ANALYSIS OF VARIANCE CONSIDERED AS AN APPLICATION OF
SIMPLE ERROR THEORY

By WarLter A. HENDRICKS

The need for an elementary presentation of the methods of analysis of vari-
ance has been recognized by many investigators in various fields of research.
A recent monograph by Snedecor (1934) is undoubtedly the most comprehensive
attempt to satisfy this need which has appeared in the literature relating to
the subject. Snedecor’s treatment of the subject consists largely of the presen-
tation of a number of standard types of problems to which the methods of
analysis of variance are applicable, directions for performing the necessary com-
putations, and a discussion of the conclusions which may be drawn from the
data on the basis of the analysis. .

In the opinion of the author of this paper, an elementary presentation of some
of the theoretical considerations upon which the methods of analysis of variance
are based would also be of some value. The methods of analysis of variance,
as given by Fisher (1932), are presented as a natural consequence of intraclass
correlation theory. However, the essential concepts may be presented in a
more comprehensible form by the use of simple error theory.

It seems appropriate to begin such a presentation with a definition of variance.
If we have an infinite number of measurements of the same quantity, the
variance of a single measurement is defined as the arithmetic mean of the
squares of the errors of those measurements. In actual practice, an infinite
number of measurements can never be obtained. We have instead a sample
of n measurements, &1, a2, - + - Tn, from which the variance of a single measure-
ment may be estimated. By referring to any text on the method of least
squares, it may be verified that the best estimate, 8% of the variance of a single
measurement which can be obtained from a sample of n measurements is given
by the equation:

in which m represents the arithmetic mean of the n measurements. The
" quantity, » — 1, in the terminology of analysis of variance, is designated as
the number of degrees of freedom available for estimating S2.

It is often necessary to estimate S? from a number of different samples of
measurements. In such cases, the best estimate of S? is obtained by calculating
the weighted mean of the variances estimated from the individual samples, each
variance being weighted by the number of degrees of freedom which were avail-
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able for its estimation. The number of degrees of freedom upon which such an
estimate of S2 is based is given by the sum of these weights. Such an estimate
of the variance of a single measurement is often designated as the variance
“within samples.”

In one of the simpler applications of analysis of variance, a number of samples
of measurements are available, and the investigator is required to determine
whether the magnitude of the quantity measured varied from sample to sample
or whether all of the measurements may be regarded as having been made upon
a quantity of the same magnitude.

An estimate, S?, of the variance within samples may be obtained. Since S2
is an estimate of the variance of a single measurement, the variance, S%, of the
arithmetic mean, m;, of the measurements in any one sample is given by the
equation:

in which n; represents the number of measurements in the sample. Let there
be r samples. Then another estimate, S;% of the variance of the mean, m;,
may be obtained from the observed distribution of the means, mi, mq, - - - m,,
by the use of the formula for calculating the variance of a weighted observation
as given in texts on the method of least squares:

=1 7y [l — m)? 4 naomg — m) 4 - +nolmy — m)]....3)
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in which:
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Equations (2) and (3) yield two estimates of the variance of the mean, m,.
It is apparent that these two estimates will be equal, within the limits of sam-
pling fluctuations, if all of the measurements in the r samples were made upon
a quantity of the same magnitude. If the magnitude of the quantity measured
varied from sample to sample, S;* will be greater than S2. However, in actual
practice, the two estimates of the variance of a particular mean are not com-
pared directly. An equivalent comparison is made between two estimates of
the variance of a single measurement. The first of these is nothing more than
the variance within samples discussed earlier in this paper. The second esti-
mate, which may be designated by S’% is the value which would have to be
substituted for S? in equation (2) in order to make S? equal to the value given
for S;® by equation (3). It is quite apparent that S”> may be found by the
use of the equation:

[ni(m1 — m)? 4 na(me — m)2 + « o« 4+ n(me — m)?. ....(5)
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S’ is often designated as the variince “between samples.” A comparison of
8’2 with S is obviously equivalent to a comparison of S;* with S?.
If 8’2 is greater than S, a statistic, z, may be calculated:

SIZ
TS; L T

This statistic serves as a useful comparison between S* and S? since its sampling
distribution is known if all of the measurements comprising the data under
investigation were made upon a quantity of the same magnitude. The distri-
bution of z, under these conditions, is given by an equation of the form:

ke'lll
df = (nl o2 + ng)“"n"'"s) dz

z = % log, (6)

in which 7, represents the number of degrees of freedom available for estimating
S’2, and n. represents the number of degrees of freedom available for estimating
S2. It is apparent from equation (5) that » — 1 degrees of freedom are avail-
able for the estimation of 8’2 in the particular problem under discussion.

When any estimate of the variance of a single measurement is multiplied by
the number of degrees of freedom available for making that estimate, the re-
sulting product is known as a ‘“sum of squares.” The additive property of
the sums of squares and the degrees of freedom contributes much to the elegance
of the scheme of analysis just presented and is of considerable practical impor-
tance in problems of a type to be discussed later in this paper. In the case
of the problem discussed above, the additive property of the sums of squares
provides that the sum of the “‘sum of squares between samples’” and the “sum
of squares within samples” is equal to the sum of the squares of the deviations
of all of the measurements from their arithmetic mean. The additive property
of the degrees of freedom provides that the sum of the ‘“degrees of freedom
between samples” and the “degrees of freedom within samples” is equal to the
“total degrees of freedom’ which is nothing more than the total number of
measurements diminished by unity.

The methods of analysis presented above may be applied to any study of the
effects of a number of experimental treatments of the same kind upon the
magnitude of a measurable quantity. If experimental treatments of more
than one kind are imposed simultaneously, the effects-of each may be studied
by modifications of those methods. The discussion of those modifications,
about to be presented in this paper, is limited to data which may be classified
in an “r X s” table, i.e., to studies of the effects of only two kinds of experi-
mental treatments. More complex problems may be treated by simple ex-
tensions of the methods presented.

Consider an “r X s’ table composed of rs cells, each of which. contains a
number of measurements of some quantity. The magnitude of the quantity
measured may vary from cell to cell, but the essential conditions under which
the measurements were made must be the same for all cells. It is also under-
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stood that no cell may be empty. Table 1 is an example of sucn a table. The
individual measurements have not been represented. Only the number of
measurements, ny, in each cell and the arithmetic mean, m;;, of those meas-
urements have been indicated. The arguments, a;, represent r experimental
treatments of one kind, and the arguments, b;, represent s experimental treat-
ments of another kind. The problem to be solved is to ascertain whether or
not the differences among the experimental treatments of each kind had any
effect on the magnitude of the quantity measured.

TABLE 1

Ezample of an “r X s” Table Showing Only the Number of Measurements in
Each Cell and the Arithmetic Mean of Those Measurements

b] bz bs b4 b‘
a mn mi2 mi3 mig ms
1 .
nn N1z N3 N4 Nis
a Mma1 mag Mma3 M2y Mas
2
N21 Nag Nas3 N4 N2s
as m31 m3z m33 m3q M3
N3 N3z N33 N34 N3s
| 1 I I T T T | 1
] 1 I I I I I
I | | | I | )
' ' ' ' [ 1 ]
a mr1 myr2 m,3 Myy Mys
T
N Nye N3 Nra Nre

If each cell contains the same number of measurements, the effects of the
experimental treatments indicated by the arguments, a;, may be studied by
comparing the variance “between rows” with the variance “within cells.” The
variance between rows may be calculated by regarding the r rows as r samples
of measurements and applying an equation of the same form as equation (5).
The variance within cells may be obtained by calculating the variance of a
single measurement from the data in each cell separately and taking the mean
of the resulting values. The effects of the experimental treatments indicated
by the arguments, b;, may be studied by comparing the variance “between
columns” with the variance “within cells.”

If the degrees of freedom' between rows, between columng, and within cells
are added, the sum will be less than the total number of degrees of freedom
in the table. If the corresponding sums of squares are added, the sum is likely
to be less than the total sum of squares. The differences are due to what is
customarily designated as “interaction between rows and columns.” The
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more descriptive term, ‘“differential response,” is sometimes used to designate
the same factor. The nature of this factor may be investigated by considering
the effects of the experimental treatments, b;, in each row of Table 1.

The data in each cell of Table 1 may be regarded as a sample of measure-
ments. Therefore, the data in any row may be regarded as a set of s samples
of measurements. By applying an equation of the same form as equation (5)
to the data in any row, an estimate of the variance of a single measurement is
obtained from the observed distribution of the means of the cells in that row.
By calculating the arithmetic mean of the estimates for the r rows, an estimate
of the variance of a single measurement is obtained from r(s — 1) degrees of
freedom. This estimate may be designated as the variance ‘“between cells in
the same row.”

The variance between cells in the same row measures the average effect of
differences among the experimental treatments, b;, in individual rows. The
variance between columns, which was discussed earlier in this paper, is calcu-
lated from s — 1 degrees of freedom and measures the effect of differences
among the treatments, b;, on the assumption that the effect of any one treat-
ment upon the magnitude of the quantity measured was constant for every row.
The number of degrees of freedom assignable to differential response of the
various rows to the treatments, b;, is r(s — 1) — (s — 1) or (r — 1) (s — 1).
The sum of squares due to differential response is given by the difference be-
tween the sum of squares between cells in the same row and the sum of squares
between columns. These relations follow from the additive property of degrees
of freedom and sums of squares.

It may be observed that precisely the same results would be obtained by
considering the effects of the treatments, a;, in the various columns of Table 1.
The degrees of freedom and sum of squares due to differential response of the
various columns to the treatments, a;, would be exactly equal to the correspond-
ing values obtained for the differential response of the various rows to the
treatments, b;.

Up to this point the discussion has been concerned only with the special case
in which each cell of Table 1 contains the same number of measurements. As
a matter of fact, the methods given for the analysis of such data will yield
correct results when applied to any “» X s table in which the numbers of
measurements in the cells in every row are proportional to the corresponding
marginal totals for the columns, and the numbers of measurements in the cells
in every column are proportional to the corresponding marginal totals for the
rOwS.

When the numbers of measurements in the various cells do not satisfy the
above condition of proportionality, the distributions of the means of the rows
and columns may be distorted, and, consequently, the methods of analysis
described above may yield incorrect results. Efficient methods of analyzing
such data have been presented by Yates (1933). A comprehensive discussion
of these methods is considerably beyond the scope of this paper. One method,
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described very briefly by Yates (1933) and designated as the ‘“method of
weighted squares of means,” appealed to the author as being particularly
valuable for practical work. No detailed discussion of the method seems to
be available in the literature. Therefore, the following presentation may be
of some interest.

Consider the experimental treatments represented by the arguments, a;, in
Table 1. It is necessary to find an average value for the magnitude of the
quantity measured for each row of Table 1. However, this average must be
of such a type that its value will not be distorted by the unequal numbers of
measurements in the various cells. The unweighted arithmetic mean of the
means of the cells in the row seems to be the logical average to use since, within
the limits of sampling fluctuations, the value of this average will be identical
with the value which would have been obtained if each cell had contained the
same number of measurements. The averages for the r rows are:

1
m, = g(mn + e + -+ + my,)

1
Ma, = g(m21+m22+ L))

My, = ;‘(mrl + Mmyre + e 4 m,,). ................ (8)

By the law of propagation of error, the variance of any one of these unweighted
means is given by the equation:

1
Slzli = —8—2 (Sfl + sz + oo + Sfa) ................ (9)
in which 82, is the variance of m,;, and S%,, 8%,, - - -, S%, are the variances of
M, Miz, « + -, Mys, Tespectively. If S? represents the variance of a single meas-
urement, equation (9) may be written in the form:

2 1 1 1)82
S“i_<r_t.§+1z—¢z+"'+ﬁ)? ................ (10)
The value of S? may be estimated from the individual measurements in the
various cells. 82 is nothing more than the variance within cells, as customarily
calculated, and may be estimated from the N — rs degrees of freedom within
cells, in which N represents the total number of measurements in Table 1.
The variance of a single measurement may also be estimated from the observed
distribution of the means of the type, m,,. These means are not of equal weight.
Therefore, in order to find the variance of any one of them, it is first necessary
to calculate the weighted mean of the r individual means. Since the weight of
an arithmetic mean is inversely proportional to its variance, it is evident from
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an inspection of equation (10) that the weight, p;, of a mean, m,;, may be
found from the equation:

1 1 1 1
—_— = —— —_— AR T e e s e s e e s s e e e s e s e e s 1].
Pa; N + Ni2 + + Nys ( )
The weighted mean, m,, may then be found:
my = Pl & PaMa + - + Purtlley (12)

pan+p42+ nte +p¢r

The variance Sa?%, of any mean, m,;, as estimated from the observed distribution
of means of this type, is given by:

= pa'(%—]j [pal(mal - ma)2 + pa,(ma, - ma)2 + e
+ Day(Ma, — ma)?2]. .. .. .. (13)

By substituting Sa? for Si;, and S? for S?% in equation (10) and solving the
resulting equation for S2, an estimate, S2, of the variance of a single measure-
ment is obtained from the observed distribution of means of the type, m,;. It
is evident that, after making the indicated substitutions, equation (10) reduces
to the form:

s?

r—1

Si2

S: = [pal(mal - ma)2 + paz(max - ma)2 + -+ par(mar - ma)zl- oo (14)

It is interesting to observe that, if the numbers of measurements in the re-
spective cells were equal, equation (14) would reduce to the formula for calcu-
lating the variance “between rows” as customarily applied in analysis of
variance.

The two estimates, S and SZ, of the variance of a single measurement may
be compared in the usual manner by taking one-half of the natural logarithm
of the ratio of the larger estimate to the smaller and making use of the tables
of the values of “z” given by Fisher (1932). When using these tables, it is
important to remember that S2 was estimated from r — 1 degrees of freedom.

The method of analysis just described may be employed to study the effects
of differences among the experimental treatments indicated by the arguments,
b;, on the magnitude of the quantity measured. The unweighted means for
the s columns are:

mb.=—}(mu+mn+ )

mb,=%(m12+m22+ D)

mb.=§(m1.+mz.+ e ) eenrnennnnnnn. . (15)
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The weight, py;, of a mean of the type, m, may be found from the relation:
1 1 1 1
—=——+——.+.--+—'. .................. (16)

pbj nli n2] nr;

A weighted mean, m;, may be calculated:

L ek | L & L (17)
Do+ Do+ -0+ Do,

An estimate, S}, of the variance of a single measurement may be obtained from
the observed distribution of means of the type, ms;, by the use of the equation:

my

S} may be compared with S? in the usual manner.

If it is necessary to study the “interaction between rows and columns,” the
effects of the experimental treatments, b;, may be studied for each individual
row of Table 1. Consider the distribution of the means of the cells in a row
designated by the argument, a;. The weight of any one of these means is
equal to the number of measurements in the cell. A weighted mean, m;‘, of
the s means of cells in the row may be calculated:

my, = T i F - o M (19)
Ny + Nz + ++* + N,
The variance, S; 2, of the mean, mj;, for any cell in the given row, as estimated

from the observed distribution of means of this type, may be obtained from the
equation:

1
8% = w1 [na(mi — m.’,i)2 + ni(mi — m;;)z + .-
7
+ Rialmie — my ). ... (20)

The variance, S?;, of the same mean, as estimated from the distribution of the
individual measurements in the cell, may be obtained from the equation:

S2
S = (21)

Nij
By substituting S;? for S%;, and S2,; for $% in equation (21) and solving the
resulting equation for S},;, an estimate, SZ_;, of the variance of a single meas-

urement is obtained from the observed distribution of the means of the cells
in the given row. After making the indicated substitutions, equation (21)
reduces to the form:

[ni(miy — ’”ln’x;)2 + na(ma — ma)* + - ..

+ Mialmie —m ). ... ... (22)

1
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Such an estimate, S ;, of the variance of a single measurement may be
obtained for each of the r rows in Table 1. By calculating the average, SZ,,
of the variances of the type, S2 ;»» an estimate, S2;, of the variance of a single

measurement may be obtained from the r(s — 1) degrees of freedom between
cells in the same row:

2

1 X , ’
Sab = m Z}l [nil(mil —_ ma.’)z + nﬂ(mn _ ma,; 2 + .
+ nia(mis _ m;i 2] e eeeee (23)

Equation (23) is identical with the formula for calculating the variance between
cells in the same row as ordinarily applied in analysis of variance. This result
is a direct consequence of the fact that the unequal numbers of measurements
in the various cells had no distorting effect on the arithmetic means for indi-
vidual cells.

The presence or absence of interaction may be verified by comparing S?,
with 8. 1n general, the actual variance due to interaction can not be obtained
by the “weighted squares of means” method, for the various sums of squares
do not possess the additive property when the analysis is made in this way.
However, the comparison suggested above will yield sufficient information for
most practical purposes.

For the special case in which r or s is equal to 2, the actual variance due to
interaction may be calculated. Suppose r = 2 in Table 1. The following
method, suggested by Yates (1933), yields an estimate of the variance due to
interaction from a consideration of the differences, d;, between the means of
the two cells in each column:

dy = my — ma

dy = Mz — M

S (24)
The variance, S2 » of any difference, dj, is given by the equation:
1 1
Sz.=(— —) S 25
4=t (25)

The weight, p;, of the difference, d;, is given by the equation:

L TP (26)
pi My Ty
The variance of the difference, d;, as estimated from the observed distribution

of differences, is given by the equation:
re 1

84} = o=y [P — @ + plda — A + -+ 4 plda — d)] ... 2D)
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in which:

d = mdy + poda + -+ + pds (28)
p1+p2+°”+ps et ettt cecsaessane

By means of these relations, an estimate, S3, of the variance of a single measure-
ment may be obtained from the observed distribution of the differences of the

type, d;. This estup\alte represents the variance due to interaction and may be
obtained from the equation:

S: = 81_1 [pl(dl - d)2 + Pz(dz - d)z + -+ pa(da - d)2] DRI -(29)

It is quite apparent that s — 1 degrees of freedom are available for the esti-
mation of the variance due to interaction in this particular example.
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