SOME PRACTICAL INTERPOLATION FORMULAS
By Joun L. RoBERTS

Sometimes we wish to find by means of interpolation an approximation to a
particular value of w, in the interval between the known values, w, and w,.
But it also might be desirable in the interval from w, to w; to interpolate several
approximations to w, at equidistant values of z. It is very important to know
that a formula which might be very satisfactory to interpolate a particular value
in an interval might seriously fail to be the most satisfactory formula when it
is desired to interpolate several values in the same interval. The range of this
paper is so limited that we only wish to find by means of interpolation several
approximations to the true value of w. in the interval from w, to w; at equidistant
values of z.

One way to perform an interpolation of this sort is to use osculatory inter-
polation.! The real function of osculatory interpolation is to secure smooth-
ness at the known points, which are sometimes called pivotal points. By
roughness is meant that one or more of the successive derivatives are discon-
tinuous at the pivotal points. Experience proves that the osculatory formulas
usually secure smoothness either at the expense of labor or by a loss of accuracies
over the entire range from w, to w;. Frequently the function of interpolation
formulas is to save labor. In many cases it appears reasonable to save labor
by a loss of both smoothness and accuracy. Formulas are herein selected,
without direct regard for smoothness, so as to secure the best possible compro-
mise between a maximum of accuracy and a minimum of labor. It appears
that this results in mgny cases in a loss of smoothness that is no more objection-
able than the loss in accuracy.

The actuarial profession, while trying to perfect their methods of constructing
mortality tables, have made contributions of a high order of scholarship to the
theory of osculatory interpolation. But since the statistician, the astronomer,
the physicist, and other scientists also have occasions to make interpolations,
it seems to be very important to discuss the problem of finding the most prac-
tical methods of interpolation, not only from the special viewpoint of the
actuary, but also from the general viewpoint of mathematics.

Aw, is called the first difference of w., and may be defined by Aw, = w41 — Wa.

! Since this paper presupposes certain knowledge on the part of the reader, it may be
worth while to indicate some sources of this knowledge. The elementary parts of this
knowledge can be found in any good book on finite differences. ‘‘Population Statistics
and Their Compilation’”’ by Hugh H. Wolfenden, published by the Actuarial Society of
America, containg an excellent summary of osculatory interpolation. This summary
indicates some valuable sources of information.
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134 JOHN L. ROBERTS

Second, third, and higher differences are merely successive differences of the
first. When use is made of central difference interpolation formulas, it is
convenient to adopt Woolhouse’s notation, which is defined by means of the
following equations: Aw_; = a_s, Aw_; = a1, Awy = a1, Awy = @z, A2w_y = b_,,
A%w_y = by, A?wp = by, A*w_y = c_y, Aw_1 = €1, A'w_s = do, ASw_s = ey, Afw_g = f,
ete.

An important family of curves can be represented by

u,=uo+xal+—éx(x-—1)B+é—x(x—~1)<x—%)0. 1)

Assume up = wo and Auo = Aw,. Then a study of (1) shows that a;, which
has already been defined, must be a factor in the second term in order that (1)
may be satisfied when z = 1. (1) is a third degree equation. However, if
C = 0, (1) becomes a second degree equation; if both B = 0 and C = 0, (1)
becomes a first degree equation. In other words, by giving B and C proper
values, (1) can be made to become many different interpolation formulas.

For many purposes interpolation by a first degree formula is not sufficiently
accurate. We, therefore, might wish to interpolate by either a second or a
third degree formula. Since it is possible to draw an unlimited number of
second degree curves or third degree curves between the points P, and P;, the
problem of selecting the best second degree interpolatioh curve and the best
third degree curve is of great practical importance.

I

Suppose that w_,, w_;, wo, w1, ws, and w; can be found in a table of values
of the function w,, and that we wish to find by means of interpolation several
approximate values of w, in the interval from wo to w;. These six given values
of w; can be used to determine six pivotal points, which determine a fifth degree
curve. Suppose this curve represents the function »,. Then w, and v, would
have exactly the same values at the six pivotal points, but would have values
which are only approximately the same at otber points. Using the first six
terms of the Gauss central difference interpolation formula, we have

v, = v + za; + %x(x — Dby 4+ E% 4+ Dzl — ey
+ 4@ + Dale — D& — 2)dy

+ 5@ + D + el - D - Des.

It is proper to use in this formula the differences a,, by, etc., which have already
been defined as differences of w. because these differences are exactly equal to
the corresponding differences of v.. Suppose Py, P;, P;, and P, are four points
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which are determined by v.. Then B and C can be determined so that (1) will
represent the curve which can go through these four points.
Then

1
u§=uo+§-al—%(B——1§C)

and
vy = uo+§la1—%(bo+gcl—%do—gim).
Also
u;=uo+§al—%<B+T1§C)
and

2 1 5 5 8
0;=uo+§al""'9'<b0+§cl—§‘.idﬁ_ﬁel>'

Since u; = v; and u; = v;, we have two equations, which can be solved for B
and C.

5 1
B=b—ﬁda’nd0=cl—§ex (2)

where b and d are defined by
b= 3 b+ b) and d = L (do + o).

A study of (1) shows that u; does not depend upon C because the term con-
taining C becomes zero when z =3, and also shows that u, over the entire range
from 4, to u; is more sensitive to errors in B than errors in C. The B in (2)
usually contains some error because the six terms of the Gauss formula which
were used in determining B usually produce results which are only approximate.
Consequently a comparatively large error in C would not produce an important
€rror.

Assume

Bob—2dewdC=c—>a. @)
B is the same in both (2) and (3), but C is not the same. The accuracy of
(2) and the accuracy of (3) do not differ by an important amount. On the
other hand, if any attempt to apply (2) is compared with the working illustra-
tions of (3) in this article, it will be found that (2) to an important extent is
more laborious than (3). Therefore (3) is' a better compromise between a
maximum of accuracy and a minimum of labor than (2). For this reason (2)
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ought not to be regarded as a practical formula. On the other hand (2) because
of its great accuracy serves as an ideal with which other formulas can be com-
pared. In other words (2) is of theoretical importance.

In like manner another interpolation formula can be found if we use the first
four terms of the Gauss formula to determine P;. Then

=uo+%a1—%B
and
=uo+%al ——;(bo+%cl)-

Since u; = v, we can solve for B, and C is left arbitrary. If C = 0, we again
get an excellent compromise between a maximum of accuracy and a minimum
of labor. The following second degree formula results.

B=bandC=0. (4)

In order that the value of (3) and (4) may be appreciated, they are herein
compared with some other formulas which have been of historical importance.

If the point P, can first be accurately determined, a second degree curve
through the points Py, P;, and P; would probably give more accurate results
than such a curve through the points Py, P;, and P; because the first three
points are in a smaller neighborhood; the second curve can be represented by
the first three terms of the Gregory-Newton interpolation formula. The points
P_y, Py, Py, and P, determine a third degree curve, which can be represented
by the first four terms of the Gauss central difference formula. It is probable
that these¢ terms would determine Py much more accurately than the first three
terms of the Gregory-Newton formula because the latter is not a central differ-
ence formula with respect to P; and because four terms usually give more
accurate results than only three terms. Consequently there is a strong prob-
ability that (4) is more accurate than the first three terms of the Gregory-
Newton formula. In like manner (4) is more accurate than the first three terms
of the Gauss formyla. It is interesting to observe that (4) is the first three
terms of the Newton-Bessel formula.

If B=>bandC = 3¢,

then (1) is equivalent to Karup’s osculatory interpolation formula in terms of
differences taken centrally. B is the same in both (4) and Karup’s formula.
No interpolation formula can be very accurate unless C is about equal to c;.
Since, then, the error in C in Karup’s formula is about twice as great as the error
in C in (4), his formula is distinctly less accurate than (4). Since (4) is a second
degree curve and Karup’s formula is a third degree curve, his formula is very
much more laborious. (4) is extremely accurate for a formula having its labor
saving properties; for many purposes its roughness and inaccuracy appear to
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be in about the right proportion. On the other hand Karup’s formula is ex-
tremely inaccurate for a formula so laborious; its only good point is its smooth-

ness.
Changing somewhat the meanings of 4 and w, (3) may be written

Uzpn = Un + TAU,

1 1 5
+ éx(x _ 1)[5 (A"’wn + A21D,._1) — 5—-4 (A"wn_l + A"w,._z)]

1 1 s 5 .
+ 6.1: z — 1)(:c — §>(Aw,.__l - 57Aw,,._2>.
If
du ’
‘d";: = Ugtn
then

1 5
u3+o - u;—l = ‘5'Zd0 - i@fh

Z—l; at Py. (3) has greater smoothness

than (4); in other words (3) is more like an osculatory formula. On the other
hand

which is the amount of discontinuity in

1
B=b—-%dand0=cl—6el, ®)
which is equivalent to an important osculatory interpolation formula by Mr.
Robert Henderson, compares much better with (3) from the viewpoint of labor
saving and accuracy than Karup’s formula does with (4).

II

An excellent formula can be easily spoiled if the method of applying it is not
practical. Mr. Henderson, in the Transactions of the Actuarial Society of
America, Vol. IX, applies (5) in such a way that the numerical work is very
convenient. Some writers seem to have been very careless about this matter.
A method intended to interpolate several values between w, and w, should
provide that the end value w, shall be exactly reproduced if no error is made in
the computation. In other words a good method should provide a check upon
the work. At the same time, in order to avoid unnecessary labor, the work
should not retain unnecessary decimal places or figures. In other words ficti-
tious accuracy should be avoided. The following working illustrations are in-
tended to show good methods of application of formulas and to show how much
labor is necessary in order to apply them; also the size of the errors can be used
to illustrate the theory.
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When (4) is applied at either end of the table, where terms are not available
for the calculation of the differences required, it should be assumed that the
fourth differences that cannot be computed vanish and the required differences
should be filled in consistently with that assumption. Aw, represents the first
differences. But it is convenient to have S represent the first differences in
such a manner that they are arranged centrally in the working illustration. S2
in like manner represents the second differences. The 2 in S means S? is a
second difference, and does not have the familiar meaning used in algebra. In
the case of (4), Au, = a1 4 zB, A%u, = B, and the higher differences all equal
zero. Since we wish in the working illustration of (4) to interpolate four values
between w, and wi, § and &% are defined by du, = U.r2 — U, and %u, = SUzy.s
—b&u,. It is proved in any good book on finite differences that there are possi-
bilities that A and 8, which are symbols of operation, can be separated from the
functions upon which they operate, and they can be treated as if they were
algebraic numbers. Consequently 1 46 = (1 4 A)}.  In other words by means
of the binomial law du, = (.2A — .08A%)u,, where all the terms within the paren-
thesis are to be considered as operating upon u,. Also 8*u, = .04A%,- s, s;,and
§? are defined by s = s, = du,, and s? = s* = 6%,. Therefore the middle s =
Suy = .2a;, and s? = .04B = .02(by + b1)). We are now in position to apply (4)
to the case when w, = (1.04)". It might prevent confusion if it is stated that
z and n are related to each other in such a way that we always interpolate
between wp and wi.

n (1.09)" s S S? s2

80 23.050 .9218 .845

81 23.9718 .9603

82 24 .9321 .9988 4.994 .0385
83 25.9309 1.0373

84 26.9682 1.0758

85 28.044 1.1190 1.081

86 29.1630 1.1670

87 30.3300 1.2150 6.075 .0480
88 31.5450 1.2630

89 32.8080 1.3110

90 34.119 1.3636 1.317

91 35.4826 1.4210

92 36.9036 1.4784 7.392 .0574
93 38.3820 1.5358

94 39.9178 1.5932

95 41.511 1.553
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Some of the explanation of the application of (4) applies to (3) and does
not need to be repeated. The method herein used of applying (3) is either the
same as or a development of the Henderson method of applying (5). If it is
desired to apply (3) at either end of the table, where terms are not available
for the calculation of the differences required, it can be assumed that the sixth
differences that can not be computed vanish and the required differences can
be filled in consistently with that assumption. A study of the theory under-
lying this assumption shows that it does not result in a true central difference
formula and that it consequently results usually in some loss of accuracy. In
the case of (3) before the finding of the differences of (1), it is convenient to
write it as follows:

U, = U + 2y +%x(:c — 1)<B +%C> + éx(x -1 - 2)C.
Then

Au,=a1+x<B+%C>+%x(x— 1)C,

Ay, = (B +%C> + zC, and A%, = C.

Suppose we wish to interpolate four values between w, and w;. & and &
have already been defined. &%, = 8%,.2 — 6%u,. Then 1 + & = (1 4 A)},
or du, = (.2A — .08A% 4+ .048A%)u,. Also 6%u, = (.04A? — .032A%)u, and &%u, =
.008A3. s, s and s? are defined by s? = s2 = 8%u,_g and 8* = s = &*u,. The
first

1
o = Sy = .04<B -3 C) - .o4<b0 _ 2_57. do).
The last

o = ot = .04<B + %c) - .04(1;1 _ % dl).

.1852 might be a useful approximation to 2% The remaining s?, s should be

filled in so that they are in arithmetical progression with irregularities at the
ends. If the irregularities can be distributed equally at both ends, the irregu-
larities cause an error in C, but none in B. Errors in B are more important
than those in C. The middle s = éu.4 = .2a; — §*. In the following working
illustration, w, = sin n.
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n sinn S S2 S3 St
—60 —.86603
.36603
-30 —.50000 .13397
.50000 —.13397
0 .00000 .00000 .00000
.50000 —.13397
30 .50000 —.13397 .03588
.36603 —.09809
60 .86603 —.23206
.13397
90 1.00000
n sin n 8 82 83
0 .00000 .104498 .000000
6 .104498 .103374 —.001124
12 .207872 .101125 2249 —.001125
18 .308997 .097751 3374
24 .406748 93252 4499
30 .50000 —.005624

Suppose we wish to interpolate nine values between wo and w; by the use of
(3). Then du, = Usta — Uz 6%Us = OUgyy — Uz, and 8¥u; = Upr1 — U
Consequently 1 + & = (1 4 A)™, or 6u, = (.1A — .045A2 + .0285A%)u,. Then
8%, = (01A? — .009A%u, and &u, = .001A% &* = s = §%u,_rands® = s =
6%u,. The first

& = u_, = .01(3 _ %C) - .01<bo _ %a)

The last

6 = By = .01<B + %c) - .01(bl _ %d;).

dus = (.lal et 488) —-% .4 and dus = (.lal - 483) + %5211,4.
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n sin n s s? s8
0 .00000 52318 .000000
3 .052318 52179 —.000139
6 . 104497 51899 280
9 .156396 51478 421
12 .207874 .050916 562 —.000141
15 .258790 .050212 703
18 .309002 49368 844
21 .358370 48383 985
24 .406753 47257 1126
27 .454010 45990 1267
30 .50000 —.001406

Suppose we wish to interpolate five values between wo and wi. The first
1 5 s 1 5
& = %<bo - ﬁdo)andthelasts = 3_6<bl - 2—7dl>.

Bu* = é(al —_ 88'“,) _ %62’(4}
and
duy = 1 (a1 — 8%%uz) + 162u
6 SO R

In the following working illustration the given values of sin n are written cor-
rect to five decimal places; in other words after each decimal point there are
five symbols or digits representing numbers; also each of these symbols is written
in the scale of ten. It can be observed that some values of u., s, s? and s® in
the working illustration have six symbols to the right of the decimal point, and
that some values have seven symbols to the right of the decimal point. In all
cases the sixth symbol to the right of the decimal point is written in the scale
of ten, and the seventh symbol is written in the scale of six. This procedure
provides a check by exactly reproducing w;. Also this procedure does not cause
much fictitious accuracy, and can be quickly used after a little practice.

n sin n 8 82 s?
0 .00000 87130 .000000
5 .0871305 86479 —.000651
10 .1736104 .0851775 1302
15 . 2587883 .0832245 1953 —.000651
20 .3420132 80620 2604
25 .4226341 77365 3255
30 .50000 —.003906
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In general if we wish to interpolate ¢ — 1 values between w, and w; when 7
is neither five nor ten, w; can be exactly reproduced if some of the symbols are
written in the scale of ¢. If ¢ = 12, it is evident that we need two extra symbols,
say ¢ and e, to stand for ten and eleven respectively. If we wish to interpolate
7 — 1 values between w, and w; by the use of (4), in the computation each of
uz, s and s? except the given values should contain one more symbol than each
given value contains, and the extra symbol should be written in the scale of 1.

ERRATA
THE ANNALS OF MATHEMATICAL STATISTICS
Volume VI, No. 3, September, 1935
The eleventh line on page 137 should read
’ 1 5
uo+o—“;-1=5—4do+@fo-
In the sixth line from bottom of page 139, read s?’s, i.e. the plural of s

About the middle of page 141 the formula suj should read

1 1
dug = K (a; — 8 8%u,) — §8’1L}.



