A TEST OF THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN
MEANS OF SAMPLES FROM TWO NORMAL POPULATIONS
WITHOUT ASSUMING EQUAL VARIANCES'

By Darsy M. STARKEY

1. History of the problem. If the only available evidence about two normally
distributed populations is contained in two samples, one from each, it has
hitherto been the custom to the test the hypothesis that the means are equal by

I

assuming that the quantity \/k < _': T is distributed in Student’s distribution,
~ ; : . -2 .
with N + N 2 degrees of freedom, where s° = NNV = 1) and k =

N -1D® + N)
NN+ N —-2)°
hypothesis underlying this test, however, is that the variances are equal. Al-
though in many cases this may seem a reasonable assumption to adopt concur-
rently with that of equal means, it is undoubtedly not a necessary one, and it is,
therefore, desirable that the test should be adapted to meet this difficulty.

The first advance on the problem was made by W. V. Behrens’ who suggested
that the distribution of the difference of the means could be expressed in terms
of the observations in the samples from the two populations, the argument
being entirely independent of the variances. R. A. Fisher' obtained substan-
tially the same result, but expressed the argument in terns of fiducial probability.
M. S. Bartlett® was of the opinion that Behrens’ reasoning was incorrect, as he
obtained some results which were apparently inconsistent with those tabulated
in Behrens’ paper, but R. A. Fisher’ showed that Bartlett’s argument
was open to criticism. In the latter work, he actually obtained distributions
for the case of two samples of two observations, and in the following we shall
indicate some extensions of this more detailed work of Fisher, firstly, to the case
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202 DAISY M. STARKEY

of other small samples of even numbers of observations, and, secondly, to samples
of very large numbers.

2. The case of small samples. We recapitulate, briefly, the preliminary
argument of R. A. Fisher*, in which he denotes the unknown population means
:t —

by u and p’. Since B = ¢, where ¢ is distributed in Student’s distribution,

we may write p = & — st, and obtain the fiducial distribution of the population
parameter u in the form Gy(u) du, where

n+1
T 2 du
Gi(u)dp = n ' aF1)
e 7 — g \? 2
Ol () /1
and a similar result for the fiducial distribution of 4’. The simultaneous fiducial
distribution of u and u’ is thus Gy(u) G2(u')dudy’ from which the fiducial distri-

bution of u — u’ may be found. We may note that the characteristic function
of — (u— )+ (& — &) is M(z), where

M(x) = f f eiz[—(l““ﬂ')+(i—-i')] G[(M)Gz([.") d[.t d“,

= f / e Hy(t) Ha(t') dt dt,

Hy() = ) -
o(F) vin 0+ )T

with a similar expression for Hy(f). Thus from the fiducial point of view, the
problem is essentially that of formally determining the distribution of the
variate ts — t's’, or af + bt’, where @ = s, b = — s’ are regarded as constants, ¢
and ¢’ being distributed in “Student’s” distribution. The hypothesis u = u’
may then be examined by testing whether & — i’ is a significantly large value of
this variate. We shall approach this distribution problem through the use of
characteristic functions. .

By definition, the characteristic function of ‘‘Student’s” distribution is
represented by the integral

1 If3(n + D] /“ <
vm TG ) AT
. ()

n

where

1

and may be evaluated by three methods which will be briefly considered.
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First, by integrating the function
1 T+ 1] ™
Van  TGn) e
(1+ )

around a standard semicircular contour in the upper half of the z-plane, the
value of the characteristic function is at once proved to be 277 times the sum
of the residues of the integrand within the contour when the radius of the semi-
circle becomes infinite. Within the contour there is one pole only at z = i7/n.
The residue at this pole is the coefficient of 1/h in the expansion of

1 I‘[%(n + 1)] e—lzI\/;lelh

Van  TGn) =
RRICACEER)

in ascending powers of &, which may readily be evaluated when # is odd.
Second, by using the result that

1 ® gzt el
p /.w iFedt=c°
from which we deduce that

1/& eizt 1 el
- dt = — ¢ Val= .
T Jwa + 8 Va

Differentiating this result (n — 1) times with respect to a, again considering odd
values of n, we have that

n—1 n—1
}n—1) < 2 )! c e d* [ 1 _ya
(—1) . [-m ildt: 2:1[——;6 @ ].
(a+t?) * da *
By forming the first order differential equationiny = Ry e Ve and differentiat-

a
ing it 1(n — 3) times using Leibnitz® theorem, we may obtain a linear relation
between the derivatives of order 3(n — 1) and lower; similarly, by differentiating
1(n — 5) times, we may obtain a linear relation between the derivatives of all
orders up to and including (n — 3), and continuing in this way, we obtain a set
of 3(n — 1) linear equations in the #(n — 1) unknown derivatives. These
equations may be solved for the derivative of order 3(n — 1) by the determinant
rule. The denominator determinant is independent of z, and the numerator is
¢~'*1Va multiplied by a polynomial of degree 1(n — 1) in z. Using this fact, we
may specify undetermined values for the coefficients in this polynomial, and
obtain relations between these values for two consecutive values of n by differ-
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entiating once. The recurrence relations thus obtained may be used to verify
by mathematical induction the following relation, after substituting a = /n,

1 T+ [ &~ dt
N Ten) S N

@) <‘ + %) 2

etandl [EAPIV RN 20 et PRCAA L u el O

the coefficient of (| z|+/u)* being

1 n—4k+1Dn—4k+3)(n—4k+4+5) ... (n— 2k — 1)
(2k)! n—2)(n—4)(n—06)--- (n— 2k) ’

and the coefficient of (| z | v/n)**" being

1 n—4k —1)n—-—4k+1)...(n — 2k — 3)
2k + 1)! n—2)(n—4)--- (n— 2k) ’

This is, therefore, the value of the characteristic function, and is the same in
form as the result which may be obtained by the first method. There are
evidently a finite number of terms, the degree of the polynomial being (n — 1).

Third, the characteristic function may be shown to satisfy the second order
differential equation.

dy dy -
T (n 1)% nry = 0.
By change of variables y = ¢ Y™ (we assume that z is positive, as it may be
replaced by its absolute value in the integral) and u = z 4/, we obtain
Jdo o
du?*  du
Using the Frobenius method of solution in series, we obtain as one solution when
n is odd the expression

n—14+2u)+n—1v=0.

wm—3) o (n—05)
e T IR CE)
and the corresponding value of y has already been proved to be the value of the
characteristic function. It is probable that the corresponding solution of the
differential equation would also be the value of the characteristic function when
nis even. In this case, however, the indicial equation has roots differing by an
integer, and the solution of the differential equation is much more complicated
in form. Nevertheless, it seems possible to find a series expansion for the
characteristic function of “‘Student’s” distribution in this way whatever be the
value of n.

The characteristic functions of the distributions of at and bt may now be

+ + ...
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readily obtained by replacing z by az and bz in the above expression. Multi-
plying the characteristic functions of these two independent distributions, we
obtain the characteristic function of the distribution of at 4+ bt’, which is of the
form

M(z) = ¢ '=llelvatielv (1 + 12| (a| Va4 b Vi) + -1,

n+n -2
—a
use the result that the distribution is given by the integral

1 e M(z) dz,

271' —00
and so obtain the distribution of w = at + bt'.

A distribution so obtained would involve four constants, a, b, n and n’, and a

derived probability table would thus be very complicated. It may, however,

be simplified firstly by considering the case of equal sample numbers, and,
secondly, making the transformation

_ (at + bt")
® "= fal+ 150"

whence the resulting distribution involves only two constants, n, and the
ratio a/b. In this case the form of the characteristic function is

the term in brackets being a polynomial of degree We may now

s @H+NE T3 Lo a ]
Azl (l:clx/—). n—2
4) e {1+|x|\/n+ (CIESLIE + ,

In determining the form of the distribution, we shall encounter integrals of the
form

o0
(n)* f eV g 1P g
—
This can be reduced to
-] -]
n*ﬁf e z\/n—uzv D d:c + n f —zy/j+Hizv ”dx,
0 0

and, integrating by parts, or using the Gamma Function integral, we obtain
as the value of this integral

in 1 ) 1
" p! [(\/ﬁ Tt T (V= iv>"+‘]'

Writing v = 4/n tan 6, this reduces to

!
\% 2 cos (p + 1) 6 cos”™ g,



206 DAISY M. STARKEY
The distribution is thus seen to be:—

(5) 1 [po + p1 cos 20 + p, cos 6 cor 36 + - - - + pa_y cos”* § cos nd] db,
™

where
wﬂ+m::g+2mm
e CIEA L)

It is obvious that the values of the coefficients p may all be expressed in terms

of the ratio ’ (-; l Denoting this ratio by r,

4+t =3 4o
— n—2
p2 (r+1)2 )

and thus we could construct a table for the probability integral involving n, r and
v only.

The process of evaluating the probability integral may be simplified by con-
sidering the term already evaluated,

nt? f e—lzl\/,‘»—izvl z |p dz.

Integrating this expression under the integral sign with respect to v, between
the limits » and o, the contribution to the probability integral from this term is
seen to be
ip fo .
ﬁ—-/ ¢V 1 [P g,
(2 —0
which on the introduction of the same transformation as before, gives the value

— 2 (p — 1)! cosP 8 sin pé.

Thus, from (5), the total probability that 6 should lie between g and a given
value, 6, is
(6) T g coshsing — Pcos0sin20 — - - — P21 cog™ g sin(n — 1)8 |,
T2 2 n—1
_T<p<T
where 5 = 0= 3"

The following summarises the results for small values of n.

at + bt’
1. n=1. tan = ——— .
la|+[b]
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The results reduce to those already given by Fisher. The distribution is then

simply %‘f’ or Student’s distribution, and is independent of a and b, and the

probability integral is% - -f;

at + bt’

2. n = 3. tan = ———— |
V3 (la| + | b))
The distribution function is
d [1 + cos 26 + Tt -I- e cos 6 cos 30],
and the probability integral
71;[725 — 0 — cosfsinf — a—_::—r)zcos%sin%].

at + bt’

3. = 5. tan = ——————.
" V(e[ +T8)
The distribution function is
do 20"+ 1+ 3r)
[1 +cos20+3 —-m—)z— cos 6 cos 360
8 cos 4 8’ * cos 5
(1 + )2008 cos 40 + T )zcos 6 cos 59 |,
and the probability integral
1l _ 1(r+1—|-3) 2. .
;[-2- 6 — cos 6 sin 6 — 3 —(—H—)z—cos 0 sin 26
2
+ 3(1—2:_7'—)-2 cos® 6 sin 36 — 3(12—_7;_7,)4 cos® 9 sin 40].

3. Samples of large numbers. The foregoing method is not suitable when
nand n’ are large. In this case we use the asymptotic expansion of “Student’s”
distribution which has been worked out by R. A. Fisher’ and is of the form,

1 T[j(n + 1] at

t)dt =
0= e e
142
® (+3)
Nl _gn P, P, P,
Vol d‘(l+‘i+ﬁ+"'+m+"'>'

7 ““The Expansion of ‘Student’s’ Distribution in Powers of n~1,”’ Metron, Vol. 5, no. 3
(1925), pp. 22-25.
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where P is a polynomial of degree 4k in ¢, such that

pt—2—1 p, = 3 — 280 + 306 + 120 + 3
S S ' 96 ’

etc.

The development of an asymptotic expansion for the distribution of at + bt
is obtained by combining the asymptotic expansions of t and t’. The theoretical
justification of the process used makes use of the following lemma:—

If Ry (t) is the remainder after the first (k + 1) terms in the asymptotic expansion

of ““ Student’s” distribution in descending powers of n, then lim ny | Ri(t) | dt = 0.
n—+0 0

In the proof, the symbol “lim” will be used to denote the limit as » tends to
infinity of the quantity in question. Let Si(f) represent the sum of the first
(¢ + 1) terms of the above expansion. It may readily be shown that if
0<d6 <4,

lim n* / St =0,
and hence that

lim n" /6 le(t) idt =0.

1 — and the asymptotic

1
Ve
(2 5)
n

expansion for the logarithm of the Gamma function, the following asymptotic

Using an expansion for the logarithm of

expansion may be obtained, log f(t) = — % log 2r — t* + w, where
we= 12— 1)+ (=2 3 + -
4n 12n?
® G +1
_ Tt 41 _nr ’
+p(p+l)n"+ 2Tp+l 2 RP+RP)

Gapy2 being a polynomial of degree 2p+2, and

t2p+4 'at2p+4
|R,| < RSl e et where 0 < a < 1,
t2p+2
Tonl = GFmwn
p+3 p+3
R, | < 274 = g2 4 where 0 <8 <1,

(p+ D+ 2)nett  (p+ 1)(p + 2)nr+V’

A being a constant independent of n.
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Thus, using Taylor’s expansion, we obtain
w w

1 . o w k o
f(t)-—\7—2_=e (+w+§i+?ﬁ+"'+7c—!+_——(k+l)!e)’

™
where 0 < 6 < 1.
Evidently Ry(t) is of the form
1 32 (Qrar | Qrt2 qr(p+2) wtt
(9) ;75_7;[6 (W+1zk—+2+".+n";+”+(k+l)!e ’
the quantities ¢ being polynomials in ¢.
Using the moments of the normal distribution, it may readily be shown that

$
. e [T e Qe | Q42 Qk(p+2) —
hmnﬁ —‘\/-?re 77"_H+7_1:'-‘1-2+“.+n"(§+2) dt—O
In the range of integration, when n is sufficiently large, it is evident that

45 66 (2p+2)é
o <2y, gy nt g
n n? ne 2

»|

+ R+ | Tonl = 0@*) if0<s<i

Thus
k+1 5 0K’
‘ 7:’—0(—16—‘}_—1—)—' oM ! < m:gf—:’;‘”—x e % where K and K’ are constants.
m .
and hence
. nd K 0K’ 1
.k . = _ .
lim n ﬁ |Rk(t)|dt<llm-ﬁ_4—ne =0, ifé <5———+4k.

We can also deduce the following results:
1. Since the value of the integrand is unaltered if ¢ is replaced by —¢, we have
at once

0
Jmﬁflmmm=a
2. Using both of these results it follows that

lmmflmwm=u

0

Hence
t
3. 1mM/|mmm=m
t ’

where ¢ and ¢ have any real values, and thus it is legitimate to integrate the
asymptotic expansion of f(t) term by term with respect to ¢ between any given
limits.
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4. If ¢(t) is a function independent of n which is bounded for all values of ¢,
the asymptotic expansion of f(¢f)¢(t) in terms of n may be integrated term by
term with respect to ¢. In particular, if () = €**, an asymptotic expansion
for the characteristic function of “Student’s” distribution may be obtained.

We may now consider the form of the distribution of at + bt’, and in order
to simplify the argument, the following reasoning applies to the case in which
the sample numbers are equal, although a similar theory may be developed for
sample numbers which are of equal orders of magnitude. We may write

@) = Su() + Ru(®),

f(¢) = Skt) + Ru(?),
u = at + bt/,
and hence ¢’ = ii—_b—at. The joint distribution of « and ¢ is therefore

[Sk(t)sk <“ - “‘) + Ru(0)S: (“ = “‘) + Si()R: (“ = “t)

u — at\ |dtdu
'*TRk(t)Rk( 5 )]T

The distribution of « is obtained by integrating this expression with respect to ¢
over all the possible values of ¢ between —» and -+ «. The product

Sk (t) Sk (u ; at) gives the first k¥ + 1 terms in the asymptotic expansion which

is the product of the asymptotic expansions of f(f) and f ("—‘—-—_b——m), and a re-

mainder ¢(t), where

(10) o) = ) (ng_;ﬁﬁv;ﬁ +£a),

nﬂv

v, vz, - -+ U being polynomials in ¢. Let

Ri) = 90 + RS, (“5) + B (“5Y) 8.0 + ROR (“5Y).

Using the expressions for the moments of the normal distribution, it may be

shown that / | () | dt = O(nTlﬁ)' Let the upper bound of the bounded

function Sk(t) for all values of » and ¢ be B. Then

/: S"<u;at> Rk(t)!dt <B/_:|Rk(t)|dt

= o(n™").
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Similarly

/_ : Si(OR: (“ 3 “‘) dt = o(n™).
and

[_ | ror, (“ - “‘) dt = o(n™).
Thus

limnk[_ | R(t) |dt = 0

and hence the distribution of « may be obtained by integrating the asymptotic

expansion which is the product of the asymptotic expansions of f(¢) and f (u ; at)

term by term.
In practice, it is convenient to find the distribution of
t + bt
\/a2 T b2
bt — at’
VT B
distribution of w is given by
dw 2 [° g2 1 [(aw +by)* _  (aw + by)’
V' /_we ol erer T ere

4n
(bw — ay)' | (bw —ay)®
+ @ F 07 2 @F 2:| + }dy

We substitute y = and, using the above result, it follows that the

which is equal to
dw o {1 " 1 [w‘(gz4 + b + 120'a’b® + 3(a* + bY)
\/2r 4n (a? + b?)?
—4—2w2]+ }

It may be noticed that this distribution may be expressed in terms of the
ratio a/b only. The probability integral may readily be obtained. There is
no theoretical difficulty involved in obtaining any desired number of terms of
this expansion, but they rapidly become too complicated to handle with any
ease. Moreover, it is difficult to find a limit of the error committed in using
any given number of terms of the series for the probability integral as an
approximation to the value of this integral, as the somewhat complicated
method of obtaining the series masks the form of the remainder. While it is
undoubtedly true that when 7 is very large the distribution approaches nor-
mality, and for a somewhat lower range of values of n the first two terms of

(12)
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the expansion should be taken, etc., it is difficult to forecast the number of
terms which should be retained for any given value of n. In fact the same
difficulty seems to exist when using the original asymptotic expansion of
“Student’s” distribution for the calculation of probabilities. For instance, the
coefficients of the powers of ¢ which occur in the sixth term of the asymptotic
expansion of the probability integral are larger than those occurring in the
fifth term, and, in consequence, in spite of the greater power of n in the denomi-
nator, for certain values of n these may contribute more to the probability
integral than the previous term. We are unable to say anything about the
aggregate of succeeding terms in general, and, therefore, it does not seem
legitimate to drop all the terms following a term which yields a contribution
beyond the limit of accuracy desired. This difficulty is even more apparent
in the case in which the coefficients of the various powers of ¢ occurring in the
terms beyond the first involve also the ratio a/b, and it is probable that the
different values of this ratio which are possible would lead to different numbers
of terms being taken for the same value of n in order to gain the same degree
of precision in the probability integral.

4. The distributions of the test quantities which correspond to (3) and (11)
for equal means, when the ratio of the variances is a known quantity. When
the ratio ¢ of the variances is given, the foregoing arguments, which are inde-
pendent of the parameters specifying the distribution, may no longer be applied,
for this would be information not supplied by the sample. In this case, the
distributions of the test quantities which have been used take forms which
depend only on the ratio of the variances, and are independent of the sample
estimates of the variances.

E—
s+ ¢

andn = N — 1. On the assumption

The quantity (3), used in §2, when n was a small odd number, was

2z — &)° o= 2@ — &)

N(N -1)’ N(N-1)

of equal population means, the distribution of this quantity takes the form

1 Ve o n—1 _ ,\n1

(13) . 22r(n j })dv /_ _: (Ve + 1) (\?Mz) &,
I‘(-Q) Vir (14 ¢)"" 7 Ve <z2 +1+ ﬁ)

Thus in the case n = 1, we obtain

dv [ Ve " 1 ]
1+ oL@ +1+¢)} (@ +¢+ 1))

which is the result given by R. A. Fisher.® The integral may be evaluated in
terms of elementary functions for small odd integral values of =.

= _ &
In §3, (11), the distribution of the statistic w = L =% was considered

Ve + st

=v’

where §* =
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when N was large. The exact distribution may be proved to be

il T4 P+ )" , n(l — ¢)
A ¢2 0 T o) T W F (" A A +¢)>

where F is the hypergeometric function. If ¢ = 1, we have the limiting case
in which the argument of the hypergeometric function is zero, and obtain
“Student’s” distribution, which is to be expected in view of the evidence stated
in §1, the numbers in the samples being equal.
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