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ASYMPTOTIC DISTRIBUTION OF QUADRATIC FORMS

By F. Gotze! AND A. N. TIKHOMIROV!-2

University of Bielefeld and Syktyvkar State University and
Russian Academy of Sciences

We consider quadratic forms

Q.= Y apXX,,
l<j#k<n
where X are ii.d. random variables with finite third moment. We obtain

optimal bounds for the Kolmogorov distance between the distribution of
@, and the distribution of the same quadratic forms with X replaced by
corresponding Gaussian random variables. These bounds are applied to
Toeplitz and random matrices as well as to nonstationary AR(1) processes.

1. Introduction and results. Let X, X,,... denote independent ran-
dom variables (r.v.) such that EX; =0 and EX? =1, j=1,2,... . Let A=
A" ={a,;}",., denote a symmetric matrix with eigenvalues A,,..., A,
ordered to be nonincreasing in absolute value. Throughout we shall assume
that

n n
(1.1) Yoar,= LA =1
J k=1 j=1

Consider the quadratic forms (q.f)

n n
Q, = Z anijij and G, = Z anjijYk’
J, k=1 Jk=1

where Y,,Y,,... are orthonormal Gaussian r.v.’s.

There exists an extensive literature on different probability problems for
quadratic forms. One of the most important problems is the investigation of
the asymptotic of distributions of quadratic forms G, and @,. Sevastyanov
(1961) described the class of distributions which are limits of G, as n — .
Whittle (1960, 1964) obtained inequalities for moments of @, similar to the
Rosenthal inequalities for sums of independent r.v.’s and proved a central
limit theorem (CLT) under the additional condition that the matrices A™
have a special quasi-diagonal structure. Varberg (1966) obtained conditions of
convergence of @, in quadratic mean and almost surely and investigated
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weak convergence of G,, too. There are a number of papers on the conver-
gence of quadratic forms @, and especially of G, to various limit distribu-
tions. See, for example, de Jong (1987) (CLT for quadratic forms), Fox and
Taqqu (1987) (limit theorems for quadratic forms G, of Gaussian r.v.’s with
long-range dependence), Mikosch (1990, 1991) (functional CLT for quadratic
forms, law of iterated logarithm). Venter and de Wet (1973) gave conditions
under which the distribution of a quadratic form @, converges to that of
¥, 2, (Y2 — 1), where {«a,,} is a sequence of real numbers.

Rotar’ (1973) proved that under sufficiently weak conditions on the matrix
A and for large n, the distribution of @, is close to the distribution of G,.
Gamkrelidze and Rotar’ (1977) obtained bounds for the error of this approxi-
mation, which were improved by Rotar’ and Shervashidze (1985). Below we
formulate their result. We shall use the following notation:

F(x)=P{X;<x}, ®(x)= %f_xmexp{—uQ/Z} du,

o n
v =3[ #F(x) - ®(x)|dx, 5P L aly,
— k=1
n n 3 n
L= Zl Vjs‘;(jl + kz Vij|anjk, s A= Z /\‘rllj
fu -

Jik=1

.
Il
-

Here and in what follows we shall consider matrices A with zero diagonal
only; that is, a,,;; =0 for 1 <j < n.

THEOREM [Rotar’ and Shervashidze (1985)]. Let A < 1/2. Then

sup |P{Q, <x} — P{G, <x}| < C(1 — log(1 — 24))*/*LV/*,
where C is an absolute constant.

The aim of our paper is to improve this bound for independent identically
distributed (i.i.d) rv’s X, X,,..., X, under various assumptions on the
spectra of the matrices A. We apply these results in particular to investigate
the rate of convergence of the distributions of @, to Gaussian distributions.

Write

8,(A,F) = sup |P{Q, <x} — P{G, < x}|,

and

A,(A,F) = sup|P{Q,/yVar(Q,) <z} - ¥(x)|,
X

where F is the distribution function (d.f.) F(x) = P{X, < «x}, Var(Q,) denotes

the variance of @,, and A is the symmetric matrix of coefficients of ,. We

shall assume that the matrices A = A" satisfy the same conditions as in the
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paper of Rotar’ and Shervashidze (1985). That is, we assume (1.1) and

(1.2) a,;; =0, Jj=1,...,n

Then we have Var(Q,) = 2. Throughout the paper we shall suppose that
X, X;, X,,... areiid. and

(1.3) EX=0, EX?=1, pB;=EX]’<w.

By C (with an index or without it), we shall denote absolute constants,
whereas C(:, - ) will denote positive constants depending on arguments.

THEOREM 1. Assume the conditions (1.1)—(1.3) hold. Then there exists an
absolute constant C such that

max{5,(A, F),A,(A, F)} < CBZIA,l.

Write
n n
Z?= max ) ai; and T,= max ) la,;l.
1<j<n _4 l<j<n p_4
It is well known that
’Z‘L < I)tnll < Fn

[see, for example, Lancaster (1969), pages 208—-215]. Theorem 1 immediately
implies the following result.

COROLLARY 2. Assume that the conditions (1.1)-(1.3) hold. Then there
exist absolute positive constants C, such that

max{$,(A, F),A,(A, F)} < C, B2T,.
For x > 0 define the function log*x = max{3, |log x}.

THEOREM 3. Assume that the conditions (1.1)—(1.3) hold and that there
exists a positive constant b, such that for some q > 2,

(1.4) Al = by.
Then there exists a constant C(b,) such that
ZyA6-0) - gf 9 < g < 11,
8,(A, F) < C(bo) B3 { %, log"%,, ifq =12,
Z, ifq =13.

Note that, if ., > e !/%, the results of Theorem 3 are trivial. We shall
assume that %, < e /2, and therefore, log* %, = —log .%,.

REMARK 1. Note that the bounds in Theorem 1 have an optimal depen-

dence on A,; and on .%,, respectively. Indeed, consider the following q.f.:
n

Q, = n~1/? Z Xor-1Xop-
k=1
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Here [A,;| = 1/ Vn ,and if X ;= +1lare ii.d. Rademacher r.v., then
min{8,(A,F),A,(A,F)} = C/Vn = ClA,l.

REMARK 2. Note for comparison that the best available result so far (by
Rotar’) yields

A (A,F) < CgV4,

The remaining part of the paper is divided into Sections 2—-6. Section 2
presents the applications of Theorems 1 and 3 for Toeplitz matrices, random
matrices and nearly nonstationary autoregressive processes of order one.
Sections 3-6 are devoted to the proofs of Theorems 1 and 3. Section 3
provides estimates of characteristic functions using a symmetrization in-
equality due to Gotze (1979). In Section 4 we investigate spectral proper-
ties of some special type of submatrices of the matrix A, which we need for
the proof of Theorems 1 and 3 in Section 6. Section 5 presents bounds for
distributions of randomized linear forms appearing in Lemma 3.2. Finally,
the proofs of Theorems 1 and 3 are given in Section 6.

2. Applications.

Toeplitz matrices. Let by, by,... be a sequence of real numbers such that
b, = 0. Assume
(2.1) B= ) b’ <o,
j=1

Introduce the quantity D} = Y7_,(n — j)b?, and define the matrix A with
elements

1
(2.2) @ = T byj-ur
Whittle (1964) proved that §,(A, F) — 0, as n — ». We prove the following
sharpening of his result.

ProPOSITION 2.1. Assume (2.1) holds. Then there exists an absolute con-
stant C such that

8,(A,F) < CByn /% Y |b).

j=1
Proor. From Corollary 2 it follows that
(2.3) 8(A,F) < CBIT,.
By (2.2)
=5
(2.4) I, <— )15l
Dn Jj=1 !
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Without loss of generality we may assume that ;. , bj2 < B/2. Then it is
easy to check that

(2.5) D? > Bn/4.
The inequalities (2.3)—(2.5) together prove Proposition 2.1. O
Random matrices. Let B = (b;,) denote a symmetric n X n matrix such

that the entries for £ > j are independent r.v.’s which are independent of
X, X,,... . Assume that there exists a constant C, such that

(26) |bjk| < Co, Ebjk = 0, and EbJQk = 0'2 fOI‘j > k.

Denote by D, the quantity D} =2%,_;.,.,b5. Let A=B/D,. Then we
have the following result.

PROPOSITION 2.2.  Assume (2.6) holds. Then
P{sup|P(Q, < x| 4, > k) — PG, <]y, > k)| < CpIn 2} > 1,
san o
Proor. By Theorem 1 we have
(2.7) sgp|P{Qn <x|ay,j> k) —P{G, <x|ay,j> k)| < CB2IAL

By Theorem 2 of Fiiredi and Komlos (1980),

(2.8) P{In| < Cn'/?/D,} - 1,

as n — o, It is easy to check that

(29)  ED?=n(n-1)¢?  E(D:-ED?2)’ <n(n-1)Ci.
By (2.9),

(2.10) P{D, > Cn} < Cn™2.

The inequalities (2.7), (2.8), and (2.10) together complete the proof. O

Nearly nonstationary AR(1) processes. Assume that Z(n), j=1,...,n,

n=12,... is a first order autoregressive process with unknown parameter
p,=1— «a,/n, where o, > 0,

Here X, X,,... are iid. r.v.’s satisfying condition (1.3). The least-squares
estimate of the parameter p, based on the observations Z,(n),...,Z,(n) is
given by

(2.12) Pn = i‘, Zj(n)Zjﬂl(n)( f‘. Zf_l(n)) :
J=1 k=1
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It follows from (2.11) and (2.12) that
n J—1

Wn = ( ﬁn - pn) Z Zkz—l(n) = Z Z pr{_kaXk'
k=1

j=1k=1

Such process are for instance described in Chan and Wei (1987) and
Rachkauskas (1996). It is well known that, if «, — o« for n — =,

5, = sup|P{W,//Var(W,) <x} - ()| >0,
as n — o, Our results yield the following rates of convergence.

PROPOSITION 2.3. Assume that (1.3) holds. Then there exists an absolute
constant C such that

8, = sup’P{Wn/‘/Var{Wn < x} - <I>(x)| < CBia, /2.

ProOF. We can represent the statistic W, / /Var(W,) in the form of a q.f.
®, with matrix A defined by

I—k
py~*!

4T 9 Nar(W,)

By Theorem 1 we have §, < CB,lAl. It is easy to see that

(2.13)

n Coonpy pe(1= ")
Var(W,) = X (n —Jj)py = - :
j=1 L=pl  (1-p2)

A simple calculation yields
(2.14) Cin’%;t < Var(W,) < Cyn’a;,t.
From (2.14) we derive
n
(2.15) [, <Cntal?Y pi <Ca,'?
j=1

Corollary 2 and inequality (2.15) together complete the proof. O

Consider now the case
(2.16) a, > a>0, n — o,

In this case we obtain the following result.

PROPOSITION 2.4. Assume that (1.3) and (2.16) hold. Then there exists a
constant C(a) such that
sup |P{W, <x} — P{G, <x}| < C(a)Bin"'?,
xeR!

where G, is the q.f. of Gaussian r.v.’s and the matrix A is defined in (2.13).
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ProoF. Using (2.16) we obtain that

2.17 Z? < <Cn %
It finally remains to check the condition (1.4) and to apply Theorem 3. It is
not difficult to prove that the spectrum of the matrix A satisfies, for any
q=1,
2a 2a

(2.18) Ua+772(q+1/2) lin m |A,(n)] < v,

b
“a? + 77'2q2

where v, = (4a?/(exp{—2a} — 1 + 2a))"/% Combining Theorem 3, relations
(2.17) and (2.18), we obtain the result of Proposition 2.4. O

3. The method of symmetrization. Let X denote a copy of the r.v. X
which is independent of all other r.v.’s. Throughout, X denote a symmetriza-
tion of X, that is, X = X — X. By N we denote the set of integer numbers
{1,...,n}. Let € = (&y,..., &,) be a random vector with zero—one coordinates,
which is independent of X;,..., X,. Write 2= (X,,..., X,) and & = (0,...,
0, X,,0,..., 0), € N.By (-,-) and || - || we shall denote the Euclidean scalar
product and the Euclidean norm, respectively. For simplicity of notation, the
index n will be omitted. In this notation we have @ = (A2, %) and f(¢) =
E exp{it@}.

There is an extensive literature on the distribution of quadratic forms of
the type R =1Z, + - +an|2 where Z;, J € N, denotes a sequence of i.i.d.
random vectors with values in R?, assuming nondegenerate covariance opera-
tors and finite third absolute moments. Here the error of approximation in
replacing Z; by Gaussian random vectors is of order n~1/2 and depends on
the smallest eigenvalue of the covariance of Z;. The first result of this type is
due to Gotze (1979). The crucial step of the proofs is an estimate of the
characteristic function (ch.f) of R using a symmetrization inequality reduc-
ing the quadratic form to a conditional linear form [see Gotze (1979)]. In our
case this procedure yields the following result.

LEMMA 3.1. For all t € R, we have

(3.1) ()" < Eexp{2it Y aje(l- gk)Xij}.
J,kEN

PROOF. Assume that U,V,V,,V, € R"* are independent random vectors
such that V,V,,V, are iid. Let h(u,v) denote an arbitrary measurable
real-valued function defined on R"” X R”. Then

(3.2) |E exp{ith(U,V)}| < Eexp{itA,(V; — V,)h(U,V,)},

where the difference operator A,(s)h(u,v) = h(u,v + s) — h(u,v) acts on the
second variable of 4. Indeed, applying Hoélder’s inequality and using that
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V,V,,V, are ii.d., we have
|E exp(ith(U, V)}| < E|E(exp{ith(U, V)}IU)|*
= Eexp{ith(U, V) }exp{—ith(U,V,)},

which coincides with (3.2) [cf. Gotze (1984)]. For the proof of (3.1) we fix € and
apply the inequality (3.2) twice with

(3.3) U=(&X,,..., 8an), V= ((1 — el)Xl,...,(l — an)Xn)
and A(U,V) = (AU + V),(I + V)). Note that
A1(U1 - U2)A2(V1 - V2)h(U2’V2) = 2<A(U1 - U2)>(V1 - V2)>’

where the difference operator A; acts on the first arguments of A. This
obviously yields the result. O

Denote by X the truncation of X, that is,
XM = X1{|X| < H},
where I{ B} denotes the indicator of an event B. Introduce the notation
oX(H) =EB(X™)",  p(H)=EX™D)"
LEMMA 3.2. Let &4,..., &, denote i.i.d. Bernoulli r.v.’s with
P{e, =1} =1 - P{e; = 0} = p.

Then, forall t = 0, K > 0

A0 < Bowp{3i(t A 1o (H) £ _anen(1 = o)1)

Jj,keN
+ I{t] > vz 1
3.4
(3-4) + P{max Yoau(l—¢g)Y |2 Ki”log*f/}
keN jEeN
+P{max Y ajksk}z,gH)’>K£Z},
JEN IpeN

where
Ty = vZ '(log"2) ",
t ATy =min{¢t,T,} and vy= U(H)/(2K wy(H) )
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The corresponding estimates for negative ¢ is similar since |f(¢)| = |f(—¢)l.

Proor. By Lemma 3.1
lF(H)]* < Eexp{2it Y, aje(l— gj)Xij}.
Jj,keN
Since X has a symmetric distribution and
E cos(aX)I{|X| = H} < Ecos(a - 0)I{|X| > H},
it is easily seen that
(3.5) lF(H)]* < Eexp{2it Y aje(l— gk)X}mX,gH)}.
j kEN
With U,V defined by (3.3) write

~

U=(1Xy,...,6X,), V=(1-e)X,....,(1-¢,)X,).

Write
Sj(e) = Z ajkglegH).
keN
Since the coordinates of V are conditionally independent given &, ..., g, and
U, we have
4 . >

(3.6) LF)I* < EjIE—LE(exp{ZLt(l — &) X8, (e) }|s,(e) ).
Note that

. ; <K%
(3.7) max|S;(e)| < K2,
implies

]E(exp{2it(1 - aj)Xj(H)Sj(e)>|Sj(e))|
t2

(3.8) <1- —2—(1 —&)o?(H)S}(e) +t*(1 — &)uy( H)S/ (&)

1
< max{I{t >y, exp{ - tho-Q(H)sz(e)(l - ej)}}.
The inequalities (3.6)—(3.8) together imply

|f(t)|4 < Eexp{%it(r(H) Y aj, e, (1 - ej)Y}X',gH)}
j keN

(3.9) + I{t > vz 1)
+ P<1}15a§(lsj(e)] > KZ}
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Repeating the arguments in (3.6)-(3.9) and replacing % in (3.7) by
(Zlog*™ &£), we obtain

A <Eexp{3i(t A T)o(H) T apan(l= o)V, )

J,keN
+ Ift > vz 1)
(3.10)
+ P{max 2 oau(l— ej)Y}‘ >K% logt‘Z}
keEN jeN
+ P<rj;éa}31(|8j(e)l > K7}, =

To investigate the ch.f. in a neighborhood of zero, we shall use Lemma 3.3
below, which is a generalization of Lemma 3.1 in Bentkus and Gotze (1996).
Let J,, J; denote an arbitrary partition of N and let ¢J;; denote an arbitrary
partition of oJ;, i = 0, 1, respectively. Introduce the corresponding vectors

(3.11) U=Y¢& U= Y &1=01,m=1,..,5.

JEJ; JE€EIim

Note that

5
%=U0+U1, l]l= Zl]lm’l=0’1'
m=1

LEMMA 3.3. Forany n € R™, t € R, we have

[E( An, 2 explit(An, 2) + itQ) |
< C max E?|(An,U,,)["

1<m’<5

><( max Eexp{2it<l70,A(j1 m>}
5 ,

l<m<

(3.12)

+ max Eexp{2it<A(j1k, U0m>})'

1<k,m<5

Proor. Write
E(An,2)° exp{it( An, &) + itQ,)
(3.13) = hM H(ay, ay1,..-, a1 5),

agtay tag ot +a1,5=3
where

H(ay, ay 1,...,0;5)

5
= E(An, U™ [] (An, U, )" exp{it(An,2) + itQ}.
m=1
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If @y = 0, there are at least two r.v’s, U, ;, U, ;, which are not involved in
the product used in the definition of the function H (ag, ..., a; 5). Arguing in
the same way as in the proof of Lemma 3.1 in Bentkus and Gétze (1996), we
obtain the estimate

|H(0’a1,1"' al 5)|< maX E|<An’l/}m>|

( 3.1 4) 1 < m < 5
X max EY? exp{2zt<AU0, Ulm>>
l<m<5

In the case a, # 0, we fix a set J; ,, which is not contained in the product
used in the definition of the function H(a,, @y 1,..., a; 5) (in this case we
have at least three similar sets). We represent UO as an 1Uo, - Raising
(An, U,) to the power «,, we get a similar sum as in equality (3. 13). For each
term in this equality there exist at least two sets J, ,, , J, ,,, which are not
involved in the product used in the definition of this term. In the same way as
in (3.14) for k£ = 1,2, 3, we obtain the estimate

|H(Z, Qp 15eees a,5)|<C ma)lc E|<A§k’l]l,m>|3

I/\ ||

[
(3.15) Lsm<h
X E'2 exp{2it(U, ,, AU
, max exp(2it(Uy,;, AT, )}

The conclusion of Lemma 3.3 follows immediately from the inequalities (3.14)
and (3.15). O

REMARK. The conclusions of Lemma 3.3 are still valid, if the partition J o
Jj=1,...,5, depends on Jy; for any fixed [ = 1,...,5.
Denote by g, ,(¢), [, m = 1,...,5 the functions

(3.16) 8, n(t) = Eexp(2it( AUy, U},
where Uy, and U,,, were defined in (3.11). Then

LEMMA 3.4. Foralll,m =1,...,5 and forall t = 0, K > 0, we have

g m(t) < Eexp{%ita(H) Y ajijYk}

jEJOl) kEJlm

+1I{t > v Y(log*2) '},

(3.17) {
+ P{ max
JE€Jdo

Z aijk

> K% log*ﬁZ}
ked,y,

+ P{ max
kedy,,

Y a, Y , >KY log*.‘Z},

JE€Jdy

where y = o(H)/QKy/ uy(H) ).
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PROOF. Similarly to (3.6) we get

gm(t) <E ] E(exp{Zit(l — &)X Y ajkgkX,gm}Wm).

J€Jo ked,

Using instead of (3.7) the inequality,

max
JEN

Y ape, ~,§H>‘ <KZlog"?,
keN
we obtain

E

exp{2it(1 - &)X Y ajkstéH)}‘Um)
ked,

<I{t > y7 Y(log*'%) ')

2
+ exp{—%tza-z(H)(l - ej)( > ajkst',gH)) }
keN
Repeating the arguments for Gaussian r.v.’s, we obtain the result of the
lemma. O

4. Spectral properties of submatrices. In order to estimate the
right-hand side of (3.4), we need lower bounds for sufficiently many eigenval-
ues of the matrix

AS = (aejk)j,keN With aejk = (81(1 - Sk) + Sk(l - Sj))ajk,

where € = (&4,..., &,) is a random vector with zero-one coordinates, which is
independent of X, ..., X,. Introduce the diagonal matrix & with &(j, j) = ;.
Then we have

(4.1) A, =ZA(I - &) + (I - &) AZ.

Define for any J C N the diagonal matrix &; with &,(j,j) = 1, if j € J and
0 otherwise. Let

(4.2) A, =&, Al - &) + (I - &) AZ,.

By A,(J), k € N, we denote the eigenvalues of the matrix A, ordered to be
nonincreasing in absolute value.

Unfortunately, our assumptions are expressed in terms of spectral proper-
ties of A. Hence we need to find a partition € (respectively, a subset JJ) such
that A, (respectively, A ;) satisfies all the necessary spectral conditions. To
this end we will investigate the spectral properties of A, and A; in Lemmas
3.1-3.3.

Let A?(R") denote the gth exterior product of R" endowed with the
Euclidean norm,

||x||2= Z xizl...i, X = Z xil"‘iqeil/\”./\ei’

. . q . .
1<i)< - <ig<n 1<i;< - <i,<n

where ey, ..., e, denotes the canonical basis of R™
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In what follows let A A B denote the exterior product of the matrices A
and B and let A*7=A A -+ A A (g times) denote the exterior power of A,
which maps AY(R"™) into itself. Let j" = (ji, jo,...,J,) denote a multiindex
such that 1 <j; < - <j, <n,r=1,2,...,q. The symbol A,  will denote
the minor of the matrix A with rows 1<j, < .-+ <j, <n and columns
1<k, < - <k, <n. Itis well known that the j?, k7 entry of A"?, say
AN(j9, k?) is given by Aj.. Furthermore, the eigenvalues of the matrix
A% are X, =TI{_;A;, and the eigenvalue with largest absolute value is
given by

q
(4.3) Mg = I:[lA,.
By X)), Ay (), A%, Ay, @ €N, we shall denote the corresponding

eigenvalues of the qth exterior power of the matrices A; and A, defined in
(4.1) and (4.2), respectively. Note that A*! =A and A"° =I.
Below we shall prove some results about the spectrum of the matrix A .

LEMMA 4.1. Assume that the conditions (1.1) and (1.2) hold. Then there
exist sets J, J, such that, for ¢ € N,

1
(4.4) |A,(J)| = 2—q|)\*q| - 1621{q + 1},
and
(4.5) X A(J) =3, [ (T)] < Il
keN

Let J, cJ C N. Denote by A;; and by A;; the matrices defined by

By A, (JeJ,), respectively, X,(JJ,), & € N, we denote the eigenvalues of these
matrices. Note that, in general, A;; +A,.

LEMMA 4.2. Assume that (1.1) and (1.2) are fulfilled. Then, for any J ¢ N
there exists a set J, such that J, CJ and

(4.6) min<|/\q(JJ1) ,

1
M(FTO)} 2 S [ Mg ()] = 199 Hg = 1},
and

(4.7) min{ Y (I, ¥ )\i(JJ{“))} > 1Y 2(J) - 2.9,
keN keN keN

where J{9 = J\ J,.

REMARK. The inequalities (4.6) and (4.7) are still valid if A (JJ,) is
replaced by X, (JJ,).
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LEMMA 4.3. Let &4,..., &, be i.i.d. Bernoulli r.v.’s with
P{le; =1} =1-P{e; =0} =p.
Then, forany 0 < a < 2 — 2p,
(4.8) P{ X I)\€J~l2 < ap} <C(2-2p- a)_e,‘i”ep’e.
JEN
Let ¥ < 27°B(q, p)I/\*qlz, B(q, p) = 229711 — p)?9. Then, for any q > 1,

there exists an absolute constant C such that, for 0 < a? < B(q, p), we have

(4.9) P{I)\*aql < apql)\*ql} <C(B(q,p) — az)_GI/\*qI_lzqi’ep“mq.

Proor OorF LEMMA 4.1. Introduce a random vector &€ with i.i.d. Bernoulli
coordinates ¢;, j € N such that P{s; = 1} = p. Denote by A, and A, , the
gth exterior powers of the matrices A and A,, respectively. The proof is
based on the following relations:

(4.10) Elr,,l ZII(EA*Eq)x” for any x € A?(R"), such that [|x|l = 1,
(4.11) EA, ;o = (2p(1 _p))ququ for any j?, k9 such that j7 N k7 = &,

£

and

(4.12) Y |Aju0l? < 256.2%1{q # 1}.
JL R JINEIED

Let q¢ > 2. Then, by (4.11) and (4.12),

(4.13) |EA.., - (2p(1 - p))’A, [, < 162

Here |- || denotes the Frobenius-norm of matrix, that is, | AllZ = X keNaJZk.
Since || All < ||Allz, we obtain by (4.13),

(4.14) IEA . 2l > (2p(1 —p)) IlA, xll - 162

The inequalities (4.10) and (4.14) imply

(4.15) ElXi.l = (2p(1—p)) A, x|l — 162

Choosing here x as the eigenvector of A, q corresponding to the eigenvalue
Aegs 1A, xll = [Ay |, we obtain

(4.16) Elye,l > (20(1 = p)) 1Ay | — 162.

Let A,, denote the kth eigenvalue of A, (ordered in absolute value). Since
Ae, < 1for all £ € N, the equality (4.3) implies that

q
(4.17) Al > I_—Ill)t”l = Nseql:

Inequality (4.4) for ¢ > 2 follows from (4.16) and (4.17) with p = 1. In the
case ¢ = 1 we have Ea,_;, = p(1 — p)a;,, and (4.10) implies (4.4).
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It is easy to see that for any J C N,

[ A(T) ] < Ayl
Furthermore,
(4.18) Y A%, =1Al.
keN
The relations (4.11), (4.12) with ¢ = 1 and (4.18) together imply
(4.19) E Y 22, =2p(1-p)lAl3.

keN

This implies for p = 3 inequality (4.5). It remains to prove the assertions

(4.10)-(4.12). Since the matrix A, is symmetric, we have

I/\*eq|= sup IIA*eqxII.
xe AAR"): |lxll=1

This equality implies (4.9). Let j? N k9 = (J. Note that in this case ¢;,..., ¢
and ¢ ..., &, are independent. It is easy to see that

(4.20) g(1—¢,) + sk(l — sj) = (& — ek)z.

Hence, for any permutation 7 of {1,..., q},

En(s N w(») lfl ( B 3k,,(y))2|‘9jl,)

v=1

(4.21) .

ﬂ pd =(1—p)™ = (2p(1 - p))".

Expanding the minor A, ., we get
q q
ar 2
(4.22) Aej"k" = Z(_l) I_—[ Civkmiy Z( 1) ﬂ ("3 '9k,,(y)) lj[laj,,k,(,,)'
Averaging (4.22) over all € and applying (4.21), we obtain

= (2p(1 = p)) Ajupa.

w(v)

q
EAeﬂkq = (2p(1 _P))qZ(_l)#VIJIG'Vk

This proves (4.11).
Finally let j9 N k? # &. The assumption (1.2) yields (4.12) for ¢ = 1.

If ¢ =2, we note that |A, e =la.; a.;, ;| for j€j9Nk? This implies
for g = 2,
(4.23) > Ayl < X laplPlayl? <22 Y af, =22,

JL R INRIED Jjok,leN j.keN

thus proving the inequality (4.12) for q = 2.
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Let ¢ > 3 and j € j7 N k% Expanding A_ s, first in the jth row and then
in the jth column, we obtain

' Z |Aej‘?k‘7|2 < 2‘14( . )y |ajk|2|alj|2)
(4.24) e EeN

X

Z |A€j(q—2)7k(q—2)|2)'

j@=2 -2

Note that, for any r € N,

r

YA P = YN ? = )y P
J kT hid 1<ji< - <jy,<n v=1
4.25
( ) 1( Z N |2)r 1 ( Z , 4 1
< — k < — a'k) = —.
ri\yen jken ' r!

It is easy to show that 2q*/(q — 2)! < 256. The inequalities (4.24) and (4.25)
together imply (4.12) in the general case. O

PrROOF OF LEMMA 4.2. Consider the sets L,, £ = 0,1,..., K = |J|, consist-
ing of the first 2 elements of J, that is, L, = & and Ly = J. Let &} be the
diagonal matrix with &;(j, ;) = ¢, where &® = 1, if i € L,, and 0, other-
wise. Let

&, =5A(l-&)+ (I -&)Ag,,

&, =(E-&)A(I-&)+ (I -&)A(% - &),
and let A, (k) and X, (%) denote the eigenvalues of the gth exterior power
of the matrices %, and %}, respectively, of largest absolute values. Note that
[A,,(A)l is of the operator-norm in the space of gth exterior powers of

symmetric matrices, which is continuous with respect to the Frobenius-norm
of matrices. It is well known that

[ [Asg(A)] = Aig(B)| | =] Asy(A —B)| < llA,, = B,,I?
for any symmetric matrices A and B [see Lancaster (1969), Chapter 6].
Assume that, for any ¢ € N,
2

q o2

4.26 g N — g 2 < 2—— P2
( ) || k k+1||2 (q_l)!

Then

2
q
(@20 e [ DI < 2
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We note that 2¢2/(q — 1)! < 9 for ¢ > 1. Since A, ,(0) =0, (4.27) implies that
one can find a number %, such that

(4.28) 3| i g (B)| = 32 <| My (ko) | < 3| Ai o (K) | + 32
Put J, = L, . For J{© = J\ J, , we have
(4.29) | X g(Bo) | 2| A g ()| = | i g(Ro)| = 3| 1s o (K) | — 32.

The inequalities (4.28) and (4.29) together imply (4.6). The same proof yields
(4.7). Thus it remains to prove (4.26) only. If ¢ = 1, we have

12,.,, — 5 < 2.2

and (4.26) holds. The proof of (4.26) in the case ¢ > 2 is similar to the proof of
(4.12). Indeed, let I, be the kth element of J. Then

2 2
I8 -ghlle<2 X 1Al

19,79:1,,,€19

Expanding the minor A, s« in the [, , ;th row, we obtain

(4.30) Z |A€lqjq|2 < q2( Z al2k+1j) Z |A*lq—17jq—1 2.

19,j9:1,,,€19 JjEN 19-1,j9-1

The inequalities (4.30) and (4.25) together imply (4.26). O

PrROOF OF LEMMA 4.3. We shall prove the second inequality only, because
the first one can be proved similarly. First note that

? =

[A sup A, x>

x€ AUR™: [|x]|®=1

*eq *eq

Hence, for any x € A7(R") such that x| = 1, we have

PlAy e, < a®p?I0, [P} < P{IA, 2l < a®p?h, I*).
Let x be the eigenvector of matrix A" ? corresponding to the eigenvalue A, .
For the proof of the lemma it is sufficient to estimate the quantity

D, = P{lA

2 2
req¥lF < a?p?7n, 7).

Note that, for 0 < u < 1,
lu — v|? > u? — 2v.

Lyapunov’s inequality, (4.14), and the last inequality together imply

ElA,,, I > 229p2(1 - p)* A, x|* - 2°%

*eq

(4.31) 2q.,2 2q 2 5 2 2
= 2%p*(1 — p) Ay I — 2°Z = B(q, p) p*?A ,I”.
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Write { = IIA*eqxIIZ. If we show

(4.32) pe = ElL - ELI° < C2°,
the lemma follows. Indeed, (4.31) implies
Dn = P{qu*eqx”2 - E“‘4>kzaq‘7€”2 =< a2p2q|)‘*q|2 - E”A*eqx”2>
< P{||A*€qx||2 - E”‘4>l<€qx”2 = _(B(p’ q) - a2)p2q|)\*q|2>

< P{I{ - B¢l (B(p,q) — a®)p*IA,,°)

Applying Chebyshev’s inequality and inequality (4.32) we obtain (4.8). It
remains to prove (4. 32) only. Write u, in the form

- T TETT(2GD) - Be(ip) where () = (SAug o -

if id
Introducing for £ = 1,2,...,6 the notation

g(Lk’ g (A if l%Aet}Z £ EAeig,l'fAeiz,lg)xl'l’xlg>
we can rewrite the equality (4.31) in the form
(4.33) me= L - L ELG 51 (i, 18,5

i, if, i i1 gé

Without loss of generality we may assume that, for £ = 1,...,6, the multi-
indices i are disjoint to the multiindices I} and ji. Write

g, = (i, ..., i@} u {1, . 10 v {Jﬁ”,-.- j“”}

If for some fixed %k, and a multiindex ¢, 7, ji, k = 1,2,...,6,
N ( U Jk) = @,
k#kg
then

EL(if, 11, 1) £(if, 13, 38) - £(i4, 1§, j§) = 0.
This implies that the summands in (4.33) are nonzero in three cases only.

(1) The set of indices /4, ..., J; can be decomposed in three nonintersect-
ing pairs of subsets (J;, J; ), (J; , J; ), (J;, J; ), such that any pair has at
least one common index.

(i1) The set of indices o/, ..., J; can be decomposed in two nonintersecting
triples of subsets (J; , J;,, J; ), (J;,, J; , J; ), such that any triple has at least
one common index.

(ii)) The set of indices </ 1, ., Jg can be decomposed in two nonintersecting
subsets: a quadruple (J; , J; , J;,, J;,) and a pair (J; , J; ), such that any both
systems have at least one common mdex We show that in all these cases the
following estimate holds:

(4.34) Yoo X ELG 1) o (i, 18,5 | < €20

9 19 -9 (g 79 .q
i, 04,01 ig,lg»Jg
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Note, for instance, that in the first case the sum on the right-hand side of
(4.33) can be decomposed in a product of the following sums:

= 4 ]9 449 4 ]9 49
'9;/,[11 ig’gq,jg ig’%jgg(ly’ly).]v)g(l,u,’l,.u.]”)>
where the sets </, and J, have nonempty intersection, 1 < v # u < 6.

Let i, be the common index of J, and ¢J,. For simplicity we can assume
that i, is a common index for /! and j!. Expanding the determinants A,;q ;0
and (A(¢g))" (i, jI) in the common column, and the determinants A, s,
and A ;s in the common row and using a,; =0, we can obtain the
followingg estimate:

2
S <q Y la
iOyj]_y l1’j2’l2€N

X Z |Aiq-2jq-2||xiq-2||qu—2|-

a2 g2
972, j7

2
njlviol |an11)i0| |anll,lz| |anj1>jz| |xi0| |x12| |xj2|

Hoélder’s inequality, (4.23) and ¥, x? = 1 together imply

1/2 1/2
2 2 2 2
Sn=<q°/(q—2)! > ( )y azl,zz) ( )y azl,zz) Ianjl,iol lan, %5

i9,01,/1€EN Y[,eN Jo€N

1/2 1/2
<i?/(a-2' T (T at,) (L) si<con

ipeN ‘,eN j1€N

The last inequality proves (4.34) for case (i). The proof of inequality (4.34) in
cases (ii) and (iii) is similar. Inequality (4.34) finally implies (4.32). O

5. Some bounds for distributions of randomized linear forms. In
this section we obtain the bounds for the last two terms in (3.4). Note that the
results of this section can be extended to the case of non-ii.d.r.v’s X;,..., X,.
Let

5‘?2 =X ajz'}w
keN

Without loss of generality we shall assume that % # 0. Let p;, =
2% Mlog*™ Z) " and x = (e/H)log* 2.

LemMa 5.1. Let &4,..., &, be i.i.d. Bernoulli r.v.s with
Then for & < e 1/?

(5.1) Pimax| Y a,&X{|>Ky) <gK/H-27p
JEN| keN:
|ajk|5pj°?}
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Proor. If px > K/H — 2, the inequality (5.1) is trivial. Assume that
px < K/H — 2. Denote by 3, the quantity

> (H

(5.2) 2] = Z akjé'kX}g ) 5
keN:

|ajk|Spj.9}-

and by ©*, [T* denote the sum and the product over & € N: Iajkl < pZ. In
this notation we have

P{maxzj > KJZ} < Y P{5,>KZ).
JEN jeN

By Chebyshev’s inequality
P{3; > KZ} < 2exp{—h,KZ|Eexp{h 3}

(5.3) = 2exp{—h; KL} [* (1 + p(E exp{hjajk X',EH)} - 1))
< 2 exp{ —thfZ}exp{p 2 (E exp{hjajk )Z,§H>} - 1)}
Furthermore, we have

( Eexp{hjajk)z,gm} -1x< a-z(H)thIajkI2 exp{thIajkI}
5.4)
< h?la;,|” exp{h;Hla,l}.

By (5.3) and (5.4) it follows that
(55) ¥ P(3;>KZ} <2 Y exp(—Kh,Z+ phlZ? exp{h;Hp,Z}}.

JeN jeN
Choosing h; = H "% p;' = H 2 ' log* %, we get

Y P{3;l> K7}
JeN
(5.6) \ 2
<2 ¥ exp{~KH !log"%| + pH *(log"%;)’ %27 2e}.
jeN

Note that
(5.7) p(log*%) L2 < plog'z,

since the function x2log’ x is increasing, for 0 < x < e~!/2. Inequalities
(5.6) and (5.7) together finally imply

(58) P{’EJI > KQC/} < 2 Z _?}KH_I_PK S,CZKH_I—Z—}”“ O
JEN
LEMMA 5.2. Let ¢4,..., s, bei.i.d. Bernoulli r.v.’s with

P{le; =1} =1—-P{e, =0} =p.
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Then, for any K, H > 0 such that K/H > 3,

P{max| ) ajksk)zk > K% spK/H_?*z(longE)K/H.
JjEN keN:
lajel> p;Z;

ProoF. Denote by 3 the quantity

2} = Z Qi &y Xk’
keN:
lajpl> p;<;
and let ¥, TT" denote the sum and the product over & € N: |a,| > p;Z;. The
inequality
!2}! < HIlnaNX!ajl{Z/‘gk < H’%ZI‘gk )
S

implies

K
(5.9) P{ max 3] >K£/} < YPIY>KZ) < ¥ p{zfgk > —}.
l<j<n jeN jeN H

Let n} the number of elements a,; such that £ € N: |a, ;| > p,%,. Note that
ni < 1/pj2, J=12,...,n. Let u, = X1¢;. Then u, has binomial distribution

with parameters n and p. Assuming

(5.10) P{u, > C) < (np)®, C=3,
we obtain

’ K * K/H -2 K/H
(5.11) P ng>ﬁ <(mp)”" < (p%p) .
Note that

Z (pj—zp)K/H SpK/Hg—Z(IOgtC/)K/H.

JEN
This implies the result of Lemma 5.2. It remains to prove (5.10). If np > 1,
the inequality (5.10) is trivial. If np < 1, assume for simplicity that C is an
integer. Then,
R

1 n
Plu > 0 = T ot p)' = () £ U2
j>C * k=0 :
= (np)cé < (np)©. O

REMARK 5.3. For ¥ < e /2 we have

5 (H
Z akj"?kxlg )

P{ max
keN

1<j<n

> 2K5/}

(5.12)
< GKH " =2mpx 4 pK/Hg2(Jog* ) 2K/,
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LEMMA 5.4. Let &q,..., ¢, bei.i.d. Bernoulli r.v.’s with
P{e;, =1} =1-Pfe, =0} = 3.
Then

(5.13) P{ max

l<j<n

Y akjsk)f,gH)‘ > 2K,‘leog+§”l} < exp{e/2H}¥X/H,
keEN

PrOOF. Note that & log™ .Z; <.#log™ .#. Therefore,

P{ max

1<j<n

Y akjsk)f,gH)‘ > 2K£’log+5/}
keN

SZP{

jeN

Y akjek)f,gH)‘ >2KZ log*iﬁ}.
keN

Similarly to (5.5) we obtain that

P{ max

l<j<n

Y akjek}f,gH)‘ >2KZ logt&?}
(5.14) keN
< .ZNexp{—Khj,i’; log"% + $h2 &7 exp{thpje.Sj.}}.
je
By (5.14) with h; = H™ %", (5.13) holds.

LEMMA 5.5. The inequality

Z ajk(]- - &)Y,

P{ max
keN

l<j<n

> K$(10g+$)1/2} <.pKY2-2
holds.

Proor. Note that ¥, . ya;,(1 — &,)Y, has normal distribution with vari-
ance Z(&) = L, naj(1 — &,). Thus

P{max Y ap(l—g,)Y, | > KZ(log* 3)1/2}
JEN lpeN
<Y P{ Y au(l- &)Y, | > K#(log* 5/)1/2}
JEN keN
K222 log*%, 1
< Y exp{—%} < Y exp{——2-K2 logtE’j} <FK/2-2
jEN J JEN

6. The proofs of Theorems 1 and 3. Let f(¢) and g(¢) denote the ch.fs
of @ and G, respectively. Under the conditions of Theorems 1 and 3, the
distribution of G has a bounded density. Therefore, by Esseen’s inequality,
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we have, for any T > 0,

(6.1) ACA, F) sCI]OTMdH %

See, for instance, Petrov (1975). To bound the right-hand side of (6.1) we need
more notation. Denote by ¢;, j=1,2,...,n, the iid. Gaussian r.v’s with
covariance operator coinciding with that of ¢,. Introduce the random vari-
ables 2, = Xt &+ X0, L, k=1,...,n—land 2y = TF21E + 20,1 ¢
For k =n we define 2, =2 and for k = 0, respectively, 2, = X;.n{;- Let
Q) = (AZ}, 25).

Introduce the quadratic forms @, = (A%2,,2;) with characteristic func-
tions f,(¢) = Eexp{it@Q,}. We have

(6.2) g(t) —f(t) = X (fr-1(t) — ful®)).

kREN
Consider now the difference %,(¢) = (f,_,(t) — f,(£)). It is easy to see that
(63) Qk_Qk—1=<A%e’%e>_<A%e—l’%e—l>
' = <A§k’27e’—1> - <A§k’%—l>'

Equality (6.3) implies that

(6.4) h,(t) = E(exp{2it{A¢,, 25 1)} — 1)exp{itQ),_,}
' — E(exp{2it{ AL, #_1)} — 1)exp{itQ;,_,}.

Since ¢, and {, are independent of 25 _; and, hence of @) _, as well, we can
rewrite the equality (6.4) in the form

(6.5) hi(t) = hy (2, &) — he(t, 8),

where

hy(t,m) = E(exp(2it¢ An, 2} )} — 1 - 2it(An, 2} _,) — 1(2itC An, 7))
X exp{itQ}_.}.

In the last formula we have used E¢;? = E£2. Now we shall derive a bound
for h,(t, n). A bound for the second term can be proved in the same way. Let 7
be a uniformly distributed r.v., on the unit interval, which is independent of
all other r.v.’s. By Taylor expansion with integral remainder we have

exp{iu} — 1 — iu — L(in)? = L(iw)’E(1 — 7)*exp(iru}.
Using this formula for 4,(¢, ), we obtain that

(6.6) hy(t,m) = 1(it)’E(1 — 7)*(An,2,_Yexplirt{An,2,_ ) + itQ,_,}.
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From Rosenthal’s inequality it follows that, for n = &,, or n = ¢,

3/2
61 max Bl(AnUD[ <ol Tak] - caiz

2 JjeN

,,,,,

ProOF OF THEOREM 1. By Lemmas 4.1 and 4.2 we can choose a subset
J, € N and a partition Jy;,, { =1,...,5, of J; = N\ J, and

1<is5 \pen
For any fixed J,; we can choose a partition Joj, Jj=1,...,5, such that
(6.9) min { Y AZk(JllJO,n)} > L - 5/8.2.
l<m<5 reN

Let B = (bjk ) ren denote a symmetric matrix with eigenvalues w,, & =
1,..., n, which are nondecreasing in absolute value. Consider the quadratic

form G, = ¥; , cn0;,Y,Y}. For its ch.f. ¢,(¢) = E exp{itG,}, we have the rep-

resentation

dp(t) = exp{ifot( P 1—:—%};‘@;) du}.

keN

From this formula, it immediately follows that

(6.10) 16u(8)] < exp{—gtz ¥ ,L,%,} It > 20 ).
keEN

Relations (6.7)-(6.9), Lemmas 3.3, 3.4, 5.4, 5.5 and the inequality (6.10)
together imply that

(6.11) |ha(t,m)| < C2° max E[(An, U ['r (1),
]

where
r(t) = exp{—1/25602(H)t?} + I{t > ¢ '(log*%) '}
e
+ _ K/2H K?/4-1
0, exp{ i }3 0,2
Note that
(6.12) c?(H)>1-pB3/H, ma(H) < HBs.

Choose H = 28, and K = 16H. Then, y > (3282)"!, we obtain from (6.7)
and (6.12),

|hy(t)] < CtBEZ (exp(—1/512¢%) + 28
(6.13)
+1{t > (328,2) ' (log*2) " '}).
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Applying Lemmas 3.2, 3.3, 5.1, 5.2 and inequalities (6.8) and (4.12) we obtain
for t > 0,

|£(2)| < exp{—2ap(t A To)*} + I{t > v7~ 1)
+C(2-2p - a)~3/2p—3/233/2 + pK/4H-1/2-px/4
1 pK/AHG1/2 (Jogt ) TK/2H
Let p =%'* and « = 1. Then,

[f(2)] < eXp{—%(t A T0)231/4}

(6.14)

+I{t > 5527} + CLYVE + It > A7,
and
(6.15) lg(t)] < exp{— 52} + I{t > 2A,171}.

Applying inequality (6.13) for 0 < ¢ < (32 82%) 1(log™ .¥) !, inequality (6.15)
for (2B;2) 1(logt 2)! <t < (82B1A)7!, inequality (6.15) and (6.1) to-
gether complete the proof of Theorem 1. O

ProoF oF THEOREM 3. Similarly to (6.8) and (6.9), by Lemmas 3.1 and 3.2
we can choose a subset J, C N and a partition J,;,/ =1,...,5, of J; = N\ J,
such that

*ql

. 1A
(6.16) 11;11125{|Aq(J0JU)‘} > oy 217

For any fixed J/;;, we can choose a partition J,;, j = 1,...,5, such that

. [ A g
(6.17) 12{1”125{|Aq(JUJ0m)|} > 53—@3—1) - 212
It is well known that
(6.18) | bp(2)| < min{ ! s ! - },
(1+2u262)"" T glt?/

where w,, =T1{_; u; for instance, Gotze (1984), Lemma 5.48. Applying
Lemmas 3.3, 3.4, 5.1, 5.4 and inequalities (6.16)—(6.18), we obtain from (6.2)
that

1

+78
(1+ (265,6)%)"" )
+ It > CBy 27 Y(log*%) ),

|2 (2)| < CBIZ}E?

(6.19)
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where & is some small positive constant depending on ¢ only. If 2 < g < 12,
inequality (6.19) implies that
dt
[ @)l < cppreart,
0
The last inequality and (6.1) with T = CB;2% 1(log* #)~*/“~9/% imply the
required results. If g = 12, we get from (6.19)
rdt
J 1)) < CB3Z log" T
0
Choosing T = CB;%2% (log* #)~! and applying (6.1) we obtain the required
result. In the case g = 13 we shall apply the following inequality for
CB;27 ogt #) ! <t <CB;%2Z" L. Choose K = 16gH and p =Y.
Then, Lemmas 3.2, 4.3, 5.1, 5.2 and 5.5 and inequalities (6.17) and (6.18)
together imply that

C
6.20 ¢ —_— + P < PP,
( ) If( )|S (bot31/4q)q/8 =
Note that
6.21 W1+ auw) ¥ du < C,
(

0

and
(6.22) Y F<2.

keEN

The inequalities (6.19) and (6.20) complete the proof. O
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