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KOLMOGOROV’S TEST FOR SUPER-BROWNIAN MOTION

By Jean-Stéphane Dhersin and Jean-Fran�ois Le Gall

Université Paris V and Ecole Normale Supérieure

We prove a Kolmogorov test for super-Brownian motion started at the
Dirac mass at the origin. More precisely, we determine the functions g
such that for all t small enough, the support of the process at time t will
be contained in the ball of radius g�t� centered at 0. As a consequence, we
get a necessary and sufficient condition for the existence in certain space-
time domains of a solution of the associated semilinear partial differential
equation that blows up at the origin.

1. Introduction. In this paper, we provide an integral test that gives
precise information on the speed at which super-Brownian motion started at
a Dirac mass goes away from its starting point. This result is analogous to
the classical Kolmogorov test for usual Brownian motion. It refines previous
results due in particular to Tribe [16] and Dawson, Hochberg and Vinogradov
[2] (see also [4]).

Let Y = �Yt� t ≥ 0� be a super-Brownian motion in R
d started at δ0, the

Dirac mass at the origin. We denote by suppYt the topological support of Yt
and let

Rt = sup
{�y�� y ∈ suppYt

}
be the radius of the smallest closed ball centered at the origin that contains
suppYt. By convention, Rt = 0 if Yt = 0. Our main result is the following
theorem.

Theorem 1. Let h be a monotone decreasing function from �0�∞� into
�0�∞�. Then the following assertions are equivalent:

(i)
∫

0+�dt/t2�h�t�d+2 exp�−h�t�2/2� <∞;
(ii) Almost surely, there exists t0 > 0 such that for every t ∈ �0� t0�, Rt <√
t h�t�.

Let us compare Theorem 1 with previous results. In [16] it is proved that

lim
t↓0

Rt√
2t log�1/t� = 1 a.s.

In particular, this implies thatRt <
√�2+ ε�t log�1/t� when t is small enough,

a.s. This upper bound was refined in [2], Theorem 2.1 (see also [4], but note
that Theorems 1.3 and 1.7 of this paper should be corrected as explained in
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Remark 2.2(ii) of [2]). In [2] is is proved that, for every ε > 0, one has, for t
small enough,

Rt <
√

2t�log�1/t� + �d/2+ 4+ ε� log log�1/t���(1)

As a consequence of Theorem 1, the constant d/2+4+ε in (1) may be replaced
by d/2+ 2+ ε, but not by d/2+ 2. In addition, Theorem 2.1 of [2] gives lower
bounds for the process sups≤t Rs as t goes to 0. We point out that the techniques
of the present work can also be used to refine these lower bounds; see [6].

From the Poisson representation of superprocesses, it is immediate to ex-
tend Theorem 1 to the case when Y has a general initial value Y0 = µ. IfH is
a closed subset of R

d and δ > 0, denote byHδ the set of all points in R
d whose

distance to H is less than δ. Then condition (i) of Theorem 1 implies that a.s.
there exists t0 > 0 such that for every t ∈ �0� t0�, suppYt ⊂ �suppµ�h�t�. The
converse is of course not true in general because we may have suppµ = R

d.
We can reinterpret Theorem 1 in terms of the notion of G-regularity intro-

duced by Dynkin in [10], page 1234. Let h be as previously and let Dh be the
space-time domain defined by

Dh =
{�t� x� ∈ �0�∞�× R

d� �x� < √t h�t�}�
Then, both conditions of Theorem 1 are equivalent to saying that the point
�0�0� is not G-regular for Dh. By combining Theorem 1 and Theorem II.6.1 of
[10], we arrive at the following analytic corollary.

Corollary 2. Let h be as in Theorem 1. The following assertions are equiv-
alent:

(i)
∫

0+�dt/t2�h�t�d+2 exp�−h�t�2/2� = ∞;

(ii) there exists a positive solution of ∂u/∂t+ 1
2�u = u2 in Dh, such that

lim
Dh��t� x�→�0�0�

u�t� x� = ∞�

Up to some point, Theorem 1 and Corollary 2 are parabolic analogues of the
main results of [7]. A full parabolic extension of the results of [7] would be a
space-time Wiener test for super-Brownian motion, which would then include
Theorem 1 as a special case. The proof of such a general statement seems
difficult. See, however, [5] for partial results.

The proof of Theorem 1 relies on very precise estimates for the distribution
of the processRt. The most important conceptual step of the proof is to observe
that Theorem 1 can be derived from suitable estimates for the “probability” of
the event {

sup
1≤t≤2

Rt√
t
> a

}
(2)

under the “excursion measure,” or canonical measure, of super-Brownian
motion. This line of reasoning is different from the classical proofs of Kol-
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mogorov’s test for Brownian motion (see [1] or Motoo’s elegant proof in [11]),
which seem difficult to extend to the present setting.

To obtain our estimates, we rely on the connections between the path-valued
process called the Brownian snake and super-Brownian motion. The Brown-
ian snake has already been used successfully to investigate various properties
of super-Brownian motion: See in particular [15] and [7]. In Section 2 below,
we recall the basic facts about the Brownian snake and super-Brownian mo-
tion, as well as one connection with partial differential equations that plays
an important role in the subsequent proofs. In Section 3, we obtain our key
estimates (Lemma 4). The most difficult part of the proof is to get an adequate
lower bound on the probability of the event (2). To this end, we make a key
use of the exit measures introduced in [8]. More precisely, we observe that the
property considered in (2) will hold as soon as the exit measure of a certain
space-time domain is not zero. The probability of this event can be bounded
below by the Cauchy–Schwarz inequality, in terms of the first and second mo-
ments of the exit measure. From the explicit formulas for these moments and
some tedious calculations, one arrives at the desired lower bound. It is worth
mentioning that certain related estimates were obtained in [3], Theorem 3.3.
The proof of Theorem 1 is given in Section 4. It is relatively straightforward
from our estimates; the main ingredients are the Borel–Cantelli lemma and,
for the part requiring independence, the canonical (Poisson) representation of
super-Brownian motion.

2. The Brownian snake and super-Brownian motion. In this section,
we briefly recall the basic facts about the Brownian snake and its connections
with super-Brownian motion. See [12] or [13] for a more detailed presentation.

Let x ∈ R
d be a fixed point. We denote by �x the set of all stopped paths in

R
d started at x. An element w of �x is a continuous mapping w� �0� ζ� → R

d

such that w�0� = x, where ζ = ζw can be any nonnegative real number.
The trivial path with ζw = 0 is identified with the point x of R

d. We write
ŵ = w�ζ� for the endpoint of w. The distance on �x is defined by d�w�w′� =
supt≥0 �w�t ∧ ζ� −w′�t ∧ ζ ′�� + �ζ − ζ ′�.

The Brownian snake is the continuous strong Markov process �Ws� s ≥ 0�
in �x whose distribution is characterized by the following properties:

1. The “lifetime process” ζs = ζWs is a reflecting Brownian motion in R+.
2. Conditionally on �ζs� s ≥ 0�, the distribution of �Ws� s ≥ 0� is that of an

inhomogeneous Markov process whose transition kernels are described as
follows: For every s < s′,

Ws′ �t� =Ws�t� for every t ≤m�s� s′� = inf
�s�s′ �
ζr�

�Ws′ �m�s� s′� + t� −Ws′ �m�s� s′��� 0 ≤ t ≤ ζs′ −m�s� s′�� is a
Brownian motion in R

d independent of Ws.

Informally, Ws should be seen as a Brownian path in R
d with random life-

time ζs evolving like reflecting Brownian motion. When ζs decreases, the path
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erases itself. When ζs increases, the path is extended by adding “little pieces”
of Brownian motion at its tip.

We may and will assume that the process W is defined on the canonical
space C�R+��x� of all continuous mappings from R+ into �x. We then denote
by Pw the law of W started at w. When w �= x, we also denote by P

∗
w the law

under Pw of �Ws∧σ� s ≥ 0�, where σ = inf�s > 0� ζs = 0�.
It is obvious that x is a regular recurrent point for W. The associated ex-

cursion measure is denoted by Nx. The law of �ζs� s ≥ 0� under Nx is the Itô
measure of positive excursions of linear Brownian motion. Note that Nx is an
infinite measure on C�R+��x� and that Ws = x for every s ≥ σ , Nx a.e. We
set M = sup�ζs� s ≥ 0� and we normalize Nx so that Nx�M > ε� = �2ε�−1 for
every ε > 0. It is easy to verify the following scaling property of Nx: for every
λ > 0, the law under Nx of the process

s �→ (
x+ λ−1�Wλ4s�λ2t� − x�� 0 ≤ t ≤ λ−2ζλ4s

)
is λ−2

Nx.
We shall be interested in the range and the graph of the Brownian snake

(under its excursion measure Nx), which are the compact subsets of R
d and

R+ × R
d, respectively, defined by

� = {
Ŵs� 0 ≤ s ≤ σ}�

� = {�ζs� Ŵs�� 0 ≤ s ≤ σ}�
By the normalization of Nx,

Nx

[
� ∩ ��ε�∞�× R

d� �= �
] = �2ε�−1�(3)

A scaling argument also gives, for every r > 0,

Nx

[
� ∩B�x� r�c �= �

] = Ar−2�(4)

where A is a finite constant depending only on d.
We now come to the connections with super-Brownian motion. To this end,

we denote by Lar the local time at level a at time r of the process �ζs� s ≥ 0�
(this makes sense both under Pw and under Nx). For every a > 0, we define
a random measure Xa on R

d by setting for every nonnegative continuous
function ϕ on R

d,
〈
Xa�ϕ

〉 = ∫ σ
0
ϕ�Ŵs�dLas �

where in the right-hand side we integrate with respect to the increasing func-
tion s �→ Las . The distribution of the process �Xa� a > 0� under Nx is the so-
called canonical measure of super-Brownian motion started at δx. This means
that if � �dω� is a Poisson point measure on C�R+��x� with intensity Nx, the
process Y = �Yt� t ≥ 0� defined by Y0 = δx and for t > 0,

Yt =
∫
� �dω�Xt�ω�

is a super-Brownian motion ([12], Theorem 2.1).
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We shall use the following fact. For every 0 ≤ u ≤ v ≤ ∞, we have Nx a.e.,

� ∩ ��u� v� × R
d� = ⋃

u≤t≤v
�t� × suppXt(5)

where H denotes the closure of the set H. The equality (5) is easily derived
from the definition of X and � along the lines of the proof of Proposition 2.2
in [12].

Let us now describe one connection with partial differential equations that
will be useful later. We consider a domain * in R+ × R

d. For every r > 0,
we set *r = ��t − r� y�� �t� y� ∈ *� t ≥ r�. Then, the function u defined for
�r� y� ∈ * by

u�r� y� = Ny

[
� ∩ *cr �= �

]
solves the parabolic partial differential equation

∂u

∂t
+ 1

2
�u = 2u2�(6)

This follows from a result of Dynkin in [9], u�r� y� = − logPr�δy�� ∩ *c = ��
in Dynkin’s notation (see [9], Theorem 2.1). Notice that the finiteness of u is
a consequence of (3) and (4).

Finally, we shall need the notion of the exit measure ([8]; see [13] or [14]
for the presentation in terms of the Brownian snake). Let * be as previously,
and assume that �0� x� ∈ *. Denote by τ�w� = inf�t ≥ 0� �t�w�t�� /∈ *� ≤ ∞
the first exit time of the path w from *. Then, Nx a.e., the formula

L*s = lim
ε→0

1
ε

∫ s
0

1�τ�Wr�<ζr<τ�Wr�+ε� dr

defines a continuous increasing process L* called the exit local time from *.
Note that the measure dL*s is supported on �s� τ�Ws� = ζs�. The (space-time)
exit measure X* is then the random measure on R+ × R

d defined by

〈
X*�ϕ

〉 = ∫ σ
0
ϕ�ζs� Ŵs�dL*s �

The measureX* is supported on �∩∂*. The first and second moment formulas
forX* are easy to compute. Denote by B a Brownian motion in R

d that starts
at x under the probability measure Px. It is also convenient to let B start at
x at time r under the probability measure Pr�x. Then, if τ denotes the first
exit time from * for the process �t�Bt�,

Nx

[�X*�ϕ�] = Ex[1�τ<∞�ϕ�τ�Bτ�
]
�

Nx

[�X*�ϕ�2] = 4Ex

[∫ τ
0
Et�Bt

[
1�τ<∞�ϕ�τ�Bτ�

]2
dt

]
�

The first-moment formula follows from Proposition 3.3 in [13], taking space-
time Brownian motion as the underlying spatial motion. The second-moment
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formula is easily derived from the Laplace functional of �X*�ϕ� as given in
Theorem 4.2 of [13]. Note that the measures Xt are special cases of exit mea-
sures; Xt corresponds to X* when * = �0� t� × R

d.

3. Preliminary estimates. In this section, we derive the key estimates
that will allow us to prove Theorem 1 in the following section. We start with
a simple estimate about Brownian motion in R

d.

Lemma 3. (i) There exist two positive constants α1 and β1 such that for
every t > 0 and a ≥ √

t,

α1

(
a√
t

)d−2

exp
(
−a

2

2t

)
≤ P0

[�Bt� ≥ a] ≤ P0

[
sup

0≤s≤t
�Bs� ≥ a

]

≤ β1

(
a√
t

)d−2

exp
(
−a

2

2t

)
�

(ii) There exist two positive constants α2 and β2 such that for every t > 0
and a ≥ 1,

α2a
d exp

(
−a

2

2

)
≤ P0

[
sup
t≤s≤2t

�Bs�√
s
≥ a

]
≤ β2a

d exp
(
−a

2

2

)
�

Proof. Part (i) is easy and well known. We prove only (ii). A scaling ar-
gument shows that it is enough to treat the case t = 1. We first establish the
upper bound. Let a ≥ 1 and set

τa = inf
{
t ≥ 1� �Bt� ≥ a

√
t
}
�

From the strong Markov property at time τa, we get

E0

[∫ 3

1
1��Bt�≥a

√
t� dt

]
≥ E0

[
1�τa≤2�

∫ 3

τa

1��Bt�≥a
√
t� dt

]

≥ E0

[
1�τa≤2�Eτa�Bτa

[∫ 3

τa

1��Bt�≥a
√
t� dt

]]

≥ P0�τa ≤ 2� inf
1≤s≤2� �y�≥a√s

Es�y

[∫ 3

s
1��Bt�≥a

√
t� dt

]
�

(7)

Part (i) of the lemma yields an easy upper bound of the left-hand side:

E0

[∫ 3

1
1��Bt�≥a

√
t� dt

]
=

∫ 3

1
P0

[�Bt� ≥ a√t ]dt ≤ 2β1a
d−2 exp

(
−a

2

2

)
�(8)

We now look for a lower bound on the second term of the right-hand side of (7).
If b ∈ R, we denote by B�1� = �B�1�u � u ≥ 0� a linear Brownian motion started
at b under the probability measure P�1�b . Fix s ∈ �1�2� and y ∈ R

d such that
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�y� ≥ a√s. By considering the projection of B on the line containing 0 and y,
we easily get

Es�y

[∫ 3

s
1��Bt�≥a

√
t� dt

]
=

∫ 3

s
Ps�y

[�Bt� ≥ a√t ]dt

≥
∫ 3

s
P
�1�
�y�

[
B
�1�
t−s ≥ a

√
t
]
dt

≥
∫ 1

0
P
�1�
0

[
B
�1�
u ≥ a(√u+ s−√

s
)]
du

≥ 1
a2
P
�1�
0 �B�1�1 ≥ 1��

(9)

where in the last line we used the simple bound a�√u+ s−√s� ≤ au ≤ √
u for

u ∈ �0� a−2�. Combining (7), (8) and (9) gives, with β2 = 2β1�P�1�0 �B�1�1 ≥ 1��−1,

P0

[
sup

1≤t≤2

�Bs�√
s
≥ a

]
= P0�τa ≤ 2� ≤ β2 a

d exp
(
−a

2

2

)
�

We now turn to the proof of the lower bound of (ii). By the same arguments
as in the proof of the upper bound, we get

E0

[
1��B1�≤a�

∫ 2

1
1��Bt�≥a

√
t� dt

]

≤ P0�τa ≤ 2� sup
1≤s≤2� �y�=a√s

Es�y

[∫ 2

s
1��Bt�≥a

√
t� dt

]
�

(10)

We first verify the existence of a positive constant c1 such that, for every a ≥ 1,

E0

[
1��B1�≤a�

∫ 2

1
1��Bt�≥a

√
t� dt

]
≥ c1 ad−2 exp

(
−a

2

2

)
�(11)

First observe that, by part (i) of the lemma,

P0
[�B1� ≤ a� �Bt� ≥ a

√
t
] ≥ α1 a

d−2 exp
(
−a

2

2

)
−P0

[�B1� ≥ a� �Bt� ≥ a
√
t
]
�

Consider t ∈ �3/2�2�, so that
√
t − 1 ≥ 2δ, with δ = �√3/2 − 1�/2 > 0. From

the Markov property at time 1, we get

P0
[�B1� ≥ a� �Bt� ≥ a

√
t
]

≤ P0
[�B1� ≥ a�1+ δ�

]+P0
[
a ≤ �B1� ≤ a�1+ δ�� �Bt� ≥ a

√
t
]

≤ P0
[�B1� ≥ a�1+ δ�

]+P0
[�B1� ≥ a

]
P0

[�Bt−1� ≥ a�
√
t− 1− δ�]

≤ P0
[�B1� ≥ a�1+ δ�

]+P0
[�B1� ≥ a

]
P0

[�Bt−1� ≥ aδ
]
�

Using part (i) again, one easily verifies from the previous bound that the
quantity P0��B1� ≥ a� �Bt� ≥ a

√
t � is small in comparison of ad−2 exp�−a2/2�
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when a is large. Thus there exists a positive constant c2 such that for a ≥ 1
and t ∈ �3/2�2�,

P0
[�B1� ≤ a� �Bt� ≥ a

√
t
] ≥ c2 ad−2 exp

(
−a

2

2

)
�

We get (11) by integrating the last bound with respect to t ∈ �3/2�2�. To
complete the proof we need to bound Es�y�

∫ 2
s 1��Bt�≥a

√
t� dt� for s ∈ �1�2� and

y ∈ R
d such that �y� = a√s. We have

Es�y

[∫ 2

s
1��Bt�≥a

√
t� dt

]
≤

∫ 2−s

0
P0

[�Bu� ≥ a(√u+ s−√
s
)]
du

≤
∫ 1

0
P0

[
�B1� ≥ a

√
u+ s−√

s√
u

]
du

≤
∫ 1

0
P0

[�B1� ≥ a
√
u/4

]
du

≤ c3
a2
�

(12)

for a certain finite constant c3. The third inequality uses the elementary bound√
u+ s−√s ≥ u/4 for u ∈ �0�1� and s ∈ �1�2�, and the fourth one follows from

part (i) by straightforward calculations. By combining (10), (11) and (12) we
arrive at

P0

[
sup

1≤t≤2

�Bt�√
t
≥ a

]
= P0�τa ≤ 2� ≥ α2a

d exp
(
−a

2

2

)
�

with α2 = c1/c3. This completes the proof of Lemma 3. ✷

Remark. Lemma 3(ii) can be used to give a simple proof of the classical
Kolmogorov test for Brownian motion. The upper bound of Lemma 3(ii) imme-
diately gives one half of the test. The other half can then be derived by slightly
more complicated arguments using the lower bound and a refined version of
the Borel–Cantelli lemma.

We will now establish an estimate analogous to Lemma 3(ii) for the Brown-
ian snake under its excursion measure. Recall thatM = sups≥0 ζs denotes the
maximum of the lifetime process. For every t > 0, we set

ρt = sup
{�y�� y ∈ suppXt

}
�

if Xt �= 0, and ρt = 0 if Xt = 0.

Lemma 4. There exist two positive constants α3 and β3 such that for every
a ≥ 1,

α3a
d+2 exp

(
−a

2

2

)
≤ N0

[
sup

1≤t≤2

ρt√
t
≥ a� 1 ≤M< 4

]

≤ N0

[
sup

1≤t≤2

ρt√
t
≥ a

]
≤ β3a

d+2 exp
(
−a

2

2

)
�
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Proof. It clearly suffices to treat the case a ≥ 4, which we assume
throughout the proof. We first establish the upper bound. Let us consider the
domain * in R+ × R

d whose complement is given by

*c = {�t� y� ∈ R+ × R
d� 1 ≤ t ≤ 2� �y� ≥ a√t }�

By (5) applied with u = 1, v = 2, we have{
sup

1≤t≤2

ρt√
t
≥ a

}
= {

� ∩ *c �= �
}
� N0 a.e.(13)

Recalling the notation of Section 2, set u�r� x� = Nx�� ∩*cr �= �� for �r� x� ∈ *.
In particular, u vanishes on �2�∞�×R

d. Furthermore, u solves the parabolic
equation (6) in *. Let b ∈ �a/2� a� to be fixed later and let *b be the domain in
R
d such that

*cb =
{�t� y� ∈ R+ × R

d� 0 ≤ t ≤ 1� �y� ≥ b}
∪ {�t� y� ∈ R+ × R

d� 1 ≤ t ≤ 2� �y� ≥ b√t }�
and set τb = inf�t ≥ 0� �t�Bt� /∈ *b�. Clearly, u is bounded on *b. Itô’s formula
then shows that the process

u
(
r ∧ τb� Br∧τb

)
exp

(
−2

∫ r∧τb
0
u�s�Bs�ds

)

is a bounded martingale. By applying the optional stopping theorem, we get

u�0�0� = E0

[
1�τb<∞� u�τb�Bτb� exp

(
−2

∫ τb
0
u�s�Bs�ds

)]

≤ E0
[
1�τb<∞� u�τb�Bτb�

]
�

(14)

We can easily bound u�τb�Bτb�. First, if 1 ≤ r ≤ 2 and �x� = b√r,
u�r� x� = Nr� x

[
� ∩ *c �= �

] ≤ N0
[
� ∩B(0� �a− b�√r )c �= �

] ≤ A �a− b�−2

by (4). If 0 ≤ r ≤ 1 and �x� = b, a similar argument gives the same bound
u�r� x� ≤ A �a− b�−2. Furthermore, a direct application of Lemma 3 gives

P0�τb <∞� ≤ P0

[
sup

0≤t≤1
�Bt� ≥ b

]
+P0

[
sup

1≤t≤2

�Bt�√
t
≥ b

]
≤ �β1+β2�bd exp

(
−b

2

2

)
�

By substituting the previous bounds in (14), we arrive at

N0

[
sup

1≤t≤2

ρt√
t
≥ a

]
= u�0�0� ≤ A�β1 + β2� �a− b�−2bd exp

(
−b

2

2

)
�

and the proof of the upper bound of Lemma 4 is completed by taking b =
a− a−1.

We now turn to the proof of the lower bound. We consider again the domain
* introduced in the first part of the proof and set τ = inf�t ≥ 0� �t�Bt� /∈ *�.
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Recall that X* denotes the exit measure from *. Since the support of X* is
N0 a.e. contained in � ∩ *c, we deduce from (13) that

N0

[
sup

1≤t≤2

ρt√
t
≥ a� 1 ≤M< 4

]
≥ N0�X* �= 0�1 ≤M< 4�

≥ �N0��X*�1� 1�1≤M<4���2
N0��X*�1�2� �

(15)

by the Cauchy–Schwarz inequality.
We first derive a lower bound on N0��X*�1� 1�1≤M<4��. As in Section 2,

denote by L* the exit local time from *. Thus, L*σ = �X*�1�, and L*s increases
only when Ŵs ∈ ∂*, which implies 1 ≤ ζs ≤ 2. Using the strong Markov
property under N0 (see [13]) to replace 1�supr≥s ζr < 4� by its predictable
projection, and then the invariance of N0 under time-reversal, we get

N0
[�X*�1� 1�1≤M<4�

] = N0

[∫ σ
0
dL*s 1�1≤M<4�

]

= N0

[∫ σ
0
dL*s 1

{
sup

0≤r≤s
ζr < 4

}
P
∗
Ws
�M< 4�

]

= N0

[∫ σ
0
dL*s 1

{
sup
s≤r≤σ

ζr < 4
}

P
∗
Ws
�M< 4�

]

= N0

[∫ σ
0
dL*s

(
P
∗
Ws
�M< 4�)2

]
�

From the properties of the lifetime process, P
∗
Ws
�M< 4� = �4−ζs�/4 ≥ 1/2� dL*s

a.e. Then, by the first moment formula for the exit measure and Lemma 3(ii),
we get

N0
[�X*�1� 1�1≤M<4�

] ≥ 1
4

N0
[
L*σ

] = 1
4
P0

[
sup

1≤t≤2

�Bt�√
t
≥ a

]

≥ α2

4
ad exp

(
−a

2

2

)
�

(16)

In view of (15) and (16), the proof of Lemma 4 will be complete if we can
verify the existence of a constant c4 independent of a such that

N0
[�X*�1�2] ≤ c4 ad−2 exp

(
−a

2

2

)
�(17)

The proof of (17) relies on the explicit formula for the second moment of X*:

1
4

N0
[�X*�1�2] = E0

[∫ τ
0
du�Pu�Bu�τ ≤ 2��2

]

≤ E0

[∫ 1

0
du�Pu�Bu�τ ≤ 2��2

]

+E0

[∫ 2

1
du1�Bu�<a

√
u �Pu�Bu�τ ≤ 2��2

]
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≤ c5
[∫ 1

0
du

∫ ∞

0
dρρd−1u−d/2 exp

(
− ρ

2

2u

)
�Pu�ρ�τ ≤ 2��2

+
∫ 2

1
du

∫ a√u
0
dρρd−1u−d/2 exp

(
− ρ

2

2u

)
�Pu�ρ�τ ≤ 2��2

]

= c5 ad
[∫ 1

0
du

∫ ∞

1
drrd−1 exp

(
−r

2a2

2

)(
Pu�ar

√
u�τ ≤ 2�)2

+
∫ 1/3

0
du

∫ 1

0
drrd−1 exp

(
−r

2a2

2

)(
Pu�ar

√
u�τ ≤ 2�)2

+
∫ 2

1/3
du

∫ 1

0
drrd−1 exp

(
−r

2a2

2

)(
Pu�ar

√
u�τ ≤ 2�)2

]

= c5 ad �I1 + I2 + I3��

where c5 is a finite constant independent of a, and we slightly abused notation
by writing Pu�ρ�τ ≤ 2� rather than Pu�y�τ ≤ 2� when �y� = ρ. We will now deal
separately with the integrals I1, I2 and I3. In what follows, c6� c7� � � � denote
positive constants independent of a.

Upper bound on I1. We have

I1 =
∫ 1

0
du

∫ ∞

1
drrd−1 exp

(
−r

2a2

2

)(
Pu�ar

√
u�τ ≤ 2�)2

≤
∫ ∞

1
drrd−1 exp

(
−r

2a2

2

)
≤ c6 a−2 exp

(
−a

2

2

)
�

Upper bound on I2. First observe that

I2 =
∫ 1/3

0
du

∫ 1

0
drrd−1 exp

(
−r

2a2

2

)(
Pu�ar

√
u�τ ≤ 2�)2

≤
∫ 1/3

0
du

∫ 1

0
drrd−1 exp

(
−r

2a2

2

)(
P0

[
sup

1−u≤t≤2−u

�Bt� + ar
√
u√

t+ u ≥ a
])2

≤
∫ 1/3

0
du

∫ 1

0
drrd−1 exp

(
−r

2a2

2

)(
P0

[
sup

1−u≤t≤2−u

�Bt�√
t+ u ≥

(
1− r√

3

)
a

])2

≤ 1
3

∫ 1

0
drrd−1 exp

(
−r

2a2

2

)(
P0

[
sup

2/3≤t≤2

�Bt�√
t
≥

(
1− r√

3

)
a

])2

�

Then using Lemma 3(ii), we have for every r ∈ �0�1�,

P0

[
sup

2/3≤t≤2

�Bt�√
t
≥

(
1− r√

3

)
a

]
≤ 2β2

((
1− r√

3

)
a

)d
exp

(
−1

2

(
1− r√

3

)2

a2
)
�
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It follows that

I2 ≤ �4β2
2/3�a2d

∫ 1

0
dr exp

(
−
(

1− 2√
3
r+ 5

6
r2
)
a2

)

≤ �4β2
2/3�a2d exp

(
−3

5
a2

)

≤ c7 a−2 exp
(
−a

2

2

)
�

Upper bound on I3. This is the hardest part of the proof. First note that

I3 =
∫ 2

1/3
du

∫ 1

0
drrd−1 exp

(
−r

2a2

2

)(
Pu�ar

√
u

[
sup

1≤t≤2

�Bt�√
t
≥ a

])2

≤
∫ 2

1/3
du

∫ 1

0
drrd−1 exp

(
−r

2a2

2

)(
P0

[
sup
t≤2−u

�Bt� + ar
√
u√

t+ u ≥ a
])2

=
∫ 2

1/3
du

∫ 1

0
drrd−1 exp

(
−r

2a2

2

)(
P0

[
sup

t≤�2−u�/u

�Bt� + ar√
t+ 1

≥ a
])2

≤ 5
3

∫ 1

0
drrd−1 exp

(
−r

2a2

2

)(
P0

[
sup
t≤5

�Bt� + ar√
t+ 1

≥ a
])2

�

We then verify that there exists a constant c8 such that, if r ∈ �0�1− 2a−2�,
then

P0

[
sup
t≤5

�Bt� + ar√
t+ 1

≥ a
]
≤ c8

(
a
√

1− r2
)d exp

(
−1

2
a2�1− r2�

)
�(18)

To derive this bound, we use a method similar to the proof of Lemma 3(ii).
We fix r ∈ �0�1− 2a−2�. By applying the strong Markov property at inf�t ≥ 0�
�Bt� + ar ≥ a

√
t+ 1 �, we get∫ 6

0
dtP0

[�Bt� ≥ a(√t+ 1− r)]

≥ P0

[
sup
t≤5

�Bt� + ar√
t+ 1

≥ a
]

inf
0≤s≤5

�y�=a�√s+1−r�

Es�y

[∫ 6

s
dt1�Bt�>a�

√
t+1−r�

]
�

(19)

We first get a lower bound on the second term of the right-hand side of (19).
With the notation of the proof of Lemma 3, we have, if s ∈ �0�5� and �y� =
a�√s+ 1− r�,∫ 6

s
dtPs�y

[�Bt� ≥ a(√t+ 1− r)]

≥
∫ 6

s
dtP

�1�
0

[
B
�1�
t−s ≥ a

(√
t+ 1−

√
s+ 1

)]

≥
∫ 1

0
duP

�1�
0

[
B
�1�
1 ≥ a

√
u+ s+ 1−√

s+ 1√
u

]

≥ c9
a2
�

(20)

where the last bound is obtained by considering values u ∈ �0� a−2�.
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We then look for an upper bound on the left-hand side of (19). Note that
the function t �→ �√t+ 1− r�/√t attains its minimum at t0 = r−2−1 and that
this minimum is

√
1− r2. Using Lemma 3(i), we get

∫ 16t0∧6

0
dtP0

[
�B1� ≥ a

√
t+ 1− r√
t

]

≤ �16t0 ∧ 6�P0
[�B1� ≥ a

√
1− r2

]

≤ �16t0 ∧ 6�β1�a2�1− r2���d−2�/2 exp
(
−1

2
a2�1− r2�

)

≤ c10 a
−2 �a2�1− r2��d/2 exp

(
−1

2
a2�1− r2�

)
�

where in the last line we used the easy bound 16t0∧6 ≤ 22�1−r2�. It remains to
bound the integral over �16t0∧6�6�. Note that, for t ∈ �0�6�, �√t+ 1−r�/√t ≥√
t/4. Also observe that our assumption r ≤ 1 − 2a−2 implies t0 ≥ 2a−2, and

thus under the condition t ≥ 16 t0 we have a
√
t/4 ≥ 1. It then follows from

Lemma 3(i) and the previous remarks that
∫ 6

16t0∧6
dtP0

[
�B1� ≥ a

√
t+ 1− r√
t

]
≤

∫ 6

16t0∧6
dtP0

[
�B1� ≥ a

√
t

4

]

≤ 42−dβ1

∫ 6

16t0∧6
dt

(
a
√
t
)d−2 exp

(
−a

2t

32

)

≤ 42−dβ1 a
−2

∫ ∞

16t0a2
duu�d−2�/2 exp

(
− u

32

)

≤ c11 a
−2 �a2t0��d−2�/2 exp

(
−a

2t0
2

)

≤ c12 a
−2 �a2�1− r2��d/2 exp

(
−1

2
a2�1− r2�

)
�

using the bound t0 ≥ 1− r2 ≥ 2a−2. Combining the previous estimates gives
∫ 6

0
dtP0

[�Bt� ≥ a(√t+ 1− r)]

≤ �c10 + c12�a−2 �a2�1− r2��d/2 exp
(− 1

2 a
2�1− r2�)�

(21)

By substituting (20) and (21) in (19), we arrive at the bound (18) with c8 =
�c9�−1�c10 + c12�. From (18), we get

I3 ≤
5
3

∫ 1

0
drrd−1 exp

(
−r

2a2

2

)(
P0

[
sup
t≤5

�Bt� + ar√
t+ 1

≥ a
])2

≤ 5
3

∫ 1

1−2a−2
drrd−1 exp

(
−r

2a2

2

)

+ 5
3
c28 exp

(
−a

2

2

) ∫ 1−2a−2

0
dr �a2�1− r2��d exp

(
−a

2

2
�1− r2�

)
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≤ 10
3
e2 a−2 exp

(
−a

2

2

)
+ 5

3
c28 exp

(
−a

2

2

)(∫ 1/2

0
dra2d exp

(
−3a2

8

)

+ a−2
∫ ∞

1
duud exp

(
−u

2

2

))

≤ c13 a
−2 exp

(
−a

2

2

)
�

The bound (17) now follows from the previous estimates on the integrals
I1� I2 and I3. This completes the proof of Lemma 4. ✷

4. Proof of the main result. In this section, we prove Theorem 1. With-
out loss of generality, we may assume that h�t� ≥ 1 for every t ≥ 0. We first
assume that ∫

0+
dt

t2
h�t�d+2 exp

(
−h�t�

2

2

)
<∞�

which implies
∞∑
n=0

2n h�2−n+1�d+2 exp
(
−h�2

−n+1�2
2

)
<∞�(22)

By the results recalled in Section 2, we may assume that Y = �Yt� t ≥ 0� is
given by Y0 = δ0 and for t > 0,

Yt =
∫
� �dω�Xt�ω�

where � is a Poisson point measure with intensity N0. In particular,

Rt = sup
{
ρt�ω�� ω ∈ supp�

}
�(23)

Then, for every integer n ≥ 0, let En be the subset of C�R+��0� defined by

En =
{
ω� sup

2−n≤t≤2−n+1

5t�ω�√
t

≥ h�2−n+1�
}
�

Similarly, let An be the event

An =
{

sup
2−n≤t≤2−n+1

Rt√
t
≥ h�2−n+1�

}
�

From (23) and the fact that only finitely many atoms of � contribute to
�Yt� t ≥ 2−n�, it is obvious that An = �� �En� ≥ 1�. Hence,

∞∑
n=0

P�An� =
∞∑
n=0

�1− exp�−N0�En��� ≤
∞∑
n=0

N0�En��

Using the scaling properties of N0, and then Lemma 4, we have

N0�En� = 2n N0

[
sup

1≤t≤2

ρt√
t
≥ h�2−n+1�

]
≤ β3 2n h�2−n+1�d+2 exp

(
−h�2

−n+1�2
2

)
�

From (22), we then obtain that the series
∑
P�An� is convergent. By the Borel–

Cantelli lemma, there exists with probability 1 an integer n0 such that for
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every n ≥ n0,

sup
2−n≤t≤2−n+1

Rt√
t
< h�2−n+1��

Then if t ∈ �0�2−n0�, we can find an integer n ≥ n0 such that 2−n ≤ t ≤ 2−n+1,
and it follows that

Rt√
t
≤ sup

2−n≤s≤2−n+1

Rs√
s
< h�2−n+1� ≤ h�t��

which completes the first part of the proof.
Conversely, suppose now that

∫
0+
dt

t2
h�t�d+2 exp

(
−h�t�

2

2

)
= ∞�

which implies
∞∑
n=0

22n h�2−2n�d+2 exp
(
−h�2

−2n�2
2

)
= ∞�(24)

We can easily find another function h′, satisfying the same assumptions as h,
such that h′�t� > h�t� for every t > 0, and (24) still holds when h is replaced
by h′. We then argue in a way similar to the first part. We define for every
n ≥ 0,

Ẽn =
{
ω� 2−2n ≤M�ω� < 2−2n+2� sup

2−2n≤t≤2−2n+1

ρt�ω�√
t

≥ h′�2−2n�
}
�

and Ãn = �� �Ẽn� ≥ 1�. We have P�Ãn� = 1− exp�−N0�Ẽn��. By scaling and
Lemma 4,

N0�Ẽn� = 22n
N0

[
1 ≤M< 4� sup

1≤t≤2

ρt√
t
≥ h′�2−2n�

]

≥ α3 22n h′�2−2n�d+2 exp
(
−h

′�2−2n�2
2

)
�

By (24) (with h replaced by h′), the last bound implies that the series
∑

N0�Ẽn�
is divergent, and thus the same holds for the series

∑
P�Ãn�. However, since

the sets Ẽn are disjoint, the events Ãn are independent, by standard proper-
ties of Poisson measures. Therefore, again by the Borel–Cantelli lemma, we
obtain that P�lim sup Ãn� = 1. Using (23), we conclude that there exists with
probability 1 a sequence nk ↑ ∞ such that, for every k ≥ 0,

sup
2−2nk≤t≤2−2nk+1

Rt√
t
≥ h′�2−2nk� > h�2−2nk��

In particular, for every k ≥ 0, there exists a real tk ∈ �2−2nk�2−2nk+1� such that

Rtk√
tk
> h�2−2nk� ≥ h�tk��

This completes the proof of Theorem 1. ✷
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Remark. It would be of interest to get an integral test analogous to The-
orem 1 for the behavior of ρt under N0, as t goes to 0. In the setting of super-
Brownian motion, this means that we consider only the displacements of the
descendants of a single individual at time 0. We conjecture that the condition

∫
0+
dt

t
h�t�d+2 exp

(
−h�t�

2

2

)
<∞

is necessary and sufficient to ensure that N0 a.e., ρt ≤
√
th�t� for t small. The

main difficulty here is to adapt the second half of the proof of Theorem 1, as we
can no longer use the Poisson decomposition to get the desired independence.
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Boston.

[14] Le Gall, J. F. (1995). The Brownian snake and solutions of �u = u2 in a domain. Probab.
Theory Related Fields 102 393–432.

[15] Le Gall, J. F. and Perkins, E. A. (1995). The Hausdorff measure of the support of two-
dimensional super-Brownian motion. Ann. Probab. 23 1719–1747.

[16] Tribe, R. (1989) Path properties of superprocesses. Ph.D. dissertation, Univ. British
Columbia.
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