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ON THE VALIDITY OF THE LOG-SOBOLEV INEQUALITY
FOR SYMMETRIC FLEMING–VIOT OPERATORS

By Wilhelm Stannat

Universität Bielefeld

We prove that Fleming–Viot operators with parent-independent muta-
tion satisfy a logarithmic Sobolev inequality if and only if the set of types
is finite.

1. Introduction. Let �X�µ� be a finite measure space and �� �D�� �� be
a densely defined (not necessarily closed) quadratic form on L2�µ�. �� �D�� ��
is said to determine a logarithmic Sobolev inequality with constant c > 0 if∫

f2 log f2 dµ ≤ c� �f�f� + �f�2L2�µ� log �f�2L2�µ�

for all f ∈ D�� �. This kind of inequality has been invented in the context of
quantum field theory as a tool to prove hypercontractivity of semigroups asso-
ciated with certain infinite-dimensional elliptic differential operators. Mean-
while, this tool has found many other applications also in finite dimensions,
and the logarithmic Sobolev inequality has been verified in the case of many
important examples of stochastic analysis (cf. [2, 8] and references therein).
Hence it is a remarkable fact that in the class of measure-valued diffusions
there is up to now not one single example in which a logarithmic Sobolev
inequality has been verified. The purpose of this paper now is to give an
answer to the question, whether or not a logarithmic Sobolev inequality holds
for generators of Fleming–Viot processes with parent-independent mutation
and, if a logarithmic Sobolev inequality does not hold, whether or not we can
find a reasonable substitute for this inequality. Fleming–Viot processes can
be viewed as diffusion approximations of empirical processes associated with
a certain class of discrete time Markov chains in population genetics (cf. [6])
and are (apart from Dawson–Watanabe processes) the best studied class of
measure-valued diffusions. Before we state our main result let us first define
Fleming–Viot processes. Let S be a complete separable metric space which is
interpreted as a space of types of a given population. Throughout this paper
we will assume that S is compact. Let E �= �1�S� be the space of all proba-
bility measures on S (i.e., all possible distributions of types within the given
population) equipped with the weak topology. One can then introduce random
mutation on the population with the help of a Feller generator A [i.e., the gen-
erator of a sub-Markovian C0-semigroup on the space C�S� of all continuous
functions on S]. Throughout the whole paper we will only consider bounded
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668 W. STANNAT

mutation operators of the following type:

Af�x� = θ

2

∫
S
�f�y� − f�x�� ν0�dy�� f ∈ C�S��

where θ > 0 and ν0 ∈ E such that supp�ν0� = S. The Fleming–Viot process
associated with mutation operator A (with no recombination and no selec-
tion) is called the Fleming–Viot process with parent-independent mutation
and is defined as the unique solution of the CE
0�∞�-martingale problem
�Lθ� ν0

�� C∞�, where

� C∞ �= {F = ϕ��f1� ·�� � � � � �fd� ·���fi ∈ C�S�� ϕ ∈ C∞��d�� d ∈ �
}

(1.1)

and

Lθ� ν0
F�µ� �= 1

2

d∑
i� j=1

�∂xi
∂xj

ϕ���f1� µ�� � � � � �fd�µ�� covµ�fi� fj�

+ 1
2

d∑
i=1

�∂xi
ϕ���f1� µ�� � � � � �fd�µ���Afi�µ�

(1.2)

(cf. [6]). Here �f�µ� �= ∫ fdµ. It is well known that this process has a unique
stationary distribution mθ�ν0

∈ �1�E� which is even symmetrizing (cf. [6],
Theorem 8.1). mθ�ν0

can be described as follows: let �ρ1� ρ2� � � �� have a Poisson–
Dirichlet distribution with parameter θ and let �ξn�n∈� be i.i.d. with distribu-
tion ν0 and independent of �ρ1� ρ2� � � ��. Then

mθ�ν0

A� = P

[ ∞∑
i=1

ρiδξi
∈ A

]
�(1.3)

The Dirichlet form ��θ� ν0
�H1�2�mθ�ν0

�� associated with the symmetric
Fleming–Viot operator �Lθ� ν0

�� C∞� is obtained as the closure of the bilin-
ear form �−Lθ� ν0

�F�G�L2�mθ�ν0
�, F�G ∈ � C∞, in L2�mθ�ν0

�. We will prove
in Proposition 3.4 that �θ� ν0

determines a Poincaré inequality with constant
2/θ (i.e., the corresponding generator has a mass gap of size θ/2). We will
show in the Appendix that the existence of a mass gap can also be deduced
from a result obtained by Ethier and Griffiths in [4] concerning the conver-
gence to equilibrium in the total variation norm of the transition semigroup
of the Fleming–Viot process. However, by that method we do not obtain the
exact constant θ/2. The main result of this paper can then be formulated as
follows (cf. Theorem 3.5): the bilinear form ��θ� ν0

�H1�2�mθ�ν0
�� determines a

logarithmic Sobolev inequality if and only if �S� < +∞. In this case the best
(i.e., smallest) constant for which a logarithmic Sobolev inequality holds can
be estimated from above by 320/mins∈S ν0��s�) (cf. Remark 2.9 concerning a
further discussion of this constant). We also found that the situation is even
worse. The set{

F2�F ∈H1�2�mθ�ν0
���θ� ν0

�F�F� + �F�2L2�mθ�ν0
� ≤ 1

}
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is uniformly integrable if and only if �S� < +∞ which implies that there
is no reasonable substitute for the logarithmic Sobolev inequality which can
be formulated in terms of the bilinear form �θ� ν0

and which could serve as
an infinite-dimensional substitute for compactness in the class of symmetric
Fleming–Viot operators.

Finally, let us make some remarks concerning the proof of the logarithmic
Sobolev inequality in the finite-dimensional case (cf. Theorem 2.8). We found
an inductive method which allows one to add one type after another to a
given Fleming–Viot operator, thereby reducing the proof of the logarithmic
Sobolev inequality to the one-dimensional case. It may be possible to find
an alternative proof of Theorem 2.8 by generalizing a technique for proving
logarithmic Sobolev inequalities developed in a recent paper by Aida (cf. [1])
based on lower bounds on the #2-form associated with Lθ� ν0

. However, our
direct approach to the proof of Theorem 2.8 has the advantage that it provides
a general method to reduce problems on Fleming–Viot operators to the one-
dimensional case and that it gives much more additional information on this
particular class of measure-valued diffusions.

2. The finite-dimensional case. We start with the case where the type
space S is finite and thus S [resp. �1�S�] can be identified with the set
�1� � � � � �S�� 
resp. the ��S�−1�-dimensional simplex $�S�−1 = �x ∈ ��S�−1�xi ≥ 0

and
∑�S�−1

i=1 xi ≤ 1��.
Throughout the paper let �x� �= ∑d

i=1 xi for any vector x ∈ �d and �d
+ �=

�x ∈ �d�xi > 0�1 ≤ i ≤ d�. Let

C∞�$d� �=
{
f ∈ C�$d��∃ g ∈ C∞��d� such that g�$d

= f
}
�

It is then easy to see that in the finite-dimensional case, expression (1.2)
reduces to

Lqf�x� = 1
2

d∑
i=1

xi∂
2
xi
f�x� − 1

2

d∑
i� j=1

xixj∂xi
∂xj

f�x�

+ 1
2

d∑
i=1

�qi − �q�xi� ∂xi
f�x�� f ∈ C∞�$d��

with q ∈ �d+1
+ , qi = θνo��i��, 1 ≤ i ≤ d+ 1.

Definition 2.1. If q ∈ �d+1
+ , denote by D�q� the Dirichlet distribution with

parameters qi, 1 ≤ i ≤ d+ 1, on $d. D�q� is the measure given by

ν�dx� �= #��q��∏d+1
i=1 #�qi�

d∏
i=1

x
qi−1
i �1− �x��qd+1−1 dx1 · · ·dxd�

Denote its density by (q.
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For q ∈ �d+1
+ the Dirichlet distribution is a symmetrizing measure for the

operator Lq. The associated bilinear form ��q�C
∞�$d�� is given by

�q�f�g� �= 1
2

d∑
i� j=1

∫
xi�δij − xj� ∂xi

f∂xj
g(q dx� f�g ∈ C∞�$d��

��q�C
∞�$d�� is closable in L2�D�q�� (cf. [10], I.2 and I.3). Let H1�2�D�q�� be

the domain of the closure. It is easy to see that the generator �Lq�D�Lq��
associated with the closure extends the operator �Lq�C

∞�$d��.

Remark 2.2. (i) It is known that Lq has a discrete spectrum with eigen-
values n�n + �q� − 1�/2 and multiplicity

(
n+d−1

n

)
, n ≥ 0 (cf. [12]). In particu-

lar, Lq has a mass gap of size �q�/2 (independent of the dimension), which
implies L2-ergodicity of the associated semigroup �exp�tLq��t≥0. If qi ≥ 1

2 for
all i, we know from [12] that the L2-semigroup is ultracontractive, that is,
� exp�tLq��2�∞ < ∞ for all t > 0 (more precisely, � exp�tLq��2�∞ ≤ constant ·
t−d/2� t > 0). Consequently, a logarithmic Sobolev inequality for �q could be
obtained using [3], Theorem 2.2.3, and the existence of a mass gap. We empha-
size that, due to the restriction qi ≥ 1

2 for all i, this result cannot be used to
obtain a logarithmic Sobolev inequality in the general finite-dimensional case.

(ii) Similar to the space H1�2�D�q�� one can define the space H
1�2
0 �D�q�� as

the closure of the subspace C∞0 �$0
d� in H1�2�D�q��, where $0

d denotes the open
interior of $d. It is known that the two spaces coincide if and only if qi ≥ 1
for all 1 ≤ i ≤ d+ 1 (cf. [12], Lemma 1.1).

(iii) By Theorem 3.4 in [6] the closure of �Lq�C
∞�$d�� in C�$d� generates a

Feller semigroup. Consequently, �α−Lq��C∞�$d�� ⊂ C�$d� dense for all α > 0
(cf. [5], 1.2.3). Since C�$d� ⊂ L2�D�q�� densely and continuously, we conclude
that �α−Lq��C∞�$q�� ⊂ L2�D�q�� dense and hence C∞�$d� is dense in D�Lq�
w.r.t. the graph norm.

The next two propositions are the main tool in the proof of the logarithmic
Sobolev inequality in the finite-dimensional case.

Proposition 2.3. Let q ∈ �d+1
+ and assume that ��q�C

∞�$d�� determines
a logarithmic Sobolev inequality with constant c. Let �kn�n≤m+1 ⊂ � such that

0 = k0 < k1 < · · · < km < km+1 = d + 1 and pn �=
∑kn

l=kn−1+1 ql, 1 ≤ n ≤
m + 1. Then ��p�C

∞�$m��, too, determines a logarithmic Sobolev inequality
with constant c.

Proof. Let T� $d → $m, x �→ �∑k1
l=k0+1 xl�

∑k2
l=k1+1 xl� � � � �

∑km

l=km−1+1 xl�.
Then T�D�q�� = D�p� by the amalgamation property of Dirichlet distribu-
tions (cf. [7], Theorem 1.4). Let f ∈ C∞�$m�. Then by the change of variables
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formula,

�q�f ◦T�f ◦T� = 1
2

d∑
i� j=1

∫
xi�δij − xj� ∂xi

�f ◦T� ∂xj
�f ◦T�(q dx

= 1
2

d∑
i=1

∫
xi�∂xi

�f ◦T��2 (q dx

− 1
2

d∑
i� j=1

∫
xixj∂xi

�f ◦T� ∂xj
�f ◦T�(q dx

= 1
2

m∑
i=1

∫ ( kj∑
l=kj−1+1

xl

)
�∂zj

f�2 ◦T(q dx

− 1
2

m∑
i� j=1

∫ ( ki∑
k=ki−1+1

xk

)(
kj∑

l=kj−1+1

xl

)
× �∂zi

f� ◦T�∂zj
f� ◦T(q dx

= 1
2

m∑
i� j=1

∫
zi�δij − zj� ∂zi

f ∂zj
f(p dz�

Since ��q�C
∞�$d�� determines a logarithmic Sobolev inequality with constant

c it follows from the change of variables formula again that∫
f2 log f2(p dx=

∫
�f ◦T�2 log�f ◦T�2(q dx

≤ c�q�f ◦T�f ◦T� + �f ◦T�2L2�D�q�� log �f ◦T�2L2�D�q��

= c�p�f�f� + �f�2L2�D�p�� log �f�2L2�D�p��� ✷

Proposition 2.4 (Additivity principle). Let q ∈ �d+2
+ and

T� 
0�1� × $d → $d+1� �t� z� → �z� t�1− �z����

(i) Let f ∈ C∞�$d+1�. Then

�q�f�f�=
∫ 1

0
��q1� ���� qd� qd+1+qd+2���f ◦T��t� ·��
�f ◦T��t� ·��(�qd+1� qd+2��t�dt

+
∫
$d

1
1− �z���qd+1� qd+2���f ◦T��·� z�� �f ◦T��·� z��

×(�q1� ���� qd� qd+1+qd+2��z�dz�

(2.1)
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(ii) If ���q1� ���� qd� qd+1+qd+2�� C∞�$d�� and ���qd+1� qd+2�� C∞�
0�1��� determine
logarithmic Sobolev inequalities with constant c then ��q�C

∞�$d+1��, too,
determines a logarithmic Sobolev inequality with constant c.

Proof. Let q̄ �= �q1� � � � � qd� qd+1 + qd+2� and q′ = �qd+1� qd+2�. Then
T�D�q′� ⊗D�q̄�� = D�q� by [7], Theorem 1.4.

(i) Let us first calculate the right-hand side of (2.1). For simplicity we
introduce the following notation:

dif�t� z� �= �∂xi
f��T�t� z��� 1 ≤ i ≤ d+ 1�

Then

∂t�f ◦T��t� z� = �1− �z��dd+1f�t� z�

and

∂zi
�f ◦T��t� z� = dif�t� z� − tdd+1f�t� z��

It follows that

I �= 1
2

d∑
i� j=1

zi�δij − zj� ∂zi
�f ◦T��t� z� ∂zj

�f ◦T��t� z�

= 1
2

d∑
i� j=1

zi�δij − zj�dif�t� z�djf�t� z�

−
d∑

i=1

tzi�1− �z��dif�t� z�dd+1f�t� z�

+ 1
2t

2�z��1− �z�� �dd+1f�2�t� z�

and

II �= 1
2

1
1− �z�t�1− t� �∂t�f ◦T��2�t� z� =

1
2
�1− �z�� t�1− t��dd+1f�2�t� z��

Adding both terms we obtain that

I+ II = 1
2

d∑
i� j=1

zi�δij − zj�dif�t� z�djf�t� z�

−
d∑

i=1

tzi�1− �z��dif�t� z�dd+1f�t� z�

+ 1
2t�1− �z�� �1− t�1− �z��� �dd+1f�2�t� z�
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and hence by the change of variables formula,∫ 1

0
�q̄

(�f ◦T��t� ·�� �f ◦T��t� ·�)(q′ �t�dt

+
∫
$d

1
1− �z��q′ ��f ◦T� �·� z�� �f ◦T� �·� z��(q̄�z�dz

= 1
2

d+1∑
i� j=1

∫
$d+1

xi�δij − xj� ∂xi
f�x� ∂xj

f�x�(q�x�dx�

(ii) The proof of (ii) is a small modification of Faris’ additivity theorem (cf.
[8], Theorem 2.3). Let f ∈ C∞�$d+1�. Then∫

f2 log f2(q dx

=
∫ ∫
�f ◦T�2�t� z� log�f ◦T�2�t� z�(q̄�z�dz(q′ �t�dt

≤ c
∫
�q̄��f ◦T� �t� ·�� �f ◦T��t� ·��(q′ �t�dt

+
∫
��f ◦T��t� ·��2L2�D�q̄�� log ��f ◦T��t� ·��2L2�D�q̄��(q′ �t�dt�

(2.2)

since �q̄ determines a logarithmic Sobolev inequality with constant c. Since
�q′ determines a logarithmic Sobolev inequality with constant c, we obtain
from the semiboundedness theorem ([8], Theorem 2.1) that∫

�f ◦T�2�t� z� log ��f ◦T� �t� ·��2L2�D�q̄�� (q′ �t�dt
≤ c�q′ ��f ◦T� �·� z�� �f ◦T� �·� z��
+ ��f ◦T� �·� z��2L2�D�q̄�� log �f�2L2�D�q̄��

for all z ∈ $d. Integrating the last inequality w.r.t. �1/1 − �z��(q̄�z�dz we
conclude that∫ ∫

�f ◦T�2�t� z� log ��f ◦T��t� ·��2(q′ �t�dt(q̄�z�dz

≤ c
∫ 1

1− �z��q′ ��f ◦T� �·� z�� �f ◦T� �·� z��(q̄�z�dz

+�f�2L2�D�q�� log �f�2L2�D�q��

(2.3)

and combining (2.2), (2.3) and (2.1) we obtain that∫
f2 log f2(q dx ≤ c�q�f�f� + �f�2L2�D�q�� log �f�2L2�D�q���

This proves (ii). ✷
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The one-dimensional case.

Lemma 2.5. Let q ∈ �2
+, min�q1� q2� ≥ 1

2 . Then ��q� C∞�
0�1��� de-
termines a logarithmic Sobolev inequality with constant 4/��q�/2+
min�q1� q2� − 1�.

Proof. In order to prove the assertion, it is enough to show that the fol-
lowing inequality,

#2�f�f� ≥
1
2

( �q�
2
+min�q1� q2� − 1

)
#�f�f��(2.4)

is satisfied for all f ∈ C∞�
0�1��. Here #�f�f��x� = 1
2x�1 − x�ḟ2�x� is the

square field operator associated with �q and

#2�f�f��x� = 1
2�Lq#�f�f��x� − 2#�Lqf�f��x��

is the iterated gradient. Indeed, if �exp�tLθ� ν0
��t≥0 denotes the semigroup cor-

responding to the generator of ��q�H
1�2�D�q��� it follows from [12], (6.2), that

exp�tLθ� ν0
��C∞�
0�1��� ⊂ C∞�
0�1��, t ≥ 0. It is well known that inequal-

ity (2.4) then implies that ��q�C
∞�
0�1��� determines a logarithmic Sobolev

inequality with constant 4/��q�/2 +min�q1� q2� − 1� (cf. [2], Proposition 6.5).
To prove inequality (2.4) note that

#2�f�f��x� = 1
4x

2�1− x�2f̈2�x� + 1
4x�1− x��1− 2x�ḟ�x�f̈�x�

+ 1
4

(��q� − 1�x�1− x� + 1
2�q1 − �q�x��1− 2x�)ḟ2�x��

(2.5)

We may assume that q1 ≤ q2, that is, q1 ≤ �q�/2. Then

#2�f�f��x� ≥
1
4

(
−1

4
�1− 2x�2 + ��q� − 1�x�1− x�

+ 1
2
�q1 − �q�x��1− 2x�

)
ḟ2�x�

= 1
4

(
1
2

(
q1 −

1
2

)
+
( �q�

2
− q1

)
x

)
ḟ2�x�

≥ 1
4

(
�2q1 − 1�x�1− x� +

( �q�
2
− q1

)
x�1− x�

)
ḟ2�x�

= 1
2

( �q�
2
+ q1 − 1

)
#�f�f��x�� x ∈ 
0�1��

which implies the assertion. ✷

Note that in the particular case q1 = q2, inequality (2.5) shows that #2 is no
longer positive definite if q1 < 1

2 . Consequently, the standard #2-criterion can-
not be applied in order to prove a logarithmic Sobolev inequality for Fleming–
Viot operators in the general one-dimensional case.
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Lemma 2.6. Let q ∈ �0�1�2. Then ��q�C
∞�
0�1��� determines a logarithmic

Sobolev inequality with constant 10/min�q1� q2�min�1− q1�1− q2�.

Proof. First let f ∈ C∞�
0�1�� be such that
∫
f(q dx = 0. Then there

exists x0 ∈ �0�1� with f�x0� = 0. If x ∈ 
0�1� then

�f�x�� =
∣∣∣∫ x

x0

ḟ�s�ds
∣∣∣ ≤ ∣∣∣∫ x

x0

ḟ2�s�sq1�1− s�q2 ds
∣∣∣1/2∣∣∣∫ x

x0

s−q1�1− s�−q2 ds
∣∣∣1/2

≤
√

2B�q1� q2�1/2B�1− q1�1− q2�1/2︸ ︷︷ ︸
=�α

�q�f�f�1/2�

where B denotes the Beta function. By Young’s inequality, that is, st ≤ s log s−
s+ et for all s ≥ 0 and t ∈ �, we conclude that∫

f2 log f2(q dt ≤ �f�2 log �f�2 − �f�2 + 2α2�q�f�f��(2.6)

For general f ∈ C∞�
0�1�� let f̃ �= f− ∫ f(q dx. By [2], Proposition 3.8,∫
f2 log f2(q dx− �f�2 log �f�2

≤
∫
f̃2 log f̃2(q dx− �f̃�2 log �f̃�2 + 2�f̃�2

≤ 2α2�q�f�f� + �f̃�2 ≤ 2
(
α2 + 1

�q�
)
�q�f�f��

where we used (2.6) in the last but one inequality and in the last inequality
the fact that �q determines a Poincaré inequality with constant 2/�q�. Note
that

B�q1� q2� =
∫ ∞
0

tq1−1

�1+ t��q� dt ≤
∫ 1

0
tq1−1 dt+

∫ ∞
1

t−q2−1 dt

≤ 1
q1
+ 1

q2
≤ 2

min�q1� q2�
and similarly, B�1−q1�1−q2� ≤ 2/min�1−q1�1−q2�, hence 2�α2+�1/�q��� ≤
10/min�q1� q2�min�1− q1�1− q2�. ✷

Lemma 2.7. Let q ∈ �2
+. Then ��q�C

∞�
0�1��� determines a logarithmic
Sobolev inequality with constant 320/min�q1� q2�.

Proof. We may assume that q1 ≤ q2.

Case q1 ≥ 2
3 . Then �q�/2+q1−1 ≥ 2q1−1 ≥ q1/2 and Lemma 2.5 implies

that ��q�C
∞�
0�1��� determines a logarithmic Sobolev inequality with con-

stant 8/q1 which implies the assertion in this case.
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Case q1 < 2
3 .

(i) q2 ≥ 5
6 .

(a) �q� ≥ 3
2 . Let p �= ��q� − 5/6�5/6�. Then ��p�C

∞�
0�1��� determines
a logarithmic Sobolev inequality with constant 48/5 by Lemma 2.5. Since
���5/6−q1� q1�, C

∞�
0�1��� determines a logarithmic Sobolev inequality with con-
stant 240/q1 by Lemma 2.6, Proposition 2.4(ii) implies that ����q�−�5/6��5/6−q1�q1��
C∞�$2�� determines a logarithmic Sobolev inequality with constant 240/q1
and thus ��q� C∞�
0�1��� determines a logarithmic Sobolev inequality with
constant 240/q1 by Proposition 2.3 which implies the assertion in this case.

(b) �q� < 3/2. Let p �= ��q�/2� �q�/2�. ��p�C
∞�
0�1��� determines a log-

arithmic Sobolev inequality with constant 40/q1 by Lemma 2.6 and since
�q�/2−q1 = �q2−q1�/2 ≥ 1/12 it follows that �����q�/2�−q1� q1�� C

∞�
0�1��� deter-
mines a logarithmic Sobolev inequality with constant 320/q1 by Lemma (2.6).
By Proposition 2.4(ii) we obtain that ����q�/2��q�/2−q1� q1�� C∞�$2�� determines a
logarithmic Sobolev inequality with constant 320/q1 and consequently ��q�
C∞�
0�1��� determines a logarithmic Sobolev inequality with constant 320/q1
by Proposition 2.3. Hence the assertion is proved in this case.

(ii) q2 < 5
6 . Then ��q�C

∞�
0�1��� determines a logarithmic Sobolev
inequality with constant 60/q1 by Lemma 2.6 which implies the assertion
in this case. ✷

The (general) finite-dimensional case.

Theorem 2.8. Let q ∈ �d+1
+ . Then ��q�C

∞�$d�� determines a logarithmic
Sobolev inequality with constant 320/min�q1� � � � � qd+1�.

Proof. We will prove the assertion using induction. The case d = 1 is
contained in Lemma 2.7. Suppose that the assumption is proved for all p ∈
�d+1
+ . Let q ∈ �d+2

+ . Since ��q1� ���� qd� qd+1+qd+2� determines a logarithmic Sobolev
inequality with constant 320/min�q1� � � � � qd+1 + qd+2� by assumption and
��qd+1� qd+2� determines a logarithmic Sobolev inequality with constant
320/min�qd+1� qd+2� by Lemma 2.7 it follows from Proposition 2.4(ii) that �q

determines a logarithmic Sobolev inequality with constant 320/min
�q1� � � � � qd+2�. ✷

Remark 2.9. The Rothaus–Simon mass gap theorem (cf., e.g., [8], Theo-
rem 2.5) states that if a Dirichlet form �� �D�� �� on a probability space with
1 ∈ D�� � and � �1�1� = 0 determines a logarithmic Sobolev inequality with
constant c then it satisfies a Poincaré inequality with constant ≥ c/2. Since
we already know that �q satisfies a Poincaré inequality with constant 2/�q�
one could think that the constant specified in the theorem is not very pre-
cise. Although we did not try to find the best (i.e., smallest) constant cq such
that �q determines a logarithmic Sobolev inequality with constant cq� cq will
depend on min�q1� � � � � qd+1� rather that �q� as will be clear from the following
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example: let q ∈ �d+1
+ such that q1 = min�q1� � � � � qd+1� and f�x� = x1. Then

(cf. the proof of (2.3),

1
q1

(
�q�f�f� + �f�2 log �f�2)
= 1

q1

(
1
2
q1��q� − q1�
�q���q� + 1� +

q1�q1 + 1�
�q���q� + 1� log

(
q1�q1 + 1�
�q���q� + 1�

))
= 1

2
�q� − q1

�q���q� + 1� +
q1 + 1

�q���q� + 1� log
(
q1�q1 + 1�
�q���q� + 1�

)
→−∞

if q1 → 0 and �q� remains constant whereas

1
q1

∫
f2 log f2 (q dx =

2
q1

∫
f�f log f�(q dx ≥ −2e−1 1

q1

∫
f(q dx = −2e−1 1

�q�
remains bounded from below independent of q. Hence we have found an
example for which the mass gap is strictly bigger than 2/cq (cf. [9] for another
example in this direction which is, similar to our case, a differential operator
with degenerating second-order part).

3. The infinite dimensional case. Let S be a compact space and E =
�1�S� be the space of all probability measures. Fix some ν0 ∈E with supp�ν0�
= S, some θ > 0 and let

Af�x� = θ

2

∫
S

(
f�y� − f�x�)ν0�dy�� f ∈ C�S��(3.1)

Let �Lθ� ν0
�� C∞� be as in the Introduction (cf. (1.1), (1.2)) and let mθ�ν0

∈
�1�E� be the unique stationary distribution of the Fleming–Voit process asso-
ciated with �Lθ� ν0

�� C∞� (cf. (1.3)). Let us first note some important feature
of the measure mθ�ν0

:

Lemma 3.1. Let �An�n≤d+1 be a measurable partition of S such that ν0�Ai�
> 0 and II: E→ $d� µ �→ �µ�A1�� � � � � µ�Ad��. Then

3�mθ�ν0
= D

(
θ�µ�A1�� � � � � µ�Ad��

)
�

Proof. (cf. [11], Lemma 7.2),

For F � E→ � that admits a representation F�µ� = ϕ��f1� µ�� � � � � �fd�µ���
ϕ ∈ C∞��d�, fi ∈ �b�S�, 1 ≤ i ≤ d, we can define a gradient ∇F � S×E→ �
as follows: Let

∇xF�µ� �=
dF

ds
�µ+ sδx��s=0

=
d∑

i=1

�∂xi
ϕ�(�f1� µ�� � � � � �fd�µ��fi�x��
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If F�G ∈ � C∞ it is then easy to see, using symmetry and invariance of Lθ� ν0
,

that

−
∫
�Lθ�ν0

F�Gdmθ� ν0
= −1

2

∫
�Lθ� ν0

F�Gdmθ� ν0
− 1

2

∫
F�Lθ� ν0

G�dmθ� ν0

= −1
2

∫
Lθ� ν0

�FG�dmθ� ν0

+ 1
2

∫
covµ�∇F�µ��∇G�µ��mθ�ν0

�dµ�

= 1
2

∫
covµ�∇F�µ�� ∇G�µ��mθ�ν0

�dµ��

The corresponding closure ��θ� ν0
�H1/2�mθ�ν0

�� in L2�mθ�ν0
� is then the Dirich-

let form corresponding to the Fleming–Voit process with mutation operator A
as defined in (3.1).

Lemma 3.2. Let �An�n≤d+1 be a measurable partition of S such that ν0�Ai�
> 0 and F�µ� = ϕ��1A1

� µ�� � � � � �1Ad
� µ��� ϕ ∈ C∞��d�. Then F ∈H1�2�mθ�ν0

�
and

�θ� ν0
�F�F� = �θ�A1������ν0�Ad+1���ϕ�ϕ��

Proof. Let q �= θ�ν0�A1�� � � � � ν0�Ad+1��. It follows from [11], Lemma 6.3
that F ∈H1�2�mθ�ν0

� and

�θ� ν0
�F�F� =

∫
varµ�∇F�µ��mθ�ν0

�dµ��

Hence,

�θ� ν0
�F�F� =

∫
varµ�∇F�µ��mθ�ν0

�dµ�

=
d∑

i� j=1

∫
�∂xi

ϕ ∂xj
ϕ� �µ�A1�� � � � � µ�Ad��

× µ�Ai� �δij − µ�Aj��mθ�ν0
�dµ�

=
d∑

i� j=1

∫
xi�δij − xj� ∂xi

ϕ�x� ∂xj
ϕ�x�(q�x�dx

= �q�ϕ�ϕ��
where we used Lemma 3.1 in the last but one equality. ✷

Proposition 3.3. Let θ > 0, ν0 ∈ E. Then ��θ� ν0
�H1�2�mθ�ν0

�� determines a
foincaré inequality with constant 2/θ.
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Proof. We have to show that∫
�F− �F��2 dmθ� ν0

≤ 2
θ
�θ� ν0

�F�F�

for all F ∈ H1�2�mθ�ν0
�. Here we set �F� �= ∫

Fdmθ� ν0
. Since � C∞ ⊂

H1�2�mθ�ν0
� dense it is sufficient to prove the inequality for all F ∈ � C∞.

To this end fix F�µ� = ϕ��f1� µ�� � � � � �fd�µ��. Since each fi can be uniformly
approximated by a sequence of elementary step functions we can construct
a sequence of measurable partitions �Am

n �n≤m+1 and constants cmi�n ∈ � such
that fm

i �=
∑m+1

n=1 cmi�n1Am
n
→ fi, m→∞, uniformly for all i�1 ≤ i ≤ d.

For all m let ϕm ∈ C∞��m+1� be defined by

ϕm�x� �= ϕ

(
m+1∑
n=1

cm1� nxn� � � � �
m+1∑
n=1

cmd�nxn

)
� x ∈ �m+1�

Then

Fm�µ� �= ϕm��1Am
1
� µ�� � � � � �1Am

m+1
� µ�� = ϕ��fm

1 � µ�� � � � � �fm
d �µ�� → F�µ�

for all µ ∈ E and in Lp�mθ�ν0
� for all p ≥ 1 by Lebesgue’s theorem. Similarly,

∇Fm�µ� =
m∑
i=1

∂xi
ϕ��fm

1 � µ�� � � � � �fm
d �µ��fm

i → ∇F�µ�

for all µ ∈ E and in Lp�mθ�ν0
� for all p ≥ 1. Note that if ν0�Am

i � = 0 for some
i then mθ�ν0

�µ�µ�Am
i � = 0� = 1 (cf. [11], Lemma 7.2). Let I �= �i�ν0�Am

i � > 0�.
Then �I� > 0 and we may assume that I = �1� � � � � �I��. Let Bi �= Am

i , i < �I�,
and B�I� �=

⋃m+1
i=�I�A

m
i . Then �Bi�i≤�I� is a measurable partition and ν0�Bi� >

0 for all i. Let ψm�x� �= ϕm�x�1 − �x��0� � � � �0�, x ∈ ��I�−1 and F′m�µ� �=
ψm��1B1

� µ�� � � � � �1B�I�−1
� µ��. Then F′m = Fmmθ� ν0

-a.s. If �I� > 1 let qm �=
θ�ν0�B1�� � � � � ν0�B�I��� and note that �qm� = θ. It follows from Lemma 3.1 and
Lemma 3.2 that

�Fm� =
∫
F′m�µ�dmθ� ν0

=
∫
ψm(qm

dx =� �ψm�
and ∫

�Fm − �Fm��2 dmθ� ν0
=
∫
�ψm − �ψm��2(qm

dx

≤ 2
θ
�qm
�ψm�ψm� =

2
θ
�θ� ν0

�Fm�Fm�
(3.2)

since ��qm
�C∞�$�I�−1�� satisfies a Poincaré inequality with constant 2/θ. If

�I� = 1 then Fm ≡ ψm�1� mθ�ν0
-a.s. and thus∫

�Fm − �Fm��2mθ�ν0
�dµ� = 0 = 2

θ
�θ� ν0

�Fm�Fm��

Consequently, (3.2) holds in this case too. Passing to the limit m→∞ in the
last inequality we obtain the assertion. ✷
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Remark 3.4. We will show in the Appendix that the existence of a mass
gap can be deduced also from the following result obtained by Ethier and
Griffith, in [4]: let

(
p

θ� ν0
t

)
t≥0 be the transition semigroup of the Fleming–Viot

process corresponding to the generator
(
Lθ� ν0

�� C∞
)
. Then

�pθ� ν0
t �µ� ·� −mθ�ν0

�var ≤ 1− dθ
0�t�� t > 0� µ ∈ E�(3.3)

where � · �var denotes the total variation norm, dθ
0�t� = P
Dt = 0�, t > 0, and

�Dt�t≥0 is a pure death process in �+ ∪�+∞� starting at +∞ with death rates
n�n+θ−1�/2� n ≥ 0. Moreover, it has been shown in [13] that exp�−�θ/2�t� ≤
1−dθ

0�t� ≤ �1+θ� exp−�θ/2�t� t > 0. Note that Proposition 3.3 implies that the
lower bound in the last inequality is the exact exponential rate of convergence
in the corresponding L2-space, that is,(∫ (

p
θ� ν0
t F− �F�

)2
dmθ� ν0

)1/2

≤ exp
(
−θ

2
t

)(∫
F2 dmθ� ν0

)1/2

� t > 0�

Although ��θ� ν0
�H1�2�mθ�ν0

�� satisfies a Poincaré inequality we will see in the
following theorem that the bilinear form does not determine a logarithmic
Sobolev inequality.

Theorem 3.5. Let θ > 0� ν0 ∈ E such that supp�ν0� = S. Let ��θ� ν0
�

H1�2�mθ�ν0
�� be the Dirichlet form corresponding to the Fleming–Viot process

with mutation operator A as defined in (3.1). Then:

(i) D0 �=
{
F2�F ∈H1�2�mθ�ν0

���θ� ν0
�F�F� + �F�2L2�mθ�ν0

� ≤ 1
}

is uniformly integrable if and only if �S� < +∞. In particular, ��θ� ν0
�

H1�2�mθ�ν0
�� determines a logarithmic Sobolev inequality if and only if �S� <

+∞.
(ii) If �S� < +∞ then ��θ� ν0

�H1�2�mθ�ν0
�� determines a logarithmic

Sobolev inequality with constant 320/mins∈S ν0��s��.

Proof. If �S� < +∞, then by Theorem 2.8 ��θ� ν0
�H1�2�mθ�ν0

�� determines
a logarithmic Sobolev inequality (with constant 320/mins∈S ν0��s��). In par-
ticular, D0 is uniformly integrable since

sup
F2∈D0

∫
�F2≥c�

F2 dmθ� ν0
≤ 1

log c
sup

F2∈D0

∫
�F2≥c�

F2 log F2 dmθ� ν0

≤ 1
log c

320
mins∈S ν0��S��

→ 0� c→+∞�

If �S� = +∞ then we can find a decreasing sequence �An�n≥1 of measurable
subsets with pn �= ν0�An� > 0 and limn→∞ pn = 0. Let

Fn�µ� �=
(

1
pn�θpn + 1�

)1/2

µ�An��



LOG-SOBOLEV INEQUALITY FOR FLEMING–VIOT OPERATORS 681

Clearly, Fn ∈ � C∞�
∫
F2

n dmθ� ν0
= �1/pn�θpn + 1�� ∫ t2(θ�pn�1−pn��t�dt =

1/�θ + 1�, and �θ� ν0
�Fn�Fn� = �1/pn�θpn + 1�� ∫ t�1 − t�(θ�pn�1−pn��t�dt =

θ�1− pn�/ �θpn + 1��θ+ 1�, hence

�θ� ν0
�Fn�Fn� + �Fn�2L2�mθ�ν0

� =
θ�1− pn� + θpn + 1
�θpn + 1��θ+ 1� ≤ 1�

that is, �F2
n� ⊂ D0. However,∫

�F2
n≥c�

F2
n dmθ� ν0

= 1
pn�θpn + 1�

∫
�µ�µ�An�≥

√
cpn�θpn+1��

µ�An�2mθ�ν0
�dµ�

= #�θ+ 1�
#�θpn + 2�#�θ�1− pn��

×
∫ 1

√
cpn�θpn+1�

tθpn+1�1− t�θ�1−pn�−1 dt

−→
n→∞

#�θ+ 1�
#�2�#�θ�

∫ 1

0
t�1− t�θ−1 dt = 1

θ+ 1
∀ c > 0�

which implies that �F2
n�, hence D0, too, is not uniformly integrable. ✷

Corollary 3.6. The L2-semigroup �exp�tLθ� ν0
��t≥0 associated with the sym-

metric Fleming–Viot operator Lθ� ν0
is hypercontractive (i.e., � exp�tLθ� ν0

��2�4 <
+∞ for some t > 0) if and only if �S� < +∞.

Proof. If �S� < +∞ it follows from Theorem 3.5 and [2], Proposition 3.4
that �exp�tLθ� ν0

��t≥0 is hypercontractive. Next suppose that �S� = +∞ and
that �exp�tLθ� ν0

��t≥0 is hypercontractive. By [2], Theorem 3.6, it follows that
there exist positive constants c�m such that∫

F2 log F2 dmθ� ν0
≤ c�θ� ν0

�F�F� +m�F�2L2�mθ�ν0
� + �F�2L2�mθ�ν0

� log �F�2L2�mθ�ν0
�

for all F ∈H1�2�mθ�ν0
�. This would imply that the set{

F2�F ∈H1�2�mθ�ν0
���θ� ν0

�F�F� + �F�2L2�mθ�ν0
� ≤ 1

}
is uniformly integrable, which is a contradiction. Hence �exp�tLθ� ν0

��t≥0 cannot
be hypercontractive. ✷

APPENDIX

The purpose of this Appendix is to show that (3.3) can be used directly in
order to show that ��θ�ν0

�H1�2�mθ�ν0
�� determines a Poincaré inequality with

constant 2��1+θ�2/θ�. To this end note that �pθ� ν0
t �t≥0 induces a sub-Markovian

C0-semigroup of contractions on L1�mθ�ν0
�, again denoted by �pθ� ν0

t �t≥0. By

the Riesz–Thorin interpolation theorem �pθ� ν0
t �t≥0 can be restricted to a C0-

semigroup of contractions on Lp�mθ�ν0
� for all p ∈ 
1�∞�. Then (3.3) implies

the following result.
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Lemma A.1. Let p ∈ 
1�∞� and F ∈ Lp�mθ�ν0
�. Then∥∥pθ� ν0

t F− �F�∥∥
p
≤ (1− dθ

0�t�
)�F�p� t > 0�

Proof. Consider the linear operator UtF �= p
θ�ν0
t F − �F�1E�F ∈

Lp�mθ�ν0
�� t ≥ 0. We will show that:

(a) �Ut�∞ ≤ 1− dθ
0�t�� t > 0.

(b) �Ut�1 ≤ 1− dθ
0�t�� t > 0.

Proof of (a). Let F ∈ �b�E�. Then (3.3) implies∣∣pθ� ν0
t F�µ� − �F�∣∣ ≤ �1− dθ

0�t���F�∞� t > 0� µ ∈ E�

Consequently,∥∥pθ� ν0
t F− �F�1E

∥∥
∞ ≤ �1− dθ

0�t���F�∞� t > 0�(A.1)

which implies (a).

Proof of (b). Let F ∈ �b�E� and lF �= 1�pθ� ν0
t F>�F�� − 1�pθ� ν0

t F<�F��. Then,

using that mθ�ν0
is a symmetrizing measure for p

θ� ν0
t ,∫ ∣∣pθ� ν0

t F− �F�1E

∣∣dmθ� ν0
=
∫
�pθ� ν0

t F− �F�1E�lF dmθ� ν0

=
∫
�pθ� ν0

t F�lF dmθ� ν0
− �F��lF�

=
∫
F�pθ� ν0

t lF�dmθ� ν0
− �F��lF�

=
∫
F��pθ� ν0

t lF� − �lF�1E�dmθ� ν0

≤ �F�1�pθ� ν0
t lF − �lF�1E�∞

≤ �1− dθ
o�t���F�1� t > 0�

where we used (4.1) in the last inequality. Consequently, �pθ� ν0
t F−�F�1E�1 ≤

�1− dθ
0�t���F�1� t > 0, which inplies (b).

The linear operator Ut is therefore continuous on Lp�mθ�ν0
� for p = 1 and

p = ∞ with operator norm less than 1 − dθ
0�t�� t > 0. Hence by the Riesz–

Thorin interpolation theorem it follows that Ut is continuous on Lp�mθ�ν0
� for

all p ∈ 
1�∞� with operator norm less than 1−dθ
0�t�� t > 0, which implies the

assertion. ✷

Proposition A.2. Let θ > 0� ν0 ∈ E. Then ��θ� ν0
�H1�2�mθ�ν0

�� determines
a Poincaré inequality with constant 2�1+ θ�2/θ.
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Remark A.3. Note that we do not obtain the exact constant 2/θ in the last
proposition.

Proof. Let F ∈ L2�mθ�ν0
� be such that �F� = 0. Then

G0F �=
∫ ∞
0

p
θ� ν0
t Fdt

exists in L2�mθ�ν0
� since by Lemma A.1 and the fact that 1 − dθ

0�t� ≤
�1 + θ� exp�−�θ/2�t�� t > 0�

∫∞
0 �p

θ� ν0
t F�2 dt ≤ �1 + θ� ∫∞0 exp�−�θ/2�t�×

�F�2 dt < +∞. Moreover, if in addition F ∈ D�Lθ� ν0
� then �Lθ� ν0

F� = 0,

G0Lθ� ν0
F = ∫∞0 �d/dt�(pθ� ν0

t F
)
dt = −F and thus

�−Lθ� ν0
F�F�2 = �Lθ� ν0

F�G0Lθ� ν0
F�2 =

∫ ∞
0
�Lθ� ν0

F�p
θ� ν0
t Lθ� ν0

F�2 dt

=
∫ ∞
0
�pθ� ν0

t/2 Lθ� ν0
F�22 dt�

Lemma A.1 implies that �pθ� ν0
t Lθ� ν0

F�2 = �pθ� ν0
t/2 p

θ� ν0
t/2 Lθ� ν0

F�2 ≤ �1 + θ�
exp�−�θ/4�t��pθ� ν0

t/2 Lθ� ν0
F�2, since �pθ� ν0

t/2 Lθ� ν0
F� = 0, and thus

�−Lθ� ν0
F�F�2 =

∫ ∞
0

∥∥pθ� ν0
t/2 Lθ� ν0

F
∥∥2

2 dt

≥ 1
�1+ θ�2

∫ ∞
0

exp��θ/2�t�∥∥pθ� ν0
t Lθ� ν0

F
∥∥2

2 dt�

(A.2)

By Hölder’s inequality,∫ ∞
0

∥∥pθ� ν0
t Lθ� ν0

F
∥∥

2 dt

=
∫ ∞
0

exp�−�θ/4�t� exp�θ/4�t��pθ� ν0
t Lθ� ν0

F�2 dt

≤
( ∫ ∞

0
exp�−�θ/2�t�dt

)1/2( ∫
exp��θ/2�t�∥∥pθ� ν0

t Lθ� ν0
F
∥∥2

2 dt

)1/2

=
(

2
θ

)1/2(∫ ∞
0

exp��θ/2�t�∥∥pθ� ν0
t Lθ� ν0

F
∥∥2

2 dt

)1/2

�

and thus∫ ∞
0

exp��θ/2�t�∥∥pθ� ν0
t Lθ� ν0

F
∥∥2

2 dt ≥
θ

2

( ∫ ∞
0

∥∥pθ� ν0
t Lθ� ν0

F
∥∥

2 dt

)2

≥ θ

2

∥∥∥∥ ∫ ∞0 p
θ� ν0
t Lθ� ν0

Fdt

∥∥∥∥2

2

= θ

2

∥∥∥∥G0Lθ� ν0
F

∥∥∥∥2

2
= θ

2

∥∥F∥∥2
2�

(A.3)
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Combining (A.2) and (A.3) we conclude that

�−Lθ� ν0
F�F� ≥ θ

2�1+ θ�2 �F�
2
2�(A.4)

Finally, let F ∈H1�2�mθ�ν0
� be arbitrary and F̃ �= F− �F�1E. Then p

θ� ν0
t F̃ ∈

D�Lθ� ν0
� if t > 0� �pθ� ν0

t F̃� = 0 and (A.4) implies that

�θ� ν0

(
p

θ� ν0
t F̃� p

θ� ν0
t F̃

) ≥ θ

2�1+ θ�2
∥∥pθ� ν0

t F̃
∥∥2

2� t > 0�(A.5)

Since limt→0 p
θ� ν0
t F̃ = F̃ in H1�2�mθ�ν0

� and �θ� ν0
�F̃� F̃� = �θ� ν0

�F�F� taking
the limit t→ 0 in (A.5) we obtain the assertion. ✷
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