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ON THE VALIDITY OF THE LOG-SOBOLEV INEQUALITY
FOR SYMMETRIC FLEMING-VIOT OPERATORS

By WILHELM STANNAT

Universitdt Bielefeld

We prove that Fleming—Viot operators with parent-independent muta-
tion satisfy a logarithmic Sobolev inequality if and only if the set of types
is finite.

1. Introduction. Let (X, u) be a finite measure space and (£, D(&)) be
a densely defined (not necessarily closed) quadratic form on L2(u). (&, D(&))
is said to determine a logarithmic Sobolev inequality with constant ¢ > 0 if

[ 2108 £2dp = e&(f, )+ 113, log 1 2,

for all f € D(&). This kind of inequality has been invented in the context of
quantum field theory as a tool to prove hypercontractivity of semigroups asso-
ciated with certain infinite-dimensional elliptic differential operators. Mean-
while, this tool has found many other applications also in finite dimensions,
and the logarithmic Sobolev inequality has been verified in the case of many
important examples of stochastic analysis (cf. [2, 8] and references therein).
Hence it is a remarkable fact that in the class of measure-valued diffusions
there is up to now not one single example in which a logarithmic Sobolev
inequality has been verified. The purpose of this paper now is to give an
answer to the question, whether or not a logarithmic Sobolev inequality holds
for generators of Fleming—Viot processes with parent-independent mutation
and, if a logarithmic Sobolev inequality does not hold, whether or not we can
find a reasonable substitute for this inequality. Fleming—Viot processes can
be viewed as diffusion approximations of empirical processes associated with
a certain class of discrete time Markov chains in population genetics (cf. [6])
and are (apart from Dawson—Watanabe processes) the best studied class of
measure-valued diffusions. Before we state our main result let us first define
Fleming—Viot processes. Let S be a complete separable metric space which is
interpreted as a space of types of a given population. Throughout this paper
we will assume that S is compact. Let E := .#;(S) be the space of all proba-
bility measures on S (i.e., all possible distributions of types within the given
population) equipped with the weak topology. One can then introduce random
mutation on the population with the help of a Feller generator A [i.e., the gen-
erator of a sub-Markovian C,-semigroup on the space C(S) of all continuous
functions on S]. Throughout the whole paper we will only consider bounded
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mutation operators of the following type:

AP = 3 [(F0) = Fe)w(dy). £ eCS)

where 6 > 0 and v, € E such that supp(vy) = S. The Fleming—Viot process
associated with mutation operator A (with no recombination and no selec-
tion) is called the Fleming—Viot process with parent-independent mutation
and is defined as the unique solution of the Cg[0, co)-martingale problem
(Ly,,,» 7 C>), where

LD FC®:={F =o((f1.)s-» (Far DIf: € C(S), ¢ € C*(R%),d e N}

and
d
LO,VOF(/'L) = % Z (é)xiaxjgo)((fl’ /-")5 trto (fd? M)) COV,LL(fi’ f_])
(1.2) e

d
+% Z(&xigo)((fl’ M)? LR (fd’ M))(Afiv /-'L)

i=1

(cf. [6]). Here (f, n) :== [ f dp. It is well known that this process has a unique
stationary distribution m, , € .#;(E) which is even symmetrizing (cf. [6],
Theorem 8.1). m, , can be described as follows: let (py, ps, - . .) have a Poisson—
Dirichlet distribution with parameter 6 and let (£,,),cy be i.i.d. with distribu-
tion vy and independent of (pq, ps, . ..). Then

(1.3) me., [A] = P{Z pide, € A].

i=1

The Dirichlet form (&, ,H"*(m,,)) associated with the symmetric
Fleming—Viot operator (L, , 7 C*) is obtained as the closure of the bilin-
ear form (-L,, ., F, G)LZ(meym), F,G € C%, in L*(m,, ). We will prove
in Proposition 3.4 that & , determines a Poincaré inequality with constant
2/6 (i.e., the corresponding generator has a mass gap of size 6/2). We will
show in the Appendix that the existence of a mass gap can also be deduced
from a result obtained by Ethier and Griffiths in [4] concerning the conver-
gence to equilibrium in the total variation norm of the transition semigroup
of the Fleming—Viot process. However, by that method we do not obtain the
exact constant 6/2. The main result of this paper can then be formulated as
follows (cf. Theorem 3.5): the bilinear form (& , , H L-2(m,, »)) determines a
logarithmic Sobolev inequality if and only if |S| < +o0. In this case the best
(i.e., smallest) constant for which a logarithmic Sobolev inequality holds can
be estimated from above by 320/ min, g vy({s}) (cf. Remark 2.9 concerning a
further discussion of this constant). We also found that the situation is even
worse. The set

{F2IF € H"2(m, ), 65,.,(F, F) + | F |2, | <1}
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is uniformly integrable if and only if |S| < 400 which implies that there
is no reasonable substitute for the logarithmic Sobolev inequality which can
be formulated in terms of the bilinear form &, , and which could serve as
an infinite-dimensional substitute for compactness in the class of symmetric
Fleming—Viot operators.

Finally, let us make some remarks concerning the proof of the logarithmic
Sobolev inequality in the finite-dimensional case (cf. Theorem 2.8). We found
an inductive method which allows one to add one type after another to a
given Fleming—Viot operator, thereby reducing the proof of the logarithmic
Sobolev inequality to the one-dimensional case. It may be possible to find
an alternative proof of Theorem 2.8 by generalizing a technique for proving
logarithmic Sobolev inequalities developed in a recent paper by Aida (cf. [1])
based on lower bounds on the I'y-form associated with L, , . However, our
direct approach to the proof of Theorem 2.8 has the advantage that it provides
a general method to reduce problems on Fleming—Viot operators to the one-
dimensional case and that it gives much more additional information on this
particular class of measure-valued diffusions.

2. The finite-dimensional case. We start with the case where the type
space S is finite and thus S [resp. .#;(S)] can be identified with the set

{1,...,|S[} [resp. the (|S|—1)-dimensional simplex Ajg;_; = {x € RISI"}|x; = 0
and Z‘S‘ lx <1}
Throughout the paper let |x| := Y7, x; for any vector x € R and R? :=

{x eR?x; >0,1<i=<d} Let
C*(Ay) = {f eC(Ay)F g€ C>=(R?) such that gn, = f},

It is then easy to see that in the finite-dimensional case, expression (1.2)
reduces to

d d
qu(x) = % iné)iif(‘x) - % Z xixj&xiaxjf(x)
i=1

i, j=1
d
+352(q —lglx) 0, f(x),  feC¥(Ay),
i=1
with ¢ € R™, ¢, = ov,({i}), 1 <i<d+1.

DEFINITION 2.1. Ifq € Ri“, denote by D(q) the Dirichlet distribution with
parameters q;, 1 <i <d +1, on A;. D(q) is the measure given by

d
v(dx) == d+(1|1({|() 3 1;[ —|x)) % day - dxg.

Denote its density by o,.
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For g € [R{‘frl the Dirichlet distribution is a symmetrizing measure for the
operator L,. The associated bilinear form (&, C*(4,)) is given by

d
Go(f 8)i=3 2 [%:(8y —%,)0,,f0x 80, d%; f, 8 € C¥(Ay).
i, j=1

(&,,C*(A,)) is closable in L2(D(q)) (cf. [10], 1.2 and 1.3). Let H2(D(q)) be
the domain of the closure. It is easy to see that the generator (L,, D(L,))
associated with the closure extends the operator (L ,, C*(4,)).

REMARK 2.2. (i) It is known that L, has a discrete spectrum with eigen-
values n(n + |q| — 1)/2 and multiplicity (’”Zﬁl), n > 0 (cf. [12]). In particu-
lar, L, has a mass gap of size |q|/2 (independent of the dimension), which
implies L2-ergodicity of the associated semigroup (exp(tL))i=0- If q; > % for
all i, we know from [12] that the L2-semigroup is ultracontractive, that is,
[ exp(¢Lg)|l2, 00 < 0o for all £ > O (more precisely, || exp(fL,)l|2 < constant -
t=%2 t > 0). Consequently, a logarithmic Sobolev inequality for &, could be
obtained using [3], Theorem 2.2.3, and the existence of a mass gap. We empha-
size that, due to the restriction g; > % for all i, this result cannot be used to
obtain a logarithmic Sobolev inequality in the general finite-dimensional case.

(i) Similar to the space H''2(D(q)) one can define the space H(l)’ 2(D(q)) as
the closure of the subspace C3°(A%) in H2(D(q)), where A denotes the open
interior of A,;. It is known that the two spaces coincide if and only if ¢; > 1
forall1 <i <d+1(cf [12], Lemma 1.1).

(iii) By Theorem 3.4 in [6] the closure of (L,, C*(4;)) in C(4;) generates a
Feller semigroup. Consequently, (¢ — L )(C*(4;)) C C(4,) dense for all & > 0
(cf. [5], 1.2.3). Since C(A,) ¢ L%(D(q)) densely and continuously, we conclude
that (a—L,)(C>(4,)) C L%(D(q)) dense and hence C*(A;) is dense in D(L,)
w.r.t. the graph norm.

The next two propositions are the main tool in the proof of the logarithmic
Sobolev inequality in the finite-dimensional case.

PROPOSITION 2.3. Let q € [Rii+1 and assume that (£,, C*°(A,)) determines
a logarithmic Sobolev inequality with constant c. Let (k,),<,,.1 C N such that
O0=Fky<bk<--- <k, <ky,,w=d+1land p, = Z;an,l+1ql’ l1<nc<
m + 1. Then (&,, C*(4,,)), too, determines a logarithmic Sobolev inequality
with constant c.

k k k
Proor. Let T: A; — A,,, x — (Zl;kOJrl X, ZlikIH Xpyonns Zl;nkm_ﬁl x;).
Then T'(D(q)) = D(p) by the amalgamation property of Dirichlet distribu-
tions (cf. [7], Theorem 1.4). Let f € C*(A,,). Then by the change of variables
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formula,

d
GfoT foT) =% 3 [2i(8y—x)) 05 (f o T)d, (f o T) 0, dx

i, j=1

e

[0, (F o T))? 0y da

=1
2

1

12

DO =

1

d
> [0, (FoT)ox (FoT) 0gdx
,J=1
m k; kj
- 2/( > )( > )
i,j=1" \k=k;, ;+1 I=k;_y+1

% (0,,f) 0 T(d,,f) o To,dx

DO| =

m kj
( )y xz)(ﬁzjf)Q 0 To, dx
= =

1 kjg+1

~

DO =

=3 X /Zi(Sij —2;)0,,fd..fop,dz
T

i 1

Since (&,, C*(A,;)) determines a logarithmic Sobolev inequality with constant
c it follows from the change of variables formula again that

[ £210g 20, dx= [(f o T)*log(f o T)?0, dx
= qu(f oT,foT)+|fo T||%2(D(q)) log||f o T||%2(D(q))
ZCé)p(fa )+ ”f”%z(p(p)) log ”f”%Z(D(p))'

PROPOSITION 2.4 (Additivity principle). Let ¢ € R%"% and
T:10,1] x Ay = Agy1, (8, 2) = (2, ¢(1 — |2))).

(i) Let f € C®(Ayy,). Then

1
G D= [ G s nrran (0 TIE ),
(F & T)(E 01,00 (D 1

+ A 1_;|Z|6&(Qd+1,q(i+z)((f © T)(’ Z)’ (f ° T)(? Z))

X Q(lh, v qqs fId+1+fId+2)(Z) dz.

(2.1
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(ii) If (GO(Q1’-~-,‘1d’lId+1+lId+z)’ Coo(Ad)) and (ep(qu+1,¢1d+2)’ Coo([o’ 1])) determine
logarithmic Sobolev inequalities with constant c then (&,, C*(A4:1)), too,
determines a logarithmic Sobolev inequality with constant c.

PROOF. Let ¢ := (q1,..-,qq, 9a+1 + Gas2) and ¢ = (g4i1, 9a42)- Then
T(D(q') ® D(q)) = D(q) by [7], Theorem 1.4.

(i) Let us first calculate the right-hand side of (2.1). For simplicity we
introduce the following notation:

dif (t,2) = (0., F)(T(t,2)), l<i<d+1
Then
di(f o T)¢, 2) = (1~ |2])dasa f (2, 2)
and
9, (foT)t,2) = d;f(t, 2) — tdg, f(t, 2).

It follows that

d
I:i=3 Y 2(8;—2))0.(f o T)t,2) 0. (f o T)(t, 2)
i, j=1
d
=3 2 z(8;—z))d;f(t,2)d;[(t, 2)
i, j=1
d
=Y tz;(1—|2|)d;f(t, 2)dg1f (2, 2)
i=1
+18%2|(1 — |2]) (dgsr /)2, 2)
and
II = %1 —t - 0@ T))(t, 2) = %(1 — 2] t(1 = t)(dgi1 (L, 2).

Adding both terms we obtain that

i, j=1

d

I—}—II:% Z zi(Sij—zj)dif(t, Z)djf(t,Z)
j=
d

=2 tz(1- 2N d;f (¢, 2) dan f(2, 2)

i=1

+5t(1— |2) (1 = t(1 — |2])) (das1F)*(t, 2)
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and hence by the change of variables formula,

[ (oD, (7o TYE Yoy (0t

[ (£ o T2, (o T 2) 04(2) d
Aq |Z|
d+1
=13 [ w8y = x)) s, f(0) 0y, F(%) 0g(x) d.
i, j=1"Rd+1

(i) The proof of (ii) is a small modification of Faris’ additivity theorem (cf.
[8], Theorem 2.3). Let f € C*(A;, ). Then

[ f210g 20, dx
= [[(F o D)t 2)log(f o TYA(2, 2) 04(2) dz 04 (2) dt
= [G((F o) (), (F o THE Doy (t) dt

+/ [I(F o T)(¢, ')”%2([)((5)) log [[(F o T)(¢, ‘)||2L2(D(q))9q’(t) dt,

(2.2)

since & determines a logarithmic Sobolev inequality with constant c. Since

&, determines a logarithmic Sobolev inequality with constant ¢, we obtain
from the semiboundedness theorem ([8], Theorem 2.1) that

[(F = TRt 108 I(F = T (1 s iy 00/ (1)t
<6, (foT) (- 2), (f o T) (- 2))
+1(FoT)(, Z)”%ﬂ(p(g)) log ”f”%?(p(q))

for all z € A;. Integrating the last inequality w.rt. (1/1 — [z|) 0;(2)dz we
conclude that

J[(F o DYt ) log I(F o TY(E, )P0y (1) dit 04(2) d2
23) <o [T o DD (F o T) (. 2) og2) dz

HIF 122 p(ay 108 1 17200
(D)) (D(@)

and combining (2.2), (2.3) and (2.1) we obtain that

/fZ log szq dx < c&(f, )+ ”f“%Z(D(q)) log ||f||%2(D(q))-

This proves (ii). O
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The one-dimensional case.

LEMMA 2.5. Let ¢ € R?, min{q,,qy} > 3. Then (&,, C>([0,1])) de-
termines a logarithmic Sobolev inequality with constant 4/(|q|/2+

min{qq, g5} — 1).

PROOF. In order to prove the assertion, it is enough to show that the fol-
lowing inequality,

2.0 ruf. 1) = 5 (18 + minfar, g} - 1)1 ),

is satisfied for all f € C*([0, 1]). Here I'(f, f)(x) = %x(l — x)f%(x) is the
square field operator associated with &, and

Lo(f, £)(x) = g{LO(f, f)(x) = 20(L, f, £)(x)}

is the iterated gradient. Indeed, if (exp(¢Ly,,,));>o denotes the semigroup cor-
responding to the generator of (£,, H*(D(q))) it follows from [12], (6.2), that
exp(tLy , )(C>([0,1])) € C*=([0,1]), ¢ > 0. It is well known that inequal-
ity (2.4) then implies that (&,, C*°([0, 1])) determines a logarithmic Sobolev
inequality with constant 4/(|q|/2 + min{q;, g5} — 1) (cf. [2], Proposition 6.5).
To prove inequality (2.4) note that

Do(f, )(x) = 32%(1 = 2)? 2 (%) + §2(1 — 2)(1 - 2x)f (2)f (x)
+3((lgl = D1 = %) + 3(g1 — lglx)(1 — 2x)) f*(x).
We may assume that q; < g9, that is, ¢; < |g|/2. Then

(2.5)

uf. £ = 4 (-3 =202 + (gl - Dt - )

+ (a1~ o)1 - 20)) ()

= (5(a-5)+ (1D a)x) o)
ila(n-2) (2o
> 3(@a-naa -0+ (1 - a)xa-0) @

_ %(% ta- 1)F<f, £)(x), x<[0,1],

which implies the assertion. O

Note that in the particular case q; = g4, inequality (2.5) shows that I'y is no
longer positive definite if ¢, < % Consequently, the standard I'y-criterion can-
not be applied in order to prove a logarithmic Sobolev inequality for Fleming—
Viot operators in the general one-dimensional case.
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LEMMA 2.6. Let q € (0, 1) Then (&,, C*([0, 1])) determines a logarithmic
Sobolev inequality with constant 10/ min{qy, g5} min{l — q;, 1 — gy }.

PROOF. First let f e C*([0, 1]) be such that [ fo,dx = 0. Then there
exists x4 € (0, 1) with f(xg) = 0. If x € [0, 1] then

f@l=|[ fods| < |[ Posna-seas] [ sna-gead”

<v2B(q1,q5)"*B(1 - q1, 1 - g)"2 &,(f, /),

=l

where B denotes the Beta function. By Young’s inequality, that is, st < slogs—
s+ e’ for all s > 0 and ¢ € R, we conclude that

(2.6) ffz log 20, dt < || f*log [IfI* — I FII” + 22°&,(f, )
For general f € C*([0, 1]) let fi=f- foq dx. By [2], Proposition 3.8,
| 2108 f20, dx — £ | log | |1

< [ P?1og [0, dx — |F*1og | /I + 21 P

~ 1
<222 6,(F. )+ 1P = 2(o 4 ) lF ),
where we used (2.6) in the last but one inequality and in the last inequality
the fact that &), determines a Poincaré inequality with constant 2/|q|. Note
that

o0 tCIl*l 1 00
— q,—1 —q9—1
B(QlaQZ)—/O ar o dts/o ¢ dt+/1 %1 qy
1 1 2
<=+

<
T q1 gy~ min{qy, g2}

and similarly, B(1-q;, 1—g3) < 2/min{1—gy, 1—g,}, hence 2(a®+(1/[q[)) <
10/ min{q;, o} min{1 — q;, 1 — go}. O

LEMMA 2.7. Let g € R%. Then (&,, C*([0, 1])) determines a logarithmic
Sobolev inequality with constant 320/ min{q, qs}.

PrROOF. We may assume that ¢; < g,.

CASE q; > % Then |q|/2+¢; —1> 29; — 1 > q;/2 and Lemma 2.5 implies

that (&, C*([0, 1])) determines a logarithmic Sobolev inequality with con-
stant 8/g; which implies the assertion in this case.
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2
CASE q; < 3.
: 5
(i) g9 > 3.

(a) |q| = % Let p := (|¢| — 5/6,5/6). Then (&,, C*(]0, 1])) determines
a logarithmic Sobolev inequality with constant 48/5 by Lemma 2.5. Since
(€(5/6-q1,91)» C([0, 1])) determines a logarithmic Sobolev inequality with con-
stant 240/q, by Lemma 2.6, Proposition 2.4(ii) implies that (&{i4/_(5/6),5/6-q,.4,)>
C*(A,)) determines a logarithmic Sobolev inequality with constant 240/q,
and thus (&,, C*([0, 1])) determines a logarithmic Sobolev inequality with
constant 240/q; by Proposition 2.3 which implies the assertion in this case.

(b) g < 3/2. Let p = (|q]/2, |q|/2). (&,, C=([0, 1])) determines a log-
arithmic Sobolev inequality with constant 40/q; by Lemma 2.6 and since
191/2—q1 = (g2 — q1)/2 > 1/12 it follows that (& 4,2)-¢,,¢,)» C™([0, 1])) deter-
mines a logarithmic Sobolev inequality with constant 320/g; by Lemma (2.6).
By Proposition 2.4(ii) we obtain that (£{i4,2,4/2-4,,q,)> C*(A2)) determines a
logarithmic Sobolev inequality with constant 320/q; and consequently (&,
C*([0,1])) determines a logarithmic Sobolev inequality with constant 320/q,
by Proposition 2.3. Hence the assertion is proved in this case.

) q < %. Then (&, C*([0,1])) determines a logarithmic Sobolev
inequality with constant 60/q; by Lemma 2.6 which implies the assertion
in this case. O

The (general) finite-dimensional case.

THEOREM 2.8. Let q € Rf’l. Then (&,, C*(A;)) determines a logarithmic
Sobolev inequality with constant 320/ min{qy, ..., @41}

PROOF. We will prove the assertion using induction. The case d = 1 is
contained in Lemma 2.7. Suppose that the assumption is proved for all p €
R, Let ¢ € RZ2. Since a1, aus quir+aa.,) determines a logarithmic Sobolev
inequality with constant 320/ min{qy, ..., @441 + @442} by assumption and
Slqui1. a0, determines a logarithmic Sobolev inequality with constant
320/ min{qy.1, g44+2} by Lemma 2.7 it follows from Proposition 2.4(ii) that &
determines a logarithmic Sobolev inequality with constant 320/ min

{qlﬂ DR qd+2}‘ U

REMARK 2.9. The Rothaus—Simon mass gap theorem (cf., e.g., [8], Theo-
rem 2.5) states that if a Dirichlet form (&£, D(£’)) on a probability space with
1 e D(&) and £(1,1) = 0 determines a logarithmic Sobolev inequality with
constant ¢ then it satisfies a Poincaré inequality with constant > ¢/2. Since
we already know that &, satisfies a Poincaré inequality with constant 2/|q]
one could think that the constant specified in the theorem is not very pre-
cise. Although we did not try to find the best (i.e., smallest) constant c, such
that &, determines a logarithmic Sobolev inequality with constant ¢, ¢, will
depend on min{q;, ..., g4,1} rather that |g| as will be clear from the following
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example: let q € [R‘frl such that ¢; = min{q,, ..., 94,1} and f(x) = x;. Then
(cf. the proof of (2.3),

(€ (F, H)Y+ 117 log 1)

_1(1q(lgl—q1) | qi(q1+1) q1(q: +1)
B q1(2 al(al+1) " Tal(al+ 1) to (IqI(IqI +1)>>
1 gl—q q:+1 ] q1(g; +1) o
~2jl(al+ D) | Jalal+ 1) <|q|(|q|+1)>

if g; — 0 and |q| remains constant whereas

1
q1

1
lq|

remains bounded from below independent of g. Hence we have found an
example for which the mass gap is strictly bigger than 2/c, (cf. [9] for another
example in this direction which is, similar to our case, a differential operator
with degenerating second-order part).

1 g 2 1 .
q—lff log f qux_q—lff(flogf)quxz—% q—lffqux——Ze

3. The infinite dimensional case. Let S be a compact space and E =
#1(S) be the space of all probability measures. Fix some v, € E with supp(v)
=S, some 6 > 0 and let

61 AP = 3 [(F0) = F@m(dy). feCS)

Let (Lg,,,, #C>) be as in the Introduction (cf. (1.1), (1.2)) and let m, , €
#1(E) be the unique stationary distribution of the Fleming—Voit process asso-
ciated with (L, vor T C*) (cf. (1.3)). Let us first note some important feature
of the measure m, ,, :

LEMMA 3.1. Let (A,),<q.1 be a measurable partition of S such that vy(A;)
>0andIl: E - Ay, p—> ((Aq), ..., w(Ag)). Then

I(my,,,, = D(O((A1), - ., 1(Ag)))-
PrOOF. (cf. [11], Lemma 7.2),
For F : E — R that admits a representation F(u) = o({f1, 1), .-+, (Fa> 1)),
¢ € C2(R?), f; € #,(S), 1 <i < d, we can define a gradient VF : S x E — R

as follows: Let

dF
VxF(/'L) = %(/‘L + S’Sx)ls:O

d
= 20, @)({f1 )5 - s (Far ) i().
i=1



678 W. STANNAT

If F, G € 7C> it is then easy to see, using symmetry and invariance of L, ,, ,
that

1 1
— [y, )G dmy,, = =5 [(Ly, F)Gdmy,, — 5 [ F(Ly,,G)dm,,,
1
= —5 [ Lo, (FG) dm,,,
1
+ 5 [covu(VE(w), VG(m)my,,,(du)

= %fcovM(VF(,u), VG(r))myg, , (du).

The corresponding closure (¢, , H/?(m, , )) in L*(m, ) is then the Dirich-
let form corresponding to the Fleming—Voit process with mutation operator A
as defined in (3.1).

LEMMA 3.2. Let (A,),<q.1 be a measurable partition of S such that vy(A;)
> 0and F(u) = o((1a,, 1), ---5(1a, 1), ¢ € C>®(R%). Then F ¢ Hl’z(m(,,,,o)
and

PRrROOF. Let q := 0(vo(Ay), ..., vo(Agr1)). It follows from [11], Lemma 6.3
that F € H“2(m, , ) and

G, (F, ) = [var, (VE(u))mg,,, (dp).

Hence,

o, (F, F) = [var, (VE(u)) mg,, (dp)

d
> [(0,09.,0) (WAL, ..., 1(A0))

i, j=1

x u(A;) (5ij - M(Aj)) my, VO(dM)

d
= ¥ [ w8y — %) 0, 0(2) 0, 9(x) 0,(x) dx
i, j=1
=&, (e, ),

where we used Lemma 3.1 in the last but one equality. O

PROPOSITION 3.3. Let 6 > 0, vy € E. Then (& ,,, HY2(m,, »)) determines a
foincaré inequality with constant 2/6.
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PrOOF. We have to show that
2
J(F = (F)ydm,,, <26, (F. F)

for all F € H'“?(m, , ). Here we set (F) := [Fdm,,. Since #C® C
H"“2(m, , ) dense it is sufficient to prove the inequality for all F € 7 C>.
To this end fix F(n) = ¢({f1, 1), ---, {fq, 1)) Since each f; can be uniformly
approximated by a sequence of elementary step functions we can construct
a sequence of measurable partitions (A}'), -, and constants c;*, € R such
that /7" := Z'”H ', 1am — fi, m — oo, uniformly for all i,1 <i <d.
For all m let ¢,, € C*°(R™*!) be defined by

m+1 m+1
em(x) =@ D e Xy, Dol %y s x € R
n=1 n=1

Then

Fo(w) = @n((Lamsp)soos (Tan s ) = e({fT, 1)y (F7s m) > Fu)
for all 4 € E and in L?(m, , ) for all p > 1 by Lebesgue’s theorem. Similarly,

m+1

VE (1) = 3 00, 0T s (P T — VE()

i=1

for all 4 € E and in L?(m, ,, ) for all p > 1. Note that if v,(A}") = 0 for some
i then my , {u|u(A}") = 0} =1 (cf. [11], Lemma 7.2). Let I := {i[y(A]") > 0}.
Then |I| > 0 and we may assume that I ={1,...,|I|}. Let B; := A", i < |I|,
and By := U;”T}l Al". Then (B;);. 1 is a measurable partition and vy(B;) >
0 for all i. Let ,,(x) := ¢,,(x,1 — |x[,0,...,0), x € RII71 and F, (n) :=
¥n((1p,, 1), ..., (1, ;u)). Then F = F,m,  -as If [I| > 1let g, =
0(vo(B1), - - ., vo(By))) and note that |g,,| = 6. It follows from Lemma 3.1 and
Lemma 3.2 that

= [Fr(w)dmg,,, = [0, dx=: ()

and

[(F = (F)dmy,, = f (= (Wr))0g, dx
(3.2)

= 0 qm(l,l’nw l,l/m) - §0 VO(FITL7 Fm)

since (&, , C*(A;_1)) satisfies a Poincaré inequality with constant 2/6. If
|I| = 1 then F,, = ¢,,(1) my , -a.s. and thus

2
J(Fn Vmg, o (dp) = 0 = 26, (F o).

Consequently, (3.2) holds in this case too. Passing to the limit m — oo in the
last inequality we obtain the assertion. O
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REMARK 3.4. We will show in the Appendix that the existence of a mass
gap can be deduced also from the following result obtained by Ethier and

Griffith, in [4]: let ( ptg ’ VO) .~ be the transition semigroup of the Fleming—Viot
process corresponding to the generator (Lg’ vor T C°°). Then

(3.3) 1pe " (s ) — Mgy llvar < L —di(2),  t>0, pek,

where || - ||y, denotes the total variation norm, d§(¢) = P[D, = 0], ¢t > 0, and
(Dy)ss0 is a pure death process in Z, U{+o0} starting at +-oo with death rates
n(n+60—-1)/2, n > 0. Moreover, it has been shown in [13] that exp(—(6/2)¢) <
1-d§(¢) < (1+6)exp—(6/2)t, ¢t > 0. Note that Proposition 3.3 implies that the
lower bound in the last inequality is the exact exponential rate of convergence
in the corresponding L2-space, that is,

0, v, 2 1/2 0 9 1/2
(/(Pt’ F - (F)) dme,yo) < exp(—gt)(/F dm(,,yo) , t > 0.

Although (&, , , H"*(m, , )) satisfies a Poincaré inequality we will see in the
following theorem that the bilinear form does not determine a logarithmic
Sobolev inequality.

THEOREM 3.5. Let 6 > 0,vy € E such that supp(vy) = S. Let (&, ,,,

HY2(m, v, )) be the Dirichlet form corresponding to the Fleming-Viot process
with mutation operator A as defined in (3.1). Then:

() Dy := {F?|F € H"*(my,,,), &5,0(F, F) + | F| 72,y <1}
0, v

is uniformly integrable if and only if |S| < +oo. In particular, (&, ,,,
H%(m,, v,)) determines a logarithmic Sobolev inequality if and only if |S| <
+00.

(i) If |S| < +oo then (&, ,H"“%(m,,)) determines a logarithmic
Sobolev inequality with constant 320/ min g vy({s}).

PROOF. If |S| < +00, then by Theorem 2.8 (&, , H"?(m,, )) determines
a logarithmic Sobolev inequality (with constant 320/ min, g vy({s})). In par-
ticular, D, is uniformly integrable since

sup F? dmg ,,

< —— sup f
F2eD, ' {F?=c} log ¢ pacp, /{F2zc}

1 320
< —
~ log cmin, g 15({S})

F?log F? dmg ,,

0, ¢ — +oo.

If |S| = +oo then we can find a decreasing sequence (A, ),.; of measurable
subsets with p, :=vy(4,) > 0 and lim,_, , p, = 0. Let

1 1/2
Fo(u) = (—pn((,pn - 1)) u(A,).
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Clearly, F, € FC=, [F2dm,, = (1/p,(6p, + 1)) [t?04, 1-p,)(t)dE

1/(0 + 1)7 and §H,VO(FH’ Fn) = (1/pn(0pn + 1)).[t(1 - t) QG(pn,l—pn)(t) dt
6(1— p,)/ (6p, +1)(6+ 1), hence

0(1_pn)+0pn+1<
Op, +)(O+1) — 7

é)(?,VO(Fru Fn) + ”Fn”%Z(me,uo) =

that is, (F2) c D,. However,

1
F2dm,, = —— w(A,)2m,, (du
/{F%zc} 20 (0D, + 1) Julu(a,)=/epn(op, i Db (An)m0,1,(d1t)
B T(6+1)
I'(0p, +2)(6(1 - p,))
1
x | 0P (1 — )A-P0 -1 gy
A/ epn(0p,+1)
re+1) -1 1
Y -0 ldt=—— Ve 0,
T2 (0) Jo 7Y 0+ 1 €=

which implies that (F2), hence D, too, is not uniformly integrable. O

COROLLARY 3.6. The L2-semigroup (exp(tL, v, ))t=0 associated with the sym-
metric Fleming-Viot operator L, , is hypercontractive (i.e., || exp(¢Lg , )l 4 <
+oo for some t > 0) if and only if |S| < +o0.

ProOF. If |S| < 400 it follows from Theorem 3.5 and [2], Proposition 3.4
that (exp(¢Ly , )):>o is hypercontractive. Next suppose that |S| = +oo and
that (exp(¢Ly, ,,)):>o is hypercontractive. By [2], Theorem 3.6, it follows that
there exist positive constants ¢, m such that

[ FPlog F2dm,,, < ¢&y ,,(F, F) +mlF 2, + 1F 2, Tog|F 2,

for all F € H2(m,_, ). This would imply that the set
{F*|F € H"*(my,,), &,,,(F, F) + ||F||%2(m6,”0) <1}

is uniformly integrable, which is a contradiction. Hence (exp(¢Ly ,, ));>o cannot
be hypercontractive. O

APPENDIX
The purpose of this Appendix is to show that (3.3) can be used directly in
order to show that (&, , H“2(m, , )) determines a Poincaré inequality with
constant 2((1+6)2/6). To this end note that (p; "), induces a sub-Markovian
Cy-semigroup of contractions on L'(m, , ), again denoted by ( Py ")i0- By

the Riesz—Thorin interpolation theorem ( pf’ "),=0 can be restricted to a C-
semigroup of contractions on L?(m, , ) for all p € [1, c0). Then (3.3) implies
the following result.
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LEMMA A.1. Let p €[1,0]and F € LP(m, , ). Then
|pt " F = (B, < (1= d§@)Fl,,  t>0.
PrROOF. Consider the linear operator U,F := pf’VUF — (M1, F €
LP(my,,), t > 0. We will show that:

(@) U, <1—df(t),t> 0.
) U,y <1—dit),t> 0.

PrOOF OF (a). Let F € %,(E). Then (3.3) implies
! F(u) — (F)| < (1= dY(t)|Fll, >0, pcE.
Consequently,
(A1) [Pl F — (F)1g| < (1-d§@)IFle, >0,

which implies (a).

PrROOF OF (b). Let F € 4,(E) and [y := 1{pf'”°F>(F)} -1

. . A 0, vy
using that m, s 18 @ symmetrizing measure for p,” ",

(piF<(my Then,

[Pt F = (F)ig|dmy,, = [(p/"F = (F)1g)lpdm,,,
= [(p{"" F)lpdmy,,, — (F){lp)
= [F(py"1x)dmy,,, — (F){lp)
- [F((pf' “lp) — (lp)1lg)dmy,,

< |IFllyllpi"le — (Up) gl
<1 -dY%t)|F)y, >0,

where we used (4.1) in the last inequality. Consequently, || pf OF — (F)1g|; <
(1—di(t))||F|1,t > 0, which inplies (b).

The linear operator U, is therefore continuous on L?(m, , ) for p =1 and
p = oo with operator norm less than 1 — d(¢),¢ > 0. Hence by the Riesz—
Thorin interpolation theorem it follows that U, is continuous on L?(m, , ) for

all p € [1, co] with operator norm less than 1 —dj(¢), ¢ > 0, which implies the
assertion. O

PROPOSITION A.2. Let 6 > 0, v, € E. Then (&, ,,, H"?(m, , )) determines
a Poincaré inequality with constant 2(1 + 6)2/6.
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REMARK A.3. Note that we do not obtain the exact constant 2/6 in the last
proposition.

PROOF. Let F € L%(m,, ) be such that (F) = 0. Then
G,F ::/ P Fdt
0
exists in L%(my, »,) since by Lemma A.1 and the fact that 1 — di(t) <
(1 + 6)exp(—(6/2)0).¢ > 0. [*|pr " Fladt < (1+ 6) [;" exp(~(6/2)t) x
[Fllydt < +oo. Moreover, if in addition ¥ € D(L,, ) then (L, , F) = 0,
GoLy, , F = [°(d/dt)(p) " F) dt = —F and thus

o0 6,v
(=L, F, F)g = (Ly,, , F, GoLy,, F)g =f0 (Lo, Fspi "Ly, F)a dt

o0 0, vy 2
= [ 1Pl Lo Fl d.

Lemma A.1 implies that |p; "Ly, Flls = [pys°pis Lo Flls < (1 + 6)
0,y . 6, v
exp(—(0/4)t)| py)2" Lo, v, Fll2, since (p;jo° Ly, F) = 0, and thus

(<L F Py = [ 903" Ly, F | dt
(A.2)

=

1 *° LV, 2
(1+0)2/0 exp((6/2)8)| py""* Ly, F |2 dt.

By Holder’s inequality,

o0 0, v
/0 | o2 LG,VOFHth

= [ exp(~(8/0)0) exp(6/0)0)| p{ Ly, F dt

/2

= (/Ooo exp(—(6/2)¢) dt) ” (/exp((e/z)t)n py "Ly, vOF||§ dt)l

9 1/2 o 0 2 1z
= (5) </0 exp((6/2)t)||pt’ OLeyVoFszt) ’

and thus

0 Y 2 0 o 7 2
/0 exp((0/2)t)] Py "Ly, F |, dt > 5(/0 | p? OLe,qu”zdt>

2

0 0 0, vy
(A.3) > EH/O p) "Ly, Fdt 2
OHGL FH2 0512
_§H 006,y H2 §II Il2*
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Combining (A.2) and (A.3) we conclude that

0 2
(A.4) (=L, F,F) > m”Fnz

Finally, let F € H"?(m, , ) be arbitrary and F:=F — (F)1,. Then p,"F ¢
D(L,,,)ift >0, (p{"""F) =0 and (A.4) implies that

2

Py t > 0.

0,v 0,vy 7 0 I| ~0>v0 77
(A.5) Eon(pe ' F, py OF)Emmt °F|

Since lim,_ p;""°F = F in H"%(m,, ,,) and & ,,0(17, Fy=¢&, ., (F, F) taking
the limit ¢ — 0 in (A.5) we obtain the assertion. O
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