NOTES

This section is devoted to _brief research and expository articles, nqtes
on methodology and other short items. "
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NOTE ON THE L, TEST FOR MANY SAMPLES
By A. M. Moop

Neyman and Pearson' have discussed a method for testing the hypothesis
that k samples have been drawn from normal populations with the same vari-
ances by means of a statistical function, L, , defined by

N 1] sz %
L =II(%
t=1 \8°

where 7, is the number of elements in the ¢-th sample, s; is the sample variance
and

2 _ : Ne 2 N = i
$ —t=l]_\fs‘ —tnln‘.
L
For convenience, we shall denote L{ by A. In their paper Neyman and Pearson
have found the moments of A and have shown that the distribution of —2 log, A
approaches that of x* with & — 1 degrees of freedom when the number of ele-
ments in each of the k& samples becomes large. In some applications of this
test the question arises as to whether the x* law is a good approximation when
the number of samples is large in comparison with the number of elements in
each sample. For example, in a certain educational study, the number of
schools was much greater than the number of pupils in each school, and it was
desired to test for heterogeneity of variances of scores on a given examination
using L; as the criterion. The purpose of this note is to examine the behavior
of the L, test for large values of k.
Wilks has obtained the distribution of A as a definite integral; it is, however,

a rather cumbersome form to handle. The procedure here will be simply to
compare the first- few semi-invariants of —2 log A with those of x*. The p-th

moment of \ is’®
(N — k) ((p + Dn, — 1)
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1 ¥(p) =
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1 4On the problem of k Samples,”” Bulletin de I’Académie Polonaise des Sciences et des
Lettres, Série A (1931), pp. 460-481.
2 Ibid., p. 472.
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Since
E(e(—2 log )\)0) — E(A_”)

the characteristic function of —2 log X is obtained on replacing p by ~—26 in (1),
where 6 = 4, t being a real variable. The logarithm of the characteristic func-
tion is the generating function of the semi-invariants; denoting the latter by
¥(6), we have

)] ¥(6) = log u'(—20).

After substitution of (1) in (2), the resulting expression can be simpliﬁed by
means of the Weierstrass factored form of 1/I'(x) which is

gy~ T (1+2) 7,

where v is the Euler constant .577. The final result is

k 2 N — &k
¢(0)=0[‘Z_;mlogn: N“’KN]+2' 2%

3

® _Ez":log%-l—nf—l
t=1 r=0 2r+mn, —1

where N’ = N(1 — 26) and n; = n, (1 — 26).

The semi-invariants of —2 log A are given by the derivatives of ¥(8) evaluated
at § = 0; these will be denoted by A1, A2, ---. A and A, are the mean and
variance respectively, and in general the semi-invariants are related to the
moments, u,, by®

4) e = Z'S ('? _ }) Nipho—i -

s=1 \?

From the generating function (3) we obtain:

k
=y'(0) = > nlogn, — Nlog N
t=1
(5) L k o

+ 22

r=202 +N—k l—lr-02r+’n¢—-1

©® A\ =y70) = (s - 1)'2[2 @ f::)‘_ Iy~ (er 4%)— ky]

t=1

s=2’3,0u0

3 See e.g., Charles Jordan, Statistique Mathématique, p. 41.
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The infinite sums can be well approximated by integration when the n, are
moderately large, giving

k
/) - n‘(N - k - 1)
") A= § ne log “Nm—2)
k 3 (]
— _ s—1 ne - N - e
®) A= (s —2)!2 [Z; Ty =S gy 1),_1] 8=2,3,

and when the samples are of equal size, that is
N ="Ng = ++-+ =N =N, N =kn

equations (7) and (8) become

9 M = kn log (1 + l;;(kT——-lf))
(10) M= (s — 2)!2"‘[ C f”;),_l ~ i b 1),_1] $=2,3,

It is worth noting that these last two expressions are monotonic decreasing
functions of n for a fixed ¥ > 1; hence when the sample sizes are unequal the
true values of the A, lie between the values given by substituting the least and
greatest n; for n in (9) and (10). This fact supports the suggestion of Nayer
on page 47 of his paper on the application of the L; test. He has computed
tables for the critical values of L; when the sample sizes are equal, and suggests
that when the sizes are unequal but not radically different, the average value
of n, may be used.

The limiting values given by
(11) ) aadl Ch D2k — 1) §8=1,23, -
are the semi-invariants of x* with k — 1 degrees of freedom as is easily verified
by induction using (4) and the following expression for the moments of x*
with m degrees of freedom:

pe = mim + 2)(m + 4) --- (m + 28 — 2).
For a fixed n > 2 the quantities

A
G=DIZri(k = 1)

are monotonic decreasing functions of k, however the variation is rather slight
as is evident from the following table:

4 “An investigation into the Application of the Neyman and Pearson L, Test, with
Tables of Percentage Limits,’’ Statistical Research Memoirs, Vol. 1 (1936), pp. 38-51.
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n 20 100 o
k 10 © 10 © 10 ©
M
P— 1.084 | 1.081 | 1.016 | 1.015 1 1
— 2 | 976 | 1170 | 1.032 | 1.031 1 1
5 =T ) ) ) ) ,
M | yo75 | 1.265 | 1.048 | 1.046 1 1
50 =D ) ) ) )
— M | 38 | 1.360 | 1.065 | 1.062 1 1
48 (k _'l) . . . .

These résults indicate that the degree of approximation of —2 log A to the x*
law with k& — 1 degrees of freedom is mainly dependent on n, and is for all prac-
tical purposes independent of ¥ when » is moderately large.
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ON TCHEBYCHEFF APPROXIMATION FOR DECREASING FUNCTIONS

By C. D. Smits

The problem of estimating the value of a probability by means of moments
of a distribution function has been studied by Tchebycheff, Pearson, Camp,
Meidel, Narumi, Markoff, and others. Approximations without regard to the
nature of the function have not been very close. However the closeness of the
approximation has been materially improved by placing certain restrictions on
the nature of the distribution function.! For example, when y = f(z) is an
increasing function from z = 0 to z = cs and a decreasing function beyond that
point, the corresponding probability function ¥y = P, is concave downward
from z = 0 to z = co and concave upward beyond that point. Here P, is the
probability that a variate taken at random from the distribution will fall at a
distance at least as great as x from the origin. Beginning with these conditions
I have established the inequality"

1B. H. Camp, ‘“A New Generalization of Tchebycheff’s Statistical Inequality”’, Bul-
letin of the American Mathemaiical Society, Vol. 28, (1922), pp. 427-32.

C. D. Smith, ‘““On Generalized Tchebycheff Inequalities in Mathematical Statistics,’’
The American Journal of Mathematics, Vol. 52, (1930), pp. 109-26.



