FUNDAMENTALS OF THE THEORY OF INVERSE SAMPLING!
By CHiNg-LA1 SHEN
Part I. Introduction?
SecrioN 1. SraristicaL CoNCEPTS OF THE THEORY OF SAMPLING

One of the chief objects in statistics is to form a judgment of a very large
statistical universe, known as a parent population, by means of a study of a part
or sample thereof, which is drawn at random. To make a complete survey of
the parent population is sometimes impossible or impractical. For example,
it is impossible to measure the heights of all adult persons in a country. It is
impractical to test for infectious bacteria the whole body of water in a city
reservoir. All that we can do is to obtain an unbiased sample. By an unbiased
sample, we mean a sample in which each individual has an equal and independent
chance to be included. From this chosen sample we attempt to draw some con-
clusion concerning the nature of the whole parent population in accordance with
certain mathematical principles.

Now the sample which we choose is of course only one of the samples that can
be possibly drawn from a given parent population. Suppose there is a popula-
tion of s individuals from which we wish to choose a sample of . It is clear
that there exist ,C, such samples, each of which is equally likely to be chosen.
Therefore these ,C, samples constitute the so-called distribution of samples.
To describe from the statistical point of view the distribution of samples, we
must find its mean, standard deviation, skewness, excess, and other higher
characteristics. The first three are usually referred to as elementary statistical
functions.

Suppose z; be the variate (by which we mean the magnitude of a specified
character of an individual to be measured) wherez = 1,2, 3, - .. s; and z; be the
samples chosen from the parent population where j = 1, 2,3, ... ,C,. Then
the ,C, samples, each consisting of r variables, will be formed after the following
fashion:

a=n+x2+ 23+ --- + 2
=0+ T3+ T4+ - + T

Z(,) = Ts—r41 + Ts—ry2 + Tg—r43 + s + ar

1 A dissertation submitted in partial fulfillment of the requirement for the degree of doc-
tor of philosophy in the University of Michigan.

2 The writer wishes to express his appreciation for the assistance Professor H. C. Carver
has given him in making this study.
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If we denote the nth moment of the parent population about its mean by

8

Z (xi - Mz)"
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Un:z
S

and the nth moment of the distribution of samples about its mean by
()
Z (zi -M z)"

i=1

s = T

and if we then utilize the multinomial theorem, we may be able to express the
sample moments in terms of the moments of the parent population:3
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where P, is obtained from the sampling polynomial P,(p) by writing o’ as p; :

Pi(p) = p
Pyp) =p— ¢
@) Py(p) =p — 302+ 2p°
Pyp) =p — Tp>+ 120 — 6p*
Ps(p) = p — 150 + 50p° — 60p* + 240°
Po(p) = p — 31p* + 180p° — 390 + 360p° — 12045, etc.

ete.

where
o rr—=1DFr—=2) - r—7—1)
T - DG6—2 - GoiD

3 Carver, H. C., Annals of Mathematical Statistics, Vol. I, No. I, pp. 106-107.
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SectioN II. FRrREQUENCY CURVE OF THE DISTRIBUTION OF SAMPLES

The frequency distribution of samples is usually less scattered than individual
observations. In order to ascertain the manner of the distribution, we have
access to the well-known Type A Curve of Charlier.

®) F@t) = ¢@t) — g—‘;w(t) + 4600 - §§¢<5><t) TR

—t2

1z
where ¢() = o e?

C3 = a3

Cy = Oy — 3

Csy = Q3 — 10(13

Cg = ag — 15(14 —*— 30

C; = a7 — 21(15 + 10(13

Cg = ag — 28(15 + 210as — 315, ete.

This formula is a powerful tool for representing any frequency; but it is
emphasized by more than one author® that the usefulness of such a series repre-
sentation of a frequency distribution depends upon the rapidity of convergence,
and the rapidity of convergence in turn depends upon the extent to which the
function ¢(t) is a fair approximation for F(f). We shall not, however, discuss
here the question of convergence. What we are interested in is to apply this
series representation to the distribution of samples and see whether our numerical
experimentation justifies the use of it.

TABLE I
Heights of 1000 Freshman Students
(Original Measurements Made to Nearest 0.1 in.)

Class Frequency
58.5-60.4 2
60.5-62.4 13
62.5-64.4 76
64.5-66.4 167
66.5-68.4 . 335
68.5-70.4 264
70.5-72.4 106
72.5-74.4 29
74.5-76.4 7
76.5-78.4 1

¢ Camp, B. H., The Mathematical Part of Elementary Statistics, p. 226.
8 Rietz, H. L., Mathematical Statistics p. 62.
Carver, H. C., Frequency Curves, Handbook of Mathematical Statistics, p. 115.
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First of all, therefore, we take for our numerical example the heights of 1000
freshman students in the University of Michigan, as recorded in Table I, which
are assumed to constitute our parent population.

From the above data we compute the first 6 moments as follows:

M, = 67.91
s =  6.279,068 os = 2.505,81
Gze =  0.489,552 asz: = 0.031,11
Ge. = 132.685,214 ags = 3.365,36
e = 78.435,794 ags = 0.793,92
fie.s = 4574.080,554 as, = 18.476,43

Now suppose from this parent population in which s = 1000, we wish to
choose 100Ci00 samples, each consisting of 100 individuals. To characterize
the distribution of these samples, we first make the following table:

TABLE 1I
Values of p; and P; for s = 1000, r = 100

pL = .1
p2 = .009,909,909,91
p3 = .000,973,117,406
ps = .000,094,676,417,6
ps = .000,009,125,437,84
pse = .000,000,871,272,959,5
pP= 1
P, = .090,090,090,09
P; = .072,216,505,082
P, = .041,739,980,994
P; = —.005,454,352,918
Py = —.065,789,272,230
P; = .008,058,351,516

P,P; = .006,472,571,500

P,P, = .003,764,792,358
P$ = .000,715,593,194
P: = .005,195,978,741

Substituting into formulae (1), we obtain the first six moments of the distri-
bution of samples:

M, = 6791

g = 565.621,622 o, = 23.782,8
figs = 35.353,734 a3, = .002,628
fas = 958,720.852,854 o = 2.996,679
s = 198,538.702,142 o = .026,093

Fe:: = 2,704,514 ,780.791,465 as, = 14.945,539
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The coefficients of Charlier’s Type A Curve turn out to be very small and
rapidly decreasing:

C3

3!

Cq

4!

Cs
5!

Ce

6

= .000,438

= —.000,138

= —.000,016

= —.000,006

We therefore may be justified in considering this series representation of the

sample distribution as converging rapidly to the normal curve.

It may be

interesting to note that even from a parent population which is very skew, the
distribution of samples is nearly normal—as the following example will show:

TABLE III

Weights of 1000 Freshman Students

(Original Measurements Made to Nearest Pound)

Class Frequency
85— 1
95— 8
105~ 45
115~ 132
125- 232
135- 244
145- 161
155— 97
165— 50
175- 16
185- 7
195- 3
205- 4
M. = 139.32
figs = 296.8343 o, = 17.228 87
3z = 3,230.802 az., = 0.631,74
Ra:z = 351,180.14 ag, = 3.985,67
dsz = 11,811,480.5 a5, = 7.780,71
ez = 886,585,271 ag., = 33.898,36
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M, = 13,932
f.; = 26,741.828,829 o, = 163.529
H3:: = 233,317.229,045 ., = .05334
fy:; = 2,144,736,851.477 ,805 ag, = 2.9991
fg:: = 62,008,368,279.121,883 g, = . 53024
fs.. = 287,107,828,746,809.017 as.; = 15.00633

C3 _

31~ .008,89

C4 _

0= .000,04

Cp _

BT T .000,03

Cs _

Bl .000,03

Indeed the distribution of samples, in general, is very nearly normal irre-
spective of the law of distribution of the parent population. From the practical
point of view, as Professor H. C. Carver has remarked, the parent population has
little control over the shape of the distribution of the samples of r is fifty or
greater and if S is at least ten times as large as 7.6

Now as a numerical illustration of the theory of sampling I may, for example,
choose at random 100 weights from the parent population of 1000 weights of
freshman students, as recorded in Table III, with the aim of ascertaining the
probability that the mean of this sample exceeds 142 pounds.

Since we define the mean of a sample simply as the average measurement of
the r individuals in the sample, which in this case is 100, it therefore follows that
the ordinary moments of the distribution of sample means differ from those of
the distribution of samples in (1) only by a constant multiple of 1/7* where k is
the order of the moments concerned, while the standardized moments remain
unchanged. Therefore in this problem, we have the mean of the sample means
equal to 139.32 and the standard deviation equal to 1.63529. The average
weight, 142 pounds, may be expressed in standard units as

_z— M. _ 142 — 139.32

o, 1.63mag L6388

t

In accordance with (3), the probability that the mean of the sample exceeds
142 pounds is therefore equal to

P [ [o0 - 2600 + o900 — He00 + - |

.63885

¢ Carver, H. C., Annals of Mathematical Statistics, Vol. I, No. I, p. 112.
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If we take the first term only, P = f o(t)dt = .05062.
1.63885

0

If we take the first two terms, P = / o(t)dt — .00889¢(”(t)] =
1.63885

1.638856
.05218.
If we take the first three terms,

00 -]

+ (-—.000,04)¢(3)(t):| = .052182.

1.63886

P - f T syt — .00889¢<z>(t)]
lt63885

1.63886

SectioN III. PrarsoNIAN TypEs oF CURVES

Charlier’s Type A Series is, however, not the only known analytic representa-
tion of a frequency distribution. There are Pearsonian Types of Curves, the
characteristics of which I shall need fo summarize briefly. These Pearsonian
Types of Curves are essential to the later development of our theory.

The curves, suggested by certain geometrieal properties of unimodal frequency
distribution, are all obtained from the solution of the differential equation:

ldy _a—¢
ydt ()

where f(¢) is assumed to be possibly expanded into a convergent power series,
that is, f(f) = by + bit + bat> 4+ --- . When the first three terms of the power
series are taken, the differential equation immediately takes the form of
ldy _ a—t

y dt by + bt + bat?
terms of moments:’

The parameters, a, by, b1, b2, may be expressed in

. N - 2+38
L iy B a7 s w7y
b“2(1+25) b"2(1+2a)
where
6=2a4—3a§—6
a4+3

Based upon the difference in the nature of the roots of the equation
bo + bit + bat? = 0, there have been derived thirteen types or curves. Of the
particularly noteworthy ones, the normal curve and Type III may be men-
tioned. The criterion for the normal curve is a3 = § = 0; that for Type III is

? Carver, H. C., Frequency Curves, Handbook of Mathematical Statistics, p. 104.
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6 = 0and a3 # 0. In order to fix the form in a particular case, we may refer
to Pearson’s Chart $8,8: Distribution® where

W

2
= a3, B?'—:

Bl=

®I "ﬁl

N w

B E
I
2

and

Ko bo_ BB + 3)? __ a
4bob,  4(4B: — 38) (28: — 361 — 6)  48(2 + §)’

or to Elderton’s Frequency Curves and Correlation.®

SectioN IV. THE INVERSE SAMPLING, OUR PROBLEM

It is now our problem to study the theory of inverse sampling, by which we
mean that given the characteristics of a single sample drawn at random from a
parent population, we wish to ascertain the probability that the corresponding
characteristics of that parent population do not differ from those observed in
the sample by more than a specified amount. To illustrate, suppose we are
interested in knowing the average height of 1000 freshman students to which
reference has already been made. Due to the fact that it takes too much time
.or is otherwise impractical to measure all of them so as to obtain the true average,
we select at random one hundred of them and measure the heights of these one
hundred individuals. Suppose the mean, the standard deviation, and the
skewness of this sample of one hundred are computed and they are as follows:

M= 67.99
o = 2.327
a3 = — .12299

Now assuming that the true mean of the entire 1000 heights is unknown, let
us find the probability that the true mean of this parent population lies between
M. = aand M. = b by what we know of the characteristics of the observed
sample of one hundred as recorded above. It is clear that if we can obtain an
equation, y = f(M ), of the frequency curve associated with the distribution of
hypothetical means of this parent population, we shall be able to ascertain the
probability we desire by evaluating the following integral expression:

f MM,
P=20——
F(M)AM,

8 Pearson, K., Tables for Statisticians and Biomelricians, Vol. 11, front page.
9 Elderton, W. P., Frequency Curves and Correlation, Table VI, opposite p. 46.
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In the same way we can find the probability that the standard deviation of
the parent population lies between two definite limits or that the skewness of
the parent population lies between two definite limits.

Our procedure will therefore be as follows: First, assuming the a prior:
existence of a continuous sequence of hypothetical means of the parent popula-
tion, we investigate the relation between the distribution of these hypothetical
means of the parent population and the distribution of sample means. If such
a relation exists, we shall be able to find an expression for the most probable
value of the parent mean. Assuming the most probable value of the parent
mean to be the true mean of the parent population, we shall obtain an expres-
sion for the most probable value of the standard deviation of the parent popula-
tion. Then it will be possible for us to express the frequency curve associated
with the distribution of hypothetical means of the parent population in the form
of f(M.). Similarly we may find the frequency functions associated with the
standard deviation and skewness of the parent population.

Before leaving this section, it is perhaps not out of place to say a word about
the connection of this theory of inverse sampling with Bayes’s Theorem. The
theory of inverse sampling (which deals essentially with the problem of judging
the nature of a whole by observation of a part of it) belongs to the domain of
inductive probability, or inverse probability, upon which Bayes’s Theorem was
founded. In order to solve a problem of inductive probability, it is necessary
to postulate the a priori existence of the causes from which an event takes place,
which, in our case, is the hypothetical means of the parent population.

This a priori hypothesis which gives rise to Bayes’s Theorem has been viewed
with suspicion by a number of mathematical statisticians. For example, the
theorem has been called into question by such mathematicians as Bing, Venn,
Chrystal, and others, including several now living. But so far as the present
writer is aware, no definite conclusion has been reached. It is true that on the
one hand Bayes’s Theorem has not been rigidly demonstrated and proved by
logic; but on the other hand the process of generalization from observational
data is justified within the limits of ordinary practical application. One who
holds Bayes’s Theorem strongly may even say that the a priori hypothesis is
absolutely necessary to scientific inferences. Concerning this controversy,
Pearson takes a liberal point of view: ‘I hold this theorem [Bayes’s Theorem]
not as rigidly demonstrated, but I think with Edgeworth that the hypothesis
of the equal distribution of ignorance is within the limits of practical life justified
by experience of statistical ratios, which a prior: are unknown - .. . He has
further remarked that ‘‘the practical man - - . will accept the results of inverse
probability ot Bayes-Laplace brand till better are forthcoming.”! TUsing

10 Pearson, K., On the Influence of Past Experience on Future Expectation, Philosophical
Magazine, Vol. 13, Jan.-June, 1907, p. 366.

11 Pearson, K., The Fundamental Problem of Practical Statistics, Biomeirika, Vol. 13,
1920-21, p. 3.
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Pearson’s viewpoint, we shall proceed with our problem by postulating a prior:
the existence of hypothetical means of the parent population from which our
sample is drawn.

Part II. Fundamental Relation between the Moments of the Distribution of
Sampling Means and the Moments of the Distribution of the Hypothet-
ical Means Associated with the Parent Population

The characteristics of the distribution of sample means, as we have pointed out
in Part I, Section II, differ from those of the sample distribution only by a
constant multiple of (1/7)* where k is the order of the moments concerned. We
may write down the first six moments of the distribution of sample means:

M., = M.
- S f2:z
M2zy = 2!7"—2{P2 'ﬁ}
o= S Fs:z
@ {7 T
i, = 415{P, :‘—+Ii§— $Eaie
Bz, o 3! 21 @)
_ S I S U3z oz
Mgizz = 5';5{ P3Py 312! }
_ _ Ug: S H4g:z H2:2 P§8ﬁ§;z Pgs2ﬁg:z
ey = 6!, { s o1 T PP —or + 3 @ T 31 @

From these we immediately obtain

M, =M,
0, = S$=r 5
* r(s — 1)
_s—2r1/s—1 N
(5) ] P (s —r) °

(s—-l)(s2+s—6rs+67'2){
s —1) (s — 2)(s — 3) ‘=
6s(r — 1)(s—r—1)

Tris—=1)(s—2)(s = 3)

— 3}

Oz, — 3 =

ete.




72 CHING-LAI SHEN

If our parent population is infinite, which is a special case by allowing s — =,
then we have
M 2z — M z
_ 1

Oz = —= 03z
r

(6)

1
QAgzy = —5= O3z
V'r

A4z, — 3 = ;1 (a4:z - 3), ete.

Let us now define f(¢) as a frequency function of the distribution of sample
means z, in standard units, i.e.,

) t = M
Oz
Denoting the observed mean of a given sample by m; and making proper sub-
stitutions of (5), we obtain

my — M z __ m; — M z
Oz 1/ s—r
-1 %"

It is clear that if we hold s, r and ¢, constant and let M, vary, then ¢ is a
function of M ; only and consequently f(f) becomes a function of M ..

Suppose now MV, M), M(®) ... be a continuous sequence of hypothetical
means, which M, has an equal chance to assume. These hypothetical means
will certainly lie in a linear interval between their natural limits. Then the
probability that M , lies between M, &= 3 dM . is f({)dM .. Therefore, to obtain

the probability that M lies in the interval M) < M, < MUY, it is only
necessary to carry out the integration of this expression:

(8) {=

Mgi-i—l)
(©) [ s am.

M

There is no question as regards the existence of this integral in case of an
infinite parent population. As for a finite population, we may still use this
continuous function as an interpolation function to the true discontinuous
function.

Let us now define P(t) as the probability function for which the hypothetical
mean of the parent population falls within certain specified limits. Considering
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kn:p 88 the nth moment of this probability function about a fixed point, we will
have the following relation:

l M f(t)dM.,
(10) bnip = _lz—’“‘“
f(®dM,

-1

where l and —1 are their natural limits.
Since from (8), M. = m; — o,,, then after substitution, we obtain

m+1

e L:’ (my — o.,0)" (D)t

P2
— *z

Bnip = mt 1

Ous L T i
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(11) m,+1

z

[ vatr s
=1

n —-1 - n —9 _ n —3 -
= m;' - (l) m1l‘ ! Hz, + (2) m? ? M2:2; — (3) m;. 3 M3z

4 oo 4 (=D (") finces

n

{l‘lzp =M,=m

2 -
4[12:1: = my + b2z,
(12) s _ _
l#sp =mj + 3mlﬂ2:zz — M3z
| Hep = mi + 6mfﬁ2:zz — 4majiz.., + faey, ete.

The first relation M, = m, is important because it shows that the mean of
the hypothetical means of the parent population is equal to the mean of the
observed sample drawn from it. To state this in a theorem, we will have

Theorem I. The expected value of a parent mean is equal to the mean of an
observed sample chosen from the parent population.

We now wish to express the moments of the probability function about its
mean in terms of the moments of sample distribution. In general, the nth
moment of any frequency distribution about its mean, @., can be expressed in
terms of its moments about a fixed point after the following fashion:

(13)  fin = pn — (’{) Mpns + (g) Mppg — - + (=1)» (:) M.
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Therefore when we substitute (11) into (13) we obtain

- n -1 - n -2 -
finp = M] — <1>m1 mz,+<2>m'f g, — -

+ (_1)n—3< ﬁ 3) mi ﬁn——3:zz + ('—1)"—2 <n ﬁ 2) m% ﬁn—2:z;

+ (=1 ) M finetiey 4 (—1) <Z> finces

(o
() (Y s (3 Y

-1 —
+ (_l)n—s (z _ 3) m% ﬁn—azzz + ("l)"—2 (Z _ ;) m I-—ln-zzzg

e (e L
+ mi (g) [mi“2 - (n 1 2) mi~" b, + (n 9 2) mi™* Ay, — -
+ 0 (02 B s+ 0 (2 ) u]
(13 (45 Yo
T 3) ot |

+ (=D)~1mp! (n ﬁ 1) [ml - (i) ﬁllzz]
+ e (7)

Adding vertically each column, we obtain

o[-+ -+
00190 (70
+ (n - 4><Z> et (_1)..-1<n " 1)]
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e ()6) - (20 + (376 - (29)6)

rermmann[(, 7)) - G2 D)E)]

+ (_ 1) bt ﬁn::z
The first row of the above expression is equal to m$(1 — 1)* = 0; the second
row is equal to

n! n! _ n! ) (n - 1)
B | Tl TTm = D! T = D! 1T (m = 2)!

n! (n —2)! n!
tortmopinmog TV ES 1)v1]

mn—l- n' 1 1
ST BT — D 1T(n = 2)!

- m’f—l

1 . 1
tormog— ot (D (n—l)!O!]

= _/r””l‘_l ﬁ-l iz 1' ll n—lCl + ﬂ—-IC2 = s + (_l)n n—1 n—l]

= _mi‘—lﬁl iz 1' (1 - l)n—l

the third row is equal to

., I: n! n! n! ) (n — 1!
0Tl T wm=2)1 LT =D! 21 (n = 3)!
L e T A e ]
= m} fa.s, "'(LzF.l) 1 —2C + n2Ce — -« + (=1)»1, 5C, 0]
= i, WD a0

and similarly all the other rows turn out to be zero except the last one which is
equal to (—1)"f,..,

(14) ﬁn:p = (_l)nﬁn::z
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This may be rewritten as

Hon:p = ﬁ2n:zz
(15) { ’

ﬁ2n+1:p = _ﬁ2n+l:zz
or in standard units
{%n:p = QO2n:ey
Qonilip = — A2n4lizg

The results® of (15) are important and fundamental because they establish
the relation between the Theory of Inverse Sampling and the Theory of Sam-
pling. Therefore we may formulate the following theorems:

Theorem II. The even moments of the distribution of the hypothetical means
of a parent population about its mean are equal to the corresponding even mo-
ments of the distribution of the sample means about the mean.

Theorem III. The odd moments of the distribution of the hypothetical
means of a parent population about its mean are equal to the negative of the
corresponding odd moments of the distribution of the sample means about the
méan.

Since the even moments of the two distributions are the same, while the odd
moments differ only in sign, it is evident that for symmetrical distributions, the
two curves f(f) and P(t) are exactly identical, because in a symmetrical distribu-
tion all the odd moments about the mean are bound to vanish. In case of
nonsymmetrical distributions, the curve P(t) is nothing but a vertical reflection
of the curve f(f) as shown in the figure:

), Pet)

In other words, if f(t), for instance, assumes Pearson’s Type III Function, then
P(t) also assumes Pearson’s Type III Function except that their skewness is
different in sign though equal numerically. We therefore state our theorem as
follows:

12 8o far as the writer is aware, these theorems were first developed by Professor H. C.
Carver.
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Theorem IV. The curves for the distribution of the hypothetical means of the
parent population and the curve for the distribution of the means of the sample
obtained from the parent population are symmetrically situated and one is a
vertical reflection of the other.

Part III. Inverse Sampling Associated with a Normal Parent Population

We shall be concerned in this part of our discussion with a normal parent
population. In accordance with the characteristics of a normal parent popula-
tion we wish to investigate the most probable values of its mean and variance,
thereby obtaining the distributions of the hypothetical means and variances of
the parent population.

SeEcTioN I. MosT PROBABLE VALUE OF THE MEAN OF THE PARENT PoPULATION

In Part I, Section III, we have mentioned Pearsonian Types of Frequency
Curves whose differential equation is

ldy | a1
tdt by + bit + bat?’

It is clear that the mode of these curves is at ¢ = a, provided the mode exists.

But to recapitulate:

=__ %
21 + 23’
where
20, — 3a; — 6
6= —
a+ 3
consequently for the mode of the distribution of sample means, we have
—Qg; £23
(a6 ‘Carr ey
where
2a,.,. — 3a;.,, — 6
[ 7T + 3

2(s — 1)(s — 2)(s* + s — 6rs + 61°)(ou:- — 3)
—12s(r — D(s—2)(s —=r —1) — 3(s — 1)(3 — 3)(s — 2r)%a3.,

" (s— 2){(s— D(s*+ s — 6rs + 6r*)(cuc — 3)
—6s(r =D —7r—1) 4 6r(s — r)(s — 2)(s — 3)}

_s—2r1/ s—1
_Za— M. _ 2. — M, . s—=2 r(s — 1)

Gex F 2(1 + 23,,)
-1

a7 0,y =
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Now according to Theorem IV, the mode of the probability function P(¢) is
situated symmetrically with respect to the mode of the frequency function f(t)
of the distribution of sample means; hence, for the mode of the probability func-
tion of hypothetical means of the parent population, we have

s — 2r s—1
m — M, s—2 s — 1) 7%=
(19) t= =

/‘/s—ra 2(1 + 25,,)
rs—1) °

where é,, remains unchanged because it is a function of aﬁ;z, and ay..,, each being
always positive.

Solving for M, which will now be the most probable value of the mean of the
parent population and hence denoted by M., we have

> s — 2r Oz 03:2

(20) M= m - 9 30+ 26)

It is interesting to note that if s = 2r, this expression yields M, = m, , irrespec-
tive of the law of distribution of the parent population provided only that é,,
is not exactly equal to —3. But since the Pearson’s function is used for gradua-
tion, one should not fail to see that the mode so obtained gives only an approxi-
mation to the true mode. Therefore we state a theorem as follows:

Theorem V. If a sample is composed of one-half of the variates of the parent
population from which the sample is chosen, then the best approximated ‘most
probable value’ of the mean of the parent population is equal to the mean of the
observed sample provided only that 5., is not exactly equal to —3.

It is further observed that if a5, = 0 but 4., # —}, then the expression (20)
will likewise yield M, = m;. But as. = 0 implies that the frequency curve of
the parent population is symmetrical. Hence

Theorem VI. For any symmetrical curves associated with the distribution of
the parent population, the best approximated ‘most probable value’ of the mean
of the parent population is equal to the mean of the observed sample provided
d., is not exactly equal to —3.

But we will investigate further the most probable value of the mean of a
normal parent population, and we know that in a normal distribution the
moments bear the following relation:!3

([, _ (e

2n =

(21) i 2" n!
np1 = 0

13 Carver, H. C., Frequency Curves, Handbook of Mathematical Statistics, p. 97.
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i.e., ag =0
oy = 3
ap = 0
g = 15
a7 = 0
ag = 105
ete.

Consequently for a normal parent population the a,, function in (17) is
immediately reduced to

_ 2s(r — 1)(s—r—1)
sr—1D(s—r—=1)—r(s—r)(s— 2)(s = 3)
Let us, first of all, investigate the possibility that this expression will be

exactly equal to —$ for positive integral values of r and s.
Suppose we set

(22) 0z,

2s(r — (s —r —=1) _
sr —D(s—r—1)—r(s—r)(s — 2)(s — 3)

and solve r in terms of s. Thus we obtain

_ s, V& — 10s + 6)2 + 20s(s — 1)(& — 105 + 6)
@) r=g= 2(&* — 10s + 6)

If s = 10, then the second term on the right side is positive. As it is absurd
that r should be greater than s, therefore the positive sign of the double sign

DO -

should not be taken. Then, as the second term is obviously greater than %, the

right member will be negative. Since r cannot be negative, no positive integral
values of r and s, for which s = r, can satisfy (23). For s < 10, there are only
nine positive integers; and direct substitution of each will tell us that only when
s = 1, 2, or 3, r is a positive integer which is either 1 or 2. As these are trifle
cases because a parent population can never be so small, we may safely say that
for a normal parent population

(24) M =My

Theorem VII. For a normal parent population, the best approximated ‘most
probable value’ of the mean of the parent population is equal to the mean of the
observed sample from it.

For an infinite parent population, i.e., s — « (20) yields on reduction

7 1 Oz Ol3:z
@) o= m = o+ o)
where
2
8., = 2ags — 3) — 3as. [(from 17)

N (aA:z - 3) - 67‘
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Formula (25) yields immediately M,=mifas, =0and s, = —% Fora
normal parent population §,, = 0. Hence Theorem VI and Theorem VII both
hold for the infinite case.

SectioN II. MosT PROBABLE VALUE OF THE STANDARD DEVIATION OF THE
ParENT PoPULATION

To find the most probable value ~f the standard deviation of the parent popu-
lation, we shall assume the mean of the parent population to be the best ap-
proximated ‘most probable value’ of the mean, which we have obtained in the
preceding section. This assumption is necessary since we do not know the true
mean of the parent population.

Now, to start with, we shall consider ,C, possible samples, each consisting of
r variables. The second moment of each sample computed about the best
approximated ‘most probable value’ of the mean of the parent population may
be written as

f= E i@ — )t = ) = ) @ — )

o= (@ — m)t (@ ) = m) o @ — mY)

...............................................................

£y = (s = s —

r

+ (xa—r+3 - "nl.)2 “" e + (xc - ml)z}

If we write (z; — m1)? = y;, it is clear that the above may be considered as a
distribution of sample means drawn from a parent population yi, ¥z, ¥s - - - ¥s;
and consequently

M., =M,
e
Ozy = Oy m
s — 2r s—1 '
(26) 1% T T2 1/ (s — 1) Yo
(s — 1) (s> 4 s — 6rs 4 6r2)
Uz — 3 = “r(s—1r)s — 2)(s — 3) oy — 8}
6s(r — 1)(s —r —1)
L Trs—n(E—2)(—3)
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Now the nth moment of y about 4 fixed point may be written as
M =lzy"=lz(;¢_m)2"
ny N N 1
= 23 1@~ M) + (M — mp)ee
(27) ) = jign:z + (21‘”) B2n_1:z (M z — ml)
+ (22 ) H2n-2:z (M z — '”‘l)2 + (23n) H2n—3:z (M z — ml)a
2n\ _
+ (4 ) M2n—:z (Mz - '”"rl)‘l + et + (Mz - ml)zn-

On the assumption that our parent population is normally distributed and
due to the fact that in a normally distributed function

_ (2n)!

= gy and oa =0 [See (21)],

(2573

the expression (27) immediately takes this form:

_ 2n! " 2n\ (2n — 2)! ~—
o = gy 72"+ (3) gy (e = m a2
(28)

2n\ (2n — 4)! 4 2n—4 2n
+(4)m(Mz—m1) (. + oo+ (Ma — my)™,

Imposing the condition mentioned at the beginning of this section (i.e., M,
assumes its best approximated ‘most probable value’ m,), then all the terms drop
out except the first one. Hence, as a final form, we have

_ 2n! 2n
(29) Bny = ﬂ O

( 2
My = MU =0,

M.y = 3"":
(30) {May = 15“:
Bay = 105”:

ete.
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It follows that the kth moment of y about its mean will be
— M) k k
Py = &y—ﬁ-—& = Mky — (1) Me-1y My + (2) Hr—2:y M:
k k k
o 2k e (k) @k —2)! (k) @ — 9! ,,

k1% 1) % — 1)1 2)7 (k% — 2)1%*
— (DR
_ ,k[ 2k! (k) (2k — 2)! (k) (2 — 4)
31) IR PR TRV by VTR VY b=y ey
R & (_1)k]
_ o 2K k k(k — 1)
= "’kzk.kz[l TIT@ -1 T 2@k = 1)@k = 3)
k(k — 1) (k — 2)
"~ 312k — 1) (2k — 3) (2k — 5)
k!
L 717 Yoo 3y s e (1)]
b1y =0
fig:y = 2”:
H3:y, = 8‘7:
(32) Hyy = 60‘7:

Hs:y = ,5440':0

fie:y = 6040 o2

ete.
And therefore we obtain
a3y = 2‘\/§
04y = 15
(33) ‘J Ay = 68 \/§
Qg y = 715
ete.
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Making proper substitution of (30), (32), (33) into (26), we obtain
M. = o

2y

P =1/2(3—7‘)62
o r(s—1) °

(34) 2(s —2r)  /2(s=1)
R PR r(s —r)

12(s = 1)(s2+s—6rs 4+ 6r2) —6s(r — 1) (s —r — 1)

e — 3 =
| Yoo r(s—r)(s —2)(s — 3)
For an infinite parent population, i.e., s — «, we have
M., = ol

Ozy = /‘/5 ol

2y — — Oz
r

(35) 5

Ag:zy = 2/‘/;'

A4z — 3 = ']:;2‘

Now again with reference to Pearsonian Types of Curves for which the mode
is at t = a, we have for the mode of the distribution of sample means z,,

2y — sz _ Qa3:zy

(36) {= P 3T + 25, where
2a4:zy - 3a§:zy -6
5, =
0y:2, + 3
G, (s — 3) [4(s — 205 — 1) + 2r(s — 2)(s — )]

T (s — 2)[2(s — 1)(s* + s — 6rs + 61?)
4= —=2)(s=3) —s(r—=1)(s—r—1)

Substituting (34) into (36), we obtain

z, — o, s—2r1/2(s—1) 1
38 Y z = — .
(38) 2(s—r)“2 s—2 r(s —r) 14 25,
: ‘/ rs—1) 7 '
By Theorem IV, the best approximated ‘most probable value’ of the standard
deviation of the parent population is obtained from (38) by changing the sign
of the right member and replacing 2, by mz. Thus we have

my — on =s—2r/‘/2(s—1). 1
/‘/2(3 —7) .2 s—2 ris—r) 14 25,
rs—1) °
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Solving for o, which is now the best approximated ‘most probable value’ and
should therefore be denoted by ., we then have

me
30 — 27)
I+ = 2a + o)

(39) 6'42; = ﬁ2:z =

The best approximate ‘most probable value’ of the standard deviation may
therefore be written down as

1

a’z = 0g°
2(s — 1)
1/ I+ o0+ 2,

This formula is, of course, subject to a systematic error that arises from the fact
that we employ the square root of the best estimated ‘most probable value’ of
the variance. Itmay be shown, however, that when ris large, the error is small. ¥
Consequently, we have the following theorem:
Theorem VIII. For a normal parent population, the best approximated
‘most probable value’ of the standard deviation of the parent population is
equal to

where g, = \/m,

O,

2(s — 2r)
4/1 i — 201 + 2,

where g, is the standard deviation of an observed sample from the parent popu-
lation and ¢, is a function of r and s as expressed in (37).

It is interesting to note from (39) that when s = 2r, &, = ¢, provided 3., # —3.
However, from (37), 8., cannot be equal to —} in the case of s = 2r, where s
and r are both positive integers. Consequently, we may state this fact in
another theorem:

Theorem IX. If a sample is composed of exactly half of the variates of a
normal parent population, then the best approximated ‘most probable value’
of the standard deviation of that parent population is equal to the standard
deviation of an observed sample from it.

For an infinite parent population, (39) yields on reduction

A _ r —
(40) 6. = o, ,‘/r+2for 0z, = 0 when s — o,

14 Professor H. C. Carver has worked out a relation between the most probable value of
z? and that of z by assuming that the latter is distributed according to a Type III distribu-
tion. With his permission, I state the result as follows:

M.P. V.2 = (M. P.V. 2o (o PY
.P.V.2r = .P.V.z2) ¥ —1

M.
where A = — and M. = the distance of the mean from the origin.
Oz
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Theorem X. For an infinite normal parent population, the best approximated
‘most probable value’ of the standard deviation of the parent population is

equal to the standard deviation of an observed sample multiplied by 7&—5 .
SectioN III. DisTRIBUTION OF THE HYPOTHETICAL MEANS OF THE PARENT
PopuLaTION

In the preceding two sections, we have obtained the best approximated ‘most
probable value’ of the mean and the best approximated ‘most probable value’
of the standard deviation of a.parent population assumed to be normal. We
are now in the position to characterize the distribution of these hypothetical
means by assuming that the best approximated ‘most probable value’ of the
mean of the parent population be its mean and the best approximated ‘most
probable value’ of the standard deviation of the parent population be its stand-
ard deviation. Such a characterization is subject to its own probable error.

Due to the fact that our parent population is normal by assumption, formulae
(4), which we are to use this time, have to be modified by the proper substitution
of the recursion relation of the moments of a normal distribution [See (21)].
After such modifications, they assume the following forms:

Mgz = Mz

41
(41) e = 55 (P, + Ploik.,

I-‘S:zz =0

e = 22 (Py + 3PsPas + P3s)i.

In accordance with Theorems IT and ITI, we therefore have for the distribution
of the means of the parent population the following:

Myx = m

S _ 8
Me:My = M2:2p, = ﬁquz;z = 7‘—2P2ﬁ2:z

Ba:My = — gz, = 0

42 _ _ 3s - 3 A

( ) b4:My = HRa:zp = _;4_ (P4 + Pgs)#;:z = ';?'(P4 + Pgs)”';:z
ﬁS:M; = — gz, = 0

15s
Ho:My = figizy = - (Ps + 3P,P,s + P3shis.,

15s

= (Pg + 3P,P,s + P3sdus.,
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Consequently
(Mux =m
one = A e b
(43)
o3:M, = 0
[+ 7757 -3 = — ﬁs(r_l)(s_r—l)
S r(s—1)(s—2)(s—3)

For an infinite parent population, i.e., s — =, we have

(Mu, =m
o= b= g/ T gy = % [from (40)]
(44) \Vr VeV or42 V42
o, = 0
toq;u, -3=0

Now if we can find the equation of the curve associated with the distribution
of the means of the parent population, we shall be able to ascertain the prob-
ability that a mean lies within certain limits after a sample from the parent
population has once been observed.

Let us illustrate this by again referring to the same problem of the heights of
1000 freshman students as recorded in Table I. Considering this as our parent
population which is almost normal with s = 1000, we take every tenth indi-
vidual height from the original list in which the 1000 heights are tabulated.
Thus we obtain a sample with » = 100. The frequency distribution of these 100
individual heights is shown in Table IV.

TABLE 1V
Sample of 100 Heights Selected from the Parent Population of 1000 from Table I
Class Frequency
62.5-64.4 ‘ 9
64.5-66.4 16
66.5-68.4 31
68.5-70.4 29
70.5-72.4 13
72.5-74 .4 2
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We compute the mean, the standard deviation, the skewness, and the fourth
moment about the mean of this sample:

my = 5.415,2 o, = 2.327,058
ms = —1.549,872 as, = —1.229,91
my = 71.615,158 ag, = 2.442,17
From Theorem VII,
' M, = 67.99
From (37) and (39), we obtain
6, = —.099,833
fax = 5.328,067
Substituting into (42), we have
My, = 67.99
pa:m, = .048,000,603,6 on, = .219,09
ﬁ&"z =0 g: My = 0
fAau, = 006,898,429 agu, = 2.994,03
ﬁﬁ:ﬂz = 0 O5:M, = 0
Ao, =  .001,649,027 agu, = 14.910,37

The coefficients of Charlier’s Type A Function (3) are as follows:

C3

3= 0

G 000,250
6~ o,
Co __

5=0

»Cg

51 = -000,000,1
From the values we are justified in assuming that M , is normally distributed.
We may now ask ourselves concerning the probability that the mean of the

parent population, M ., from which this sample is selected, exceeds 68.5 inches.

_M.— My, _ 68.5 — 67.99

o, 21900 2.8218

4

P = [“ ¢(t) dt = .009962
2

2378



88 CHING-LAI SHEN

Let us now come back to investigation of the general case for the distribution
of the hypothetical means of the parent population. Because there is no definite
relation between the values of r and s, except r < s, and because, by assump-
tion, our parent population is normal, §., is a function of r and s (22); that is

2s(r — (s —r—1)
s —D(s—r—1)—r(s—7)(s —2)(s - 3)

Consequently, it is necessary for us to investigate for different values of 4., with
respect to various combinations of r and s before we can tell which Type of
Pearson’s Curves will best fit the distribution of the means of the parent popula-
tion. Hence, Table V:

8z =

TABLE V
Relation of the Values of 6., with Various Combinations of r and s

r = 100, 5., = —.0020

s = 10r yr = 50, 8., = —.0040
= 10, 8., = —.0189

r = 100, 8., = —.0040

s= br<r = 50, 6, = —.0080
r = 10, 8., = —.0397

r = 100, 8., = —.0101

s= 2r<qr = 50, 0, = —.0204
r = 10, 5., = —.1118

s=r+41, r = any finite value, 0, =0
s = any finite value, r=1 8, =0
§— o, r = any finite value, é., = 0.

From the above table we observe:

1) For an infinite normal parent population, the frequency distribution of the
hypothetical means of the parent population is normal, because both as.x, and
4., are equal to 0 (See Part I, Section IIT).

2) For any finite, normal parent population, if » = 1, the frequency distribu-
tion of the hypothetical means of the parent population is normal.

3) For any finite, normal parent population, if a sample r = s — 1 is chosen,
the frequency distribution of the hypothetical means of the parent population
is normal.

4) For any finite, normal parent population, if s is equal to 5r or more and at
the same time 7 is at least equal to fifty, the normal curve is a fair approximation
for the distribution of the hypothetical means of the parent population.
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5) For the other cases in which | §,, | is not negligibly small, we ought to make
further investigation.

Now, to carry out further investigation for the cases where | 4., | is not very
small, we need only look back to formulae (43), from which we observe that:
asu, — 3 < 0fors = r+ 1,r # 1, or s does not approach infinity.

Because of the fact that as.u, = 0 and a4.x, < 3 is the criterion for Type II,5
we conclude that Type II will be the best fitting curve for the cases mentioned
in 5) above. To obtain this Type II curve we proceed as follows:

Let the equation of the curve associated with the distribution of the hypo-
thetical means of the parent population with which we are concerned be
y = Pa,(t). Then

ldy _ a—t a—t

ydt  bo+ bl +b?  —b(t + R) (R — 0)

where

_ — b Vbl — dbiby

R 2b,

By proper substitution with the formulae in Part I, Section JII, we obatin

—ag, = Val,, — 4.2 + 5.,)

R —3
2.,
(45)
= 4+ ;2 — 1 since agy, = 0 from (44)
For the same reason a = 5(1__:—&;';’) = 0; therefore the differential equation
may be rewritten as
ldy ¢t
ydt b (R = By
from which we obtain
(46) y = 1y (R — 1) where ¢ = — 1 __1+2,
b 5.

Imposing the condition that the total area under the curve be equal to unity,

we set
R R
1= / ydt = yo/ (R? — )2 dt
- ~R

R

15 Elderton, W. P., op. cit., Table VI, opposite p. 46.
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Substituting { = — R + 2Ru, we have
1
1=y / (2R)2e+1 pa(1 — u)? du
0

= y»(2R)*" B(g + 1,9+ 1)

oo 1 . r(2q + 2)
<o o (2R)?*t T(g+ 1)T(g + 1)

hence
I'(2q +2)
= R2 — ¢2)e
o | EETCE DTG D (B — 1)
_ 1 . T(2q+2) (1_ & )«
2t14/2¢ +3 T(@+ 1T(g+ 1) 2 +3/’

where ¢ may be expressed in terms of r and s by means of (46) and (22). Thus

1 _r(s—n(=-2)(8-3)—-5s(r—1(s—-r—1)
(48)q_—8_,,_2_ 2s(r—1)(s—r—1)

To sum up: In describing the distribution of the hypothetical means of a
parent population from which our sample is chosen, we have the following
theorems:

Theorem XI. The frequency distribution of the hypothetical means of an
infinite, normal parent population is normal.

Theorem XII. The frequency distribution of the hypothetical means of a
finite, normal parent population is normal if r = s — 1.

Theorem XIII. The frequency distribution of the hypothetical means of a
finite, normal parent population is very nearly normal if s is equal to 5 or more
and r is at least equal to fifty.

Theorem XIV. The frequency distribution of the hypothetical means of a
finite, normal parent population is according to Type II for the cases in which
| 8., | is not negligibly small.

SectioN IV. PROBABLE ERROR OF THE MEAN

To measure the fluctuation of a sample mean from the true mean of the parent
population, it is customary to use the term ‘probable error” to denote the
expression :

(49) Ex = 0.6745 22
M \/;

where o is the standard deviation of the parent population. As the true value
of o, is not known, it is the common practice to substitute for it the value

i'—:—i 0., where o is the square root of the expected value of the sample
second moment.



FUNDAMENTALS OF THEORY OF INVERSE SAMPLING 91

Therefore (49) is rewritten as

(50) Ex = 06745 — 2=
n Vvr—1

Still, it should be noted, this expression is an approximation. Now from our
theory of inverse sampling, as far as a normal parent population is assumed,
we have obtained for the probable error of the mean

Os

51 ' Ex = 0.6745 ———
(51) e Vs

where o, is definitely the standard deviation of an observed sample. Although
for large r, (50) and (51) do not differ much, yet (51) is obtained directly in
terms of the standard deviation of an observed sample.

To illustrate, consider the same sample of the heights of 100 freshman students
(See Table IV) as obtained from an infinite parent population. Since the mean
is 67.99 and the standard deviation is 2.327058, the probable error of the
mean is

2.327058
Eu = 0.6745 X =
o /102

that is, M, = 67.99 = .1554152, which shows that the chances are even that the
true mean of the parent population lies within the range 67.834,584,8 and
68.145,415,2.

= .1554152;

SEcTION V. DISTRIBUTION OF THE HYPOTHETICAL VARIANCES OF THE PARENT
PoPULATION

Recalling the fact we have stated in Part III, Section II, that the considera-
tion of the distribution of the second moments of samples about the most
probable value of the mean is equivalent to the consideration of a distribution
of sample means drawn from a parent population ¥z, ¥1, ¥s, - - - ¥., Wherey; =
(z; — my)? sinee in a normal parent population # . = m; [See (24)] we can write
down in perfect analogy with (12) and (14)

Bn:p = (_ 1)” Bz,
(52) T ’
M,=m

Now
_ (e —m)?

Hn:p = ﬁn:ll', = Un; _“"‘N— = Mnijiyx

since we have assumed the mean of the parent population to be its most probable
value, i.e., m;. Hence by virtue of (562) and (34), the frequency distribution of
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the hypothetical variances of the parent population, which is assumed to be
normal, is characterized by

MI“::: = M2

(53) /s = 1) 2(s — 1) a2
bz = oy = 1/7'(3— )% "/rs— 1)’

since we assume the most probable value of the variance of the parent population
to be its variance.

_ __2s—2r)  /2s=1)
Ay = — OBizy = — s —2 /‘/;‘(?-—-T)

_ _12(s—1)(s?+s—6brs+6r2) —6s(r—1) (s —r —1)
Uipys — 3= gy — 3= rs—r)(s—2)(s —3)

For an infinite parent population, i.e., s — «, we have

Mﬂ::z = Mg
Oiyz = 1/"? &:
(54)
A3y = — 2 g
12
Uiy — 3 = "y

Now if we can find the equation of the curve associated with the distribution
of the hypothetical variances of the parent population, we shall be able to
ascertain the probability that a variance lies between certain specified limits
after a sample is drawn from the parent population.

For illustration, we will use the same sample of the heights of 100 freshman
students (See Table IV) as selected from a parent population of 1000.

We have s = 1000, r = 100

me = 5.4152, or o, = 2.327058

From (37) we compute
8." = - .0098

As | 5,,| is negligibly small, we may be justified in considering f:. to be
distributed according to Type III (Part I, Section III).
It follows from (39) that

fias = 5.32
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We compute the moments of the distribution of the hypothetical variances in
accordance with (53). Thus

M;,,, = 5.4152
Oiyz = .006
Ay, = 239,946
gy, = 3.065,75
If we now wish to ascertain the probability that the variance of the parent
population lies between @, = a = 5.5 and jiz.. = b = 6.5, we first convert a, b

into standard units such that ¢, = .1525 and ¢, = 1.9511 and then evaluate the
following integral:'

( —: 19511 51 -},‘
o) G (e
as

-1625

But this step is now not necessary since we have access to Tables of Pearson’s
Type III Function.” Hence we find from this table our desired probability.

P = .39146

In the above numerical example, we are justified in using Type III because
| &, | is negligibly small. But for the general case, however, we ought to make
further investigation concerning the values of o, .

TABLE VI
Relation of Values of ., with Various Combinations of r and s

r = 100 8., = —.0098

s =10r<r = 50 s = —.0194
r= 10 d:, = —.0859

r = 100 d:, = —.0200

s= br<r = 50 6s, = —.0400
rz 10 o, = —.1983

r =2 100 6., = —.0518

“s= 2rqr =z 50 6, = —.1073
r= 10 0., = —.7642

s — «, r = any finite value, 6., = 0.

16 Elderton, P. E., op. cit., p. 90.
17 Salvosa, L. R., Tables of Pearson’s Type III Functions, Annals of Mathematical
Statistics Vol. I, No. II.
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Recalling that 4., is a function of r and s such that

(s —3){4(s —2n*(s — 1) + 2r(s — 2)%(s — 1)}

T =226 =1)(s*+s—6rs + 6r%) +r(s —r)(s — 2)
(§=38)—s(r—1)(s—r—1)}

Bzy=2

we construct Table VI of 6., for different combinations of s and r.

From Table VI we observe the following facts.

1) For an infinite, normal parent population, the distribution of the hypo-
thetical variances of the parent population is according to Type IIL.

2) For a finite, normal parent population, if s is at least equal to 5r and r
at least fifty, the distribution of the hypothetical variances of the parent popula-~
tion is very nearly according to Type III.

3) For the other cases in which 4., is not small but negative in sign, the
distribution of the hypothetical variances of the parent population needs further
investigation.

From Part I, Section III, k =

a3
45(2 + 9)
greater than —2, therefore whether k is positive or negative depends upon
whether § is positive or negative.

Now from Table VI we observe that 4., seems to be always negative; hence k
is negative. In accordance with the criterion for fitting curves, the frequency
distribution of the variances of a normal parent population in such cases is
according to Type I, which takes the form:®

; and since we know that ¢ is always

T 1
(55) y = (mtmet2) | (t — R )'m(R — t)m
I1(m1--}—l) P(mg—{—l) (Rl - R2)Ml+m’+l ’ '

where

— a — Rz My = a — R1
by(R: — Ry)’ by(Ry — Ry)

m

R, R, are the positive and negative roots, respectively, of the equation by 4
bit 4+ bet? = 0 and can be expressed in terms of the first four moments:

_ VAl Z BB )
R Ry = %8 aga 45(2 + 3)

We may sum up the foregoing in the following theorems:

Theorem XV. The frequency distribution of the hypothetical variances of an
infinite, normal parent population is according to Type III.

Theorem XVI. The frequency distribution of the hypothetical variances of a
finite, normal parent population approximates to Type III Curve if r and s are
of such combinations that | 8, | turns out to be negligibly small.

Theorem XVII. The frequency distribution of the hypothetical variances of

18 Elderton, W. P., op. cit., p. 54.
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a finite, normal parent population is according to Type I in case that &, is not
very nearly equal to zero and is negative.

Part IV. Inverse Sampling Associated with a Parent Population Distributed
According to Pearson’s Type III Function

Instead of a normal parent population as we have assumed throughout our
discussion in Part III, we shall assume in this part a parent population which is
distributed according to Type III. Therefore, besides the distribution of the
hypothetical means and that of the hypothetical variances of the parent popula-
tion, the distribution of the hypothetical third moments will also be considered.
We shall carry out our discussion in practically the same way as we have done in
Part III.

SectioNn I. MosT PrROBABLE VALUE OF THE MEAN OF THE PARENT PoPULATION

We have already obtained a general expression for the most probable value of
the mean of the parent population:

s —2r Oz03:2

M. =m — oy 3+ 2.0

whetre as before

2(14::, - 3‘13:2, -6
oz + 3

dey =

But we are now concerned with a parent population which is distributed accord-
ing to Type III.

Since the recursion relation of the moments of Type III distribution is of the
form

(56) Ap1 = N (a,,,_l + % a,.)

2
ay = 3(1 + v) where y = %
ag = 2aa(5 + 37)

a5 = 53 4 13y + 67?)

a; = 3a3(35 + 77v 4 3092

ag = 7(15 4 170y 4 26142 4 90+3)

ay = 4a3(315 4 1652y + 2007+v% 4 630+2)

an = 9(105 + 2450 4 843592 4 8658y + 2520+*)

an = 5a3(3456 + 35266y + 9197142 4 82962+% 4 22680+*)

ar = 11(945 + 39375y + 25224542 4 537777+% 4 437490~* + 113400~°)
etc.
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it follows from (5) that for a Type III distribution of the parent population

fLI.,“,=MQ
O = ‘/3_’:1_,
' r(s—1) °
(87) _8§—2r s—1
Gus = g (s — 1) T

tr — 3 = (s — 1)(s* + s — 6rs + 6r2) .a_zg_:,_ 6s(r — )(s—r—=1)
i r(s —r)(s — 2)(s = 3) 2 r(s—r)(s—2)(s—~3)

\

Therefore for the most probable value of the mean of the parent population,
we have the same form as (20):

-~ s —2r 020z

Me=m - D302

except now instead of (17)

(58) ey =2 — M
sy + 3
—9_ (s — 3){2(s — 1)(s — 2r)%a}., + 87(s — 2)*(s — 1)}

(s —2){(s — 1)(s* + 8 — 6rs + 6r%)a3.,
+4r(s—2)(s—3)(s—1r) —4s(r = 1D(s—r—1)}

We observe that if as, = 0, this comes back to the case of normal parent
population which we have already treated in Part ITI.

But if s —»  while as., is finite, then 8,, = 0. Therefore, for the limiting
case, i.e., when the parent population is infinite, we have

-~

(59) M. =m — l Oz A3z
2r

Since ¢, and as,. are not known, we impose the condition that they assume
their best approximated ‘most probable values’ respectively. Hence, we rewrite
(20), (59) in the following forms:

G o_ . 8=2 &
(60) M,=m s b
where now
(60b) &, =g E=D {2124, +8ls 206 —r)

(s —2){(s — 1) (s2 4 s — brs + 6r?) &3.,
+4r(s—2)(s=3)(s—r)—4s(r— 1) (s—r —1)}
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and for the infinite case

-~

1, .
(61) M; =m; — é;' Oy O3:z

So we state our theorem:

Theorem XVIII. For a parent population which is distributed according to
Type II1, the best approximated ‘most probable value’ of the mean is the mean
of an observed sample from it minus a correction factor which is a function of
7, 8, &, and &s.s.

It is also interesting to note that when s = 2r and 3,, % — } then M = m,.

SEctioN II. MosT PROBABLE VALUE OF THE STANDARD DEVIATION OF THE
PARENT PoPULATION

We consider, as we have done in Part III, Section II, ,C, possible samples,
each consisting of r variates chosen from a parent population s. The second
moment of each sample computed about the most probable value of the mean of
the parent population may be written as

n = ,1 (@ — M) + (22 — M)+ -+ + (2 — M)

M = B 4 o — B e (o — B

&
[

z(') =;1 {(1a—r+l - Az)z + (xc—-r+2 - As)’ + M + (x- - ﬂ‘)z}

r

If we write (z; — M ,)? = y., the above may be considered as a distribution of
sample means drawn from a parent population y1, ys, ¥s, --- ¥.. Therefore,
as (27),

Mny = Ben:z + (2;") ﬁ!n—l:z(Mz - j\lz) + (2; I\_‘in—lzz(Mz - ﬂs)z

+ (2;) Pan—s:o(M, — 1‘?’)3 + -+ (M, - M’)”

When we impose the condition that the most probable value of the mean of
the parent population be its mean, then the above yields

MBny = H2n:z

My = Mv = jg:z
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Consequently
~ - M)k k k
Br:y = Z_(y—N_.i = fky — (l) ”k—l:v My + (2> Mk—2:y M:
- o 4 (_l)kM:
- k\ _ _ kY _ _2
= M2k:z — (1) H2k—2:z M2:z — (2> H2k—a:z M2,
e (—Dr

Now from the fact that we assume a Type III distribution for our parent
population, therefore we have

(Boy = e — B3:e = By + 2)o
By = fise — 3fus faz + 23:, = (3042 4 56y + 8)o?
(62) JI-M:V = fig:z — 4fie:s o + Offiaz By:, — i3,
= (630%° + 17074 + 948y + 60)c°
etc.

Substituting (62) into (26), we have

o =t g 2By 4D

ja. =s—2r/‘/s—l 30y*+ 56y + 8
637 s—2V =0 " @Gy+n
(s —1)(s*+ 5 — brs + 6r2) 630y® + 1680y2 + 912y + 48
rs—r(s—2)(s—3) By + 27
6s(r—1)(s—=r—1)
—r(s—r)(s—2)(s—3)'

For an infinite parent population, the above yields by allowing s — «

OlY:zy — 3=

M., = o
ot g TE2
(64) o, = 1 304 56y 4 8
RV
g — 16307" 4 1680y* 4 912y + 48
TS By + 27
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In accordance with (38), we write

_s—2r1/ s —1 30v2 4 56y + 8
2, — ol _ s —2 r(s—r) (3y 4 2)¥

2 2(1 + 262:/)
ot /s Gy 49

It follows from Theorem IV that for the mode of the standard deviation of the
parent population, we have

> (z— M.y e 8—27‘1/8—1 3042 + 56y + 8

(65)

(66) r C_8=2 r(;(;_:)za )(37 =
A2 »
[ Vr(s ) (37 + 2)
where
2
(67) b, = 20un = 83, — 6

aqny + 3

which is a function of r, s, and as.,.
Assuming the best approximated ‘most probable value’ of as. for as. and
remembering that
- s —2r 0,432
Mz =m — A
T — 2) 201 + 25.,)

we write (66) in the form of

62al. a2 9% + 569 + 8 a2
my + g — = — & = =
(68) 5 = T :
14 ¢ 3092 + 564 +.8 _ 292'):l
(3% + 2)(1 + 25.,) (1 + 26,,)?
where
8= 2r
T 2r(s—2)°

= (60.b) where a3., is replaced by &s..

= (67) where as.. is replaced by &s..

f=3Y

2
3:z

'Y=2
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We rewrite (68) in the abridged form:

(69) 8= — T
¢*(8s:z, 7, 8)
or
b= ——
" #(sa, 1, 8)
where

) 304 + 564 + 8 209
7y 8) = 4/ 1 Ty~ 3
$(as:z, 7, 5) 1/ 9T o0 1 25,) (1 + 25.)

and state our theorem:

Theorem XIX. The best approximated ‘most probable value’ of the standard
deviation of a parent population which is assumed to be distributed according to
Type III is equal to the standard deviation of an observed sample of it, multi-

lied by —
p ¢(&8:z, 7', s)

For an infinite parent population, g = 2%: , 3., = 0 and
- 2(6304° + 168042 + 9129 + 48)(3% + 2) — 3(304% + 569 + 8)2

v (3% + 2)[(6304° + 168042 + 9124 + 48) — 6r(3% + 2)

Theorem XX. The best approximated ‘most probable value’ of the standard
deviation of an infinite parent population which is assumed to be distributed
according to Type III is equal to the standard deviation of an observed sample

. o1 1
of it, multiplied by ———M .

’ p y ]im ¢(&3:2) r, 8)

8 —00

Secrion III. MosT ProBABLE VALUE OF THE SKEWNESS OF THE PARENT
PoruLATION

Let us again consider ,C, samples, each consisting of r variates chosen from
a parent population s. The third moments of each sample computed about the
most probable value of the mean of the parent population may be written as

Zl = % {(xl—Mz)3+ (x‘l —Mz)3+ cte + (xr —Mz)s}

(70) 2= % {2 — M) + (3 — ML 4 - 4 (20 — M.)3)

..........................................................

Z(,) = % {@arss — M + (Tacyye — M3 + -+ + (2, — M,)3)
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If we write (z; — M 2)® = w;, the above may be considered as a distribution
of sample means drawn from a parent population w,, ws, ws, --- w,. Conse-
quently in accordance with (5), we have

Mzw=M'p
_1/ s—r
Trw = s—1) 7
(1) _s—2r/‘/s—1
P rG—n "
_ (s =1)(s® + s — brs 4 6r2)
(e = 3 = r(s —r)(s — 2)(s — 3) oo — 3}

6s(r — 1)(s—7r—1)
T s =1(E—=2)(s—3)°

Let us write the analogous form of (27):

1 L — 1 TAL)
I‘n:w—NZw —N‘Z(x—Mz'i'Mz—Mz)a
(72) = fign:z + ( )ilan—l (M. — Mz)
3n\ _ - -
+ (2)ﬂ3n—2:z(Mz_Mz)2+ e + (Mz_Mz)an

Imposing the same condition as before that M. assumes its most probable
value (i.e., M, = M.,), then (72) becomes

(73) Hnw = H3n:z

Hiw = Mw = gz

The kth moment of the distribution of w about its mean will then be

— k
Hi:w Z (w w) = Mkw — (’10) Hk-1:w Mw

-+ (’;) Mk—2;0 Ml20 R (—l)kM.’Z

k k
= lgk:z — (1) ﬁak,—a:z 3.z + (2) gk —6:z ﬁgrz

o + (_l)k ﬁ::z

(74)
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Since we assume a Type III distribution of the parent population, we have
in accordance with the recursion relation (56)

M, = jis: = azz 02
fiow = fis:e — f3:; = (15 4 63y + 30?) o
(75) fsw = fs:e — Sfi:r fsic + 205:,
= ag. (1215 + 6417y + 79382 + 2520+%) o2
fw = P2z — 4fios faz + Oz A3z — 3M3:z
(10395 + 423225y + 27225992 + 585168373
+ 4792230y + 1247400¢5) 12

Substituting into (71), we have

- 3
erw = M3z = O3z Oy

oy = o° 1/ R% (3042 + 63y + 15)

s — 2r 4/ s — 1 gy, (1215 + 6417y 4 79382 + 252043)
s —2 r(s — 1) (15 4 63y 4 304232
_ (s =1)(s2+ s — 6rs + 612)
T r(s=n(s—2)(s—3)
9720 + 417555y + 2707992y + 58403433
+ 4789530v* + 1247400~°
(15 + 63y + 30+?)*
_ 6s(r — 1)(s —r —1)
r(s—r)(s—2)(s—3)

0:zyy =

(76)

Olyrzyy — 3

Allowing s — o, we have for an infinite parent population

= — 3
Mz,,, = M3z = O3:z O,

ol 1/ % (3072 + 63y + 15)

Ozyp =
T o = __1__ a3.2 (1215 + 6417y + 7938~2 + 2520~3)
3:2w \/; (15 + 637 + 3072)3/2
9720 + 417555y + 2707992+2 4 58403433
o 321, + 47895307 + 12474005
b T (15 + 63y + 3072)?
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The best approximated ‘most probable value’ of F;. may now be written
after the same fashion as in the preceding cases:

A _ E (x - Mz)s Ozy * Xizyy
(78) M3z = ” - 2(1 T 26,'0)

where
20[4;;1,, - 3a§;,w —6

g:zy + 3

2w

Since

E (x - 3)3 1 ( a’z &3:2 )3
== 3z —m+4g T+ o0 [from (60)],

and since we assume the best approximated ‘most probable values’ of the
standard deviation and the skewness for the standard deviation and the skew-
ness of the parent population respectively, we obtain from (78)
6’2 &3::: + 3 ‘3 &g z
14 25, (1 + 25,,)

a3z (1215 + 64179 + 793892 + 252043) e

(I +25.,) (15 + 637 + 309)  ~
The change of 3., to 8% &s.. involves a systematic error although it is small.
Again by proper substitution of (69) we have

A A

z Q3z = M3 + 3ma g

3 A A
03 3.z 3 3 ag:z
—_——— = 0, (3.5 + 3 g y 7y
¢¥(ds:s, 1, 8) "7 ¢ (dss, 1, 8) (1 4 25.,)
ol &j.,

T G 9 (1 2

_ g fue 0l (12154 64179 4 79384° + 252097)
¢° (8s:z, 7, 8) - (15 + 639 + 3042) (1 + 23.,,)

Solving for as.s, we have

3. 39 ¢* (&2, 1, 8) 29g*
(79) %.s=+[1_ i18) ’
¢3 (a332) 7', 8) (1 + 2822) (1 + 28’:)3
g (1215 4 64179 4 79389 + 2520‘?3)]
(1 4 28..) (15 + 639 + 3099
Since the right member of (79) is a function of &s.,, 7, and s, therefore the
most probable value of as., may be approximated when we are given s, r, and

the skewness of an observed sample. As it is an algebraic equation of high
order in &, and is so much involved, even approximation presents practical

+
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difficulty. However, if once &s., is approximated, &, and M, can be easily ob-
tained from (60) and (68).

Theorem XXI. For the best approximated ‘most probable value’ of the skew-
ness of a parent population which is assumed to be distributed according to
Type III, we must approximate it from equation (79), in which the skewness of
an observed sample is expressed as a function of s, r, and the best approximated
‘most probable value’ of the skewness of the parent populatien.

To construct a table for the best approximated ‘most probable value’ &s.,
corresponding to as;, for particular values of r, s, we should first reverse the
process by assigning different values of &;.. so as to obtain as.; then by the
way of interpolation, we shall be able to obtain &s., for a particular as.,.

TABLE VII

Relation of the Sample Skewness and the Best Approximated ‘Most Probable Value’
of the Parent Population Whose Distribution is According to Type IIT

(s> =, r=100)

2
R
g
§

DU W O D OO U W D D 00D U R
a—y
[y
o
>
)

BOIO MO RO O MO RO e e e
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For s — « and r = 100, we have computed the best approximated ‘most
probable value’ of as., corresponding to the values of as., from .1 to 2.6 as shown
in Table VII.

The computatlon for such a table is laborious because it involves the ‘compu-
tatlon of 6,,, 6,y, and 3., which are in turn functions of &, c2p ANd A4z, d3:2, aNd
A4z, and &z, and du.,, respectively.

SECTION IV. DisTRIBUTION OF THE HYPOTHETICAL MEANS OF THE PARENT
PopurLATION

Since we have obtained in the preceding sections expressions for the best
approximated ‘most probable values’ of the mean, the standard deviation and
the skewness of a parent population which is assumed to be distributed according
to Type I1I, we are now in the position to characterize the distribution of the
hypothetical means of the patent population with the assumption that the best
approximated ‘most probable values’ of the mean, the standard deviation, and
the skewness be the mean, the standard deviation, and the skewness of the
parent population.

Basing upon the fundamental relations in (15), we write down the character-
istics of the distribution of the hypothetical means of the parent population as
follows:

Muz =m

om, = 0 =6_/‘/8—7‘ = & sl
Y =1 ¢Gssn) Y 15— 1)

. 8=2r /J s—1 .
(80) o3:M, — —03:z; = —8_2 r(s—r) a3

Qy:M; — 3= Olyrzy — 3

(s=1)(s2 4+ s — 6rs + 672) [30:3 ,] 6s(r— 1)(s —r—1)
= r(s —r)(s — 2)(s — 3) 2 | ris=1r(s—2)( —3)°

where ¢(as.., s, r) is given in (69).
For an infinite parent population by allowing s — «, we obtain from the
above:

\

(Mu, =m
ow = L T
TV #(dss, 1)
(81) \ 1,
ag:M; = W a3:z
La4:l!_’,; -3 = %&gzz

where ¢(as: zy r) = llm o(as: :zy S r)
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Since we observe that the moments of the distribution of the hypothetical
means are expressed in terms of &s.., it is therefore necessary for us to find the
best approximated ‘most probable value’ of the skewness of a parent population
before we attempt to obtain the frequency function associated with the distribu-

tion of these hypothetical means.
Numerical illustration. A sample of 100 weights of freshman students is
observed and the frequency distribution is given in Table VIII.

TABLE VIII
Weights of 100 Freshman Students
(Original Measurements Correct to Nearest Pound)

Class Mark Frequency
109.5 4
119.5 11
129.5 25
139.5 34
149.5 14
159.5 8
169.5 0
179.5 3
189.5 1

100

The first four moments are computed

m = 138.3
o, = 14.6366
ag,e = .81099

oy, = 4.47644

Now, assuming this sample is drawn from an infinite parent population which
is assumed to be distributed according to Type III, we wish to find (a) the best
approximated ‘most probable values’ of the mean, the standard deviation, and
the skewness of the parent population, and (b) the probability that the mean of
the parent population lies between M, = 135 and M. = 140.

By interpolation from Table VII, we obtain the best approximated ‘most
probable value’ of the skewness of the parent population:

&3:5 = .6501
From (69) and (61) we obtain

&, = 14.5452
M., = 138.25272,  ¢(as.z, r) = 1.006279
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From (81) we have

My, = 138.3
ou, = 1.45452
A3:M, = 06501

agu, = 3.00633945

8z, = 0, the distribution of M is associated with Type III Function; hence
for the probability that M lies between M, = 135 and M, = 140, we again
refer to Tables of Pearson’s Type III Function prepared by L. R. Salvosa,®® and
we obtain in this case

P = .8677592

Since the determination of the best fit of a frequency curve in general depends
upon the values of a3, a4, and k, and since in the present case each of them is a
function of s, r, and as.., we are therefore not able to tell the type of curve to
be used until we know s, r, and &s...

For the infinite case, however, as we have illustrated Type III Function may
always be used because

— 20‘4::; — 3“::13 -6 = 2a4:Mz _ 3a§:”z -6
.. + 3 %n, + 3

holds for all values of as.. and r. We therefore conclude that the hypothetical
means of an infinite parent population which is itself distributed according to
Type III is distributed according to Type III. Hence

Theorem XXII. The hypothetical means of an infinite parent population is
distributed according to Type III if the parent population is assumed to be
distributed according to Type III.

=0

6; 'z

SecTiON V. DiIsTRIBUTION OF THE HYPOTHETICAL VARIANCES OF THE
PARENT PoruLaTION

Parallel to Part III, Section V, the distribution of the hypothetical variances
of a parent population which is assumed to be distributed according to Type III
can be described. The fundamental relation of Theorems IT and III hold:

Hon:p = [2n:zy or O2n:p = O2n:zy
Hentl:p = — PB2ntlizy . Qonilip = —Onil:zy

— M)
But now M, = Z(x—rM,_) (See Part IV, Section II)

— 1 6"z&:i:av: 2
(82) M"?Z(’”‘”“*"Hza,)

9 A“saa:z f 60)1.
T By, 9 lfrom (60)}

19 Salvosa, L. R., Annals of Mathematical Statistics Vol. I, No. II, 1930.,
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Upon the same assumption that the best approximated ‘most probable values’

of the

mean, the standard deviation and the skewness be the mean, the standard

deviation, and the skewness of the parent population, the distribution of g.. is
characterized by

(

\

M. =%+gz Aﬂ'g&g:z =ﬂ74{1 02&:, }
e (1 + 25.,)%¢%(as:z, 7, 9) (1 + 25,,)%%(4s.z, r,9)

S s—=r _ s—r
Oiy:z = O3y = r(s——l)d"_ /‘/m By +2) o}
V%= G4+ G
. s=2r s—1 30424 569 + 8
S5 VG0 T @2y

_ _ (s —=1) (s2 4 s — 6rs) + 612)
a4:ig:z—3— Qq:zy — 3 = ?‘(s—r) (8—2)(3_3)

[0‘4:11 - 3]

6s(r— 1) (s—r—1)
Trs=n(s=2)(s—3)
_ (s=1) (s*+ s — 6rs + 6r) [63M3+ 16809’+912‘9+48]
r(s—1)(s—2)(s—3) (39 +2)2
6s(r—1)(s—r—1)
Trs—1(s—2)(s—3)

For an infinite parent population, we have

(84)

,

R R
":‘—W{ 47‘2 ¢2(a8=,7')

_ ‘ /(39 + 2) ma
Tue = T (e, 1)

vy = _ L 30874560 48
“:I‘z:z W (3‘9 + 2)3/2

g1 {630/9t+ 16804 + 9129 + 48}
SRR @ + 2

Numerical illustration. Using the same sample in Table VIII, we wish to

ascert,

ain the probability that the variance of the parent population lies between
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306.25 and 342.25. From m; = 138.3, 0, = 14.6366, a3, = .81099, and a4, =
4.47644, we find from (84)

M,,, = 214.232,235
~ 34.335,74
sz, = —.495,311
g, = 3.463,675,7
5, = .105,515,6

Oiiyz

From Part I, Section 111,

2
k=8 o976 <1
4é,, (2 + o.,)

Therefore, the best fitting curve will be Type IV which assumes the form?

(85) Y= 10 (1 + x2)—m e tan—'z
where
pott?
q

¢t being in standard units

b
T2 2%
2 _ Mobe — b _ 42+ — a3
€= g 42
1 142

a+p
A= — 1 %

sz'

2\_1'

e2 ‘ 1

W= 9@m—2,%n F@m -2\

Yo is found from Pearson’s Tables for Statisticians and Biomelricians® to be
049662.

20 Elderton, W. P., 0p. cit., p. 64.
1 Pearson, K., Tables for Statisticians and Biometricians, Vol. I, pp. 126-142,
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Now the given limits 306.25 and 342.25 of the variance, when expressed in
standard units, are

te = 2.679,941
& = 3.728,410

Therefore the probability that ... lies between Gy, = 306.25 and js.. =
342.25 is

t,=3.728, 410
P= Yo [ (1 + 232)—'" e~ tan~lz o
t

=2.679, 041
a

we find
m = 11.477,271
A = 12.940,307

P = 049662 / 36343 (1 + 2)—11477211 o12.900207 tan—iz oy
08767

By means of Maclaurin-Euler’s Interpolation Formula, P is found to be equal
to .000,904.

No definite law can be ascertained before we know &;.. because, as we have
seen, as;,, and au;,., are both expressed in terms of s, r, and 43.. We do
not know the value of k, which is a determining factor of the best fitting curve
and a function of s, r, as;,, and aug,,, until we know the values of s, 7,
and ;...

SectioN VI. DistriBuTioN oF THE HYroTHETICAL THIRD MOMENTS OF THE
PareNT PopuraTIiON ABOUT ITs MEAN
Recalling the fact that the distribution of the third moments of sample means

about the most probable value of the mean of the parent population is equivalent
to the consideration of a distribution of sample means drawn from a parent
population, wy, uy, ws, - - - w, where w; = (z; — M.)3, so we can write down in
accordance with the fundamental relations stated in Theorems II and III:

ﬁ2n;p = ﬁzn:zw Qan:p = Olgnizy,

or
ﬁ?n+1:p = - ﬁ2n+l:zw 'a2n+1:p = — Q2pilizy,

— M.
But here M, = Z_@_?L‘) ; and by the substitution of (60), we have

A A 3
MzJ = -7—]: Z(x —_my + _____ga'za:i:z>

A 3 A3
g 0s 03z ga, az..

A+ 25.) 6o 7 8) T (14 28,03 6%(dan, 7, 9)

(86)

= m3 + 3m,
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Consequently, with the same assumption that the best approximated ‘most
probable values’ of the mean, the standard deviation, and the skewness be the
mean, the standard deviation and the skewness of the parent population, the
distribution of fs., is characterized by
go. s géag&g iz

= = +
(1 + 261:)‘#(‘13::, T, 3) (1 + 26;2)31;()3(113;,, T, 3)

S, §—7T a0\ A3
Oiisx /‘/T(S—- 1) Oz /‘/( (15+637+30‘Y)G

=1/ =T (15 + 639 + 304?)

ﬂlfla:: = mg + 3"7’2

'I‘(S — 1) (Ofsn Ty S)
o s — 2r s—1
87) Gz = T T r(s — 1) i
7 -
_s=2r 1/ s — 1 a3.(1215 4 64179 + 79389 + 252043)
s§—2 r(s —) (15 4 6349 + 3042)?
. 3= (s — 1)(s2 + s — 6rs+6r'~’)[a _3_ 6s(r — 1)(s—7r—1)
Hibiz r(s —7)(s — 2)(s — 3) i (s —r)(s — 2)(s — 3)
9720 4+ 4175559 + 270799292 + 5840343%°
_ (s— 1)(s2 + s — 6rs + 617 + 47895309* 4+ 124740043

rs—r)(s—2)(s—3) (15 + 633 + 309%)

6s(r — 1)(s —r—1)
T s =1 (s = 2)(s = 3)

For an infinite parent population, we have

1 3 A3

M., =m 3m__£°‘3_x o s %3z
Bis: 3 + 3my 2r¢(bs, ) | 81° ¢3(duis, 7)
o
Oig.z = ,‘/ (15 + 63% + 3092) ——=
#3835, 1)
(88)+ = .,
M. = — 1 a3..(1215 4 64179 + 79389 + 252099)
gz r (15 + 63‘? + 30‘?2)’

9720 + 4175559 + 27079924% + 58403434° + 478953044
+ 12474004°

(15 + 637 + 30977

S|

Qg ;. — 3 =

Numerical illustration. Using the same sample in Table VIII, we wish to
ascertain the probability that the third moment of the parent population about
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the mean lies between ;.. = 3000 and f&;.. = 4000, still assuming an infinite
parent population from which the sample is drawn

&3:1 = 6501
#(ds.z,7) = 1.006,279

We find from (88)

M, = 2558.137,096
i, = 1675.696,37
sz, = —1.187,409,9
g, =  6.127,551,6
b, =  0.221,886

E = 0.714,972 <1

Therefore the best fitting curve is Type IV.
From Pearson’s Tables for Statisticians and Biometricians, Vol. 1,2 we compute

% = .000,058,032,3

The given limits 3000 and 4000 when expressed in standard units are ¢ =
.263,689 and ¢t = .860,455 respectively. Therefore the probability that ..
lies between 3000 and 4000 may be expressed by

t=.860455
P = y0/ (1 + xz)—6.5068196—-17.443447 tan~lz dx
¢ w=.263689

By means of Maclaurin-Euler’s Interpolation Formula, the answer is found to
be .267,408,631.

We make the same remark here as we have made in the preceding two sections.
That is, since os;,., and ay;,, are both in terms of s, r and a;..,, we cannot
determine the value of k which is a function of a5, and ez, until we know
the values of s, r, and a;... Consequently, the curve associated with the dis-
tribution of the hypothetical third moments of a parent population of Type III
distribution is not known until we know s, r, and as:..

22 Pearson, K., op. cit., pp. 126-142.



