THE THEORY OF PROBABILITY FROM THE POINT
OF VIEW OF ADMISSIBLE NUMBERS

By Artirvr H. CopeLAND

I. INTRODUCTION

The definition of the word probability has never been agreed
upon. Before we decide on a definition, let us first consider what
use we hope to make of the theory of probability. It is reasonable
to demand of this theory that we shall be able to apply it, and that,
by means of it, we shall he able to make predictions.

If we say that the probability is .9 that a given cvent will oc-
cur under certain circumstances, then are we making some pre-
diction about the success (i.e. occurrence) of the event? Let us
suppose that the circumstances are presented. We may observe
that the event succeeds or we may observe that it fails, Which-
ever the case may he, the result of the experiment cannot be inter-
preted in terms of the number, .9. This is always the case. We
can never interpret the result of a single trial of an event in terms
of the probability of that event.

Next let us assume that 77 trials are made of an event whose
probability is .9, and that. as a result of this experiment, , suc-
cesses and 7-r failures are obtained. If 7 is large, we should
expect the ratio, /7, to he approximately .9, that is, approximate-
ly nine-tenths of the trials tobe successful. We shall call the num-
her, /7, the success ratio.

We have not even now ohtained a satisfactory interpretation
for the number, .9. We have not speciﬁ’ed any limit to the dis-
crepancy between the numbers, r/7 and .9, and we have not
specified the magnitude of . Thus, if /7 differs from 9 hy a
small amount, it also differs from .899 by a small amount. Are we
to be satisfied with the statement that the event in question has a
multiplicity of probabilities including the numbers, 9 and .899?

We can make the above statement more exact as follows:
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144 THEORY OF PROBABILITY

Given any positive number, £, we can find a number, 7, such that
the discrepancy between r/7» and .9 is less than £. After the
number, £, has been chosen, it is at least conceivable that a suffi-
cient number of trials can be made so that ,/77 will differ from .9
by less than £. If we make this interpretation of the probability,
9, and if we wish to make the statement that .9 is the probability
of the event, then we are assuming that .G is the only number that
has this property. We are therefore assuming that the ratio, /77,
approaches .9 as 7 becomes infinite.

So far as I know. no one has ever given an alternative concept
of probability which is capable of being interpreted in terms of the
result either of a single trial or of a sequence of trials. Unless
and until such a concept is given, we are compelled to assume.that
probability is the limit of the success ratio, if we wish to include
an emperical interpretation. Since this paper is being presented
to a group of statisticians, 1 think it will be safe to assume that
we are agreed that probability is concerned with the results of trials
of cvents.

1t may be that we arrived at the probability, .9, by means of
the following reasoning. There are 9 possible ways in which the
event can succeed and 1 in which it can fail. All 10 possibilities
are equally likely and mutually exclusive.

When we make a trial of the event, one and only one of the
possibilities succeeds. The words, equally likely, have no inter-
pretation in terms of the result of a single trial. The reader will
have little difficulty in continuing the analysis of these words in a
manner similar to that of the concept of probability. In fact the
concept, being equally likely, is identical with the concept, having
the same probability. We shall, therefore, reject the concept of
equal likelihood as a basis for a definition of probability.

There is one other objection to this method of finding the
probability of an event. Namely, there is good reason to believe
that it never gives the correct result. In making this statement we
are assuming, of course, that probability is defined as the limit of
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the success ratio. In order that the 10 possibilities may be equally
likely, it is necessary that there be perfect symmetry between these
possibilities. We cannot, therefore, have any mark to distinguish
the one unfavorable possibility from the other nine favorable
possibilities. Experiment indicates that such distinguishing marks
are sufficient to make noticeable differences in the probabilities.
For example, the dots on the faces of a die cause differences in the
frequencies with which the respective faces turn up.

In spite of these ohjections, the above method of finding the
probability of an event, gives very good approximations in most of
the cases where it is applied. There is no method which gives exact
values for probabhilities. It seems wise not to reject this method,
but rather to discard any illusions which we may have concerning
the exactness of its results.

We have seen that we must assume the probability of an event
to be the limit of the success ratio, if we are agreed that probability
is concerned with the results of trials. ILet us express this assump-
tion in terms of the Cauchy criterion for the existence of a limit.

Given a positive number. &, there exists a number, V , such
that | /n~r//n'|<€ whenever n ZNand n' 2V, where r is
the number of successes in 7 trials and ~~’ is the number of suc-
cesses in n’ trials. Physical experiment seems to indicate that
this condition is satisfied. Furthermore, if we reject this assump-
tion we deny the possibility of experimental verification of prob-
abilities. On the other hand. it can he proved that the number,
N . can never be known, This situation is unsatisfactory for a
mathematical theory.

'o avoid this difficulty we shall construct an imaginary
idealized universe in much the same manner as is done in the case
of geometry. This universe will contain sequences of successes
and failures which are formed in accordance with mathematical
laws. These sequences will satisfy the fundamental assumptions
of probability and hence will be infinite. We make the assump-
tion that the physical universe is an approximation to this idealized
universe.
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II. THE ALGEBRA OF EVENTS

We shall show how the elements of the theory of probability
can be.treated from the point of view which we have described.
Consider first the following physical example. A coin ‘is flipped
ten times and the event in question is the occurrence of a head.
The following is a record of the successes and failures,

[,1,0,1,0 0 01 Q9 O
where the 1's stand for successes and the 0’s for failures. The
ratio, 4/?0. of the number of successes to the number of trials,
is obtained by adding all of the ten numbers and dividing by ten.
If we had made a much larger number of trials of the event, we
should expect that the corresponding success ratio would have
been much closer to the probability, one-half.

The above sequence of /s and Q5 can be interpreted as a
number written in the hinary scale. Iet us write

.110, 100,010,0

This number has the value.ﬂ +l/4+0/8 16 *0/}2*0/54*%38
+ 1256 + QY512+ 4 =209/256 . We should not, however,

think of this number as ending with the tenth digit. In fact we

could compute as many more of the digits as we desired by con-

tinuing the experiment, The computation of the values of these

numbers will not be important for our purposes. The above com-

putation was inserted merely to aid in the understanding of the’
notation which we shall describe.

We shall now consider the construction of our idealized uni-
verse. The sequence of successes and failures of a given imaginary
event can be represented by a number, xz = x @y 22 . 5
written in the binary scale, the kth digit, 2} of z being? orO
according as the event succeeds or fails on the k#Atrial. We shall
denote the success ratio for the first 77 trials of this event bypné:).

Then

k)
(1) ,on(z)=£11 I
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We shall denote the probability of the event, % , by o¢x) and we
shall define o) by means of the equation

) )~ 40 Py GO,

We are, of course, assuming that this limit exists.

Most of the important questions in the theory of probability
involve relations between. different events. We shall therefore
construct an algebra which is especially adapted to the discussion
of related events. If z=.x"z%%and y«.y® @®\.. are any
two events, then.the event, *x and y , will be denoted by -y .
We have the equation,

3) Xy=. (X ")-y (,)), ():,a),y(‘z))' (x (3)_y(3)) .

The first digit of x-y is/ if and only if the first digits of x and
y are both 7. 'That is, the event,x'y, succeeds on the first
trial if and only if x and y both- succeed on the first trial.
Similarly for the second and third trials etc. The expressions in-
side the parentheses are understood to be ordinary algebraic prod-
ucts. The expression, x -y , is a symbolic product.

The event, x or y or both, is denoted by xvy. We have
the cquation

(4) Z"y=-(x")+y('fxm'yw), (xrz&y(zgx(agy (2))‘

It will be observed that the first digit, (xy“xy ) of vy

is?if x“.y“1or if x%/ yROor if x%0 y™1, but that
this digit is 0 if x™-y%0. Thus the event, xvy, succeeds on the
first trial if x succeeds on its first trial or y succeeds on its first

trial or both x and y succeed on their first trials. Similarly
for the second and third trials etc.
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We shall use the symbol, ~vx , to denote the event, not x .
It is easily seen that ~/ x is given by the equation,

(5) e (1-x9), (1-x®) (1-2@), - - -,

Let us denote the event, y if x , hyyc x .* Before attempt-
ing to give a formula for ycx let us first consider the expres-
sion, mg,,(). This expression is equal to the number of successes
of the event, ¥ , in its first 77 trials. Thus if »,, is the number
of the trial on which the nth success of x° occurs, then

(6) 777,7',0,.”” (X) z 77,
We can write
(7) ycx :.y(m/)y/mz)y(’ﬁy)...

Thus we consider those trials of -y for which the event, x , oc-
curs. In other words we consider a given trial of y if (and only
if) x occurs on that trial. Hence equation (7) gives us the cor-
rect expression for the event, y if x .

[*The operators,*, v and ~v are also used in symbolic logic with similar
interpretations. See Whitehead and Russell, Principia Mathematica, vol. 1,
The symbol, ¢ , is an inverted implication sign. The expression, y ¢ x., could
he read, y is implied by x , or, y if ¥ . For the benefit of those who are
familiar with Principia Mathematica, it may be added that the symbols, x,
y , etc. are propositional functions rather than propositions. Each x is as-
sociated with a sequence of events, ahd each is a propositional function of the
form, the & #/ event will succeed, & being a free variable. The probabil-
ity is a property of the set of propositions rather than of any giyen proposi-
tion. Thus we should speak of the probability of a propositional function
rather than of the probability of a proposition.]
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PROBLEMS

In problems, 1 to 3, assume that x and y have the following
values
x=.110 100 010 0I1 10! 000 [0 - - -
y=.110111, 011 000100010,11 - - -
1. Compute Py (x) and p, (y) .
2. Compute the first 20 digits of (a)x -y, (b) xvy, (c)w x ,
(dynx.
3. Compute as many digits as possible of ycx andxcy.
4. Prove the following identities:

(a) x'y-yx (g) vvx-x
(b) x(y-2)=(xy)z (h) mv(x.y)suxvy
() xvy=yvx () vtxvy)=nz-ny

(d) xv(yvz)=(xvy)vz (j) xvvx =1
(e) x-(yvz)=(x-y)v(x-z) (k) (xy)v(z ny)=x
(f) xv(y-z)=(xvy)(xvZz)
Prove that o (¥vy)=p_x)*0,05) - 0,(% y)
Prove that 0 (x vy)= prx) +o0y)-polcy)
Prove that pfwx) = 1-pr%)
Prove that p[y -nx]= p/y)-plx y)

Prove that if x-v(yvzvw)-u then x=(x y)v(x-z)v(x w)

W @ N o w
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I1l. THE COMPUTATION OF PROBABILITIES

We shall say that two events, x and y , are mutually ex-
clusive provided x fails whenever y occurs and y fails when-
ever x occurs. It is easily seen that x and y are mutually
exclusive if and only if x-y=0. It follows from problem (6)
that

8) plxvy)=plx)+ply) if xy=0.

If we have three events, x , y , and z , which are mutually ex-
clusive. then x 'y =y -z =2z-x=0 . Hence

plxvy~vz)=plxvy)+ p(z)= ple)+oly)+p(2).

We have the following theorem.
Theorem 1. If the cvents, X,, X,, ¥,, . . . %, , are mutually

exclusive then
olx,ve,v-- vx,)=plx)tple,)+plg)+ - +0(%,).

Suppose we have a set of events, x, , x,, - - - %,, , such that

at least one of the events must occur. Then x,vz,vx v...vx ]
Suppose further that these events are mutually exclusive and that
their probabilities are equal. Then p/x,)+p(x,)4 -+ ptz,) = 1
and therefore. p(x,)=prx,)=---= p(x,,) =1/n. This principle is
very useful in the computation of probabilities.
Example 1. From a pack of 52 cards 1 card is drawn. What
is the probability that this card is the ace of spades? It is reason-
able to assume that the probability of drawing any one of the §2
cards. is the same as that of drawing any other card. Thus we
have 52 events which have the same probabilities. Moreover these
events are mutually exclusive and it is a certainty that at least
one of the events will occur. Hence the desired probability is 1/72.
Example 2. From a pack of 52 cards, 13 cards are.drawn. What
is the probability that these cards are all spades? We assume that
any combination of 13 cards has the same probability as any other
combination of 13 cards. Since there are . C, . such combina-
tions, the probability is 1/.,C,, = 1/635,0/3,379,600.

We shall now compute the probability of the event, yc x .
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We have the equations,
7 . I kK&
m xXy
€9 o /ycx,)=t2=:/y ‘= %;/ n . P, (2-Y)
n
n e Py, (X)

where  772,,- 0, (2)= 7.
If we allow 77 to become infinite we get

(10) plycx)=plxy)/plx).
Multiplying both sides of equation (10) by ocx) we get
(11) o) plycr)=ply-x).

Fxample 3. A pack of 52 cards is divided into 4 piles of 13
cards cach. One pile contains just 1 heart and the other 3 piles
contain 4 hearts each. A pile is selected at random and a card
is drawn from this pile. What is the probability that the pile
selected will be the one containing jl;St the one heart and that the
card selected from this pile will be the heart? Let y represent
the drawing of a heart and x represent the drawing of the pile
containing just one heart. ‘Then prx)=1/4 and fycx)-1/43.
Hence ofy-x)=p00x) prycx)-452 ‘This is the desired probability.

We shall say t)!mt an event, y , is independent on an event,
x . provided the probability that y will occur is the same
whether x occurs or not. If we express this condition for inde-
pendence in terms of our symbols we will get

(12) plycx)=plycnx)
Hence

py-x) _ ply-wvx)  pOly)-ply-x)
(13) o) - plvx) ~—  1-plx)
Therefore
(14) oxy)= plx) ply)

It is a simple matter to reverse our steps and start with equa-
tion (14) and obtain equation (12). Moreover, from the sym-
metry of equation (14) it is easily seen that if y is independent



152 ' THEORY OF PROBABILITY

of x then x is independent of y . We have now proved the
following theorem.

Theorem 2. A necessary and sufficient condition that two
events, x and y , be independent, is that o/x-y)=00) p).
Fxample 4. A coin and a die are thrown together. What is the
probability that the coin will turn up a head and the die will turn
upa3? let x represent the occurrence of a head and y repre-
sent the occurrence of a 3. Then )<L/ and p(y) 1/6 . Since
the events are independent it follows that py) = ///2.

It should he observed that equation (11) is always true but
that equation (14) can only be used when the two events are in-
dependent. The term, contingent, is used to apply to events which
are not independent. If x and y are two contingent events
we must usé equation (11) to compute o y).

In order that three events. x . y ,’z . may be independent,
it is necessary and sufficient that o(x-y)=plx) p(y),

Py Z)=p(Y)P(z), Oz x)=p(2)p(xX), P(X'y Z)
= px)ply2)=ply) plz-x)= plz)plx y).

This definition is easily generalized to the case of 77 events.

It is generally assumed that the trials of an event are inde-
pendent. What does this assumption mean? iSuppose, for ex-
ample, that we wish to say that the first trial of an event is inde-
pendent of the second. The first trial constitutes an event, x, ,
and the second trial constitutes an event, X, . hut we have only
defined one trial of x, and one trial of x,. Independence is
defined in terms of probabilities, and probabilities can he given
meaning only in terms of sequences of trials.

We can get around the difficulty in the following manner.
Suppose we wish to consider the independence of 77 trials of an
event, x . We will consider r7 events, x,, x,, %, . . . X, . The
first trial of x, will-be-the first trial of x . the first trial of x,
will be the second trial of x | the first trial of x 3 Will be the third
trial of x , et¢. The 2nd trial of x; will be the (27¢+/)s¢ trial of
x ., the 2nd trial of x, will be the (7+Z)na trial of x , etc. In.
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general, the digits of the number, x,. . are selected from the digits
of the number. x . The digits sclected arc. the rzA, the (ren)th,

the (r+2n)th.(re3n)th. etc. That is
(15) X = s Pl re3n)
=

We can now speak of the independence of the numbers, X, x,,
N Y
It will be ohserved that

2"
(16) Gogmm "2 r2TTeE TET 42 I

and hence we can write

2"

(17 ) Xp= X C 77:-,7—

We shall abbreviate this notation still further and write
(18) (r/n)xs xc z-l_ﬂn .

It is natural to assume that p[(r/m)x]= p(x)for every pair of
numbers. ~ and 77. such that O<r-<n. If we assume this, and

if we assume that the numbers, (2/72)x,(2/n)x,(3/)x . . .(n/r)x.

are independent, then x must satisfy the following equations.

(19) ol(r/r)x(ry/n) - (ri/n)x){pe)] o

for every m and for every set of integers.r, . Golge o« s
such that O </, << - <crgdn

Any number, x . which satishies equations (19) is called an
admissible number. It can be proved that there exist admissible
numbers.* It is clear that an admissible number, x , characterizes
the behavior which we should expect. from a sequence of trials of an

event with probability, o/x/.

[*See_the author’s article, Admissible numbers in the cluog of probability,
American Journal of Mathematics, Vol. I, No. 4, Oct. 1929].
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Example 5.  An event, x , has the probability, o¢x). What is the
probability of obtaining precisely two successes in three trials of
the event? It is required to find

O{LUP)x-(2/3) - an(FF)2Iv [ (21 3) (300 (1/3)x ]
UIDu-(lF -l 2/3)]).

Fach of the square brackets contains three independent numbers.
"Phus for cach square hracket we have the probability. [o6)] o)
The square brackets themselves constitute three mutually exclusive
events. [lence the desired probability is 3[ p(v))zp(fux),

Let us find the probability of r successes and n-p, failures
in 77 trials of an event. let pfx)-pand pfvx)-g . The proba-
bility that a given set of , trials will all be successful, is p” ., and
the probability that the remaining 7-, trials will all be failures, is
g7 The ~ .successful trials can be chosen in nC,, ways.
Since all of these ways are mutually exclusive. the desired proba-
hility is ,C. p’g 7" .

Consider the following problem. Tletx,.x,, ..., bhea
sct of mutually exclusive events whose probabilities are known.
We shall call these cvents causes. let y bhe an event which can
occur only as a result of one of the causes. The probabilities of
y ifx,, y ifx,. etc. are also known. An experiment is per-
formed and it is observed that y occurs. What is the probability
that this occurrence is a result of 424 cause? TI'he answer to this
question is given by the following theorem.

Theorem 3. If 2, . 2,.%;. ... x,, is a set of mutually ex-
clusive events, and if y is such that y~(x,ve,v---vx _)=0 ,
then
OZe) plyc )
Pl cy)= £
t=1

Since y -~ (x, v, v---vx )0it follows that

y={y.x1)v(y.xz)v. .. \/(yxn).

plx) plycx;) .

Hence p(y)=ply-x)+ply x,)+ -+ ply x,).
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Therefore

PY)=plx,) plycx)+plx, ) plycx,)+ - - -+ plx,)plycx,).
T'o complete the proof of the theorem it is only necessary to sub-
stitute this value of p(y) in the equation, pfx,c y)=0(x, y)oly)

and then substitute o/, ) ofycx,) for ol - ).

Theorem 3 is known as Dayes’ principle. The probabilities,

P(X,). P(%,), . . . p(%,). are called a priori probabilities,
whercas the probabilities. o/y c y). px,cy), . . . plx,cy); are
called a pastiori.
Example 6. There are four urns, (, . U, . {,, Y,. Theumn, (, ,
contains three black halls, ¢/, contains one white ball and two black
halls, {/, contains two white and one black. and Us contains three
white balls. An urn is selected at random and a ball is drawn from
it and found to be white. What is the probability that the ball
came from Uz ? let x . x.x,. z, represent respectivelv the
drawing of U, .U, . U,. Yj.and let y represent the drawing of a
white ball from the urn selected. Then

o(x,) = plx,) = ple;)= plx;) = /4,

and piycx,)=0. plycx,)=l/3. plycx,)=2/3. plycx,)= 3/3.
%%

Hence p(,xz cy )= T—m—? =//3

Example 7. T'wo people, A and B, make the same statement in-
dependently. let this event be denoted by y . Let x denote the
event that the statement is true. Then y can be the result of two
causes, %, = x and x,=vx. It is given that the probabilities of A
and J} speaking the truth, are respectively a and b.  What is the
a postiori probability that the statement is true?> We know that

plycx,)=ab and plycx,)=(l-a)l-6). Hence
a.b-plx)
a-b-pe)e(l-all-6) plvx)

plxcy)=
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It might be added by way of warning that it is easy to state a
problem of this kind. which is without meaning.

Let us consider the problem of finding the probability that an
cvent, x , will preceed an cvent, y . a tic being excluded. We
have the four possible situations. -y, (vy)-(~yh 2 vyl (rvx) y.
The first situation represents the tie. and this situation we have ex-
cluded. In the sccond situation neither ¥ nor y succeeds, and
this situation should also be excluded. The event,x , will preceed
y provided x succeeds and y fails if cither of the last two
situations oceurs,  Hencee-the desired probability is

plxny)
Plemy)eflevy)(y-~2)}is olx-wy)+plywr)

\When x and y are mutually exclusive this last expression takes
the following form:
P&
P+ ply)
IV, CONCLUSION

The above examples illustrate how the theory of probability
can be developed in terms of our idealized universe. By this
method we can construct a consistent mathematical theory, and one
which admits the possibility of experimental verification,



