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STOCHASTIC MONOTONICITY AND REALIZABLE
MONOTONICITY1

By James Allen Fill and Motoya Machida

Johns Hopkins University and Utah State University

We explore and relate two notions of monotonicity, stochastic and re-
alizable, for a system of probability measures on a common finite partially
ordered set (poset) � when the measures are indexed by another poset
� . We give counterexamples to show that the two notions are not always
equivalent, but for various large classes of � we also present conditions
on the poset � that are necessary and sufficient for equivalence. When
� = � , the condition that the cover graph of � have no cycles is neces-
sary and sufficient for equivalence. This case arises in comparing applica-
bility of the perfect sampling algorithms of Propp and Wilson and the first
author of the present paper.

1. Introduction. Preliminary note: Throughout this paper, all partially
ordered sets are assumed to be finite unless otherwise stated.

We will discuss two notions of monotonicity for probability measures on
a partially ordered set (poset). Let � be a poset and let �P1�P2� be a pair
of probability measures on S. (We use a calligraphic letter � in order to
distinguish the set S from the same set equipped with a partial ordering ≤.)
A subset U of S is said to be an up-set in � (or increasing set) if y ∈ U
whenever x ∈ U and x ≤ y. We say that P1 is stochastically smaller than P2,
denoted

P1 � P2�(1.1)

if

P1�U� ≤ P2�U� for every up-set U in � .(1.2)

The relation introduced in (1.1)–(1.2) is clearly reflexive and transitive. Anti-
symmetry follows easily using our assumption that S is finite, so the relation
defines a partial ordering on the class of probability measures on S. (For a
careful discussion on the matter of antisymmetry in a rather general setting
for infinite S, see [4].)

The following characterization of stochastic ordering was established by
Strassen [12] and fully investigated by Kamae, Krengel and O’Brien [5]. Sup-
pose that there exists a pair �X1�X2� of S-valued random variables [defined
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on some probability space ���� ���] satisfying the properties

X1 ≤ X2(1.3)

and

��Xi ∈ ·� = Pi�·� for i = 1�2.(1.4)

Then we have

P1�U� = ��X1 ∈ U� = ��X1 ∈ U� X1 ≤ X2� ≤ ��X2 ∈ U� = P2�U��
for every up-set U in � . Thus, the conditions (1.3)–(1.4) necessitate (1.1).
Moreover, Strassen’s work shows that (1.1) is in fact sufficient for the exis-
tence of a probability space ���� ��� and a pair �X1�X2� of S-valued random
variables on ���� ��� satisfying (1.3)–(1.4). [Equivalently, we need only re-
quire that (1.3) hold almost surely.]

Now let � be a poset. Let �Pα � α ∈ A� be a system of probability measures
on S. We call �Pα � α ∈ A� a realizably monotone system if there exists a
system �Xα � α ∈ A� of S-valued random variables defined on some probability
space ���� ��� such that

Xα ≤ Xβ whenever α ≤ β(1.5)

and

��Xα ∈ ·� = Pα�·� for every α ∈ A.(1.6)

In such a case we shall say that �Xα � α ∈ A� realizes the monotonicity of
�Pα � α ∈ A�. Since the conditions (1.3)–(1.4) imply (1.1), the conditions (1.5)–
(1.6) applied pairwise imply

Pα � Pβ whenever α ≤ β.(1.7)

The system �Pα � α ∈ A� is said to be stochastically monotone if it satisfies (1.7).
We have shown that stochastic monotonicity is necessary for realizable mono-
tonicity.

In light of Strassen’s characterization of stochastic ordering, one might
guess that stochastic monotonicity is also sufficient for realizable monotonicity.
It is perhaps surprising that the conjecture is false in general, as the following
example shows.

Example 1.1. Let

� = � �=(1.8)

w

x

y z
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be the usual 2-dimensional Boolean algebra with x < y� z and y� z < w
(and, of course, x < w by transitivity). Define a system �Px�Py�Pz�Pw� of
probability measures on S by

Pξ �=




unif	x�y
� if ξ = x,

unif	x�w
� if ξ = y,

unif	y� z
� if ξ = z,

unif	y�w
� if ξ = w,

where unif �B� denotes the uniform probability measure on a set B. Clearly,
�Px�Py�Pz�Pw� is stochastically monotone. Now suppose that there exists a
system �Xx�Xy�Xz�Xw� which realizes the monotonicity of �Px�Py�Pz�Pw�.
Considering the event Xx = y, realizable monotonicity forces

��Xx = y� = ��Xx = y� Xy = w� Xz = y� Xw = w� = 1
2 �

Similarly, we find

��Xz = z� = ��Xx = x� Xz = z� Xw = w� = 1
2 �

Noting that the above two events are disjoint, we conclude ��Xw = w� = 1,
which is a contradiction. Thus, �Px�Py�Pz�Pw� cannot be realizably mono-
tone.

Given a pair �� �� � of posets, if the two notions of monotonicity—stochastic
and realizable—are equivalent, then we say that monotonicity equivalence
holds for �� �� �. The counterexample in Example 1.1 was discovered inde-
pendently by Ross [8]; we are grateful to Robin Pemantle for pointing this
out to us. Ross reduced the question of monotonicity equivalence for general
infinite posets � (and given � ) to consideration of the same question for ev-
ery finite induced subposet of � . Thus we regard our finite-poset work as a
useful complement to his. As an historical aside, we note that what we call a
realizably monotone system, Ross called a coherent family.

To give an example where monotonicity equivalence holds, we next consider
the case where � is a linearly ordered set.

Example 1.2. Let � be a poset and let � be a linearly ordered set. Sup-
pose that �Pα � α ∈ A� is a stochastically monotone system of probability
measures on S. For each α ∈ A, define the inverse probability transform P−1

α

by

P−1
α �t� �= min 	x ∈ S � t < Fα�x�
 for t ∈ �0�1�,(1.9)

where Fα is the distribution function of Pα [i.e., Fα�x� �= Pα�	ξ ∈ S � ξ ≤ x
�
for each x ∈ S]. Given a single uniform random variable U on �0�1�, we can
construct a system �Xα � α ∈ A� of S-valued random variables via

Xα �= P−1
α �U� for each α ∈ A.

Then �Xα � α ∈ A� realizes the monotonicity and therefore �Pα � α ∈ A� is
realizably monotone. Thus monotonicity equivalence holds for �� �� �.
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The goal of our investigation is to determine for precisely which pairs
�� �� � of posets monotonicity equivalence holds. Let us discuss here the
usefulness of such a determination. It is (structurally) simple to say which
systems �Pα � α ∈ A� are stochastically monotone. Indeed, one need only de-
termine all up-sets U of � , and then �Pα � α ∈ A� is stochastically monotone
if and only if Pα�U� ≤ Pβ�U� for all such U whenever α ≤ β. For realizable
monotonicity, an analogous result is Theorem 2.9, but the necessary and suf-
ficient condition there involves an infinite collection of inequalities. We know
how to reduce, for each �� �� �, the infinite collection to a finite one, but
(1) there seems to be in general no nice structural characterization of the re-
sulting finite collection, and (2) the computations needed to do the reduction
can be massive even for fairly small � and � (Chapter 7 of [6]).

If monotonicity equivalence fails, then testing a system �Pα � α ∈ A� for
stochastic monotonicity does not suffice as a test for realizable monotonicity.
In this case, for fixed �� �� � and a single numerically specified system �Pα �
α ∈ A�, we can determine whether or not the system is realizably monotone
by constructing a system �Xα � α ∈ A� subject to the marginal condition (1.6)
so as to maximize the probability ��Xα ≤ Xβ whenever α ≤ β�. Indeed, the
system �Pα � α ∈ A� is realizably monotone if and only if the maximum value
equals 1. The construction can be carried out using linear programming with
variables corresponding to the values of the joint probability mass function
for �Xα � α ∈ A�.

For further discussion along these lines, see [6].
Of particular interest in our study of realizable monotonicity is the case

� = � . Here the system �P�x� ·� � x ∈ S� of probability measures can be con-
sidered as a Markov transition matrix P on the state space S. Recently, Propp
and Wilson [7] and Fill [2] have introduced algorithms to produce observations
distributed perfectly according to the long-run distribution of a Markov chain.
Both algorithms apply most readily and operate most efficiently when the state
space � is a poset and a suitable monotonicity condition holds. Of the many
differences between the two algorithms, one is that the appropriate notion of
monotonicity for the Propp–Wilson algorithm is realizable monotonicity, while
for Fill’s algorithm it is stochastic monotonicity; see Remark 4.5 in [2]. Here
the properties (1.5)–(1.6) are essential for the Propp–Wilson algorithm to be
able to generate transitions simultaneously from every state in such a way
as to preserve ordering relations. For further discussion of these perfect sam-
pling algorithms, see [2] and [7]. In Theorem 4.3 we show that the two notions
of monotonicity are equivalent if and only if the poset � is “acyclic,” which
is characterized by possession of a Hasse diagram (the standard graphical
representation of partial ordering) that is cycle-free. For example, the Hasse
diagram of a linearly ordered set is a vertical path such as the one in Fig-
ure 6.1(b), and therefore has no cycle. On the other hand, the 2-dimensional
Boolean algebra whose Hasse diagram is displayed in (1.8) is not acyclic. See
Section 2.1 for precise terminology.

In the present paper we study the notion of realizable monotonicity when �
and � are both finite posets. In Section 2.3 we review a general result for the
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existence of a probability measure with specified marginals and present the ex-
tensibility problem. Sections 2.1–2.2 are prepared to introduce definitions and
several key notions in studying posets. In Section 2.4 we formulate the mono-
tonicity equivalence problem from the viewpoint of the extensibility problem.
Section 3 is rather short, introducing four subclasses—Classes B, Y, W and Z—
that partition the class of connected posets � .

At this juncture we provide the reader with an overview of the main results
of this paper. In Section 4 we present the first case of our investigation, where
� is in Class B. Kamae, Krengel and O’Brien [5] showed that if � is a linearly
ordered set then monotonicity equivalence holds for �� �� �. We generalize
this result (in our finite setting) to the case of an acyclic poset � (Theorem 4.1);
see Section 2.1 for the definition of an acyclic poset. Theorem 4.2 gives an exact
answer to our central question of monotonicity equivalence when � is a poset
of Class B. In Section 5 we proceed to the second case of our investigation,
where � is in Class Y. Our monotonicity equivalence question in this case is
answered by Theorem 5.1. If � is a poset of Class Z, then we can show that
monotonicity equivalence holds for any poset � (Theorem 6.1). In Section 6
we give the proof by using a generalized inverse probability transform. When
� is a poset of Class W, we have devised a further generalization of inverse
probability transform, which results in constructing a rather large class of
posets � for which monotonicity equivalence holds. We refer the reader to [6]
and [3] for the results of our investigation of Class W.

2. Posets and the monotonicity equivalence problem. In Section 2.1
we briefly summarize the material on posets that we need for our study. An
important assertion is that if a poset is non-acyclic then the poset has an
induced cyclic subposet. In Section 2.2 we prove this (Lemma 2.4) among other
results concerning induced cyclic posets. In Section 2.3 we review the well-
known results of Strassen [12] on the existence of a probability measure with
specified marginals; our review is tailored somewhat to fit our application
to realizable monotonicity. In Section 2.4 we discuss realizable monotonicity
in terms of the existence of a probability measure with specified marginals.
Propositions 2.14–2.15 are presented in Section 2.4; these allow � and �
both to be connected posets in our later investigations.

2.1. Posets. We devote this subsection to introducing definitions and nota-
tion related to partial ordering. By a poset � we shall (recalling the note at
the outset of the paper) mean a (finite) set S together with a partial order-
ing ≤. The (unordered) set S is called the ground set of � . Most of the basic
poset terminology adopted here can be found in Stanley [11] or Trotter [13].
Throughout this subsection, � and � ′ denote posets.

1. Dual poset, up-set, down-set. The dual of � , denoted � ∗, is the poset on the
same ground set S as � such that x1 ≤ x2 in � ∗ if and only if x1 ≥ x2 in
� . A subset U of S is said to be an up-set (or increasing set) in � if y ∈ U
whenever x ∈ U and x ≤ y. A down-set V in � is defined to be an up-set



STOCHASTIC AND REALIZABLE MONOTONICITY 943

in � ∗. Note that U is an up-set in � if and only if S \ U is a down-set in
� . For any subset B of S, we can define the down-set �B� generated by B
in the usual fashion:

�B� �= 	ξ ∈ S � ξ ≤ η for some η ∈ B
�
We simply write �x1� � � � � xn� for �	x1� � � � � xn
�.

2. Cover graph. For x�y ∈ S, we say that y covers x if x < y in � and no
element z of S satisfies x < z < y. The Hasse diagram of a poset is the
directed graph whose vertices are the elements of the poset and whose arcs
are those ordered pairs �x�y� such that y covers x. [By convention, if y
covers x, then y is drawn above x in the Hasse diagram (as represented
in the plane); this indicates the direction of each arc.] We define the cover
graph �S��� � of � by considering the Hasse diagram of � as an undi-
rected graph. That is, the edge set �� consists of those unordered pairs
	x�y
 such that either x covers y or y covers x in � .

3. Subposet. We shall need to distinguish among several, somewhat subtly
different, notions of subposet. We say that a poset � ′ is a subposet of �
if S′ is (or, by extension and when there is no possibility of confusion, is
isomorphic to) a subset of S and x ≤ y in � ′ implies x ≤ y in � for
x�y ∈ S′. When we speak of an induced subposet � ′ of � , we mean that
for x�y ∈ S′ we have x ≤ y in � ′ if and only if x ≤ y in � . On the
other hand, we call a (not necessarily induced) subposet � ′ a subposet via
induced cover subgraph of � if y covers x in � ′ for x�y ∈ S′ precisely when
y covers x in � , that is, when the cover graph �S′��� ′ � of � ′ is an induced
subgraph of the cover graph �S��� � of � . Clearly, a subposet via induced
cover subgraph of � with ground set S′ is a subposet of the subposet of �
induced by ground set S′. In Example 2.1 we illustrate differences between
these two notions of subposet.

Let �S′�� ′� be a (not necessarily induced) subgraph of the cover graph
�S��� � of � . Then �S′�� ′� is the cover graph �S′��� ′ � of a (not necessar-
ily induced) subposet � ′ of � . Here, y covers x in � ′ if and only if y covers
x in � and 	x�y
 ∈ � ′. In this sense, a subgraph �S′�� ′� of �S��� � can be
considered as a subposet of � .

4. Chain, height. We call a poset � a chain if any two elements of S are
comparable in � . When we say that a subposet � ′ is a chain in � , we
mean that � ′ is a chain and an induced subposet of � . The height n of
a poset � is the number of elements in a maximum-sized chain in � .
That is, � has height n if and only if � has an n-element chain, but no
�n+ 1�-element chain, as an induced subposet.

5. Path, upward path, downward path. We call a (not necessarily induced)
subposet � ′ of � a path if the cover graph �S′��� ′ � of � ′ is (i) a path (in the
usual graph-theoretic sense) and (ii) a (not necessarily induced) subgraph of
the cover graph �S��� � of � . A sequence �x0� x1� � � � � xn−1� denotes a path
from x0 to xn−1 with vertex set 	x0� x1� � � � � xn−1
 and edge set 		xi−1� xi
 �
1 ≤ i ≤ n − 1
. We say that a path �x0� � � � � xn−1� is upward (respectively,
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downward) in � if xi covers xi−1 in � (xi−1 covers xi, respectively) for
each i = 1� � � � � n − 1. Note that any upward or downward path in � is
a chain in � , but that the converse is not true. We illustrate chains and
paths in Example 2.1(iv)–(vi).

6. Cycle. We call a (not necessarily induced) subposet � ′ of � a cycle (or
a cyclic subposet) if the cover graph �S′��� ′ � of � ′ is (i) a cycle (in the
usual graph-theoretic sense) and (ii) a (not necessarily induced) subgraph
of the cover graph �S��� � of � . In Example 2.1 we demonstrate that a
cyclic subposet may be neither an induced subposet nor a subposet via
induced cover subgraph. If a poset � has a cyclic subposet, then we call �
a non-acyclic poset. In keeping with the foregoing definitions, we call the
reference poset � itself a cycle if the cover graph �S��� � of � is a cycle.
A sequence �x0� x1� � � � � xn−1� x0� with n ≥ 4 denotes a cycle with vertex set
	x0� x1� � � � � xn−1
 and edge set 		xi−1� xi
 � 1 ≤ i ≤ n
. Here, indices are
interpreted modulo n. (Note that a cyclic subposet must consist of at least
four elements.)

7. Connected poset, disjoint union. We say that � is connected if its cover
graph �S��� � is connected. The components of � are its maximal con-
nected induced subposets. If S and S′ are disjoint, then we can construct
the disjoint union of � and � ′, denoted � +� ′, as a poset on the ground
set S ∪ S′ by declaring x ≤ y in � + � ′ precisely when either (i) x�y ∈ S
and x ≤ y in � , or (ii) x�y ∈ S′ and x ≤ y in � ′. Thus any poset � is the
disjoint union of its components.

8. Acyclic poset, leaf. We say that a poset � is acyclic if � has no cyclic
subposet. We call an element x of S a leaf in � if the edge set �� of the
cover graph of � has a unique element 	x�y
 for some y ∈ S. Note that if
x is a leaf in � then x must be either maximal or minimal in � . If � is a
connected acyclic poset with �S� ≥ 2, then there are at least two leaves in
� (see, e.g., [15]).

x y

z w

x y

z

w
w

x y z
(a) Bowtie (b) a Y-poset (c) a W-poset

x

0

0 x x x x

1 2 k-1

1 2 k-2 k-1

y y y y yk-2

(d) k-crown

Fig. 2.1. Some named posets.
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9. Poset-isomorphism, some named posets, subdivision. � is said to be poset-
isomorphic to � ′ if there exists an bijection φ from S to S′ such that
x ≤ y in � if and only if φ�x� ≤ φ�y� in � ′. In this paper, we call the
2-dimensional Boolean algebra a diamond. [See the figure in (1.8).] Fur-
thermore, we call the posets of Figure 2.1 and their duals (a) the bowtie,
(b) Y-posets, (c) W-posets, and (d) the k-crown, respectively. The bowtie is
the same as the 2-crown. We may simply call � a crown if � is the k-
crown for some k ≥ 2. We say that a poset � ′ is a subdivision of � if the
induced subposet of � ′ on ground set 	z ∈ S′ � x ≤ z ≤ y in � ′
 is a chain
whenever y covers x in � .

Example 2.1. Let

� �=
v

z

uw

y

x

r

s

t

be a poset. Here we give a number of examples to illustrate subtle distinctions
in the definitions of subposets, paths, and cycles. Let

� ′
1 �=

uw

y

x

s

t � ′
2 �=

uw

y

x

s

t and

� ′
3 �=

v

z

uw

y

x

s

t

be subposets of � . Then, (i) � ′
1 is an induced subposet but not a subposet

via induced cover subgraph, (ii) � ′
2 is a subposet via induced cover subgraph

but not an induced subposet, and (iii) � ′
3 is both an induced subposet and a

subposet via induced cover subgraph. Let

� ′
4 �=

v

w

y

r

� ′
5 �=

v

z

w

y

r

and

� ′
6 �=

v

z

uw

y

r

s

t



946 J. A. FILL AND M. MACHIDA

be subposets of � . Then, (iv) � ′
4 is a chain but not a path in � , (v) � ′

5 is a
chain and an upward path from w to r, and (vi) � ′

6 is a path between w and
u but neither an upward path nor a downward path. Let

� ′
7 �=

v

z

u

y

r

s

t � ′
8 �=

v

w

y

x

r

s

and

� ′
9 �=

v

z
y

r

s

be cyclic subposets of � . Then, (vii) � ′
7 is neither an induced subposet nor

a subposet via induced cover subgraph, (viii) � ′
8 is a subposet via induced

cover subgraph but not an induced subposet, and (ix) � ′
9 is both an induced

subposet and a subposet via induced cover subgraph. We note that if a cyclic
subposet is an induced subposet, then it must be a subposet via induced cover
subgraph. We will show this (Lemma 2.2) in Section 2.2.

2.2. Induced cyclic subposets. For developments later in this paper, a study
of cyclic subposets turns out to be crucial, and for this we must also study path
subposets. Since the material here is irrelevant until Section 4, the reader may
wish to return to the present subsection after reading Section 3.

Let � be a poset. A path or a cycle � (with ground set V) in � is by
definition a subposet of the subposet � ′ via induced cover subgraph of � on
V, and � ′ is in turn a subposet of the induced subposet � ′′ of � on V. So if
this � is equal to � ′′, then � = � ′. Thus, we have established:

Lemma 2.2. Let � be a path or a cycle in � and have ground set V. If �
is the induced subposet of � on V, then � is the subposet via induced cover
subgraph of � on V.

An upward (or downward) path is a chain and therefore it is both (i) an
induced subposet and (ii) a subposet via induced cover subgraph. As shown in
Example 2.1(vi), a path in general may be neither of these; however, we can
always devise a path with such properties which substitutes.

Lemma 2.3. Suppose that there exists a path from x to y in � . Then there
is a path � from x to y in � which is an induced subposet of � .

Proof. Partially ordering the up-sets and (separately) the down-sets in �
by set inclusion, let U0 be a minimal up-set in � containing the vertices of
some path from x to y. (By assumption, S is an up-set containing such a path,
so U0 exists.) Let V0 be a minimal down-set in � such that U0 ∩V0 contains
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the vertices of some path from x to y. (Again, S is a down-set satisfying this
condition, so V0 exists.) Let � be a path from x to y. We can label minimal
and maximal elements of � and count the segments of � alternating upward
and downward as follows: As the path � is traversed from x to y, the path
traces out either an upward or a downward path from z0 = x to z1, either a
downward or an upward path from z1 to z2, etc., alternatingly, as illustrated
in

� =

3z z z m-11

z z = yz
0
= x z 2 m-2 m

Then we can find a path � in U0 ∩ V0, with ground set W, from x to y so
that m ≥ 1 is as small as possible, that is, a path � from x to y satisfying
W ⊆ U0 ∩ V0 such that the number m of segments alternating upward and
downward is smallest among such paths.

We first claim that any two minimal elements in � are incomparable in
� and that any two maximal elements in � are incomparable in � . To see
this, suppose that zi > zj for two minimal elements zi and zj in � . Then
there is some downward path �u0� � � � � ul� in � from zi = u0 to ul = zj. Let
uk < u0 be the first element among the ui’s with i �= 0 which belongs to W. So
u1� � � � � uk−1 �∈ W. Since u0, uk are in U0 ∩V0, all the vertices of the downward
path �u0� � � � � uk� are also. Replacing the part of � between u0 and uk by the
path �u0� � � � � uk� (possibly in reverse order), we get a path from x to y with a
lower value of m, which is impossible. Thus, any two minimal elements in �
are incomparable in � . The same holds for any two maximal elements in � .

To finish the proof, we claim that the path � is the induced subposet of �
on W, that is, that no pairs of elements of W are comparable in � , beyond
those specified by the poset � . To see this, suppose that there are elements
w and w′ of W which are comparable in � but not in � . By a replacement
scheme similar to that employed in the preceding paragraph, we can get a
path � ′ (with ground set W′) from x to y in U0 ∩V0 which bypasses some zi.
If we define V′

0 �= �W′� to be the down-set in � generated by W′ and (dually)
U′

0 to be the up-set

U′
0 �= 	ξ ∈ S � η ≤ ξ for some η ∈ W′
�

then U′
0 ⊆ U0 and V′

0 ⊆ V0, and W′ ⊆ U′
0 ∩V′

0. If zi is minimal in � , then (by
the preceding paragraph) zi is incomparable in � with any minimal element
of � ′, and therefore zi �∈ U′

0. Similarly, if zi is maximal in � , then zi �∈ V′
0.

Thus, we have contradicted the minimality of U0 or V0 according as zi is
minimal or maximal in � , which completes the proof. ✷
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The next three lemmas make it possible to construct an induced cyclic sub-
poset with specific properties when a poset � has a cycle. The first of these
lemmas is a simple corollary to Lemma 2.3 which ensures that any non-acyclic
poset has an induced cyclic subposet.

Lemma 2.4. Suppose that a poset � has a cycle �x0� x1� � � � � xn−1� x0�. Then
� has an induced cyclic subposet �y0� y1� � � � � ym−1� y0� such that x0 = y0 and
xn−1 = ym−1.

Proof. Let � ′ be the poset on ground set S obtained by deleting the edge
joining xn−1 and x0 from the Hasse diagram of � . Since �x0� x1� � � � � xn−1� is
a path from x0 to xn−1 in � ′, by Lemma 2.3 there is a path �y0� y1� � � � � ym−1�
from y0 = x0 to ym−1 = xn−1 which is an induced subposet of � ′. Then, the
cycle �y0� y1� � � � � ym−1� y0� is as desired. ✷

Lemma 2.5. If a poset � has a pair �x�y� of elements such that there exist
at least two unequal upward paths from x to y in � , then � has an induced
cyclic subposet which is a subdivided diamond.

Proof. Let �u0� � � � � uk� and �v0� � � � � vl� be two unequal upward paths
from x to y in � . Without loss of generality, the two paths differ in their
first step, i.e., u1 �= v1. Clearly u1 and v1 are incomparable. Let U �= 	ξ ∈ S �
u1 < ξ and v1 < ξ
. Then U is nonempty because y ∈ U. Let y′ be a minimal
(in � ) element of U. Let W1 and W2 be upward paths from u1 to y′ and from
v1 to y′, respectively. Then, for any ξ ∈ W1 \ 	y′
 and η ∈ W2 \ 	y′
, ξ and η
are incomparable; otherwise, the minimality of y′ is contradicted. Thus, the
ground set 	x
 ∪W1 ∪W2 gives the desired induced subposet. ✷

Lemma 2.6. If a poset � has a cycle with height at least 3, then � has
an induced cyclic subposet � with height at least 3.

Proof. If � has a diamond as an induced subposet, then by Lemma 2.5
we can find a subdivided diamond � which is an induced cyclic subposet of
� . Clearly � has height at least 3.

Suppose now that � has no diamond as an induced subposet. Let
�x0� x1� � � � � xn−1� x0� be a cycle with height at least 3 such that x1 < x0 < xn−1.
Let S′ �= S \ 	x0
 and let � ′ with ground set S′ be the subposet of � via in-
duced cover graph. So �x1� � � � � xn−1� is a path in � ′. By Lemma 2.3, there is
a path � = �u0� u1� � � � � uk−1� in � ′ from u0 = x1 to uk−1 = xn−1 which is an
induced subposet of � ′. If � is an upward path from x1 to xn−1, then � has
two distinct upward paths from x1 to xn−1 which, by Lemma 2.5, contradicts
our assumption. Thus, � is not an upward path and in particular x1 and xn−1
are incomparable in � but comparable in � . This implies that � is not an
induced subposet of � . Let �′ = �ui� ui+1� � � � � ui′ � be a minimal segment of
the path � which is not an induced subposet of � , that is, a segment �′ such
that (i) �′ is not an induced subposet of � , and (ii) any proper segment of �′
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is an induced subposet of � . Then ui and ui′ must be incomparable in � but
comparable in � . Without loss of generality, we may assume that ui < ui′ in
� . Then there is a downward path � = �w0�w1� � � � �wl−1� in � from w0 = ui′

to wl−1 = ui.
Let � �= �ui� ui+1� � � � � ui′�w1� � � � �wl−1� be a cycle in � . Since � is an

induced subposet of � ′, we must have x0 ∈ W and in particular � has height
at least 3. We claim that � is an induced subposet of � ; establishing the claim
will complete the proof of the lemma. To prove the claim, suppose that uj and
wj′ are comparable in � but incomparable in � for some uj ∈ U′ \	ui� ui′ 
 and
wj′ ∈ W. Then uj is comparable with ui or ui′ in � according as wj′ < uj or
wj′ > uj. If the pair (either uj�ui or uj�ui′ ) are comparable in � , then there
are two unequal upward paths (the one through wj′ and the other consisting
of a segment of � ) with common ends in � . By Lemma 2.5, this contradicts
our diamond-free assumption. If the pair is incomparable in � , then some
proper segment of �′ is not an induced subposet of � , and this contradicts
the minimality of �′. ✷

Lemma 2.4 implies that if a poset � is non-acyclic then it has an induced
cyclic subposet. The next result gives various sufficient conditions for � to be
non-acyclic.

Proposition 2.7. If a poset � has an induced subposet � ′ poset-isomor-
phic to any of the following posets, then � is non-acyclic:

(i) the diamond�
(ii) a subdivided crown with height at least 3�
(iii) the k-crown for some k ≥ 3�
(iv) the following “double-bowtie” poset�

x x x2 3

y 2 3y 1 y

1

(2.1)

Proof. (i) If � ′ is the diamond as in (1.8), then there are at least two
unequal upward paths from x to w. By Lemma 2.5, � has a cycle (namely, a
subdivided diamond).

(ii) Suppose that � ′ is a subdivision of the k-crown displayed and labeled
in Figure 2.1(d). Since by assumption � ′ has height at least 3, without loss
of generality we may assume that there exists z′ ∈ S′ such that x0 < z′ < y0.
Then we can find an upward path �x0� � � � � z� z

′� � � � � y0� in � from x0 to y0
with height at least 3. Since z′ is incomparable in � with each of x1� � � � � xk−1
and each of y1� � � � � yk−1, no upward path in � from any xi to any yj contains
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the directed edge �z� z′� unless �i� j� = �0�0�. Let �S��� � be the cover graph
of � . Then x0 and z′ are connected in the graph �S��� \ 		z� z′

�, which
implies that � is non-acyclic.

(iii) Suppose that � ′ is the k-crown for some k ≥ 3, as displayed and labeled
in Figure 2.1(d). Since the set B �= 	ξ ∈ S � x0 ≤ ξ ≤ y0 and x0 ≤ ξ ≤ yk−1

is nonempty, we can find a maximal element x′

0 in the set B. Then x′
0 is in-

comparable with x1� � � � � xk−1� y1� � � � � yk−2 and therefore the subposet of �
induced by the ground set 	x′

0� x1� � � � � xk−1� y0� � � � � yk−1
 is again a k-crown.
Thus, we may without loss of generality assume that the k-crown has no
element ξ satisfying x0 < ξ ≤ y0 and x0 < ξ ≤ yk−1. Let �x0� z� � � � � y0�
(with z = y0 possible) be an upward path from x0 to y0. By our assump-
tion, an upward path from x0 to yk−1 does not contain the directed edge
�x0� z�. Furthermore, no upward path from any xi to any yj [except when
�i� j� = �0�0�] contains the directed edge �x0� z� either; otherwise, � ′ is not
an induced subposet of � . Thus we see that x0 and z are connected in the
graph �S��� \ 		x0� z

�, which implies that � is non-acyclic.

(iv) Suppose that � ′ is the poset as in (2.1). Since the set B �= 	ξ ∈ S � x1 ≤
ξ ≤ y1 and x1 ≤ ξ ≤ y2
 is nonempty, we can find a maximal element x′

1 in
the set B. If x′

1 and x2 are comparable, then we have x2 < x′
1. Noticing that x′

1
is incomparable with x3 and y3, the cycle �x2� x

′
1� y2� x3� y3� x2� is an induced

subposet of � which is a subdivided 2-crown with height 3. Then (ii) implies
that � is non-acyclic. So we may assume that x′

1 and x2 are incomparable.
But then an upward path �x′

1� z� � � � � y1� in � from x′
1 to y1 (with z = y1

possible) does not share the directed edge �x′
1� z� with any upward path from

x2 to either y1 or y2. Moreover, an upward path from x′
1 to y2 does not contain

the directed edge �x′
1� z�; otherwise, maximality of x′

1 is contradicted. Thus,
we see that x′

1 and z are connected in the graph �S��� \ 		x′
1� z

�, which

implies that � is non-acyclic. ✷

2.3. Extensibility and Strassen’s theorem. Strassen’s pioneering work [12]
on the existence of probability measures with specified marginals has been
influential for the development of the theory and applications of stochastic
ordering (e.g., [5, 9, 10]). We will treat briefly the general subject of proba-
bility measures with specified marginals and review some results essential
for our later development. Since we restrict attention to finite sets in the
present paper, some of the results presented here are greatly simplified by
our not needing to deal with topological and other technical matters. (For
an interesting review of the subject matter in a general topological setting,
see [9].)

Let A and S be finite sets and let SA be the collection of all functions
x = �xα � α ∈ A� from A into S. For x ∈ SA and α ∈ A, πα�x� will denote the
α-coordinate of x. Let α ∈ A be fixed. Then πα, the α-projection from SA to the
α-coordinate space S, is a surjective map from SA to S. Given a probability
measure Q on SA, we define the probability measure Q◦π−1

α on S in the usual
way via �Q ◦ π−1

α ��B� �= Q�π−1
α �B�� for any subset B of S.
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Consider the set of all signed measures on SA as a normed vector space
equipped with a suitable topology. Strassen established the following theorem.

Theorem 2.8 Theorem 2.8 (Strassen [12]). Let # be a nonempty convex
closed subset of probability measures on SA and let �Pα � α ∈ A� be a system
of probability measures on S. Then there exists a probability measure Q ∈ #
such that

Q ◦ π−1
α = Pα for every α ∈ A(2.2)

if and only if

∑
α∈A

(∑
ξ∈S

Pα�	ξ
�fα�ξ�
)

≤ sup

{ ∑
x∈SA

Q�	x
�
(∑
α∈A

fα ◦ πα

)
�x� � Q ∈ #

}(2.3)

for any system �fα � α ∈ A� of real-valued functionals on S.

Let % be a nonempty subset of SA. Then we say that a system �Pα � α ∈ A�
of probability measures on S is extensible on % if there exists a probability
measure Q on SA satisfying (2.2) and

Q�%� = 1�(2.4)

Let #% be the set of all probability measures on SA satisfying (2.4). Clearly,
#% is nonempty, closed, and convex, so Theorem 2.8 applies to it. Observe that
#% is the convex hull of the set 	δx � x ∈ %
 where δx denotes the point-mass
probability at x. Thus, the following theorem is a special case of Theorem 2.8.

Theorem 2.9. Let % be a nonempty subset of SA and let �Pα � α ∈ A� be
a system of probability measures on S. Then �Pα � α ∈ A� is extensible on % if
and only if

∑
α∈A

(∑
ξ∈S

Pα�	ξ
�fα�ξ�
)

≤ sup

{∑
α∈A

fα ◦ πα�x� � x ∈ %

}
(2.5)

for any system �fα � α ∈ A� of real-valued functionals on S.

Remark 2.10. Throughout this paper, we use the term “system” in place of
“family” to refer to a collection of probability measures, random variables, or
real-valued functionals. When a partial ordering on the index set A is intro-
duced in the later discussion, the usage becomes more appropriate. We have
co-opted the term “extensibility” for a system of probability measures from
a use by Vorob’ev [14] in a slightly different setting. Vorob’ev’s “extensibil-
ity” problem is now generally called the marginal problem in the literature
(e.g. [9, 10]).
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2.4. The monotonicity equivalence problem. Since realizable monotonicity
always implies stochastic monotonicity, the monotonicity equivalence problem
for a given pair �� �� � of posets is to either verify or disprove Statement 2.11.

Statement 2.11. For the given pair �� �� � of posets, every stochastically
monotone system �Pα � α ∈ A� of probability measures on S is realizably
monotone.

We first formulate the monotonicity equivalence problem as a special case
of the extensibility problem of Section 2.3. Let � and � be posets. We say
that an element x = �xα � α ∈ A� of SA is monotone if xα ≤ xβ in � whenever
α ≤ β in � . Define % to be the collection of all monotone elements of SA.
Given a stochastically monotone system �Pα � α ∈ A� of probability measures
on S, we say that a probability measure Q on SA realizes the monotonicity
if it satisfies (2.2) and (2.4). Observe that a system �Xα � α ∈ A� of S-valued
random variables is merely an SA-valued random variable distributed as a
probability measure Q on SA. Clearly, the existence of �Xα � α ∈ A� satisfy-
ing (1.5)–(1.6) is equivalent to the existence of a probability measure Q on
SA satisfying (2.2) and (2.4). Thus, �Pα � α ∈ A� is realizably monotone if and
only if it is extensible on %. This formulation establishes that Theorem 2.9
provides a necessary and sufficient condition for realizable monotonicity.

We now present, without proof, some first simple results on the monotonicity
equivalence problem. The upshot of these results is that we need only consider
connected posets in our investigation of monotonicity equivalence.

Lemma 2.12. Suppose that � ′ is a (not necessarily induced) subposet of
� . If �Pα � α ∈ A� is realizably monotone, then so is �Pα � α ∈ A′�.

Lemma 2.13. Suppose that � ′ is an induced subposet of � . If monotonicity
equivalence holds for �� �� �, then it holds for �� �� ′�.

Proposition 2.14. Suppose that � is the disjoint union of nonempty
posets �1 and �2. Then monotonicity equivalence holds for �� �� � if and
only if it holds for both ��1�� � and ��2�� �.

Proposition 2.15. Suppose that � is the disjoint union of nonempty
posets �1 and �2. Then monotonicity equivalence holds for �� �� � if and
only if it holds for both �� ��1� and �� ��2�.

The next proposition is an immediate consequence of the observation that
the collection % of all monotone elements of SA for �� �� � is equal to the
corresponding collection for �� ∗�� ∗�.

Proposition 2.16. Monotonicity equivalence holds for �� �� � if and only
if it holds for �� ∗�� ∗�.
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3. Subclasses of connected posets. As explained by Propositions 2.14
and 2.15, we assume without further notice that � and � are connected
posets throughout the remainder of the paper. We partition the collection of
connected posets � into the following four subclasses. We say that:

(a) � is in Class B, denoted � ∈ B, if � has either a cycle or an induced
bowtie;

(b) � is in Class Y, denoted � ∈ Y, if (i) � �∈ B, and (ii) � has an
induced Y-poset;

(c) � is in Class W, denoted � ∈ W, if (i) � �∈ B ∪ Y, and (ii) � has an
induced W-poset;

(d) � is in Class Z, denoted � ∈ Z, if � �∈ B ∪ Y ∪ W.

Note that a poset � in Class B may be acyclic. For example, let

� �=

1z 2z

x1 x2

y

be an acyclic poset. Then the subposet of � induced by 	x1� x2� z1� z2
 is the
bowtie; thus, � ∈ B. If the cover graph �S��� � of a given poset � has an
element x whose degree is at least 3, then � must have either a Y-poset or
a W-poset as an induced subposet and therefore � ∈ B ∪ Y ∪ W. This implies
that Class Z consists precisely of those posets � whose cover graph �S��� � is
a path (and the nature of whose Hasse diagram is therefore “zig-zag,” which
explains our choice of “Z”).

Given a poset � , we call � a poset of monotonicity equivalence or of mono-
tonicity inequivalence (for � ) according as Statement 2.11 is true or false for
the pair �� �� �. The question of monotonicity equivalence raised in Section 1
can be recast as that of determining, for each � , the class 	 �� � of all posets
� of monotonicity equivalence for � . For a poset � in Class B, Y, or Z, we
can characterize the class 	 �� � precisely. Furthermore, the class 	 �� � is
the same for every � of the same class among Classes B, Y, and Z. In the rest
of this paper, we will show that:

• for every � ∈ B, 	 �� � is the collection of all acyclic posets � (Theo-
rem 4.2);

• for every � ∈ Y, 	 �� � is the collection of posets � such that � is en-
largeable to an acyclic poset (Theorem 5.1);

• for every � ∈ Z, 	 �� � is the class of all posets � (Theorem 6.1).

For a poset � of Class W, we can exhibit a large subclass of 	 �� �. But the
assertion that the class 	 �� � is the same for every � of Class W is false. Our
investigation of Class W is presented in the companion paper [3] (see also [6]).
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4. The monotonicity equivalence problem on Class B. In this sec-
tion, we solve the monotonicity equivalence problem when � is a poset of
Class B. The main results of this section are summarized in the following two
theorems.

Theorem 4.1. If� is an acyclic poset, then monotonicity equivalence holds
for �� �� � for any � .

Theorem 4.2. Let � be a poset of Class B. Then monotonicity equivalence
holds for �� �� � if and only if � is an acyclic poset.

In Section 4.1 we briefly review a well-known characterization of stochastic
ordering and then prove Theorem 4.1. Theorem 4.1 establishes a sufficient
condition for a poset � of monotonicity equivalence which is applicable to
any poset � . But further generalization is not possible when � is a poset of
Class B. In Section 4.2 we present various counterexamples where monotonic-
ity equivalence fails for a pair �� �� � of non-acyclic posets. In Section 4.3 we
build on these counterexamples to complete the proof of Theorem 4.2. The-
orems 4.1 and 4.2 can be immediately combined to settle the monotonicity
equivalence question for Markov transition matrices, where � = � (cf. the
end of Section 1):

Theorem 4.3. If � = � , then monotonicity equivalence holds for �� �� �
if and only if � is an acyclic poset.

4.1. Stochastic ordering and acyclic index posets � . To supplement the
characterization of stochastic ordering described in Section 1, Kamae, Krengel
and O’Brien [5] introduced an equivalent condition in terms of upward kernels.
Using their condition, they showed that, for a sequence �P1�P2� � � �� of prob-
ability measures on a common poset � , we have Pi � Pi+1 for i = 1�2� � � �
if and only if there exists a sequence �X1�X2� � � �� such that Xi ≤ Xi+1 and
��Xi ∈ ·� = Pi�·� for i = 1�2� � � � � We will show (Theorem 4.1) that this result
can be generalized to a system �Pα � α ∈ A� of probability measures whenever
� is an acyclic poset.

Let � be a poset. A function k from S × 2S to �0�1� is called a stochastic
kernel on S if k�x� ·� is a probability measure on S for every x ∈ S. A stochastic
kernel k on � is said to be upward if

k�x� 	ξ ∈ S � x ≤ ξ in � 
� = 1 for each x ∈ S.(4.1)

We collect several characterizations of stochastic ordering in the following
proposition.

Proposition 4.4 (Kamae, Krengel and O’Brien [5]). Let �P1�P2� be a pair
of probability measures on S. Then the following conditions are equivalent�

(a) P1 � P2�
(b) P1�V� ≥ P2�V� for every down-set V in � �
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(c) there exists a pair �X1�X2� of S-valued random variables satisfying
(1.3)–(1.4)�

(d) there exists an upward kernel k such that

P2�·� = ∑
x∈S

P1�	x
�k�x� ·��(4.2)

Now consider the monotonicity equivalence problem. The equivalence of (a)
and (c) in Proposition 4.4 can be extended to equivalence between stochastic
monotonicity and realizable monotonicity in the case that � is acyclic. The
precise result has already been stated as Theorem 4.1.

Proof of Theorem 4.1. We prove the claim of Theorem 4.1 by induction
over the cardinality of A. The claim is vacuous when �A� = 1. We now suppose
that the claim is true for an acyclic poset � ′ when �A′� = n−1 for fixed n ≥ 2,
and consider an acyclic poset � with cardinality �A� = n. Let a be a leaf in
� . Without loss of generality, we assume that a is maximal in � ; thus, there
is a unique element b which is covered by a. We consider the subposet � ′ of
� induced by the ground set A′ = A \ 	a
.

Let �Pα � α ∈ A� be a stochastically monotone system of probability mea-
sures on S. Then the subsystem �Pα � α ∈ A′� is stochastically monotone. Since
� ′ is an acyclic poset and �A′� = n− 1, by the induction hypothesis there ex-
ists a probability measure Q′ on SA′

which realizes the monotonicity. Since
Pb � Pa, by Proposition 4.4 there exists an upward kernel k satisfying (4.2) for
the pair �Pb�Pa� of probability measures. We can define a probability measure
Q on SA by

Q�	x
� �= Q′�	πA′ �x�
� · k�πb�x�� 	πa�x�
� for x ∈ SA,

where πA′ denotes the projection from SA to SA′
and πα denotes the α-projec-

tion from SA to S for each α ∈ A. In words, this says simply that we couple
together the probability measures Pα, α ∈ A′ using Q′ and then extend the
multivariate coupling to Pa using the upward kernel k from Pb to Pa. Observe
that Q′ couples the probability measures �Pα: α ∈ A′� correctly, and that a >
α ∈ A′ in � implies b ≥ α in � ′. So coupling Pa to Pb correctly automatically
couples Pa to each Pα (α ∈ A′) correctly. Thus, Q realizes the monotonicity of
�Pα � α ∈ A�, and therefore the claim holds for � . ✷

4.2. Monotonicity inequivalence on Class B. The objective of this subsec-
tion is to present several examples of monotonicity inequivalence. To establish
such an example we must exhibit a pair �� �� � of posets and a specific sys-
tem �Pα � α ∈ A� of probability measures on S which is stochastically but
not realizably monotone. We have already done this when both � and �
are diamonds: see Example 1.1. Our simple examples, including Example 1.1,
will serve as building blocks for more complex counterexamples that establish
quite general negative results.
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Example 4.5. Let

� �=

b0

0a 1a

1b

be the bowtie and let � be the diamond as in (1.8). Define a system �Pα � α ∈
A� of probability measures on S by

Pα �=




unif	x�w
� if α = a0,

unif	y� z
� if α = a1,

unif	y�w
� if α = b0,

unif	z�w
� if α = b1.

(4.3)

The system is clearly stochastically monotone.
To see that it is not realizably monotone, suppose that there exists a system

�Xα � α ∈ A� of S-valued random variables which realizes the monotonicity.
Considering the event 	Xb0

= y
, in order to maintain monotonicity we must
have

��Xb0
= y� = ��Xa0

= x� Xa1
= y� Xb0

= y� Xb1
= w� = 1

2 �

Similarly, we must have

��Xa0
= w� = ��Xa0

= w� Xb0
= w� Xb1

= w� = 1
2 �

Since the above two events are disjoint, we must have ��Xb1
= w� = 1, which

contradicts ��Xb1
= w� = 1

2 .

Example 4.6. Let � be the bowtie and let � be a k-crown with k ≥ 2. The
posets � and � are displayed and labeled in Example 4.5 and Figure 2.1(d),
respectively. Define a system �Pα � α ∈ A� of probability measures on S by

Pα �=




k− 1
k

unif �S1 \ 	x1
� + 1
k

unif �	y0� x1
�� if α = a0,

1
k

unif �	x0
� + k− 1
k

unif �S \ 	x0� y0
�� if α = a1,

1
k

unif �	yk−1
� + k− 1
k

unif �S \ 	x0� yk−1
�� if α = b0,

k− 1
k

unif �	x0
 ∪ �S2 \ 	y0� yk−1
��

+1
k

unif �	y0� yk−1
�� if α = b1,

(4.4)

where

S1 �= 	x0� x1� � � � � xk−1
 and S2 �= 	y0� y1� � � � � yk−1
�
Then �Pα � α ∈ A� is stochastically monotone.



STOCHASTIC AND REALIZABLE MONOTONICITY 957

Now let % be the collection of all monotone elements of SA and let

Uα �=




	y0
� if α = a0,

S2 \ 	y0
� if α = a1,

S1 \ 	x0
� if α = b0,

	x0
� if α = b1.

This builds a system �IUα
� α ∈ A� of real-valued functions on S, where IUα

denotes the indicator function of a subset Uα of S. It is not hard to verify that∑
α∈A

(
IUα

◦ πα

) �x� ≤ 1 for any x ∈ %.

Since

∑
α∈A

Pα�Uα� = 1 + 1
2k

�

by Theorem 2.9 we have shown that �Pα � α ∈ A� is not realizably monotone.

Remark 4.7. The specific systems �Pα � α ∈ A� of probability measures
on S presented in Examples 4.5 and 4.6 will be used in our later discussions.
We further define probability measures P0̂ and P1̂ on S for each example.

(i) In Example 4.5, let P0̂ �= δx and P1̂ �= δw. Clearly, P0̂ � P � P1̂ for
any probability measure P on S.

(ii) In Example 4.6, let P0̂ �= unif �S1� and P1̂ �= unif �S2�. Then we have
P0̂ � Pα � P1̂ for every Pα defined at (4.4).

Example 4.8. Let

� �=
a

d

b c(4.5)

be the diamond and let � be a k-crown for k ≥ 2 as in Figure 2.1(d). Define
a system �Pα � α ∈ A� of probability measures on S by

Pα �=




unif �S1�� if α = a,

unif �	y0
 ∪ �S1 \ 	x0
��� if α = b,

unif �	yk−1
 ∪ �S1 \ 	x0
��� if α = c,

unif �S2�� if α = d,

where S1 and S2 are defined as in Example 4.6. Then �Pα � α ∈ A� is stochas-
tically monotone.
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Now let % be the collection of all monotone elements of SA and let

Uα �=




	x0
� if α = a,

	y0
 ∪ �S1 \ 	x0
�� if α = b,

	yk−1
 ∪ �S1 \ 	x0
�� if α = c,

�� if α = d.

Then we have ∑
α∈A

(
IUα

◦ πα

) �x� ≤ 2 for any x ∈ %.

To see this, suppose that the sum is 3 for some monotone element x. Then we
must have �πa�x�� πb�x�� πc�x�� = �x0� y0� yk−1�, which is impossible. Since

∑
α∈A

Pα�Uα� = 2 + 1
k
�

we deduce from Theorem 2.9 that �Pα � α ∈ A� is not realizably monotone.

Examples 1.1 and 4.5 both employ a certain probabilistic argument which
assumes the existence of certain random variables and leads to a contradic-
tion. Here we introduce a lemma which is useful in conjunction with such
probabilistic arguments when we extend monotonicity equivalence beyond our
previously considered counterexamples.

Lemma 4.9. Let � be a poset and let �X1�X2� be a pair of S-valued random
variables. If ��X1 ∈ ·� = ��X2 ∈ ·� and ��X1 ≤ X2� = 1, then ��X1 = X2� = 1.

Proof. Notice that for any ξ ∈ S,

��X1 ≤ ξ� = ��X1 ≤ ξ� X1 ≤ X2� ≥ ��X2 ≤ ξ� + ��X1 = ξ < X2��
Since ��X1 ≤ ξ� = ��X2 ≤ ξ�, we deduce ��X1 = ξ < X2� = 0. Thus we obtain

��X1 < X2� = ∑
ξ∈S

��X1 = ξ < X2� = 0�

which completes the proof. ✷

Now let

�k �=

a

0

0 a a a a

1 2 k-1

1 2 k-2 k-1

b b b b bk-2

(4.6)

be a k-crown. If we have a known case of monotonicity inequivalence for a
pair ��k�� � of posets, then we can apply Lemma 4.9 to extend monotonicity
inequivalence to ��k′�� � whenever k′ ≥ k.



STOCHASTIC AND REALIZABLE MONOTONICITY 959

Proposition 4.10. Let �k be a k-crown as in (4.6). Given a pair ��k�� � of
posets, suppose that there exists a stochastically monotone system �Pα � α ∈ Ak�
of probability measures on S which is not realizably monotone. Then if k′ ≥ k,
we can define

Pα �=
{
Pα� if α ∈ Ak,

Pbk−1
� if α ∈ Ak′ \Ak,

to enlarge �Pα � α ∈ Ak� to a stochastically monotone system �Pα � α ∈ Ak′ �
which is not realizably monotone for the pair ��k′�� �.

Proof. Since Pbk−1
= Pak

= · · · = Pak′−1
= Pbk′−1

, we see that the sys-
tem �Pα � α ∈ Ak′ � is stochastically monotone. To see that it is not realizably
monotone, suppose that there exists a system �Xα � α ∈ Ak′ � of S-valued ran-
dom variables which realizes the monotonicity of �Pα � α ∈ Ak′ �. By applying
Lemma 4.9 repeatedly, we (almost surely) have Xbk−1

= Xak
= · · · = Xak′−1

=
Xbk′−1

. But then (after perhaps taking care of null sets) �Xα � α ∈ Ak� realizes
the monotonicity of �Pα � α ∈ Ak�, which is a contradiction. ✷

As an immediate corollary to Proposition 4.10, we can extend Examples 4.5
and 4.6 to allow � to be the k-crown for arbitrary k ≥ 2. In summary, from
the counterexamples in Example 1.1 and Examples 4.5–4.8 we have derived

Proposition 4.11. Let � and � each be either a diamond or a crown.
Then monotonicity equivalence fails for �� �� �.

4.3. The proof of Theorem 4.2. Let � be a poset of Class B. Then we can
find either (i) a 2-crown as an induced subposet of � or (ii) a cycle as a (not
necessarily induced) subposet of � . If � has a cycle, then, by Lemma 2.4, �
has an induced cyclic subposet � . It is possible to label the cycle � and to fix
a starting point and orientation of the cycle so that, as the cycle is traversed,
it traces out an upward path from z0 to z1, then a downward path from z1 to
z2, then an upward path from z2 to z3, etc., finishing with a downward path
from z2k−1 to z0, as illustrated in

� =

3z z z 2k-11

zz 2 2k-20
z

(4.7)

If k = 1, then � is a subdivided diamond; otherwise, � is a subdivided k-crown
(k ≥ 2). This observation gives a different characterization of Class B.

Lemma 4.12. A poset � is in Class B if and only if � has either the
diamond or a crown as an induced subposet.
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Proof. We have already seen that a poset � of Class B has either the
diamond or a crown as an induced subposet. If � has an induced 2-crown,
then � is in Class B by definition. If � has an induced subposet which is
either the diamond or a k-crown for some k ≥ 3, then, by Proposition 2.7, �
is non-acyclic and therefore � is in Class B, again by definition. ✷

Now we turn to the proof of Theorem 4.2. If � is an acyclic poset, then,
by Theorem 4.1, monotonicity equivalence holds for �� �� �. Thus, the re-
maining task is to show that if � is a non-acyclic poset, then monotonicity
equivalence fails for �� �� �. By Lemmas 2.13 and 4.12, it suffices to show
that monotonicity equivalence fails for �� �� ′� whenever � ′ is either the
diamond or a crown. We complete the proof of Theorem 4.2.

Proof of Theorem 4.2. Let � be a non-acyclic poset and � ′ be either
the diamond or an m-crown for some m ≥ 2. We will construct a stochastically
monotone system �Pα � α ∈ A� of probability measures on S′ which is not
realizably monotone, by dividing the construction into two cases.

Case I. Suppose that � has a diamond � ′ as an induced subposet. Let
� ′ be labeled as in Example 4.8. By Examples 1.1 and 4.8, there exists a
stochastically monotone system �Pα � α ∈ A′� of probability measures on S′

which is not realizably monotone. It then suffices by Lemma 2.12 to show that
the system can be enlarged to a stochastically monotone system �Pα � α ∈ A�
of probability measures on S′.

For this, define a partition Aa�Ab�Ac, and Ad of A by

Aα �=




A \ 	α ∈ A � b ≤ α or c ≤ α
� if α = a,

	b
� if α = b,

	c
� if α = c,

	α ∈ A � b < α or c < α
� if α = d.

Then we can extend �Pα � α ∈ A′� to �Pα � α ∈ A� by putting

Pα �= Pβ� α ∈ Aβ

for each β ∈ A′. It is routine to check that this extension maintains stochastic
monotonicity, that is, that if α1 < α2, then Pα1

� Pα2
. This is true if α1� α2 ∈ Aβ

for some β and also if α1 ∈ Aa or α2 ∈ Ad. If α1 ∈ 	b� c
 and α1 < α2, then
α2 ∈ Ad. If α1 ∈ Ad and α1 < α2, then α2 ∈ Ad. So stochastic monotonicity is
clear.

Case II. Suppose that � has no diamond as an induced subposet. By
Lemma 2.4, � has an induced cyclic subposet � ′. In the same way as what
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we did in (4.7), we can label the cycle � ′ as illustrated in

� ′ =

1 2 k-1b b b b bk-20

a
0 a1 a2 ak-2

a
k-1

By our Case II assumption, � ′ must be a subdivided k-crown for some k ≥
2. Let � ′′ be the k-crown �a0� b0� a1� b1� � � � � ak−1� bk−1� a0�. By Example 4.5
and 4.6 (and then further using Proposition 4.10, if necessary), there exists
a stochastically monotone system �P′′

α � α ∈ A′′� of probability measures on S
which is not realizably monotone.

Let P′′
0̂

and P′′
1̂

be defined as in Remark 4.7 so that P′′
0̂

� P′′
α � P′′

1̂
for all

α ∈ A′′. Consider the partition 	A′
β: β ∈ A′′
 of A′, where

A′
ai

�= 	α ∈ A′ � ai ≤ α < bi−1 or ai ≤ α < bi

and A′

bi
�= 	bi
 for i = 0� � � � � k− 1. By letting

A1̂ �= 	α ∈ A \A′ � α > β for some β ∈ A′

and A0̂ �= A \ �A′ ∪ A1̂�, we can define a system �Pα � α ∈ A� of probability
measures on S by

Pα �=



P′′

β� if α ∈ A′
β for some β ∈ A′′,

P′′
1̂
� if α ∈ A1̂,

P′′
0̂
� if α ∈ A0̂,

this system extends �P′′
α � α ∈ A′′�.

We claim that �Pα � α ∈ A� is stochastically monotone. Let α1 < α2. If
α1 ∈ A0̂ or α2 ∈ A1̂, then Pα1

� Pα2
. This is also trivial if α1� α2 ∈ A′. If

α1 ∈ A′, then α2 ∈ A′ ∪ A1̂, so Pα1
� Pα2

. If α1 ∈ A1̂, then α2 ∈ A′ ∪ A1̂.
We need only show that it is impossible to have both α1 ∈ A1̂ and α2 ∈ A′.
Indeed, then α1 �∈ A′, but for some β ∈ A′ we have β < α1 < α2. But then
there are two distinct upward paths from β to α2 in � , namely the one using
edges in the cover graph �A′��� ′ � and one containing α1 �∈ A′. This violates
Lemma 2.5, since we are assuming that � has no induced diamond. Thus,
we have established the claim and, by Lemma 2.12, �Pα � α ∈ A� cannot be
realizably monotone. ✷

5. The monotonicity equivalence problem on Class Y. In Section 5
we investigate the monotonicity equivalence problem when � ∈ Y. The goal
of this section is to prove the following theorem. Two reformulations of the
necessary and sufficient condition here are given in Proposition 5.11.
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Theorem 5.1. Let � be a poset of Class Y. Then monotonicity equivalence
holds for �� �� � if and only if there exists an acyclic poset ˜� which has �
as an induced subposet.

Thus, some posets � of monotonicity equivalence may be non-acyclic. As
an instructive example, let

� �=

2

2b 1

m-1 ma a a a

b b

1

n

(5.1)

be a poset where ai < bj for all i = 1� � � � �m and all j = 1� � � � � n. Then � is a
poset of monotonicity equivalence for any � �∈ B. To see this without resorting
to Theorem 5.1, grant the following proposition for now.

Proposition 5.2. Suppose that � �∈ B. Let Pa�1� � � � �Pa�m�Pb�1� � � � �Pb�n

be probability measures on S satisfying

Pa�i � Pb�j for all i = 1� � � � �m and all j = 1� � � � � n.

Then there exists a probability measure P0 on S such that

Pa�i � P0 � Pb�j for all i = 1� � � � �m and all j = 1� � � � � n.

Now suppose that �Pα � α ∈ A�, with � given by (5.1), is a stochastically
monotone system of probability measures on S. Proposition 5.2 implies that
there is a probability measure P0 on S such that Pai

� P0 � Pbj
for all i =

1� � � � �m and all j = 1� � � � � n. Define an acyclic poset ˜� on the set Ã = A∪	c

by means of the Hasse diagram

˜� �=

2b 1

m-1 ma a a a

b b n

1 2

c
(5.2)

Then the poset � is an induced subposet of ˜� . By letting Pc �= P0, we can
enlarge the system �Pα � α ∈ A� to the system �Pα � α ∈ Ã�, which remains
stochastically monotone. By applying Theorem 4.1 and then Lemma 2.12, we
see that both �Pα � α ∈ Ã� and �Pα � α ∈ A� are realizably monotone. Thus,
we have shown that monotonicity equivalence holds for �� �� �.

In Section 5.1 we attend to the proof of Proposition 5.2. A large class of
posets � of monotonicity inequivalence is presented in Section 5.2, leading to
the proof of Theorem 5.1 in Section 5.3.
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5.1. Probability measures on an acyclic poset. The goal of this subsection
is to prove Proposition 5.2. We begin this subsection by introducing a natural
partial ordering on a connected acyclic graph (i.e., a tree) when one vertex
is specified to become a top element, that is, to be made larger than every
other vertex. Let � be a connected acyclic poset and let τ be a fixed leaf
of � . Declare x ≤τ y for x�y ∈ S if and only if the (necessarily existent
and unique) path �τ� � � � � x� from τ to x contains the path �τ� � � � � y� from τ
to y as a segment. This introduces another partial ordering ≤τ on the same
ground set S (see [1]). We call this new poset �S�≤τ� a rooted tree (rooted at τ).
(Comparison of the poset � and a rooted tree is illustrated in Example 5.4.)
The element τ is clearly the maximum of the rooted tree �S�≤τ� and is called
the root. If x covers y in �S�≤τ�, then y is called a successor of x, and x is
called the predecessor of y.

For each x ∈ S, we define a section of rooted tree by

�←� x� �= 	ξ ∈ S � ξ ≤τ x
�
that is, the down set in �S�≤τ� generated by x [cf. Section 2.1(1)]. Every section
�←� x� is either a down-set or an up-set in � , and which of these holds can
be determined from the cover relation of � . We state this as the following
lemma.

Lemma 5.3. Let � be a connected acyclic poset. For every x ∈ S, �←� x� is
either a down-set or an up-set in � . If x �= τ, then there is a unique predecessor
w of x, and the edge 	x�w
 belongs to the cover graph �S��� � of � . Moreover,
�←� x� is (i) a down-set or (ii) an up-set in � according as (i) w covers x or
(ii) x covers w in � .

Proof. If x = τ, then �←� τ� = S is both a down-set and an up-set in
� . If x �= τ, then x <τ τ and there is a unique predecessor of x; otherwise,
the uniqueness of the path is contradicted. Let w be the predecessor of x.
Clearly, 	x�w
 belongs to the cover graph of � . Suppose that w covers x
in � . We claim that �←� x� is a down-set in � , that is, that η ∈ �←� x�
whenever η ≤ ξ in � for some ξ ∈ �←� x�. [Since we have the same rooted
tree �S�≤τ� for the dual � ∗, in proving the claim we will also settle the case
that x covers w in � .] To see this, look at the paths from the root τ to ξ and
η, say, �u0� � � � � un−1� from τ = u0 to un−1 = ξ and �v0� � � � � vm−1� from τ = v0
to vm−1 = η. For some k, the two paths descend the same vertices until the
kth vertex, then split at the �k + 1�st vertex. The path from ξ to η is then
�un−1� � � � � uk+1� uk� vk+1� � � � � vm−1�, which is downward in � by assumption.
That ξ ≤τ x implies that �ui−1� ui� = �w�x� for some i. Furthermore, we have
i ≤ k; otherwise, the downward path from ξ to η contains the directed edge
�x�w�, which is impossible. Thus, the path from τ to η contains the vertex x,
which implies that η ≤τ x. ✷

Example 5.4. Let � be the poset of Class Y displayed in Figure 5.1(a).
By choosing the leaf τ of � as the root, we obtain the rooted tree �S�≤τ�
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� �= �S�≤τ� �=

x y

z

r s

τ

q

vut

p

q

u

yx

vtpz

sr

τ

(a) a poset of Class Y (b) a rooted tree with root τ

Fig. 5.1. The comparison of two posets.

illustrated in Figure 5.1(b). For example, r covers its predecessor q in � . By
Lemma 5.3, the section �←� r� = 	r�p� t� x� y� z
 is an up-set in � , which we
can confirm immediately from Figure 5.1(a).

Now let P be a probability measure on S. We define the distribution function
of P by

F�x� �= P��←� x�� for each x ∈ S.(5.3)

It satisfies

F�τ� = 1(5.4)

and ∑
ξ∈
 �x�

F�ξ� ≤ F�x� for every x ∈ S,(5.5)

where 
 �x� denotes the set of all successors of x [and the summation is defined
to be zero if 
 �x� = �]. Conversely, if a nonnegative function F on S satisfies
the properties (5.4)–(5.5), then it is the distribution function of the probability
measure P determined uniquely via

P�	x
� �= F�x� − ∑
ξ∈
 �x�

F�ξ� for each x ∈ S.(5.6)

Furthermore, stochastic ordering can be characterized in terms of distribution
functions, as stated in the following lemma.

Lemma 5.5. Let Pi be a probability measure on S and let Fi be the distri-
bution function of Pi, for each i = 1�2. Then P1 � P2 if and only if for every
x ∈ S we have�

(a) F1�x� ≤ F2�x� if �←� x� is an up-set in � , and
(b) F1�x� ≥ F2�x� if �←� x� is a down-set in � .

Proof. By (1.2) and its trivial consequence Proposition 4.4(b), P1 � P2
clearly implies the conditions (i)–(ii). We proceed to the converse. Since any
up-set U in � is the disjoint union of the components V1� � � � �Vm of the
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subgraph of �S��� � induced by U and V1� � � � �Vm are all up-sets in � , to
prove P1 � P2 it suffices to show (1.2) for every up-set U which induces a
connected subgraph of �S��� �. If a set U induces a connected subgraph of
�S��� �, then we can find x ∈ U and incomparable elements y1� � � � � yk of
�←� x� in �S�≤τ� so that

U = �←� x� \
(

k⋃
i=1

�←� yi�
)
�

where (as usual) the union is empty if k = 0. Furthermore, suppose that U is
an up-set in � . If x = τ, then �←� x� = S is trivially an up-set in � ; otherwise,
x covers its predecessor w in � and, by Lemma 5.3, �←� x� is an up-set in � .
Similarly, �←� yi� is a down-set in � for each i = 1� � � � � k. Therefore, we have

P1�U� = F1�x� −
k∑

i=1

F1�yi� ≤ F2�x� −
k∑

i=1

F2�yi� = P2�U��

which establishes the sufficiency of the conditions (i)–(ii). ✷

Because of Lemma 5.5, we write F1 � F2 if a pair �F1�F2� of distribution
functions on S satisfies Lemma 5.5(i)–(ii) for every x ∈ S.

We now turn to the proof of Proposition 5.2. Let � �∈ B and let Fa�1� � � � �
Fa�m, Fb�1� � � � �Fb�m be the distribution functions satisfying

Fa�i � Fb�j for all i = 1� � � � �m and all j = 1� � � � � n.

Then define the function θ on S by

θ�x� �=
{

max	Fa�i�x� � i = 1� � � � �m
� if �←� x� is an up-set in � ,

max	Fb�j�x� � j = 1� � � � � n
� if �←� x� is a down-set in � ,
(5.7)

for x ∈ S. We first present the following lemma.

Lemma 5.6. Let � �∈ B. Suppose that x ∈ S and that v1� � � � � vl are mutu-
ally incomparable elements of �←� x� in �S�≤τ�.

(a) If �←� x� is a down-set in � and v1� � � � � vl ≤ x in � , then

l∑
i=1

θ�vi� ≤ Fa�j�x� for all j = 1� � � � �m.

(b) If �←� x� is an up-set in � and v1� � � � � vl ≥ x in � , then

l∑
i=1

θ�vi� ≤ Fb�j′ �x� for all j′ = 1� � � � � n.

Proof. Suppose that the hypotheses in (a) hold. If v1 = x, then l = 1 and
the inequality clearly holds. Otherwise, vi �= x for every i = 1� � � � � l. Since the
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path �vi� ui� � � � � x� is upward and ui covers vi in � , by Lemma 5.3(b) �←� vi�
is a down-set in � . Therefore we have

l∑
i=1

θ�vi� ≤
l∑

i=1

Fa�j�vi� ≤ Fa�j�x�

for all j = 1� � � � �m, as desired. The case (b) is reduced to (a) by considering
the dual � ∗. ✷

We now define a nonnegative function F0 on S inductively. If x is a minimal
element in �S�≤τ�, then assign F0�x� �= θ�x�. If x is a nonminimal element
in �S�≤τ� and F0�ξ�, ξ ∈ 
 �x�, have all been assigned, then set

F0�x� �= max

{
θ�x�� ∑

ξ∈
 �x�
F0�ξ�

}
�

Clearly F0 satisfies (5.5). We complete the proof of Proposition 5.2 by showing
that F0 satisfies (5.4) and

Fa�i � F0 � Fb�j for all i = 1� � � � �m and all j = 1� � � � � n.(5.8)

Thus, F0 is a distribution function with the desired property.

Proof of Proposition 5.2. We first claim that for every x ∈ S, there are
incomparable elements v1� � � � � vl of �←� x� in �S�≤τ� which satisfy both the
hypotheses of one of Lemma 5.6(a),(b) and also

F0�x� =
l∑

i=1

θ�vi��(5.9)

We will show this by induction over the cardinality of �←� x�. If ��←� x�� = 1,
then x is a minimal element in �S�≤τ� and indeed F0�x� = θ�x�.

Suppose that the claim holds for any x ∈ S such that ��←� x�� ≤ n − 1. Let
x ∈ S satisfy ��←� x�� = n ≥ 2. If x = τ, then recall that τ is a leaf in �
so that 
 �τ� is a singleton, say 	y
. By the induction hypothesis, we can find
incomparable elements v1� � � � � vl of �←� y� in �S�≤τ� which satisfy both the
hypotheses of one of Lemma 5.6(a),(b) and (5.9) for y. If Lemma 5.6(a) holds,
then

F0�y� =
l∑

j=1

θ�vj� ≤ Fa�1�y� ≤ 1�

A similar derivation concludes that F0�y� ≤ 1 when Lemma 5.6(b) holds.
Therefore, we have F0�τ� = θ�τ� = 1, which proves (5.4). Furthermore, the
claim holds for x = τ.

If x �= τ, then x has a predecessor y0 and successors y1� � � � � yk for some
k ≥ 1 (recalling our assumption ��←� x�� = n ≥ 2). Without loss of generality,
we may assume that y0 covers x in � . (We can treat the case that x cov-
ers y0 in � in exactly the same way by considering the dual � ∗.) Then, by
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Lemma 5.3, �←� x� is a down-set in � . Since � cannot have a bowtie as an in-
duced subposet, only the following three cases can occur: (I) x covers y1� � � � � yk

in � , or (II) y1� � � � � yk cover x in � , or, with k ≥ 2, (III) y1� � � � � yk−1 cover x,
and x covers yk, in � . The induced subposet of � on 	x�y0� y1� � � � � yk
 for
each of these three cases is illustrated in the following figure:

yy y

x

y

k-1 k

0

1

yy
1

y
kk-1

y
0

x

yy
1 k-1

x

y
k

y
0

Case I Case II Case III

Case I. If F0�x� = θ�x�, the claim is obvious. Otherwise, we have F0�x� =∑k
i=1 F0�yi�. For each i = 1� � � � � k, the section �←� yi� is a down-set in � by

Lemma 5.3, and therefore by the induction hypothesis we have incomparable
elements v

�i�
1 � � � � � v

�i�
li

of �←� yi� in �S�≤τ� satisfying Lemma 5.6(a) and (5.9)
for yi. Thus we have

F0�x� =
k∑

i=1

F0�yi� =
k∑

i=1

li∑
j=1

θ�v�i�
j ��

and x ≥ v
�i�
j for all i� j. Since the v

�i�
j ’s are incomparable in �S�≤τ�, the claim

holds for x.
Case II. For each i = 1� � � � � k, �←� yi� is an up-set in � by Lemma 5.3,

and therefore by the induction hypothesis we have incomparable elements
v

�i�
1 � � � � � v

�i�
li

of �←� yi� in �S�≤τ� satisfying Lemma 5.6(b) and (5.9) for yi. By
applying Lemma 5.6(b) to (5.9), we have

k∑
i=1

F0�yi� =
k∑

i=1

li∑
j=1

θ�v�i�
j � ≤

k∑
i=1

Fb�1�yi� ≤ Fb�1�x� ≤ θ�x��

which implies that F0�x� = θ�x�. Thus the claim holds for x.
Case III. By Lemma 5.3, �←� yk� is a down-set in � and therefore by

the induction hypothesis we can find incomparable elements v
�k�
1 � � � � � v

�k�
lk

of
�←� yk� in �S�≤τ� satisfying Lemma 5.6(a) and (5.9) for yk. Since � has no
bowtie as an induced subposet and y0� y1 ≥ yk ≥ v

�k�
1 � � � � � v

�k�
lk

in � , we have
lk = 1. Thus, we can find some j0 so that

F0�yk� = θ�v�k�
1 � = Fb�j0

�v�k�
1 � ≤ Fb�j0

�yk��
For each i = 1� � � � � k−1, the section �←� yi� is an up-set in � by Lemma 5.3,
and therefore by the induction hypothesis we have incomparable elements
v

�i�
1 � � � � � v

�i�
li

of �←� yi� in �S�≤τ� satisfying Lemma 5.6(b) and (5.9) for yi. By
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applying Lemma 5.6(b) to (5.9), we obtain
k∑

i=1

F0�yi� ≤ Fb�j0
�yk� +

k−1∑
i=1

li∑
j=1

θ�v�i�
j �

≤
k∑

i=1

Fb�j0
�yi� ≤ Fb�j0

�x� ≤ θ�x��

which implies that F0�x� = θ�x�. Thus, we have established the claim.
In order to show (5.8), it suffices to show that if �←� x� is an up-set in �

then we have

Fa�i�x� ≤ F0�x� ≤ Fb�j�x� for all i = 1� � � � �m and all j = 1� � � � � n.

(Again, we can verify the case that �←� x� is a down-set in � by considering
the dual � ∗.) Suppose that �←� x� is an up-set in � . Then we can find in-
comparable elements v1� � � � � vl of �←� x� in �S�≤τ� satisfying Lemma 5.6(b)
and (5.9). By applying Lemma 5.6(b) to (5.9), we have

Fa�i�x� ≤ θ�x� ≤ F0�x� =
l∑

i=1

θ�vi� ≤ Fb�j�x��

This completes the proof. ✷

5.2. Monotonicity inequivalence on Class Y. In this subsection, we present
various examples, each with a poset � from Class Y, of posets � of mono-
tonicity inequivalence. The next example turns out to be a building block for
all the other examples.

Example 5.7. Let �0 be the diamond given in (4.5) and let �0 be the
Y-poset as in Figure 2.1(b). Define a system �Pa�Pb�Pc�Pd� of probability
measures on S0 by

Pα �=




unif	x�y
� if α = a,

unif	x�w
� if α = b,

unif	y�w
� if α = c,

unif	z�w
� if α = d.

(5.10)

It is clearly stochastically monotone with respect to ��0��0�. We can prove
that it is not realizably monotone by contradiction. Assume that there exists
a system �Xα � α ∈ A0� of S0-valued random variables which realizes the
monotonicity. Then we have

��Xb = x� = ��Xa = x�Xb = x�Xc = w�Xd = w� = 1
2 �

��Xc = y� = ��Xa = y�Xb = w�Xc = y�Xd = w� = 1
2 �

Therefore, we have ��Xd = w� ≥ 1, which contradicts the requirement ��Xd =
w� = Pd�	w
� = 1/2. Thus monotonicity equivalence fails for ��0��0�.
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In Example 5.7, the dual � ∗
0 is the diamond again. By Proposition 2.16,

monotonicity equivalence fails for both �� ∗
0 ��0� and ��0��

∗
0 �. Now let � be

any poset of Class Y. Since � has either the Y-poset �0 or its dual � ∗
0 as an

induced subposet, by Lemma 2.13 monotonicity equivalence fails for ��0�� �.
Thus, there exists a system �P̃a� P̃b� P̃c� P̃d� of probability measures on S
which is stochastically but not realizably monotone with respect to ��0�� �.
In the next three examples (Examples 5.8–5.10), we take � to be any poset
of Class Y.

Example 5.8. Suppose that � has a cycle with height at least 3. Then
monotonicity equivalence fails for �� �� �.

To see this, observe by Lemma 2.6 that � has an induced cyclic subposet
� ′ = �a0� a1� � � � � an−1� a0� with height at least 3. Without loss of generality
we may assume that � ′ has a maximal upward path �ak′� ak′+1� � � � � an−1�
a0� a1� � � � � ak� with height at least 3 for some 1 ≤ k ≤ k′ ≤ n−1, as illustrated
in

� ′ =

a
n-1

a
1

a
k

a

a
k+1

k’

a 0(5.11)

Note that k+ 2 ≤ k′, since ak does not cover ak′ . Then we can define a system
�Pα � α ∈ A� of probability measures on S by

Pα �=




P̃b� if α = a0,

P̃d� if a0 < α,

P̃a� if α < a0,

P̃c� otherwise.

Then the system is stochastically monotone.
We now show by contradiction that it is not realizably monotone. Suppose

that we have a system �Xα � α ∈ A� of S-valued random variables which
realizes the monotonicity. Then we have Xak′ ≤ Xa0

≤ Xak
. Since Pak+1

= · · · =
Pak′−1

= P̃c, by applying Lemma 4.9 repeatedly we obtain (almost surely)
Xak+1

= · · · = Xak′−1
. Since ak+1 < ak and ak′ < ak′−1, we have Xak′ ≤ Xak′−1

=
Xak+1

≤ Xak
. Therefore, the system �Xak′ �Xa0

�Xak+1
�Xak

� of S-valued random
variables realizes the monotonicity of the system �P̃a� P̃b� P̃c� P̃d� in terms of
��0�� �. But this contradicts Example 5.7.
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Example 5.9. Suppose that � has a k-crown �k as an induced subposet
for some k ≥ 3. Then monotonicity equivalence fails for �� �� �.

To see this, let �k be as labeled in (4.6), let U �= 	α ∈ A � a0 ≤ α
 be the up-
set in � generated by a0, and let V �= �bk−1� be the down-set in � generated
by bk−1. Then we define a system �Pα � α ∈ A� of probability measures on S
by

Pα �=




P̃b� if α ∈ U ∩V,

P̃d� if α ∈ U ∩Vc,

P̃a� if α ∈ Uc ∩V,

P̃c� otherwise (i.e., α �∈ U ∪V).

Suppose that α < β in � . If α ∈ Uc ∩ V, then Pα = P̃a � Pβ. If α ∈ U ∩ V,
then β ∈ U and Pβ is either P̃b or P̃d; thus, Pα = P̃b � Pβ. If α �∈ U∪V, then
β �∈ V and Pβ is either P̃c or P̃d; thus, Pα = P̃c � Pβ. If α ∈ U ∩ Vc, then
β ∈ U∩Vc, and Pα = P̃d � P̃d = Pβ. In each case that α < β, we have shown
Pα � Pβ. Therefore, the system is stochastically monotone.

Suppose now that we have a system �Xα � α ∈ A� of S-valued random vari-
ables which realizes the monotonicity. Since Pa0

= Pbk−1
= P̃b, by Lemma 4.9

we (almost surely) have Xa0
= Xbk−1

and therefore Xak−1
≤ Xa0

≤ Xb0
. Since

Pa1
= Pb1

= · · · = Pak−2
= Pbk−2

= P̃c, by applying Lemma 4.9 repeatedly we
obtain (almost surely) Xa1

= Xb1
= · · · = Xak−2

= Xbk−2
and therefore Xak−1

≤
Xa1

≤ Xb0
, which implies that the system �Xak−1

�Xa0
�Xa1

�Xb0
� of S-valued

random variables realizes the monotonicity of the system �P̃a� P̃b� P̃c� P̃d�
indexed by the diamond (4.5). But this contradicts the discussion following
Example 5.7. Hence �Pα � α ∈ A� is not realizably monotone.

Example 5.10. Suppose that � has

� ′ =

a a a2 3

b 2 3b 1 b

1

(5.12)

as an induced subposet. Then monotonicity equivalence fails for �� �� �.
To see this, define a system � = �Pα � α ∈ A� of probability measures on S

by

Pα �=




P̃b� if α ∈ �b1� \ �b3�,
P̃c� if α ∈ �b3� \ �b1�,
P̃a� if α ∈ �b1� ∩ �b3�,
P̃d� otherwise (i.e., α �∈ �b1� b3�).

Suppose that α < β in � . If α ∈ �b1� ∩ �b3�, then Pα = P̃a � Pβ. If α ∈
�b1� \ �b3�, then β �∈ �b3� and Pβ is either P̃b or P̃d; thus, Pα = P̃b � Pβ. If
α ∈ �b3� \ �b1�, then β �∈ �b1� and Pβ is either P̃c or P̃d; thus, Pα = P̃c � Pβ.
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If α �∈ �b1� b3�, then β �∈ �b1� b3�; thus, Pα = P̃d � P̃d = Pβ. Therefore, the
system is stochastically monotone.

Suppose now that there exists a system �Xα � α ∈ A� of S-valued random
variables which realizes the monotonicity. By Lemma 4.9, we (almost surely)
have Xa1

= Xb1
and Xa3

= Xb3
. Thus we have found a system �Xa2

�Xa1
�Xa3

�Xb2
�

of S-valued random variables which realizes the monotonicity of the system
�P̃a� P̃b� P̃c� P̃d� indexed by the diamond (4.5). But this again contradicts the
discussion following Example 5.7. Therefore, �Pα � α ∈ A� is not realizably
monotone.

5.3. Proof of Theorem 5.1. At the beginning of Section 5, we saw that a
non-acyclic poset � can sometimes be enlarged to an acyclic poset ˜� . But such
an enlargement is not always possible. In fact, by Proposition 2.7, if � has
an induced subposet which is one of the posets (i)–(iv) in Proposition 2.7 [i.e.,
(i) the diamond, (ii) a subdivided crown with height at least 3, (iii) the k-crown
for some k ≥ 3, or (iv) the double-bowtie poset], then such an enlargement is
not possible. It turns out that a non-acyclic poset can be enlarged to an acyclic
poset if and only if none of the posets (i)–(iv) in Proposition 2.7 is an induced
subposet; this relates the examples in Section 5.2 to Theorem 5.1.

Proposition 5.11. Let � be a connected poset. The following conditions
(a)–(c) for � are equivalent�

(a) there exists an acyclic poset ˜� which has � as an induced subposet;
(b) any induced cyclic subposet of � is a 2-crown, and no induced subposet

of � is the double-bowtie (5.12);
(c) no induced subposet of � is one of the posets (i)–(iv) in Proposition 2.7.

Proof of (a) ⇒ (c) and (c) ⇒ (b). Suppose that there exists an induced
subposet � of � which is poset-isomorphic to one of the posets (i)–(iv) in
Proposition 2.7. If there is an acyclic poset ˜� which has � as an induced
subposet, then � is also an induced subposet of ˜� ; by Proposition 2.7, this is
impossible. We have thus shown that (a) ⇒ (c).

To prove (c) ⇒ (b), observe that a cycle is simply a subdivision of either the
diamond or a crown. So if � has an induced cyclic subposet � which is not a
2-crown, then we can find an induced subposet of � (automatically, of course,
an induced subposet of � ) that is one of the posets (i)–(iii) in Proposition 2.7.
Thus, the failure to satisfy the condition (b) implies the existence of an induced
subposet which is one of the posets (i)–(iv) in Proposition 2.7. ✷

In preparation for proving (b) ⇒ (a), we introduce a new operation that
welds two posets into one, as follows. Suppose that two posets � ′ and � ′′

share a single element c (i.e., that A′∩A′′ = 	c
). Then the two Hasse diagrams
of � ′ and � ′′ can be drawn in the same plane with their own vertices and
arcs independently except for the vertex c to be shared by the two diagrams;
this introduces a merged diagram on the vertex set A′ ∪A′′. We call the poset
represented by this Hasse diagram the union of � ′ and � ′′ joined at c and
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denote it by � ′ c# � ′′. We list some easily verified properties of the welding
operation here:

1. If � ′ and � ′′ are connected, then � ′ c# � ′′ is connected.
2. If � ′ and � ′′ are acyclic, then � ′ c# � ′′ is acyclic.
3. Both � ′ and � ′′ are induced subposets of � ′ c# � ′′.
4. Suppose that two posets � ′

0 and � ′′
0 share a single element c and that � ′

and � ′′ (also sharing c) are induced subposets of � ′
0 and � ′′

0 , respectively.

Then � ′ c# � ′′ is an induced subposet of � ′
0

c# � ′′
0 .

We now continue our preparation for the proof of (b) ⇒ (a) in Proposi-
tion 5.11. Lemma 5.12 provides machinery to split a poset into two smaller
ones; this enables us to devise induction arguments in proving both Theo-
rem 5.1 and (b) ⇒ (a) in Proposition 5.11.

Lemma 5.12. Let � be a connected non-acyclic poset. Suppose that �
satisfies the condition (b) of Proposition 5.11. Then we can construct a pair � ′

0
and � ′′

0 of connected posets �with ground sets A′
0 and A′′

0, respectively� such
that, for some c �

(i) both � ′
0 and � ′′

0 satisfy the condition (b) of Proposition 5.11;
(ii) A′

0 ∩A′′
0 = 	c
, �A′

0 ∪A′′
0� \ 	c
 = A, and �A′

0�� �A′′
0� < �A�; and

(iii) � is the subposet of �0 = � ′
0

c# � ′′
0 induced by A.

Proof. Let 
 be the collection of all subsets B of A such that the sub-
poset via induced cover subgraph of � on the ground set B is a poset of the
form (5.1) for some m�n ≥ 2. Note that if a subposet � via induced cover
subgraph is of the form (5.1) then � is an induced subposet. By Lemma 2.4
and the condition (b) of Proposition 5.11, � has an induced cyclic subposet
which is necessarily a 2-crown; thus, 
 is nonempty. Choose a maximal sub-
set B0 from 
 . Then let �0 be the subposet of � induced by B0 and label it
as in (5.1).

Consider the Hasse diagram of � as represented in the plane. First re-
move the arcs from each of a1� � � � � am to each of b1� � � � � bn. Since the elements
b1� � � � � bn are all drawn above the elements a1� � � � � am, we can insert a new
vertex c above the elements a1� � � � � am but below the elements b1� � � � � bn, and
then add new arcs from a1� � � � � am to c and from c to b1� � � � � bn. This creates
a new poset �0 with ground set A0 �= A ∪ 	c
, as illustrated in

�0 =

b b

1a 2a m-1a ma

bn1 2

c
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The subposet of �0 induced by A introduces the arc from each of a1� � � � � am
to each of b1� � � � � bn, thus restoring the Hasse diagram of � .

We claim that �0 does not have any cycle which contains an upward path
�ai� c� bj� with ai� bj ∈ B0. Granting the claim for the remainder of this para-
graph, we define

A′
0� �= 	α ∈ A0 � a path �c� ai� � � � � α� exists in �0 for some ai ∈ B0
�

A′′
0� �= 	α ∈ A0 � a path �c� bj� � � � � α� exists in �0 for some bj ∈ B0
�

By convention, we include c both in A′
0 and in A′′

0. Let � ′
0 and � ′′

0 be the
subposets of �0 induced by A′

0 and A′′
0, respectively. Clearly, � ′

0 and � ′′
0 are

both connected posets. By observing that �0 is connected, we find A′
0 ∪ A′′

0 =
A0. The claim implies that A′

0 ∩A′′
0 = 	c
 and that there are no edges between

A′ �= A′
0 \ 	c
 and A′′ �= A′′

0 \ 	c
 in the cover graph of �0. Therefore, �0 =
� ′

0
c# � ′′

0 , which implies (iii). Since 	a1� � � � � am
 ⊂ A′
0, 	b1� � � � � bn
 ⊂ A′′

0, and
m�n ≥ 2, we have �A′

0�� �A′′
0� < �A�, as desired in (ii). To see (i) for � ′

0 (the same
argument works for � ′′

0 ), suppose that � ′
0 has an induced subposet � which

violates the condition (b) of Proposition 5.11. If V ⊂ A′, then let V′ �= V;
otherwise, let V′ �= �V \ 	c
�∪ 	b1
. Then the subposet � ′ of � induced by V′

is poset-isomorphic to � . Furthermore, if � is a cycle in � ′
0, then � ′ is so in � .

But the existence of such an induced subposet of � contradicts the assumed
condition (b) of Proposition 5.11. So (i) holds, and Lemma 5.12 is established
modulo a proof of the claim.

Now we show the claim. To prove this by contradiction, we further enlarge
the poset �0 as follows. We first remove the arcs from c to each of b1� � � � � bn
from the Hasse diagram of �0. Then a new element c′ is drawn above c but
below each of b1� � � � � bn, and the arc from c to c′ and the arcs from c′ to each
of b1� � � � � bn are introduced in the diagram. This creates a new poset �1, as
illustrated in

�1 =

b b

1a 2a m-1a ma

bn1 2

c
c’

Clearly, �0 is an induced subposet of �1. If we can show that �1 has no
cycle which contains the edge 	c� c′
, then �0 has no cycle which contains
an upward path �ai� c� bj� for some ai� bj ∈ B0, establishing the claim and
Lemma 5.12. Thus, to obtain a contradiction, suppose that �1 has a cycle
which contains the edge 	c� c′
. By Lemma 2.4, we may assume that such
a cycle, say �a1� c� c

′� b1� u1� � � � � uk� a1�, is an induced cyclic subposet of �1.
Then the cycle �a1� b1� u1� � � � � uk� a1� in � is an induced subposet of � ,
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and therefore by condition (b) of Proposition 5.11 the induced cyclic subposet
�a1� b1� u1� � � � � uk� a1� of � must be a 2-crown, and therefore k = 2. Note that
ui �∈ B0 for i = 1�2; otherwise, the cycle �a1� c� c

′� b1� u1� u2� a1� cannot be an
induced subposet of �1.

Write a0 �= u1 and b0 �= u2. Now consider the comparability in � be-
tween 	a0� b0
 and B0. If a0 is comparable with some ai of B0, then either
a0 < ai < b1 or ai < a0 < b1, contradicting our knowledge that 	a0� b1
 and
	ai� b1
 are edges in the cover graph of � . Thus a0 is incomparable with
each of a1� � � � � am. Similarly we can see that b0 is incomparable with each of
b1� � � � � bn. If a0 is comparable with some bj of B0 with j ≥ 2, then a0 < bj;
otherwise, bj < a0 < b1, contradicting the assumption that b1 and bj are
incomparable. Suppose that there is an upward path �v1� � � � � vl� in � from
v1 = a0 to vl = bj with l ≥ 3. Then it is not hard to see that the cycle
�a0� v2� � � � � vl� a1� b0� a0� in � is an induced subposet of � with height l, con-
tradicting condition (b) of Proposition 5.11. Therefore, bj must cover a0 in � .
Note that a0 cannot be comparable with all of b2� � � � � bn, since B0 ∪ 	a0
 �∈ 
 .
Similarly, b0 cannot be comparable with all of a2� � � � � am (but b0 may cover
some of them). Thus, we can find some elements ai, bj of B0 so that a0 is
incomparable with bj and b0 is incomparable with ai. We have now found the
subposet of � induced by 	a0� a1� ai� b0� b1� bj
 to be poset-isomorphic to the
poset (5.12). This contradicts condition (b) of Proposition 5.11. ✷

We now give the proof for (b) ⇒ (a) in Proposition 5.11, by induction over
the cardinality of A. The idea of the proof is to build up an acyclic poset by
using Lemma 5.12.

Proof of (b) ⇒ (a) in Proposition 5.11. Suppose that a poset � satisfies
the condition (b). We will make an inductive argument over the cardinality of
A. But if � is acyclic, then the argument is vacuous. In particular, � with
cardinality at most 3 is acyclic. Now let � be a connected non-acyclic poset
with cardinality n ≥ 4. By Lemma 5.12, there exists a pair � ′

0 and � ′′
0 of

connected posets satisfying (i)–(iii) in Lemma 5.12. Then, by the induction
hypothesis and (i)–(ii) in Lemma 5.12, � ′

0 and � ′′
0 can be enlarged to acyclic

posets ˜� ′ and ˜� ′′, respectively.
SinceA′

0∩A′′
0 = 	c
, the ground sets Ã′ and Ã′′ can be given so that Ã′∩Ã′′ =

	c
. Let ˜� �= ˜� ′ c# ˜� ′′. Then ˜� is acyclic. Furthermore, �0 = � ′
0

c# � ′′
0 is an

induced subposet of ˜� . By (iii) in Lemma 5.12, � is an induced subposet of
˜� , as desired. ✷

Now we turn to the proof of Theorem 5.1. The proof will parallel that of
(b) ⇒ (a) in Proposition 5.11 somewhat. Let � be a connected poset and let
� be a poset of Class Y.

Proof of Theorem 5.1. Suppose first that a non-acyclic poset � is not
enlargeable to an acyclic poset. Then, by Proposition 5.11, � has an induced
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subposet � which is one of the posets (i)–(iv) in Proposition 2.7. If � is the
diamond, then by Lemma 2.5 � has a cycle with height at least 3. Thus
Example 5.8 implies that monotonicity equivalence fails for �� �� �. If � is
either the k-crown for some k ≥ 3 or the double-bowtie poset (5.12), then by
Examples 5.9–5.10 monotonicity equivalence fails for �� �� �. Suppose now
that � is a subdivision of the k-crown as displayed and labeled in (4.6) and
has height at least 3. Then we may assume that there exists c0 ∈ B such that
a0 < c0 < b0 in �. So we find an upward path �a0� � � � � c

′� c0� c
′′� � � � � b0� in �

from a0 to b0 with height at least 3. Since c0 is incomparable in � with each
of a1� � � � � ak−1 and each of b1� � � � � bk−1, no upward path in � from any ai to
any bj contains either 	c′� c0
 or 	c0� c

′′
 as an edge unless �i� j� = �0�0�. Let
�A��� � be the cover graph of � . Then there exists a path �u1� � � � � uk� from
u1 = c′′ to uk = c′ in the graph �A��� \ 		c′� c0
� 	c0� c

′′

�. Thus, � has a
cycle �c′� c0� c

′′ = u1� � � � � uk� with height at least 3. Therefore, by Example 5.8
monotonicity equivalence fails for �� �� �.

Suppose now that a poset � is enlargeable to an acyclic poset. We will
prove that monotonicity equivalence holds for �� �� � by induction over the
cardinality of A. If � is acyclic, then, by Theorem 4.1, � is a poset of mono-
tonicity equivalence. Thus, if �A� ≤ 3, then � is acyclic and therefore a poset
of monotonicity equivalence. Now let � be a non-acyclic poset with cardinality
n ≥ 4 and let �Pα � α ∈ A� be a stochastically monotone system of probability
measures on S. By Lemma 5.12, there exists a pair � ′

0 and � ′′
0 of posets sat-

isfying (i)–(iii) in Lemma 5.12. Let a1� � � � � am be all the elements covered by

c, and let b1� � � � � bn be all the elements covering c in �0 = � ′
0

c# � ′′
0 . Since �

is an induced subposet of �0, we have Pai
� Pbj

for all i = 1� � � � �m and all
j = 1� � � � � n. By Proposition 5.2, we can find a probability measure P0 on S
such that Pai

� P0 � Pbj
for all i = 1� � � � �m and all j = 1� � � � � n.

Let Pc �= P0. Then we can enlarge the system �Pα � α ∈ A� to a system
�Pα � α ∈ A0�, maintaining stochastic monotonicity. Note that the subsystems
�Pα � α ∈ A′

0� and �Pα � α ∈ A′′
0� are also stochastically monotone. Since [by

Lemma 5.12(i) and Proposition 5.11] � ′
0 (respectively, � ′′

0 ) is enlargeable to
an acyclic poset, by the induction hypothesis there is a system �X′

α � α ∈ A′
0�

[respectively, �X′′
α � α ∈ A′′

0�] of S-valued random variables which realizes the
monotonicity of �Pα � α ∈ A′

0� [respectively, of �Pα � α ∈ A′′
0�]. Let A′ �= A′

0 \	c

and A′′ �= A′′

0 \ 	c
. We can define a probability measure Q on SA0 = SA′ ×
S	c
 ×SA′′

by

Q�	�x′� ξ�x′′�
� �= Q′�x′�ξ�Q′′�ξ�x′′� for �x′� ξ�x′′� ∈ SA′ ×S	c
 ×SA′′
,

where

Q′�x′�ξ� �= P�X′
α = πα�x′� ∀α ∈ A′ � X′

c = ξ��
Q′′�ξ�x′′� �= P�X′′

c = ξ� X′′
α = πα�x′′� ∀α ∈ A′′��

Then Q realizes the monotonicity of �Pα � α ∈ A0�. By Lemma 2.12, �Pα �
α ∈ A� is realizably monotone; thus, monotonicity equivalence holds for
�� �� �. ✷
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Remark 5.13. In the second part of the proof of Theorem 5.1, we invoke
Proposition 5.2, which requires only � �∈ B. Thus, we have actually proved
that if � �∈ B and � is enlargeable to an acyclic poset then monotonicity
equivalence holds for �� �� �.

6. Probability measures on a path. In Section 5 we have seen that,
when � �∈ B, stochastic ordering can be decided from the distribution func-
tion (5.3). In this Section 6 we establish that the inverse probability trans-
form (6.1) can be used to realize monotonicity when � ∈ Z; this result extends
Example 1.2. As a result, we will obtain

Theorem 6.1. Let � be any poset and let � be a poset of Class Z. Then
monotonicity equivalence holds for �� �� �.

Let � be a poset of Class Z. As we observed in Section 3, � is poset-
isomorphic to a path, say �x1� � � � � xn�. So a natural linear order ≤n of the
path is introduced by declaring xi ≤n xj if and only if i ≤ j. In other words,
�S�≤n� is a rooted tree with root xn (see Section 5.1). Note that such a linear
order ≤n is not consistent in general with the partial order ≤ of the poset � .
In Figure 6.1 we give an example of (a) a poset � of Class Z and (b) its linear
order ≤n. For every xi ∈ S, the section �←� xi� �= 	xj ∈ S � xj ≤n xi
 of the
path is either an up-set or a down-set in � , which is obvious pictorially in
Figure 6.1. In fact, the linearly ordered set �S�≤n� is a rooted tree with root
xn; thus, Lemma 5.3 applies.

For a probability measure P on S, the distribution function F of P is given
by (5.3), that is, F�xi� = P��←� xi�� for each xi ∈ S. Furthermore, we can
define the inverse probability transform P−1 from �0�1� to S by

P−1�u� �= min	xk � u < F�xk�
 for u ∈ �0�1�,(6.1)

where the minimum is given in terms of the linear order ≤n. Then we can
state an equivalent condition for stochastic ordering as the following lemma.

� �= �S�≤n� �=

1x
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x
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9
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3

2

7
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x10

1

(a) a poset of Class Z (b) a linear order of the path

Fig. 6.1. The comparison of two posets.
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Lemma 6.2. Let �P1�P2� be a pair of probability measures on S ∈ Z. Then
P1 � P2 if and only if

P−1
1 �u� ≤ P−1

2 �u� in � for all u ∈ �0�1�.(6.2)

Proof. Suppose first that P1 � P2. Let F1 and F2 denote the distribution
functions of P1 and P2, respectively. Let u ∈ �0�1� be fixed, xi �= P−1

1 �u�, and
xj �= P−1

2 �u�. If xi = xj, then (6.2) obviously holds. If xi <n xj, then we have

F2�xk� ≤ F2�xj−1� ≤ u < F1�xi� ≤ F1�xk�
for all xk such that xi ≤n xk <n xj. By Lemma 5.5, the section �←� xk� is a
down-set for every k = i� i + 1� � � � � j − 1, which implies, by Lemma 5.3, that
xi < xi+1 < · · · < xj−1 < xj in � . If xj <n xi, then we have

F1�xk� ≤ F1�xi−1� ≤ u < F2�xj� ≤ F2�xk�
for all xk such that xj ≤n xk <n xi. Again by applying Lemmas 5.5 and 5.3,
we obtain xj > xj+1 > · · · > xi−1 > xi in � . In any case, (6.2) holds.

Now suppose that (6.2) holds. Then we can construct a pair �X1�X2� of
S-valued random variables satisfying (1.3)–(1.4) via

Xi �= P−1
i �U� for each i = 1�2

with a single random variable U uniformly distributed on �0�1�. By Proposi-
tion 4.4, we have P1 � P2. This completes the proof. ✷

Lemma 6.2 is exactly the property needed to generalize Example 1.2 to the
case where � is a poset of Class Z. We complete the proof of Theorem 6.1.

Proof of Theorem 6.1. Let �Pα � α ∈ A� be a stochastically monotone
system of probability measures on S. Let U be a random variable uniformly
distributed on �0�1�. Then we can construct a system �Xα � α ∈ A� of S-valued
random variables satisfying (1.6) via

Xα �= P−1
α �U� for α ∈ A.

By Lemma 6.2, the system �Xα � α ∈ A� satisfies (1.5); thus, �Pα � α ∈ A� is
realizably monotone. ✷
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