0) but
(1.12) holds. The construction in many respects mimics the “proof of sufficiency
of (4.1)” in Pruitt (1990). A number of facts will be taken directly from there.
The quantities F, G, ui and ri are still as in the Introduction, but most other
quantities will be redefined in this section. Also the constants Ci will be dif-
ferent from those in the preceding sections.

The quantities jm, Nm, km, µm, ik are chosen as in Pruitt (1990) applied to
our 	Xi	; un is defined in (1.9). From Pruitt [(1990), see his equations (4.31)–
(4.36)] we then have the following relations (	A	 denotes the cardinality of A):


4�1� un < 
logm�−1 for n ≥Nm�
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4�2� km > Nm is such that rkm > 2
Nm ∨ jm−1�� ukm log rkm ≥m2�


4�3�
Em �= �ν� uν ≥ ukm�� j1 = 1�

jm = max�ν� ν ∈ Em�� m ≥ 2�

Fm �= Em ∩
( 1

2rkm� jm
]�


4�4� jm > 	Em	 ≥ rkm� rkm > rkm−1
�


4�5� ν ∈ Em implies uν ≥ ukm ≥m2/ log rkm �


4�6� ν ∈ Fm implies uν < 
logm�−1�


4�7� 	Fm	 ≥ 	Em	 − 1
2rkm ≥ 1

2rkm �


4�8�
µm �= ⌊ 1

2
rkm�1/2
⌋
� i1 = i1
m� ≤ i2 = i2
m� ≤ · · · ≤

iµm = iµm
m� are indices in Fm� uik−j ≤ euik� 1 ≤ j ≤
2 log log rkm �


4�9�
	Em ∩ 
ik
m�� ik+1
m��	 ≥ µm for k ≥ 1 and∣∣Em ∩ ( 1

2rkm� i1
m�
)∣∣ ≥ µm�

[Pruitt does not list the lower bound on 	Em ∩ 
 1
2rkm� i1�	, but it is included in

his construction.] We also note that (4.8), (4.9) and (4.2) imply


4�10� i1
m� > 1
2rkm > jm−1 = max�ν� ν ∈ Em−1� ≥ iµm−1


m− 1��
Our choice of λk and nk differs slightly from Pruitt’s. Specifically, with


4�11�

ϕ
λ� �= Ee−λ	X	�

g
λ� �= −ϕ
′
λ�
ϕ
λ� �

R
λ� �= − logϕ
λ� − λg
λ�
[as in Pruitt (1990)], we choose λk = λk
m� and nk = nk
m� such that [with
ik short for ik
m�]


4�12� R
λk�
g
λk�

= m2

3uik exp
ik + 1� �


4�13� nk =
⌊

m2

3uikR
λk�
⌋
=

⌊
exp
ik + 1�
g
λk�

⌋
�
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We define


4�14� Tn =
n∑
i=1

	Xi	�

Pruitt’s relation (4.37) then has to be replaced by


4�15�
− logP�Tnk ≤ eik+1� ≤ − logP�Tnk ≤ nkg
λk��

∼ nkR
λk� ≤
m2

3uik
≤ 1

3 log rkm �

here ak ∼ bk means ak/bk→ 1 as m→∞, uniformly in k = 1�2� � � � � µm. The
proof of Pruitt’s relation (4.37) needs essentially no change to give (4.15). As
in Pruitt (1990) we obtain from (4.15) that


4�16�
exp
−nkG
eik+1�� ≥ P

{
max
i≤nk

	Xi	 ≤ exp
ik + 1�
}

≥ P�Tnk ≤ exp
ik + 1�� ≥ r−1/3+o
1�
km

�

where o
1� → 0 as m → ∞, uniformly in k = 1�2� � � � � µm. Consequently, for
any C [see (4.2)]


4�17�

∑
1≤k≤µm

exp
−nkG
exp
ik + 1��� ≥ µmr−1/3+o
1�
km

≥ r1/8
km
≥ exp
Cm2� for all large m�

Next we observe that relation (4.39) of Pruitt (1990) still holds, that is,


4�18� nkG
exp
ik��uik ∼ nkG
exp
ik + 1��uik !m2�

where am ! bm means that for some constants 0 < C1 ≤ C2 <∞,

C1am ≤ bm ≤ C2am�

uniformly in k = 1� � � � � µm. Apart from writing exp
ik + 1� instead of
exp
ik + 2�, no change is needed in Pruitt’s proof. Combining (4.17) and
(4.18), we find for any C,∑

1≤k≤µm
exp

[− nkG
exp
ik�� + 1
2nkG
exp
ik��uik

]
= ∑

1≤k≤µm
exp
−nkG
exp
ik + 1��� exp

(− 1
2nkG
exp
ik��uik

)
[by (1.9)]

≥ exp
−C2m
2� ∑

1≤k≤µm
exp
−nkG
exp
ik + 1���

≥ exp
Cm2� for all large m�

(4.19)

Since

exp
[− nkG
exp
ik�� + 1

2nkG
exp
ik��uik
] ≤ exp
−nkG
exp
ik + 1��� ≤ 1�
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we can, for each large m, choose a subset of i1
m�� � � � � iµm
m� such that


4�20� 1 ≤ ∑
ik in subset

exp
[− nkG
exp
ik�� + 1

2nkG
exp
ik��uik
] ≤ 2�

We shall discard all the ik not in this subset, but renumber the remaining ik
so that they are still denoted i1
m� < i1
m� < · · ·. However, their number will
now be some ρm ≤ µm. We have from (4.20) that


4�21� ∑
m

∑
1≤k≤ρm

exp
[− nkG
exp
ik�� + 1

2nkG
exp
ik��uik
] = ∞�

while


4�22�

∑
m

∑
1≤k≤ρm

exp
−nkG
exp
ik���

=∑
m

∑
1≤k≤ρm

exp
[− nkG
exp
ik�� + 1

2nkG
exp
ik��uik
]

× exp
(− 1

2nkG
exp
ik��uik
)

≤∑
m

2 exp
−C1m
2� [by (4.18) and (4.20)]

<∞�
Still following Pruitt (1990) [see his display (4.41)] we note that for 
l−1� ∈

Em,


4�23� G
el�
G
el−1� = 1− ul−1 ≤ 1− m2

log rkm

[see (4.5)]. Now, there are at least µm choices of l ∈ 
ik−1
m�� ik
m�� with

l− 1� ∈ Em, where we make the convention


4�24� i0
m� = iρm−1

m− 1�

[see (4.9), (4.10)]. Therefore, for large m,


4�25� G
exp
ik��
G
exp
ik−1��

≤
(

1− m2

log rkm

)µm
≤ exp

[
−m

2
rkm�1/2
2 log rkm

+1
]
� 1≤k≤ρm�

In analogy with (4.24), set


4�26� n0
m� = nρm−1

m− 1��

Then (4.18), (4.5) and (4.25) [and (4.4) if k = 1] show that for large m,


4�27� nk
m�
nk−1
m�

! uik−1
G
exp
ik−1��

uikG
exp
ik��
≥ m2

log rkm
exp

[
m2
rkm�1/2
2 log rkm

]
�

In particular this implies


4�28� nk − nk−1 ∼ nk�
nk
nk−1

→∞�
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and [again by (4.18)]


4�29� 
nk − nk−1�G
exp
ik−1�� ∼
nk
nk−1

nk−1G
exp
ik−1�� → ∞�

as m→∞, uniformly in 1 ≤ k ≤ ρm.
Finally, as in Pruitt, we put all the nk
m� into one sequence:

n1
1� < · · · < nρ1

1� < n1
2� < · · · < nρ2


2� < n1
3� · · · �
(We may have to discard some terms in the beginning to obtain this monotonic-
ity, but this is harmless.) We then take βn constant on the intervals �nk� nk+1�.
Specifically,


4�30� βn = exp
ik
m�� for nk
m� ≤ n < nk+1
m�� 0 ≤ k < ρm�
Finally we begin on our principal estimates.

Lemma 7. There exists a universal constant 0 < C3 <∞ with the following
property. If Y�Y1�Y2� � � � are i.i.d. with 	Y	 ≤ b < ∞ w.p.1, and variance

Y� = σ2, then for all K ≥ 2

√
2σ/b there exist constants κ = κ
Y�K� so that


4�31� P

{
max
j≤n

∣∣∣∣
j∑
l=1

Yl − jκ
∣∣∣∣ ≤ 2Kb

}
≥ 1

2
exp

(
−C3σ

2

K2b2
n

)
� n ≥ 1�

Moreover,


4�32� 	κ	 ≤ 	EY	 + 8σ2

Kb
≤

(
1+ 8

K

)
E	Y	�

Proof. Choose

t =
⌊
K2b2

8σ2

⌋
≥ 1�

Then, by Kolmogorov’s inequality,

P

{
max
j≤t

∣∣∣∣
j∑
l=1


Yi −EY�
∣∣∣∣ ≤ 1

2
Kb

}
≥ 1− tσ2



1/2�Kb�2 ≥
1
2
�

Now apply Lemma 5 with Ui = Yi − EY, mi = t for i ≥ 1, and x = 1
2Kb.

Then we find constants ζj such that for 
l− 1�t < n ≤ lt,

P

{
max
j≤n

∣∣∣∣
j∑
l=1


Yl −EY� − ζj
∣∣∣∣ ≤ 2Kb

}

≥ 2−l+1
[
P

{
max
j≤t

∣∣∣∣
j∑
l=1


Yl −EY�
∣∣∣∣ ≤ 1

2
Kb

}]l

≥ 2−2l+1 ≥ 2−2n/t−1

≥ 1
2

exp
(
−C3σ

2

K2b2
n

)
�
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for some universal C3 > 0. Except for the special form ζj = j
κ−EY� of the
constants, this is (4.31). However, in our special homogeneous situation, (3.47)
shows that we can take ζj = jM, where

M = 1
t
×

[
a conditional median of

t∑
1


Yj −EY�� given

max
j≤t

∣∣∣∣
j∑
1


Yl −EY�
∣∣∣∣ ≤ 1

2
Kb

]
�

Thus (4.31) holds with

κ = EY+M�
It is clear now that

	κ	 ≤ 	EY	 + 1
2t
Kb�

so that also (4.32) holds. ✷

We shall apply this lemma when Y has the conditional distribution of X,
given


4�33� 	X	 ≤ βnke = exp
ik + 1�
for some 1 ≤ k ≤ ρm, ik = ik
m�, nk = nk
m�. To this end we need estimates
for EY and for σ2
Y�, the variance of Y.

Lemma 8. For Y as above,

E	Y	 ≤ C4 exp
ik�G
exp
ik��uik�(4.34)

EY2 ≤ C5 exp
2ik�G
exp
ik��uik�(4.35)

Proof. This is a more precise version of Lemma 1 in the present setup.
As in Lemma 1, (4.35) follows immediately from (4.34) since 	Y	 ≤ exp
ik + 1�.
To prove (4.34) we again use (2.6), which now yields for any L ≥ 1,

P�	X	 ≤ exp
ik + 1��E	Y	

=
∫ exp
ik+1�

0
�G
y� −G
exp
ik + 1���dy

≤
∫ exp
ik−L�

0
G
y�dy+ ∑

ik−L<j≤ik+1

∫ ej
ej−1
�G
y� −G
exp
ik + 1���dy�

Since G is slowly varying, the first integral in the right-hand side is for large

ik −L� at most

2 exp
ik −L�G
exp
ik −L��
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[see Bingham, Goldie and Teugels (1987), Proposition 1.5.8]. Furthermore, by
(4.8),


4�36� G
el�
G
el−1� = 1− ul−1 ≥ 1− euik for ik − 2 log log rkm ≤ l− 1 ≤ ik�

Therefore, for

L =
⌊

2 log log rkm − 2� ∧ 1

uik

⌋

and ik −L ≤ j ≤ ik + 1, and m large, it holds that


4�37� G
ej−1�
G
exp
ik + 1�� =

ik+1∏
l=j

�1− ul−1�−1 ≤ exp�2
ik − j+ 2�euik�

and

G
ej−1� −G
exp
ik + 1�� ≤ G
exp
ik + 1���exp�2
ik − j+ 2�euik� − 1�
≤ C5G
exp
ik��uik
ik − j+ 2��

Then

ik+1∑
j=ik−L+1

∫ ej
ej−1
�G
y� −G
exp
ik + 1���dy

≤ C5G
exp
ik��uik
ik+1∑

j=ik−L+1

ej
ik − j+ 2�

≤ C6G
exp
ik��uik exp
ik��
Again, because G is slowly varying, we obtain for large m


4�38�
E	Y	 ≤ 4 exp
ik −L�G
exp
ik −L�� + 2C6G
exp
ik��uik exp
ik�

≤ C7G
exp
ik�� exp
ik��e−3L/4 + uik�
[see Bingham, Goldie and Teugels (1987), Theorem 1.5.6]. But by (4.5),

uik ≥
m2

log rkm
≥ exp

(
−3

4

2 log log rkm − 2�

)
�

so that

uik ≥ e−3L/4�

Equation (4.34) now follows from (4.38). ✷

Lemmas 7 and 8 quickly lead to a basic estimate for (1.7).
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Lemma 9. Write κ̂
k�m�K� for the κ
Y�K� of Lemma 7 when Y has the
conditional distribution of X, given (4.33). Then there exist constants C8, C9 >
0 such that for each fixed K > 0 and m sufficiently large,

P
{

max
j≤nk
m�

	Sj − jκ̂
k�m�K�	 ≤ 2Kβnk
m�e
∣∣ 	Xi	 ≤ βnk
m�e� i ≤ nk
m�

}

≥ 1
2

exp
[
−C8

K2
nkG
exp
ik��uik

]

≥ 1
2

exp
[
−C9

K2
m2

]
�

(4.39)

Moreover, if


4�40� C8

K2
≤ 1

4
�

then [see (4.26) for n0]


4�41�

∑
m

∑
1≤k≤ρm

P

{
max

nk−1
m�<j≤nk
m�
	Sj −Snk−1
m� − 
j− nk−1
m��κ̂
k�m�K�	

≤ 2Kβnk
m�e and max
nk−1
m�<i≤nk
m�

	Xi	 ≤ βnk
m�e
}
= ∞�

Proof. As before, we shall not explicitly indicate the dependence on m
of the various quantities. The first inequality in 4.39 follows immediately by
substituting the bound of (4.35) for σ2 into (4.31). Note that with Y as in
Lemma 8 and b = βnke,

σ2

b2
≤ C5

e2
G
exp
ik��uik → 0

[by (4.35)], so that the assumption K ≥ 2
√

2σ/b for (4.31) is automatically
fulfilled for large m. The second inequality in 4.39 follows from (4.18).

For (4.41) we note that

P
{

max
nk−1<i≤nk

	Xi	 ≤ βnke
}
= �1−G
exp
ik + 1���nk−nk−1

≥ exp�−nkG
exp
ik + 1�� +O
nk�G
exp
ik + 1���2���

Next we note that by (4.25) and (4.5),

G
exp
ik + 1��
uik

∼ G
exp
ik��
uik

≤ e log rkm
m2

exp
[−m2
rkm�1/2

2 log rkm

]
→ 0� m→∞�
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Therefore,

P
{

max
nk−1<i≤nk

	Xi	 ≤ βnke
}
≥ exp

[− nkG
exp
ik + 1��(1+ 1
4uik

)]
�

Together with 4.39, this gives for 1 ≤ k ≤ ρm, under (4.40),


4�42�

P
{

max
nk−1<j≤nk

	Sj −Snk−1
− 
j− nk−1�κ̂
k�m�K�	

≤ 2Kβnke and max
nk−1<i≤nk

	Xi	 ≤ βnke
}

≥ 1
2

exp
[
−nkG
exp
ik + 1�� − 1

4
nkG
exp
ik + 1��uik

− C8

K2
nkG
exp
ik�uik

]

≥ 1
2

exp
[
−nkG
exp
ik�� + nkG
exp
ik��uik

(
1− 1

4
− C8

K2

)]

≥ 1
2

exp
[
−nkG
exp
ik�� +

1
2
nkG
exp
ik��uik

]
�

for large m. Equation (4.41) now follows from (4.21). ✷

For the remainder of this section, we fix K such that (4.40) holds and define


4�43� δi = κ̂
k�m�K� for nk−1
m� < i ≤ nk
m�� 1 ≤ k ≤ ρm�
Here we use the convention (4.26) for n0. Finally, we choose


4�44� αj =
j∑
i=1

δi�

Then (4.41) shows that w.p.1,


4�45�
max

nk−1
m�<j≤nk
m�
	Sj −Snk−1
m� − 
αj − αnk−1
m��	 ≤ 2Keβnk

for infinitely many 
k�m� with 1 ≤ k ≤ ρm�
This is close to the desired upper bound in (1.7). The next lemma deals with
the term

Snk−1
m� − αnk−1
m�

in (4.45) and therefore gives us the desired upper bound.

Lemma 10. With probability 1, it holds for all large m and 1 ≤ k ≤ ρm that


4�46� max
j≤nk−1
m�

	Sj − αj	 ≤ 2βnk
m�e�



UNIVERSAL CHUNG-TYPE LIL 1617

Proof. We have


4�47�

P
{

max
j≤nk−1

	Sj − αj	 > 2βnke
}

≤ P
{

max
i≤nk−1

	Xi	 > βnke
}

+P
{

max
j≤nk−1

∣∣∣∣
j∑
i=1


XiI�	Xi	 ≤ βnke� −EXI�	X	 ≤ βnke��
∣∣∣∣

+
nk−1∑
i=1

	δi −EXI�	X	 ≤ βnke�	 ≥ 2βnke
}
�

The first probability in the right-hand side is at most

nk−1G
exp
ik + 1�� ∼ nk−1G
exp
ik��

≤ nk−1G
exp
ik−1�� exp
[
−m

2
rkm�1/2
2 log rkm

+ 1
]

[by (4.25)]

= O
(

log rkm exp
[
−m

2
rkm�1/2
2 log rkm

])
[by (4.18) and (4.5)]�

Therefore


4�48�

∑
m

∑
1≤k≤ρm

P
{

max
i≤nk−1
m�

	Xi	 > βnk
m�e
}

≤∑
m

µmO

(
log rkm exp

[
− m

2
rkm�1/2
2 log rkm

])

<∞�

Next we shall prove that


4�49�
nk−1
m�∑
i=1

	δi −EXI�	X	 ≤ βnke�	 = o
βnk��

This follows from (4.32) and (4.34). Indeed, for nl−1
p� < i ≤ nl
p�, with
nl
p� ≤ nk
m�,

	δi	 = 	κ̂
l� p�K�	

≤
(

1+ 8
K

)
E�	X	 ∣∣ 	X	 ≤ βnl
p�e� [by (4.32)]

≤ C9E	X	I�	X	 ≤ βnl
p�e�
≤ C9E	X	I�	X	 ≤ βnk
m�e��
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Therefore, the left-hand side of (4.49) is at most


4�50�

2nk−1C9E	X	I�	X	 ≤ βnk
m�e�
≤ C10nk−1
m� exp
ik�G
exp
ik��uik [by (4.34)]

= C10 exp
ik�
nk−1
m�
nk
m�

nk
m�G
exp
ik��uik

≤ C11βnk
m� log rkm exp
[
−m

2
rkm�1/2
2 log rkm

]

[by (4.30), (4.18) and (4.27)]

= o
βnk
m���
As a consquence of (4.49), the second probability in the right-hand side of

(4.47) is at most

P
{

max
j≤nk−1

∣∣∣ j∑
i=1

(
XiI�	Xi	 ≤ βnke� −EXI�	X	 ≤ βnke�

) ≥ βnke}

≤ nk−1


βnke�2
EX2I�	X	 ≤ βnke�

≤ nk−1C5G
exp
ik��uik [by (4.35)]

≤ C12 log rkm exp
[
−m

2
rkm�1/2
2 log rkm

]
[as in (4.50)]�

This too is summable over 1 ≤ k ≤ ρm and m, as in (4.48).
The above estimates show that∑

m

∑
1≤k≤ρm

P
{

max
j≤nk−1
m�

	Sj − αj	 > 2βnk
m�e
}
<∞�

from which the lemma follows. ✷

Equations (4.45) and (4.46) together show that


4�51� lim inf
1
βnk

max
j≤nk

	Sj − αj	 ≤ 2
K+ 1�e w.p.1�

This is the right-hand inequality in (1.7). We now turn to (1.11), which of
course will also prove the left-hand inequality in (1.7).

Lemma 11. With Mn defined by (1.22), we have w.p.1,


4�52� Mn > βn eventually�

Proof. For nk
m� ≤ n < nk+1
m�, 0 ≤ k < ρm, we have [see (4.30)]

nG
βn� = nG
exp
ik�� ≥ nkG
exp
ik���



UNIVERSAL CHUNG-TYPE LIL 1619

This tends to ∞ by (4.18). We may therefore apply the test in Klass (1985).
This shows that (4.52) is equivalent to


4�53� ∑
n

G
βn� exp
−nG
βn�� <∞�

In our case the left-hand side of (4.53) equals∑
m

∑
0≤k<ρm

G
exp
ik
m���
∑

nk
m�≤n<nk+1
m�
exp�−nG
exp
ik
m����

≤∑
m

∑
0≤k<ρm

G
exp
ik
m���
exp�−nk
m�G
exp
ik
m����

1− exp�−G
exp
ik
m����
�

and this sum is indeed finite, by virtue of (4.22) and

G
exp
ik��
1− exp�−G
exp
ik���

→ 1�

[Of course we also use our convention by which

G
exp
i0
m��� = G
exp
iρm−1

m− 1����� ✷

Equation (1.11) is now an immediate consequence of Lemma 2.
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