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The paper studies the behavior of the specific entropy for one-
dimensional simple exclusion processes under the hydrodynamic scaling
of time and space. It is shown that if the initial configurations possess
a macroscopic profile then for each positive macroscopic time the spe-
cific microscopic entropy converges to the macroscopic entropy. The lat-
ter is defined in terms of the solution of the corresponding hydrodynamic
equation.

1. Introduction. The paper concerns simple exclusion models on the
periodic integer lattice. The symmetric simple exclusion process is reversible
and we study it under diffusive (parabolic) scaling of time and space. The
corresponding hydrodynamic equation describing the behavior of the limiting
macroscopic density is the heat equation. It has smooth solutions uniquely
defined by the initial data. Asymmetric simple exclusion models are non-
reversible and require Euler (hyperbolic) scaling which leads to inviscid
Burgers-type equations. Solutions of such equations are not unique and may
develop shocks. Relevant solutions are known to be the entropic solutions of
these equations.

We study the behavior of the microscopic entropy relative to uniform mea-
sures and to local Gibbs measures. In words, a version of the main result can
be stated as follows: let the initial configurations be deterministic and pos-
sess a macroscopic profile. Then under the appropriate scaling of time and
space for any positive macroscopic time, the specific microscopic entropy con-
verges to the macroscopic entropy calculated from the relevant solution of the
hydrodynamic equation.

The main emphasis is placed on the asymmetric case when the solution
of the hydrodynamic equation develops shocks and the macroscopic entropy
is lost at each shock. Our results show that in the scaling limit the particle
system closely follows the hydrodynamic equation and loses the same amount
of the specific entropy at the same macroscopic time.

The key idea of this paper is presented in Lemma A.1. It is a rather general
statement, which could be adopted for applications to other models. One of the
important ingredients of the proof of Lemma A.1 is the logarithmic Sobolev
inequality (Theorem A.1). Let us stress that we do not need an estimate on the
constant in the logarithmic Sobolev inequality. The main difficulty in applying
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Lemma A.1 is the condition (A3), which is often called the two-block estimate.
The two-block estimate is well known for the symmetric case [see, e.g., Jensen
and Yau (1999), Lecture 4]. The two-block estimate for the asymmetric case
was obtained by Rezakhanlou [(1991), Lemma 6.2] as a part of the derivation
of the scaling limit. The coupling technique employed there required restric-
tive assumptions on the initial distributions. In the work by Venkatsubramani
(1995) the results on existence of the scaling limit were extended to determin-
istic initial data. A recent paper by Seppäläinen (1999) contains another cou-
pling approach to the derivation of the hydrodynamic limit for more general
totally asymmetric K-exclusion processes. In the present paper we use the
existence of the scaling limit to prove the two-block estimate for asymmetric
simple exclusion processes starting from deterministic initial data.

Section 2 gives a brief description of basic facts about simple exclusion pro-
cesses and sets up the notation. The precise formulation of the main result
(Theorem 3.1) is given in Section 3. There we also introduce local Gibbs mea-
sures and study the specific entropy relative to those measures (Theorem 3.2).
Further, we prove Theorem 3.1 assuming the two-block estimate, which is
derived later in Sections 4 and 5. The Appendix contains Lemma A.1 and two
technical results that we use in Sections 3 and 4.

2. Preliminaries.

2.1. Description of simple exclusion processes and notation. The simple
exclusion process on the periodic integer lattice �N = �/N� is the process with
pairwise interactions between nearest neighbor particles. At most one particle
per site is allowed. Particles are indistinguishable and move from site to site
of �N according to the following rules. Each particle waits a random time
distributed exponentially with mean 1 then chooses one of the two neighboring
sites of �N with probabilities p and q, p ∈ �0�1�, q = 1− p and jumps to the
chosen site if that site is not occupied. Otherwise it suppresses the jump and
stays at the same place. Throughout the paper p denotes the probability to
jump to the right.

The state of the system at any time τ is described by a random vector
η�τ� ∈ �N = �0�1	N. Each component of η is equal to the occupation number
of the corresponding site: ηx = 1 if site x is occupied, and ηx = 0 if it is
vacant, x ∈ �N. Vector η�τ� is called the configuration of particles at time τ.
The infinitesimal generator of this process is given by

�pf�η� =
∑

x∈�N

{
pηx�1− ηx+1� + qηx+1�1− ηx�

}�f�ηx�x+1� − f�η���(1)

where the configuration ηx�x+1 is obtained from η by exchanging the xth and
the �x+ 1�th coordinates,

ηx�x+1
y =


ηy� if y �= x� x+ 1�
ηx+1� if y = x�

ηx� if y = x+ 1.
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Since the notions of a “particle” (occupied site) and a “hole” (empty site) are
interchangeable, we assume that p ∈ � 12 �1�.

The number of particles is preserved in time. This implies a natural decom-
position of the configuration space �N = �0�1	N into “hyperplanes,”

�N�n =
{
η ∈ �N

∣∣∣ ∑
x∈�N

ηx = n

}
� n = 0�1� � � � �N�

each of which consists of all configurations with a fixed number of particles.
If the process starts from η�0� ∈ �N�n then for all τ it stays in �N�n.

Let µN be the uniform measure on �N: µN�η� = 2−N for each η ∈ �N. It
is an invariant measure for simple exclusion processes. On L2��N�µN� the
generator �q is adjoint to �p; that is, � ∗

p = �q� q = 1−p. The Dirichlét form
for the simple exclusion process with the generator �p is given by

DN�f� def= −
�pf�f�µN
= 1

4

∑
η∈�

∑
x∈�N

(
f�ηx�x+1� − f�η�)2µN�η��(2)

DN�f� does not depend on p.
For arbitrary probability measures µ and ν on �N, define the entropy of

measure ν and the relative entropy of measure ν with respect to µ by

H�ν� = ∑
η∈�

ν�η� log ν�η� and H�ν �µ� = ∑
η∈�

ν�η� log ν�η�
µ�η� �

respectively. We agree to set 0 log 0 to 0. Most often we shall use the uniform
measure µN as a reference measure. If ν is absolutely continuous with respect
to µN then ν�η� = f�η�µN�η� for some f and we denote by HN�f� the relative
entropy H�ν �µN�. The following lemma provides an estimate for the time
derivative of the entropy for a simple exclusion process.

Lemma 2.1. Let fτ be the solution of the forward equation

∂fτ

∂τ
= � ∗

p fτ� �τ� η� ∈ �0�+∞� × �N�(3)

with initial data f0 such that f0 ≥ 0 and EµN
f0 = 1. Then for any τ ≥ 0,

dHN�fτ�
dτ

≤ −2DN�
√

fτ��(4)

The proof of this lemma can be found, for example, in Kipnis and Landim
(1999), Theorem 9.2, page 342.

Throughout the paper we use the following notation for averages over the
block of size �2l+ 1� centered at x ∈ �N:

η̄x� l =
1

2l+ 1

∑
�y−x�≤l

ηy�(5)
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For any x ∈ �N define the translation operator τx by

�τxη�y def= ηx+y� y ∈ �N�

τxf�η� def= f�τxη� for any f: �N → ��

(6)

2.2. Space–time scaling, macroscopic profiles and hydrodynamic equations.
The space scaling is given by the mapping �N → S = �/�, which takes each
point x of the lattice �N to the point θ = x/N of the circle S.

Definition 2.1. For each N ∈ � let νN be a probability measure on �N.
We shall say that the set �νN	 possesses an asymptotic macroscopic profile
ρ ∈ L1�S� as N →∞ and denote this by νN ∼ ρ if for every function J ∈ C�S�
and each δ > 0,

lim
N→∞

νN

{
η ∈ �N:

∣∣∣∣ 1N ∑
x∈�N

J

(
x

N

)
ηx −

∫
S
J�θ�ρ�θ� dθ

∣∣∣∣ > δ

}
= 0�(7)

Remark. It is clear that if νN ∼ ρ then 0 ≤ ρ�θ� ≤ 1 a.e.

We use the standard notation δη�·� for the measure concentrated on a single
configuration η ∈ �N; for any A ⊂ �N,

δη�A� =
{
1� if η ∈ A,
0� if η �∈ A.

Thus the relation δη�N� ∼ ρ simply means that for every J ∈ C�S�,

lim
N→∞

1
N

∑
x∈�N

J

(
x

N

)
η
�N�
x =

∫
S
J�θ�ρ�θ� dθ�

To introduce the time scaling we have to distinguish between the following
two cases.

1. Symmetric case �p = 1/2�. The time is speeded up by N2. If τ denotes
the microscopic time then the macroscopic time t is defined by the relation
t = τ/N2. In terms of the macroscopic time the expected waiting time
between jumps becomes 1/N2.

2. Asymmetric case �p �= 1/2�. The time is scaled by the same factor as the
space, that is, t = τ/N.

For an arbitrary p ∈ � 12 �1� consider the appropriately scaled simple exclu-
sion process with a deterministic initial condition η�N��0�. Let νt

N
be the proba-

bility measure on the configuration space �N, which describes the distribution
of η�N��t�. Since the number of particles is conserved, νt

N
is supported on �N�nN

,
where

nN = ∑
x∈�N

η
�N�
x �0��(8)

The restriction of νt
N
to �N�nN

will be denoted by νt
N�nN

.
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We formulate a version of well-known results about the existence of the
hydrodynamic scaling limit for simple exclusion processes [see, e.g., Spohn
(1991) and Varadhan (1993) for p = 1/2; Rezakhanlou (1991), Venkatsu-
bramani (1995), and Seppäläinen (1999) for p �= 1/2].

Theorem 2.1. Assume that δη�N��0� ∼ ρ0 for some ρ0 ∈ L1�S�. Let νt
N

be the
distribution of configurations at time t > 0 for the simple exclusion process
with generator �p, p ∈ �0�1� and the initial data η�N��0�.

(i) If p = 1/2 then for any t > 0 we have the relation νt
N
∼ ρ�t� ·�, where ρ

is the solution of the heat equation

∂ρ

∂t
= 1

2
∂2ρ

∂θ2
� �t� θ� ∈ �0�+∞� ×S�(9)

with the initial condition ρ0.
(ii) If p �= 1/2 then for any t > 0 we have the relation νt

N
∼ ρ�t� ·�, where ρ

is the entropic solution of the inviscid Burgers equation

∂ρ

∂t
+ �2p− 1�∂ρ�1− ρ�

∂θ
= 0� �t� θ� ∈ �0�+∞� ×S�(10)

with the initial condition ρ0.

Remark. The same statements hold if we consider simple exclusion pro-
cesses on �, replace �N by �0�1	� and S by � in Definition 2.1 and
Theorem 2.1, and require that test functions J in (7) have compact support.

Equations (9) and (10) are called the hydrodynamic equations. Whenever we
refer to a solution of the hydrodynamic equation we shall always mean either
the solution of (9) or the entropic solution of (10) with the initial condition
ρ0, where ρ0 is a measurable function and 0 ≤ ρ0 ≤ 1 a.e. In both cases the
solution of the hydrodynamic equation is uniquely defined by the initial data.

3. Main results.

Theorem 3.1. Assume that δη�N��0� ∼ ρ0 for some ρ0 ∈ L1�S�. Let νt
N

be the
distribution of configurations at time t > 0 for the simple exclusion process
with generator �p, p ∈ �0�1�, and initial data η�N��0�. Then for each t > 0,

lim
N→∞

1
N

H�νt
N
� =
∫
S
h�ρ�t� θ�� dθ�

where ρ is the solution of the hydrodynamic equation with the initial condition
ρ0 and h is defined by the following formula:

h�y� = y log y+ �1− y� log�1− y�� y ∈ �0�1�� 0 log 0 = 0�(11)
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Our second result is a consequence of Theorem 3.1. It concerns the behavior
of the specific entropy relative to local Gibbs measures. Let ρ�t� ·� be a solution
of the hydrodynamic equation. For each t ≥ 0 construct a sequence of step
functions ρN�t� ·� by averaging ρ�t� ·� over the interval of size 1/N,

ρN�t� θ� = N
∫ �x+1/2�/N
�x−1/2�/N

ρ�t� α� dα

for all θ ∈ ��x − 1/2�/N� �x + 1/2�/N� and x ∈ �N. Then, clearly, ρN�t� ·� →
ρ�t� ·� as N → ∞ in L1�S�. Define the local Gibbs measures γ

ρt
N on �N by

setting

γ
ρt
N �η� =

∏
x∈�N

(
ρN

(
t�

x

N

)
ηx+

(
1−ρN

(
t�

x

N

))
�1−ηx�

)
for each η∈�N�(12)

In other words, γ
ρt
N is a product measure on �0�1	N whose xth marginal is

a Bernoulli measure with the probability of “success” given by ρN�t� x
N
�. It is

not difficult to check that not only

γ
ρt
N ∼ ρ�t� ·�(13)

but also for every J ∈ C�S� and each δ > 0,

lim
N→∞

1
N

log γ
ρt
N

{
η ∈ �N:

∣∣∣∣ 1N ∑
x∈�N

J

(
x

N

)
ηx

−
∫
S
J�θ�ρ�t� θ�dθ

∣∣∣∣ > δ

}
< 0

(14)

[see, e.g., Jensen and Yau (1999), Example 1.3]. A standard large deviation
argument shows that the same relations remain true if we assume that

nN

N
→
∫
S
ρ�t� θ�dθ as N →∞�

and replace γ
ρt
N by conditional measures γ

ρt

N�nN
�·� = γ

ρt
N �· � ∑x∈�N

ηx = nN�
and �N by �N�nN

.
Unfortunately, if we start a simple exclusion process from γ

ρ0
N , then at any

t > 0 the measure ψt
N
, which describes the distribution of this process at time

t, will diverge from γ
ρt
N . It is known [see, e.g., Jensen and Yau (1999), Proof of

Theorem 5.5] that if ρ�t� ·� is continuously differentiable, then

1
N

H�ψt
N
�γρt

N � → 0 as N →∞�

The next theorem states that even if we start very far from the equilibrium,
almost instantly a similar statement becomes true: the specific entropy rela-
tive to local Gibbs measures converges to zero.
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Theorem 3.2. Let the condition of Theorem 3.1 be satisfied. If p �= 1/2
assume also that ρ0 ∈ �δ0�1− δ0� a.e. for some δ0 ∈ �0�1/2�. Define nN by (8).
Then for any t > 0,

lim
N→∞

1
N

H
(
νt
N�nN

�γρt

N�nN

) = 0�

Proof. The relative entropy is nonnegative. Therefore Theorem 3.2 will
follow from Theorem 3.1 if we prove that

lim
N→∞

1
N

∑
η∈�N�nN

νt
N�nN

�η� log γ
ρt

N�nN
�η� ≥

∫
S
h�ρ�t� θ��dθ�

We have

log γ
ρt

N�nN
�η� = log γ

ρt
N �η� − log

∑
η∈�N�nN

γ
ρt
N �η��

Since log
∑

η∈�N�nN
γ

ρt
N �η� ≤ 0, it is enough to show that

lim
N→∞

1
N

Eνt
N�nN

log γ
ρt
N �η� =

∫
S
h�ρ�t� θ��dθ�(15)

This equality is a consequence of the existence of the scaling limit. We rewrite
log γ

ρt
N �η� as

log
∏

x∈�N

(
ρN

(
t�

x

N

))ηx
(
1− ρN

(
t�

x

N

))1−ηx

= ∑
x∈�N

F

(
ρN

(
t�

x

N

))
ηx +

∑
x∈�N

log
(
1− ρN

(
t�

x

N

))
�

where F�y� = log y− log�1− y�. At first, notice that, under our assumptions
on the initial data, the function ρ�t� ·� is bounded away from 0 and 1 for each
t > 0. [In the symmetric case this follows from the inequalities 0 ≤ ρ0�θ� ≤ 1
a.e. and the strong maximum principle for solutions of the heat equation.] By
Lemma A.5,

lim
N→∞

1
N

∑
x∈�N

F

(
ρN

(
t�

x

N

))
ηx =

∫
S
F

(
ρ�t� θ�

)
ρ�t� θ�dθ�(16)

Since ρN�t� ·� → ρ�t� ·� as N →∞ in L1�S�, we also have that

1
N

∑
x∈�N

log
(
1− ρN

(
t�

x

N

))
=
∫
S
log�1− ρN�t� θ��dθ

→
∫
S
log�1− ρ�t� θ��dθ as N →∞�

(17)

Combining (16) and (17) we obtain (15). The proof of Theorem 3.2 is
complete. ✷
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Proof of Theorem 3.1. Lemma A.1 (see the Appendix) provides a general
framework for the proof. This lemma is a dynamics-free statement. Below we
formulate a slightly different version, which involves time averages.

Lemma 3.1. Let ρ be the solution of the hydrodynamic equation. Suppose
that probability measures νt

N satisfy the following conditions:

(A1′) For every t ∈ �0�T�, δ > 0 and J ∈ C�S�,

νt
N

{
η ∈ �N�

∣∣∣ 1
N

∑
x∈�N

J
( x

N

)
ηx −

∫
S
J�θ�ρ�t� θ�dθ

∣∣∣ > δ
}
→ 0 as N →∞�

(A2′)
∫ T
0 DN

(√
ft

N

)
dt = o�N� as N →∞, where ft

N�η� = νt
N�η�

µN�η� .

(A3′)

lim
ε→0

lim
l→∞

lim
N→∞

∫ T

0
Eνt

N

1
N

∑
x∈�N

∣∣η̄x� l − η̄x� εN

∣∣dt = 0�

Then

lim
N→∞

1
N

H�νt
N
� =
∫
S
h�ρ�t� θ��dθ for every t ∈ �0�T��

Proof. The proof of the lower bound is identical to the one of Lemma A.1.
For the upper bound we notice that the entropy is a decreasing function of
time [see (4)]. Repeating the proof of Lemma A.1 we obtain for every t ∈ �0�T�
and all sufficiently small ε > 0,

lim
N→∞

1
N

H�νt
N
� ≤ lim

N→∞
1

Nε

∫ t

t−ε
H�νs

N
�ds ≤ 1

ε

∫ t

t−ε

∫
S
h�ρ�s� θ��dθds�

The statement of the lemma follows if we let ε go to zero, since the function
G�t� =def

∫
S h�ρ�t� θ��dθ is continuous. The continuity of G is obvious if ρ is

the solution of the heat equation. If ρ is the entropic solution of (10) then∫
S
�ρ�t� θ� − ρ�s� θ��dθ → 0 as �t− s� → 0� t� s ∈ �0�T�

[see, e.g., DiBenedetto (1995), Chapter 7, relations (10.4) and (20.1)]. This
implies the continuity of G. ✷

We have to check that all the conditions of Lemma 3.1 are satisfied.
Theorem 2.1 provides us with (A1′). The estimate (A2′) on the Dirichlét form
follows from the lemma.

Lemma 3.2. Let ft
N

be the solution of the problem

∂ft
N�η�
∂t

= Nc� ∗
p ft

N�η�� �t� η� ∈ �0�T� × �N�

ft
N
�η�∣∣

t=0 = f0
N
�η� ≥ 0�

(18)
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where EµN
f0

N
= 1, c = 2 if p = 1/2 and c = 1 if p �= 1/2. Then∫ T

0
DN

(√
ft

N

)
dt ≤ log 2

2Nc−1 �

Proof. Since EµN
ft

N
= 1 for any t ∈ �0�T�, by Jensen’s inequality

HN�ft
N
� = EµN

ft
N
log ft

N
≥ 0. From (4) with τ = tNc we obtain∫ T

0
DN

(√
ft

N

)
dt ≤ 1

2Nc

(
HN

(
f0

N

)−HN

(
fT

N

)) ≤ 1
2Nc

HN�f0
N
��(19)

To estimate the right-hand side we use the following obvious proposition.

Proposition 3.3. Let � be the space of probability measures on - =
�1�2� � � � �M	. Then for any P�Q ∈ � with P�i� = pi�Q�i� = qi� i = 1� � � � �M,

H�P�Q� =
M∑
i=1

pi log
pi

qi

≤ max
1≤i≤M

log
1
qi

�

In our case qi ≡ q = 2−N and

EµN
f0

N
log f0

N
≤ N log 2�(20)

Inequalities (19) and (20) imply the statement of the lemma. ✷

To finish the proof of Theorem 3.1 we have to show that the two-block
estimate (A3′) holds. It is a well-known result for the symmetric case [see,
e.g., Jensen and Yau (1999)]. The two-block estimate for the asymmetric case
is the content of the next two sections.

4. The two-block estimate. Denote byPN themeasure on the Skorokhod
space D��0�+∞���N�, which corresponds to the process η�N��t�� t ≥ 0, with
the initial condition η�N��0� and by EN the expectation relative to the mea-
sure PN.

Theorem 4.1. Under the assumptions of Theorem 3.1 for any T > 0,

lim
ε→0

lim
l→∞

lim
N→∞

EN

∫ T

0

1
N

∑
x∈�N

�η̄x� l − η̄x� εN�dt = 0�

Proof. We prove this theorem for p �= 1/2. The proof is based on a number
of lemmas. Let j�N��t� be the difference between the total number of jumps
to the right and the total number of jumps to the left up to time t. The first
lemma gives us a “microscopic” description of the behavior of j�N��t� asN →∞
for a fixed t.
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Lemma 4.1. For any t ≥ 0 and any δ > 0

lim
N→∞

PN

(∣∣∣∣j�N��t�N2
− �2p− 1�

N

∫ t

0

∑
x∈�N

ηx�s��1− ηx+1�s��ds

∣∣∣∣ > δ

)
= 0�(21)

Proof. Consider the process �η�N��t�� j�N��t�� with the state space �N ×
�� ∪ �0	� and the generator

�̃pf�η�j�=N
∑

x∈�N

[
pηx�1− ηx+1��f�ηx�x+1� j+ 1� − f�η�j��

+ qηx+1�1− ηx��f�ηx�x+1� j− 1� − f�η�j��]�
Assume that the process starts from �η�N��0��0�. Choose f�η�j� = j then

�̃pj
�N� = �2p− 1�N ∑

x∈�N

η
�N�
x �1− η

�N�
x+1��(22)

dj�N��t� = �̃pj
�N��t�dt+ dM

�N�
1 �t�(23)

and

d
(
M

�N�
1 �t�)2 = [�̃p

(
j�N��t�)2 − 2j�N��t��̃pj

�N��t�]dt+ dM
�N�
2 �t��(24)

where M
�N�
1 �t� and M

�N�
2 �t� are martingales. Since

�̃p

(
j�N��t�)2 − 2j�N��t��̃pj

�N��t� = N
∑

x∈�N

η
�N�
x �t��1− η

�N�
x+1��

we obtain from (24) that for any t ≥ 0,

EN

(
M

�N�
1 �t�)2 = O�N2��(25)

Therefore, by (23), (22) and (25) we conclude that

PN

(∣∣∣∣j�N��t�N2
− �2p− 1�

N

∫ t

0

∑
x∈�N

ηx�s��1− ηx+1�s��ds

∣∣∣∣ > δ

)

= PN

(�M�N�
1 �t� −M

�N�
1 �0�� > δN2) ≤ 1

δ2N4
EN�M�N�

1 �t� −M
�N�
1 �0��2

≤ C�t�
δ2N2

→ 0 as N →∞� ✷

We use the following one-block estimate to calculate j�N��t� in terms of large
microscopic blocks.

Lemma 4.2. Let G be a local function on the configuration space. Then for
every test function J ∈ C�S� and each δ > 0,

lim
l→∞

lim
N→∞

PN

(
1
N

∫ T

0

∣∣∣∣ ∑
x∈�N

J

(
x

N

)(
τxG�η�t�� − �G�η̄x� l�t��

)∣∣∣∣dt > δ

)
= 0�
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where �assuming that G depends on n coordinates�

�G�u� = Eµu
n
G

def= ∑
�α1�����αn�∈�0�1	n

G�α1� � � � � αn�u
∑

αi�1− u�n−
∑

αi

and τx is defined by (6).

For the proof see, for example, Jensen and Yau (1999).
Apply this lemma with G�η� = η0�1− η1�. Then �G�u� = u�1− u� and

lim
l→∞

lim
N→∞

PN

(
1
N

∫ T

0

∣∣∣ ∑
x∈�N

ηx�1− ηx+1�

− ∑
x∈�N

η̄x� l�1− η̄x� l�
∣∣∣dt > δ

)
= 0�

(26)

From (21) and (26) we obtain for any t ∈ �0�T� and δ > 0,

lim
l→∞

lim
N→∞

PN

(∣∣∣∣j�N��t�N2
− �2p− 1�

N

×
∫ t

0

∑
x∈�N

η̄x� l�s��1− η̄x� l�s��ds

∣∣∣∣ > δ

)
= 0�(27)

The next lemma is the key step of the proof. Combined with the existence
of the scaling limit it will allow us to substitute averages over small macro-
scopic blocks for the averages over large microscopic blocks in (27) and will
essentially imply the two-block estimate.

Lemma 4.3. Let ρ be the entropic solution of the hydrodynamic equation
with the initial condition m0. Then for any t ≥ 0 and δ > 0,

lim
N→∞

PN

(∣∣∣∣j�N��t�N2
− �2p− 1�

∫ t

0

∫
S
ρ�s� θ��1− ρ�s� θ��dθds

∣∣∣∣ > δ

)
= 0�

We postpone the proof of this lemma until the next section and finish the
proof of Theorem 4.1. From (27), Lemma 4.3 and Lemma A.4 it follows that

lim
ε→0

lim
l→∞

lim
N→∞

PN

(∣∣∣∣ 1N ∫ T

0

( ∑
x∈�N

η̄2
x� l�t� −

∑
x∈�N

η̄2
x� εN

�t�
)

dt

∣∣∣∣ > δ

)
= 0�(28)

By Lemma A.6 we can strengthen (28) and conclude that

lim
ε→0

lim
l→∞

lim
N→∞

PN

(
1
N

∫ T

0

∑
x∈�N

(
η̄x� l�t� − η̄x� εN�t�

)2
dt > δ

)
= 0�

This immediately implies the statement of Theorem 4.1. ✷
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5. Proof of Lemma 4.3. The additivity property of j�N��t� and of the
Lebesgue integral allows us to assume without loss of generality that t is
small. Fix an arbitrary t < 1/2 and ε ∈ �0�1 − 2t�. Consider an arc of
length ε on S. At first, we study the dynamics of particles within this arc.
We “straighten” this arc into an interval of the real line, surround it at t = 0
with the same environment that it had on the circle and start a new process
on �. Using a coupling argument, we show that for a given small t and all
sufficiently large N the dynamics of particles, present in that interval at any
time less than t, is practically the same as the dynamics of particles on the
circle. The problem on the line allows a straightforward computation. Then
we divide the circle into small arcs and apply the above procedure to each
arc separately. Having done this, we rebuild the circle, putting all arcs back
together, and obtain the statement of the lemma.

Step 1 (The problem on �). Fix an arbitrary θ̃0 ∈ �0�1�. Consider the
asymmetric simple exclusion process on � with the following initial data: for
x ∈ � we define

η̃
�N�
x �0� =

{
η
�N�
x�modN��0�� if x/N ∈ �θ̃0 − 1

2 � θ̃0 + 1
2�,

0� otherwise�

Then δη̃�N��0� ∼ ρ̃0, where

ρ̃0�θ� =
{
ρ0�θ �mod1��� if θ ∈ �θ̃0 − 1

2 � θ̃0 − 1
2�,

0� otherwise.

Denote by P̃N the probability measure corresponding to this process and
by ẼN the expectation relative to this measure. For the rest of the proof all
quantities related to the problem on � will be marked with a “tilde.” By the
existence of the scaling limit (see Theorem 2.1),

ν̃t
N
∼ ρ̃�t� ·��

where ρ̃ is the entropic solution of the problem

ρ̃t + �2p− 1��ρ̃�1− ρ̃��θ = 0� �t� θ� ∈ �0�∞�× ��

ρ̃
∣∣
t=0 = ρ̃0�

(29)

Observe that for any t ≥ 0 the function ρ̃�·� t� has a compact support.
Fix an arbitrary interval �α̃� β̃� ⊂ �. Let j̃

�N�
α̃� β̃
�t� be the difference of the

total number of jumps to the right and the total number of jumps to the left
made during time t by the particles in the interval �α̃� β̃�.

Lemma 5.1. For any interval �α̃� β̃� ⊂ �,

lim
N→∞

ẼN

(∣∣∣ j̃ �N�
α̃� β̃
�t�

N2
− �2p− 1�

∫ t

0

∫ β̃

α̃
ρ̃�s� θ��1− ρ̃�s� θ��dθds

∣∣∣) = 0�

where ρ̃ is the entropic solution of problem (29).
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Proof. For any x ∈ � denote by j̃
�N�
x� x+1�t� the difference between the num-

ber of particle crossings from x/N to �x + 1�/N and the number of particle
crossings from �x+ 1�/N to x/N up to time t. Then, evidently,

j̃
�N�
x� x+1�t� =

x∑
y=−∞

η̃
�N�
y �0� −

x∑
y=−∞

η̃
�N�
y �t�(30)

and

j̃
�N�
α̃� β̃
�t� = ∑

x∈��
x/N∈�α̃�β̃�

j̃
�N�
x� x+1�t��(31)

For any c ∈ � and each N choose x ∈ � such that x/N ≤ c < �x+ 1�/N. Then
by (30) and the existence of the scaling limit

lim
N→∞

ẼN

∣∣∣∣ j̃ �N�
x� x+1�t�

N
−
∫ c

−∞

(
ρ̃0�θ� − ρ̃�t� θ�)dθ

∣∣∣∣ = 0�(32)

From (31) and (32) we obtain

ẼN

∣∣∣∣ j̃
�N�
α̃� β̃
�t�

N2
−
∫ β̃

α̃

∫ c

−∞

(
ρ̃0�θ� − ρ̃�t� θ�)dθdc

∣∣∣∣
≤ ẼN

1
N

∑
x∈��

x/N∈�α̃�β̃�

∣∣∣∣ j̃ �N�
x� x+1�t�

N
−
∫ x/N

−∞

(
ρ̃0�θ� − ρ̃�t� θ�)dθ

∣∣∣∣→ 0

as N →∞. Since ρ̃ is a weak solution of problem (29), we also have that∫ β̃

α̃

∫ c

−∞

(
ρ̃0�θ� − ρ̃�t� θ�)dθdc = �2p− 1�

∫ t

0

∫ β̃

α̃
ρ̃�s� θ��1− ρ̃�s� θ��dθds�

The proof of Lemma 5.1 is complete. ✷

Step 2 (Back to the circle). For a given θ̃0 ∈ �0�1� define the bijection φ
between the interval �θ̃0 − 1/2� θ̃0 + 1/2� and the circle S = �/� by

φ�θ̃� = �θ̃	 for every θ̃ ∈ �θ̃0 − 1/2� θ̃0 + 1/2��
where �y	 denotes the fractional part of y. Thus each site x/N� x ∈ �N, of
the circle has a corresponding site on the line.

Choose α̃ = θ̃0 − ε/2 and β̃ = θ̃0 + ε/2. Let θ0, α and β be the images of θ̃0,
α̃ and β̃ under φ. On the macroscopic level, for our choice of t and ε we have
the equality∫ t

0

∫ β̃

α̃
ρ̃�s� θ��1− ρ̃�s� θ��dθds =

∫ t

0

∫ β

α
ρ�s� θ��1− ρ�s� θ��dθds�

since the solutions of (29) have a bounded domain of dependence on the ini-
tial data.
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On the particle level, we couple the process on the line, constructed in Step
1, with the process on the circle. For convenience, we turn to the following
informal description of a simple exclusion process on S. Every site of the
circle has an associated Poisson “clock,” which “ticks” at rate N. All these
“clocks” are independent. When the “clock” at a given site “ticks” and there
is a particle at that site, the particle attempts to jump according to the rules
given in Section 2. The coupling is performed by synchronizing at t = 0 the
clock at each site on the circle with the clock at the corresponding site on the
line, so that the particles at these sites always try to jump together. All other
sites on the line carry their independent Poisson “clocks.”

The rightmost (respectively, leftmost) particle on the line can always
accomplish a jump to the right (left). This is not always the case for its coun-
terpart on the circle. If a particle on the circle cannot jump while its pair on
the line can, the particle on the circle becomes “infected” and turns red. Every
time a “healthy” particle attempts to jump to a site occupied by a red particle
it also becomes red. Nothing happens if a red particle attempts a jump to the
site occupied by a “healthy” particle. As t increases, the “infection” spreads.
Let τN be the first time a red particle reaches the arc �α�β� ∈ S.

Lemma 5.2. PN�τN > t� → 1 as N →∞.

Proof. Let us mark with the letter “r” (respectively, “l”) the particle on
the circle attached to the rightmost (respectively, leftmost) particle on the line.
All particles initially are considered to be “healthy.” To obtain an estimate on
τN we simplify the problem by keeping only the two marked particles on the
circle. Moreover, we assume that these particles are independent, particle l can
only jump to the left, particle r can only jump to the right, and the number of
jumps made by each particle during time t has the Poisson distribution with
parameter Nt. It is clear that τN is greater or equal to the minimum of the
time when r reaches �α�β� and the time when l reaches �α�β�. Therefore,

PN�τN > t� ≥
(
Prob

(
X <

N�1− ε�
2

))2
�

where X is a Poisson random variable with parameter Nt. Since X can be
thought of as the sum ofN independent Poisson random variables with param-
eter t, by the law of large numbers,

Prob
(
X <

N�1− ε�
2

)
= Prob

(
X

N
<
�1− ε�

2

)
→ 1

as N →∞ if t < �1− ε�/2. ✷

Let AN be the event that∣∣∣∣j �N�
α�β�t�
N2

− �2p− 1�
∫ t

0

∫ β

α
ρ�s� θ��1− ρ�s� θ��dθds

∣∣∣∣ > δ�
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Then by Lemmas 5.1 and 5.2,

PN�AN� = PN�AN ∩ �τN ≤ t	� +PN�AN ∩ �τN > t	�
≤ PN�τN ≤ t� + P̃N�ÃN� → 0 as N →∞�

(33)

where ÃN is the corresponding event for the process on the line.

Step 3. Divide the circle into arcs of length ε < �1 − 2t�. We obtain k =
1/ε arcs �α1� α2�� �α2� α3�� � � � � �αk� αk+1� , where αi = �i − 1�ε �mod 1�,
i = 1�2� � � � � k + 1. Applying (33) with AN constructed for α = αi and β =
αi+1� i = 1�2� � � � � k, we conclude that

PN

(∣∣∣∣∣j�N��t�N2
− �2p− 1�

∫ t

0

∫ 1

0
ρ�s� θ��1− ρ�s� θ��dθds

∣∣∣∣∣ > δ

)

≤
k∑

i=1
PN

(∣∣∣∣∣j
�N�
αi� αi+1�t�

N2
− �2p− 1�

∫ t

0

∫ αi+1

αi

ρ�s� θ��1− ρ�s� θ��dθds

∣∣∣∣∣ > δ

k

)
�

which goes to zero as N →∞ by Lemma 5.1. ✷

APPENDIX

Basic lemma. We use the notation introduced in Section 2.

Lemma A.1. Let �νN	 be a sequence of probability measures which satisfies
the following conditions:

(A1) Each νN is a measure on �N and νN ∼ ρ for some Lebesgue measurable
function ρ on S, ρ�θ� ∈ �0�1� a.e.

(A2) DN�
√

fN� = o�N� as N →∞, where fN�η� = νN�η�
µN�η� .

(A3) limε→0 liml→∞ limN→∞EνN

1
N

∑
x∈�N

∣∣η̄x� l − η̄x� εN

∣∣ = 0.

Then

lim
N→∞

1
N

H�νN� =
∫
S
h�ρ�θ��dθ�

where h is given by (11).

Proof. At first notice that

lim
N→∞

1
N

H�νN� = lim
N→∞

1
N

H�νN �µN� − log 2�(34)

Below we estimate the specific relative entropy 1
N

H�νN �µN�.



BEHAVIOR OF SPECIFIC ENTROPY 1101

Lower bound. For this part we only need to assume (A1). Then we claim
that

lim
N→∞

1
N

H�νN �µN� ≥
∫
S
h�ρ�θ�� dθ+ log 2�(35)

By the entropy inequality for any J ∈ C�S� we have that

1
N

H�νN �µN� ≥
1
N

EνN

∑
x∈�N

J
( x

N

)
ηx −

1
N

logEµN
exp
( ∑

x∈�N

J
( x

N

)
ηx

)
�

Using the convergence (A1) we obtain

lim
N→∞

1
N

H�νN �µN� ≥ sup
J∈C�S�

(∫
S
J�θ�ρ�θ� − log

(
1+ eJ�θ�

)
dθ

)
+ log 2�

Let � �J�=def
∫
S J�θ�ρ�θ� − log

(
1+ eJ�θ�

)
dθ. We show that

sup
J∈C�S�

� �J� =
∫
S
h�ρ�θ��dθ�(36)

Clearly,

� �J� ≤
∫
S
sup
y∈�

(
yρ�θ� − log

(
1+ ey

))
dθ =

∫
S
h�ρ�θ��dθ�

where the supremum is attained at

y�θ� =


log

ρ�θ�
1− ρ�θ� � if ρ�θ� �= 0�1,

−∞� if ρ�θ� = 0,
+∞� if ρ�θ� = 1�

Therefore, if ρ is continuous and does not take values 0 and 1, the functional
� attains its maximum at J∗�θ� = y�θ�, and (36) holds. For a general ρ we
need an additional argument to complete the proof.

Let ρn be a sequence of continuous functions such that ρn → ρ as n → ∞
a.e. on S and ρn ∈ �0�1� for all n. By Egorov’s theorem for any ε > 0 there is
a set Eε such that:

(i) The Lebesgue measure of Eε is at least 1− ε.
(ii) ρn → ρ uniformly on Eε as n →∞.

For any ε > 0 define

ρn� ε�θ� =


ρn�θ�� if ε < ρn�θ� < 1− ε,
ε� if ρn�θ� ≤ ε,
1− ε� if ρn�θ� ≥ 1− ε.

Functions ρn� ε are continuous on S. Let

Jn�ε�θ� = log
ρn� ε�θ�

1− ρn� ε�θ�
�



1102 E. KOSYGINA

Functions Jn�ε are continuous and �Jn�ε� < 2� log ε� uniformly in n. We claim
that

lim
ε→0

lim
n→∞� �Jn�ε� =

∫
S
h�ρ�θ��dθ�

The proof is straightforward. For an arbitrary ε > 0, all n ≥ n0�ε� and all
θ ∈ Eε we have that

�ρn� ε�θ� − ρ�θ�� ≤ �ρn� ε�θ� − ρn�θ�� + �ρn�θ� − ρ�θ�� < 2ε�

We write∣∣∣� �Jn�ε� −
∫
S
h�ρ�θ��dθ

∣∣∣ ≤ �� �Jn�ε� −
∫
S
h�ρn� ε�θ��dθ

∣∣∣
+
∣∣∣ ∫

S
h�ρn� ε�θ��dθ−

∫
S
h�ρ�θ��dθ

∣∣∣ = I1 + I2�

Estimating I1 and I2 we find that

I1 =
∣∣∣ ∫

S
Jn�ε�θ��ρ�θ� − ρn� ε�θ��dθ

∣∣∣
≤
(∫

Eε

+
∫
S\Eε

)
�Jn�ε�θ���ρn� ε�θ� − ρ��θ�dθ

≤ 2� log ε��2ε+ ε� = 6ε� log ε�
and

I2 ≤
(∫

Eε

+
∫
S\Eε

)
�h�ρn� ε�θ�� − h�ρ�θ���dθ ≤ �h�2ε�� + ε log 2�

By letting ε go to zero we obtain (36) and, therefore, (35).

Upper bound. We have to show that

lim
N→∞

1
N

H�νN �µN� ≤
∫
S
h�ρ�θ��dθ+ log 2�(37)

We start with the following simple fact.

Lemma A.2 (Martingale decomposition). Let �-��0�P� be a probability
space and �0 ⊃ �1 ⊃ · · · ⊃ �k be a decreasing sequence of σ-algebras.
For a nonnegative random variable X0, such that EX0� logX0� < ∞, define
Xi = E�X0��i�, i = 0�1� � � � � k. Then

EX0 logX0 =
k∑

i=1
EE

(
Xi−1 log

Xi−1
Xi

∣∣∣∣�i

)
+EXk logXk�

Proof. We have

EX0 logX0 =
k∑

i=1
E

(
Xi−1 logXi−1 −Xi logXi

)
+EXk logXk�
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We can rewrite the first sum in the right-hand side of the above equality as

k∑
i=1

EE

(
Xi−1 logXi−1 −Xi logXi ��i

)

=
k∑

i=1
EE

(
Xi−1 logXi−1 −Xi−1 logXi ��i

)

=
k∑

i=1
EE

(
Xi−1 log

Xi−1
Xi

∣∣∣∣�i

)
� ✷

We apply the above lemma in the following context. Consider fN defined in
(A2) as a random variable on the probability space ��N� =0� N� µN�, where =0� N

is the natural σ-algebra for µN. Fix a large number l ∈ �. Divide a circle into
kN = [N2l ] equal parts, which we call “boxes.” Each box contains 2l or �2l+ 1�
sites. Let Bi ⊂ �N be the set of indexes corresponding to the ith box. For
i = 1� � � � � kN define

η̄i =
1
�Bi�

∑
x∈Bi

ηx�

where �Bi� is the number of elements in Bi, and

=i =
{
σ-algebra generated by the averages η̄1� η̄2� � � � � η̄i and

by ηx� x ∈
kN⋃

j=i+1
Bj

}
�

Let fi = EµN
�fN �=i�. The dependence of =i and fi on N will not be

reflected in the notation. By Lemma A.2,

1
N

H�νN�µN� =
1
N

EµN
fN log fN

= 1
N

kN∑
i=1

EµN
EµN

(
fi log

fi−1
fi

∣∣∣∣=i

)
+ 1

N
EµN

fkN
log fkN

�

(38)

We are going to show that the sum of the first kN terms on the right-hand side
of (38) can be made arbitrarily small as N →∞. Then we use the two-block
estimate (A3) to obtain a bound on the last term of (38).

Step 1. For the first part of our plan we use a version of the logarithmic
Sobolev inequality.

Theorem A.1. Let �l� n = �η ∈ �0�1	l� ∑l
x=1 ηx = n	 and µl�n be the

uniform measure on �l� n. Then there is a constant C�l� such that for any
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nonnegative function f on �l� n, which satisfies the relation Eµl�n
f = 1, the

following inequality holds uniformly in n ∈ �0�1� � � � � l	:

Eµl�n
f log f ≤ C�l�Eµl�n

l−1∑
x=1

(√
f�ηx�x+1� −

√
f�η�

)2
�

This is an obvious statement, since we do not specify the order of C�l�.
In fact, much stronger results are known. Namely, it was shown in Lee and
Yau (1998) [see also Yau (1997)] that C�l� = O�l2�. But for our purposes this
information is not needed.

Let µi�·� =def µN�· � =i�. For any fixed η̄1� � � � � η̄i, and ηx� x ∈ ∪kN

j=i+1Bj, we
regard µi as a measure on the first i boxes. Denote by µ̃i the marginal of µi

on the ith box. It is easy to see that µ̃i is the uniform measure. Namely, µ̃i can
be identified with µl�n, where l = �Bi� and n = η̄i�Bi� if we use the notation of
Theorem A.1. The function fi can be written as Eµi

fN or as Eµ̃i
fi−1. Therefore

the ratio f̃i = fi−1/fi satisfies the condition Eµ̃i
f̃i = 1. By Theorem A.1,

Eµ̃i
�f̃i log f̃i� ≤ C�l�Eµ̃i

∑
x� x+1∈Bi

(√
f̃i�ηx�x+1� −

√
f̃i�η�

)2

≤ C�l�
fi

Eµ̃i

∑
x� x+1∈Bi

(√
fi−1�ηx�x+1� −

√
fi−1�η�

)2
�

(39)

For any x� x+ 1 ∈ Bi we have that(√
fi−1�ηx�x+1� −

√
fi−1�η�

)2
=
(√

Eµi−1fN�ηx�x+1� −
√

Eµi−1fN�η�
)2

≤ Eµi−1

(√
fN�ηx�x+1� −

√
fN�η�

)2
�

(40)

Here we used the fact that µi−1 is invariant under the transformation which
takes η to ηx�x+1 for x� x + 1 ∈ Bi. Substituting (40) into (39), taking the
summation over i and averaging with respect to µN we obtain

kN∑
i=1

EµN
EµN

(
fi−1 log

fi−1
fi

∣∣=i

)
≤ C�l�EµN

N−1∑
x=1

(√
fN�ηx�x+1� −

√
fN�η�

)2
≤ 4C�l�DN�

√
fN��

The assumption (A2) allows us to conclude that for any fixed l,

lim
N→∞

1
N

kN∑
i=1

EµN
EµN

(
fi−1 log

fi−1
fi

∣∣=i

)
= 0�(41)
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Step 2. We turn now to the last term of (38). Let µ̄kN
be the joint distri-

bution of averages η̄1� η̄2 � � � � η̄kN
under µN; that is,

µ̄kN
�η̄1� η̄2� � � � � η̄kN

� = 1
2N

kN∏
i=1

( �Bi�
η̄i�Bi�

)
�(42)

Then Eµ̄kN
fkN

= 1 and

EµN
fkN

log fkN
= Eµ̄kN

fkN
log fkN

= Eµ̄kN
fkN

log�fkN
µ̄kN

� −Eµ̄kN
fkN

log µ̄kN

≤ −Eµ̄kN
fkN

log µ̄kN
= EνN

log µ̄kN
�

(43)

The following lemma is a consequence of Stirling’s formula.

Lemma A.3. For any sequence �kn	∞n=1� kn ∈ �0�1� � � � � n	,

lim
n→∞

(
1
n
log
(

n

kn

)
+ h

(
kn

n

))
= 0�

The proof of this statement can be found, for example, in Ellis [(1985),
Lemma 1.3.2].

The relations (42), (43), and the above lemma imply that

lim
N→∞

1
N

EµN
fkN

log fkN
≤ lim

N→∞
EνN

2l
N

kN∑
i=1

h�η̄i� + log 2�(44)

since �Bi� ≥ 2l and h is nonpositive.

Conclusion. We notice that the left-hand side of (38) does not depend on
the way we divide the circle into boxes. Therefore from (38), (41) and (44) we
obtain

lim
N→∞

1
N

H�νN �µN� ≤ lim
l→∞

lim
N→∞

1
N

EνN

2l−1∑
x=0

kN∑
i=1

τxh�η̄i� + log 2

= lim
l→∞

lim
N→∞

1
N

EνN

∑
x∈�N

h�η̄x� l� + log 2�

where τx is defined in (6). By the two-block estimate (A3) we have that

lim
N→∞

1
N

H�νN�µN� ≤ lim
ε→0

lim
N→∞

1
N

EνN

∑
x∈�N

h�η̄x� εN� + log 2�(45)

Next we use the following simple consequence of condition (A1).

Lemma A.4. Let (A1) hold. Then for any F ∈ C�S�,

lim
ε→0

lim
N→∞

EνN

∣∣∣∣ 1N ∑
x∈�N

F�η̄x� εN� −
∫
S
F�ρ�θ��dθ

∣∣∣∣ = 0�
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Proof. Let

ρε�u� =
1
2ε

∫ u+ε

u−ε
ρ�θ�dθ�

Then ρε is continuous and

ρε

L1�S�−→ρ as ε → 0�(46)

For any ε > 0 and N we have

EνN

∣∣∣∣ 1N ∑
x∈�N

F�η̄x�εN�−
∫
S
F�ρ�θ��dθ

∣∣∣∣
≤EνN

∣∣∣∣ 1N ∑
x∈�N

F�η̄x�εN�−
1
N

∑
x∈�N

F
(
ρε

( x

N

))∣∣∣∣
+
∣∣∣∣ 1N ∑

x∈�N

F
(
ρε

( x

N

))
−
∫
S
F�ρε�θ��dθ

∣∣∣∣+
∣∣∣∣∫

S
F�ρε�θ��dθ−

∫
S
F�ρ�θ��dθ

∣∣∣∣
=IN�ε+IIN�ε+IIIε�

Let N go to infinity. Then IN�ε → 0 by (A1) and the bounded convergence
theorem and IIN�ε → 0 by the continuity of ρε. Finally let ε go to zero. Relation
(46) implies that IIIε → 0. ✷

Applying Lemma A.4 with F = h we obtain

lim
ε→0

lim
N→∞

1
N

EνN

∑
x∈�N

h�η̄x� εN� =
∫
S
h�ρ�θ��dθ�(47)

The upper bound (37) follows from (45) and (47). This finishes the proof of
Lemma A.1. ✷

Two technical lemmas. The first lemma shows that if the hydrodynamic
scaling limit exists (see Definition 2.1) then the analog of (7) holds for any
bounded measurable function J. More precisely, we have the following.

Lemma A.5. Let νN ∼ ρ for some measurable ρ ∈ L1. For any bounded
measurable function J on S and for each N ∈ � define the step function JN

by

JN�θ� = N
∫ �x+1/2�/N
�x−1/2�/N

J�α�dα�

for all θ ∈ ��x− 1/2�/N� �x+ 1/2�/N� and x ∈ �N.
Then for any continuous function F,

lim
N→∞

EνN

∣∣∣∣ 1N ∑
x∈�N

F

(
JN

(
x

N

))
ηx −

∫
S
F�J�θ��ρ�θ�dθ

∣∣∣∣ = 0�
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Proof. Since νN ∼ ρ and JN → J as N →∞ in L1�S�, we have that

lim
n→∞ lim

N→∞
EνN

∣∣∣∣ 1N ∑
x∈�N

F

(
Jn

(
x

N

))
ηx −

∫
S
F�J�θ��ρ�θ�dθ

∣∣∣∣ = 0�

Therefore it suffices to show that

lim
n→∞ lim

N→∞
1
N

∑
x∈�N

∣∣∣∣F(Jn

(
x

N

))
−F

(
JN

(
x

N

))∣∣∣∣ = 0�(48)

We have

1
N

∑
x∈�N

∣∣∣∣F(Jn

(
x

N

))
−F

(
JN

(
x

N

))∣∣∣∣
= ∑

y∈�n

∫ �y+1/2�/n
�y−1/2�/n

∣∣F�Jn�y/n�� −F�JN�θ��
∣∣dθ+O�n/N�

≤ ∑
y∈�n

∫ �y+1/2�/n
�y−1/2�/n

∣∣F�Jn�y/n�� −F�J�θ��∣∣dθ

+ ∑
y∈�n

∫ �y+1/2�/n
�y−1/2�/n

∣∣F�JN�θ�� −F�J�θ��∣∣dθ+O�n/N�

=
∫
S

∣∣F�Jn�θ�� −F�J�θ��∣∣dθ+
∫
S

∣∣F�JN�θ�� −F�J�θ��∣∣dθ+O�n/N��

Passing to the limit as N →∞ and then as n →∞ we obtain (48). ✷

The next lemma is a purely algebraic fact, which we use in the proof of the
two-block estimate.

Lemma A.6. For any l ∈ �, sufficiently small ε > 0 and all N such that
εN ≥ l, ∑

x∈�N

(
η̄x� l − η̄x� εN

)2 ≤ 4
∑

x∈�N

(
η̄2

x� l − η̄2
x� εN

)+C�(49)

where the constant C depends only on l and ε.

Proof. For l ∈ � define the operator Ml� �0�1�N → �0�1�N by �Mlη�x =
η̄x� l. We prove that

#Mlη−MεN ◦Mlη#2 ≤ 2
(
#Mlη#2 − #MεN ◦Mlη#2

)
�(50)

where #·# is the Euclidean norm in �N. Since

#MεN ◦Mlη−MεNη#2 ≤ C�ε� l�
N

�

the inequality (50) implies the statement of the lemma.
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To prove (50) we use the Fourier transform defined by

η̂�λ� = ∑
x∈�N

e2πixληx� λ ∈ S�

The function η̂ belongs to L2�S� and satisfies the identity

#η̂#22 =
∫ 1

0
�η̂�λ��2 dλ = #η#2�

Let χl� �N → �0�1	 be the indicator function of the set �x ∈ �N� �x� ≤ l	,

χl�x� =
{
1� if �x� ≤ l,
0� otherwise.

Then

Mlη = 1
2l+ 1

�χl ∗ η��

M̂lη = 1
2l+ 1

η̂ χ̂l�

where

�χl ∗ η�x =
∑

y∈�N

χl�x− y�ηy =
∑

y∈�N

χl�y�ηx+y�

Using this notation we can write the left-hand side of (50) as

#Mlη−MεN ◦Mlη#2 = #M̂lη− ̂MεN ◦Mlη#2

= 1
�2l+ 1�2

∥∥∥∥η̂ χ̂l −
1

2εN+ 1
η̂ χ̂lχ̂εN

∥∥∥∥2
= 1
�2l+ 1�2

∫ 1

0
�η̂ χ̂l�λ��2

(
1− 1

2εN+ 1
χ̂εN�λ�

)2
dλ

(51)

Observe that χ̂εN is real-valued. For the right-hand side of (50) we get

#Mlη#2 − #MεN ◦Mlη#2

= 1
�2k+ 1�2

∫ 1

0
�η̂ χ̂l�λ��2

(
1− 1

�2εN+ 1�2
(
χ̂εN�λ�

)2)
dλ

(52)

Therefore to obtain a bound on (51) in terms of (52) it is enough to show that

f�λ� def= 1
2εN+ 1

χ̂εN�λ�
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is bounded away from �−1�. Indeed, the inequality f�λ� ≥ −1+δ implies that

1− f�λ� ≤ 2− δ ≤ 2− δ

δ
�1+ f�λ��

and

�1− f�λ��2 ≤ 2− δ

δ
�1− f2�λ���

This proves (50) with the constant 2−δ
δ
. We show that f�λ� ≥ − 1

3 which gives
us δ = 2

3 and the constant equal to 2.
It is not difficult to compute that

f�λ� = 1
2εN+ 1

sinλ�2εN+ 1�/2
sinλ/2

�

Since f�λ� = f�2π − λ�� λ ∈ �0� π�,
inf

λ∈�0�2π�
f�λ� = inf

λ∈�0� π�
f�λ�

= inf
λ∈�0�π�

sinλ�2εN+ 1�/2
λ�2εN+ 1�/2 · λ/2

sinλ/2

≥ inf
λ∈�0� π�

sinλ�2εN+ 1�/2
λ�2εN+ 1�/2 · sup

λ∈�0� π�

λ/2
sinλ/2

= − 2
3π

· π
2
= −1

3
� ✷
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