THE INTERPRETATION OF CERTAIN REGRESSION METHODS AND
THEIR USE IN BIOLOGICAL AND INDUSTRIAL RESEARCH'

By C. E1sENHART

1. Introduction. Just as the scientific theorist depends upon the research
worker for the facts upon which to build his theory, so does the practical man
rely upon empirical relationships to help him estimate (or predict) the value of
one quantity from that of another. Sometimes he is interested in assessing the
value of some quantity which it is impracticable or impossible to observe directly
in a given instance, the estimation being performed with the aid of a previously
established relationship between the quantity whose value is sought and another
whose value can be determined directly. In other instances he wishes to make
use of the relationship existing between two or more quantities to help him
adopt a course of action which has a good chance of leading him to a desired
result. An example is that of a manufacturer who wishes to exercise control at
various stages of a manufacturing process so as to produce a product whose
quality lies within a specified range.

In appealing to the interests of the practical man, proponents of statistical
methods have often illustrated their writings with beautiful examples of the
power of this implement of research, without adequately discussing the abstract
ideas that underlie the methods they have promoted—ideas essential to correct
statistical thinking. The result has been that to many research workers certain
problems with similar objectives appear amenable to identical statistical solu-
tion, when in fact intrinsic differences exist which alter considerably the details of
their solution.

Such misinformation is particularly prevalent among those whose knowledge
of the mathematics of correlation, and of curve fitting, has been derived from
the treatment in elementary statistics courses of problems in which no one of
the variables stands out from the rest as being the dependent variable, with
its values determined (not exactly, but within limits) from the values that
happen to be assumed by the other variables in the data under investigation. In
elementary courses the usual procedure in such cases is to take one of the variables
as the dependent variable, and then consider the others as independent variables.
Furthermore, the curve-fitting procedure usually adopted depends on the addi-
tional assumption that the values of the independent variables are known exactly
(without error)—an assumption often passed by without mention, and one that

1 Revised from an expository paper presented, under different title, to the American
Statistical Association, at Detroit, December 29, 1938, at the invitation of the program
committee of the Biometrics Section.
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introduces artificiality into the analysis and imposes limitations on the range of
applicability of the inferences drawn. This simplification of problems without
explicit mention of the fact, fosters misconceptions that are carried over into
analyses of data in which the dependent variable is definitely a particular one
of the variables and no other—a particularly bad misconception being that the
variable whose value is to be estimated automatically assumes the roéle of the
independent variable. The calculation and use of dosage-response curves in
problems of biological assay constitute an example, and a case which has been
correctly solved. The dosage-response curve should be evaluated from a series
of observations, with dosage as the independent variable, and the curve then used
to estimate unknown dosages from observable responses.

It is one object of the present paper to pass in review some of the ideas involved
in current curve-fitting practices so that the reader can see for himself why,
when one is interested in estimating X from Y, in some instances it isnecessary
to follow out curve-fitting practices with Y as the dependent variable, and then
use the inverse of the relation found. In addition, it is an object of this paper to
indicate the types of problem to which this method of inverse regression affords a
solution, and to emphasize the confidence interval nature of the estimates it
provides. The method will be exemplified by working out in detail a problem
arising in the manufacture of cheese, and also a problem concerned with the
biological assay of a hormone substance.”

2. Mathematical Aspects of the Formulation Of Empirical Relationships.
Probably the most obvious way of investigating whether any relationship exists
between two variables is that of plotting the observed pairs of values on graph
paper. For simplicity we shall confine our attention in this paper to the case of
only two variables. While the general trend of the plotted points may suggest
the existence of a relationship, the plotted points themselves do not give a
definite expression of that relationship, and it is often desirable to have a formula
of some sort that expresses it concisely. Furthermcre, in all branches of science
the data of the research worker are subject to all sorts of fluctuations which
tend to make the observational points scatter about a general trend in a band
not unlike the Milky Way. Consequently various methods have been developed
for inferring from the observations the ‘true relation’ between the quantities
concerned, or, more exactly, a relation which it is hoped will be sufficiently
close to the ‘true relation’ for the purposes in mind.

In the development of these methods two rather different viewpoints had to
be taken into consideration: first, that of the physical scientist who views the
irregular fluctuations as being quite apart from the phenomena under observa-
tion and arising solely from inaccuracies of measurement and experimental

2 Those who are primarily interested in problems of biological assay will find additional
material in references [26] to (31]; those whose interests lie in the direction of quality
control are referred to W. A. Shewhart [9], and E. S. Pearson [5]. Numbers in [ ] refer to
the references at end of the paper.
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technique; secondly, that of the biological and social scientists who attribute a
large portion of the apparent irregularity of their observations to a real varia-
bility which is an essential part of the phenomena studied. That two such
divergent viewpoints could be brought together on a common ground is a tribute
to the pioneers in mathematical statistics, and the manner in which it has been
effected is indicated by the following entry in E. S. Pearson’s notebook® for
1921-22:

“The purpose of the mathematical theory of statistics is to deal with the
relationship between 2 or more variable quantities, without assuming that one
is a single-valued mathematical function of the rest. The statistician does not
think that a- certain x will produce a single-valued y; not a causative relation
but a correlation. The relationship between z and y will be somewhere within a
zone and we have to work out the probability that the point (z, y) will lie in
different parts of that zone. The physicist is limited and shrinks the zone into a
line. Our treatment will fit all the vagueness of biology, sociology, etc. A
very wide science.”

When viewed from this angle, the fundamental problem in the determination
of a relationship between two variables, say X and Y, is to determine as accur-
ately as possible from the data in hand the simultaneous probability distribution
of the observable quantities, say z and y, considered as random variables. There
is, however, a subtle but important distinction between the cases in which the
random variability of z and y is due to errors of measurement, etc., and the cases
in which this random variability is, as in biological variation, a part of the
phenomena under investigation. In the latter we postulate the existence of a
probability distributton of the random point (z, ¥) about some point of location
(X, ¥), where the exact meaning of the coordinates X and ¥ depends on the
nature of the probability distribution, although they will generally be the co-
ordinates of the mode. In these cases, since (z, y) is subject to biological
variation only, (z, y) will lie on the line X’=constant only in cases where
z = X’. Accordingly, along a line x = X’ we shall have the probability distri-
bution of the random point (X’, y) about some point of location (X’, ¥x).
This may not be true when z is also or alone subject to experimental error, for
here we postulate a separate probability distribution of (z, y) for each ‘true
point’ (X, Y), and when there are ‘errors’ in both coérdinates (z, y) can lie on the
linez = X’ when X # X’. In these cases, the observed distribution of (z, y)
for z = X' may result from sampling more than one probability distribution and
cannot be interpreted simply. If, however, the X-coérdinate is never subject to
error, the distribution of (z, y) for x = X’ samples the probability distribution of
(z, y) for (X', Yx/), where Yy is the true value of Y for X = X’'. Clearly
similar remarks apply in terms of y and Y.

3 E. 8. Pearson, Biometrika, vol. XXIX, parts III and IV, (1938) p. 208, writes: “‘I
find on page 1 of my Notes the following statement, which was probably taken down
fairly closely from (Karl) Pearson’s words: ‘The purpose of...."”
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Actually at the outset it is not customary to embark on the solution of such a
general problem as the determination of the simultaneous probability distribu-
tion of x and y. Instead, in the cases where both z and y are subject to ‘error’,
it is customary to assume that the distributions of x about X, and y about Y,
are of some particular functional form and then seek to estimate from the data
the ‘true relation’ (X, Y) = 0. Likewise, when z and y are subject only to
biological variation, say, it is customary to seek an estimate of the functional
relation o(X, Yx) = 0, or of the relation o(Xy, ¥) = 0, where Yx and X,
denote some sort of average (not necessarily the mathematical expectation) of y
for a given X and of z for a given Y, respectively, the former being interpreted
as being the ‘true relation’ between X and the average value of y for that X,
with a similar interpretation for the latter function. Furthermore, in these
cases of mere biological variation it is customary to take x = X, y = Y, that is,
to assume that what we observe are the true values of the quantities, that any
errors of measurement are negligible compared to the sampling fluctuations
arising from real biological variation.

So far as I know all methods of utilizing observed values of two variables to
obtain a relation between the two variables that it is hoped will be sufficiently
close to the true relation for the purposes in mind involve the following steps:

(1) To assume that the observational points (z:1, y1), (x2,¥2), -+, (v, Yn)
differ from the points (X, Y1), (X3, Y3), ---, (X~, Yn) as the result of
observational errors' involved in the z, or in the y, or in both coérdinates.

(2) To assume, either from the general appearance of the graph of the
plotted points or from theoretical considerations, that the relationship between
X and Y is of the form (X, Y; a0, a1, - - -, ar—1) = 0, where ¢ is some definite
mathematical function involving k, k¥ < N, constants whose values are un-
known. If it is not assumed that ¢ s the true functional relation between
X and Y, then it is assumed that the functional relation specified by the ¢
will be adequate for the purposes in mind.

(3) To choose as an estimate of ¢ the function $ = (X, Y; a0, a1, - -+, ar_1)
where the a’s are those values of the o’s that render $ the function of form ¢
which is the best fit to the observed points (z;, y;), (¢ = 1,2, ---, N), in
some sense of the word “best’’; and finally, a step which is too often overlooked.

(4) To carry out some test of goodness of the fit of $ to the observed points
upon the outcome of which rests the decision as to whether a function of the
form ¢ can adequately describe the observed relation between the z’s and
¥’s, and, if the decision be affirmative, accepting $ as an estimate of the true
function of form ¢.

¢ The word ‘“‘error’’ here should be interpreted as “experimental or technical error”
from the viewpoint of the physical sciences, (which errors are unbiased in the sense that
they average out in the long run), and as “‘biological variation” from the viewpoint of the
biological scientist. In the latter case, if the biological variation isinvolved in y, and not
in z, then z, = X; and Y, = Yx,; a similar statement holding if z is in error but not y.
In the former case, X and Y are the ‘“‘true values’ of the variables.
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In connection with step (4) some results were obtained by W. E. Deming [2]
for the case where ¢ is fit by the method of least squares. He has found that the
sum of squared residuals, which is the function to be minimized by the fitting
procedure, is fairly sensitive to changes in the functional form of ¢, that is, to
changes which alter its graph within the range of the observations, but much
less sensitive to changes in the values of the parameters involved in a particular
functional form. Consequently, by comparing the minimum values of the
sums of squared residuals for two different functional forms ¢; and ¢ under
-tentative consideration, it will often be possible to make a good choice between
them. On the other hand, it may be possible to alter considerably the values of
the parameters in the functional form chosen without appreciably altering the
value of the sum of squared residuals. From this it is seen that ¢ may not be
well determined by ¢ even though the functional form of ¢ may be the correct
one for the relationship under investigation. For the case where X is exactly
known for each observation, with only y subject to error, Deming shows that
for the same sum of squared residuals ¢ is better determined by & when there is a
long range in X than when there is a short range. In terms of the measure of
goodness of fit appropriate to any method of curve fitting these conclusions will
probably carry over to that method of curve fitting.

Step (2) also deserves further comment: The function ¢ may be such that ¢
- fits the data well within the range of « and y studied, but it must be remembered
that an infinite number of other formulae exist which could be adjusted so as to
fit the observed points equally well, and some might be found which could be
made to fitbetter. Once a particular functional form for ¢ has been chosen, if $ is
used to “extrapolate’” beyond the range of the observed points, or, if  is used as
the relation between X and Y in any theoretical considerations, it must be re-
membered that the soundness of any inference that can be made rests to a large
extent on the validity of the logic or theoretical considerations that lead to the
choice of ¢ as the expression of the functional relation between the variables,
and that the goodness of fit of & for one particular batch of data is not a justifica-
tion of these extensions.

3. Some general remarks on curve fitting practices.
In many cases the assumption is made that a linear relation prevails between

X and Y, that is, it is assumed that

1) a+ aX + ol =0
which may be written in the equivalent forms

2) Y = a + BX, wherea = —ap/az, and B = —ai/az
(3) X =+v+8Y, wherey = —ay/a;, andé = —az/a;.

We are adopting for the moment the viewpoint of the physical scientist, and
assuming that (1) represents the true relation between X and Y. We shall
return to the case of biological variation later.
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A common impression on the part of the research worker, regarding the
principles of curve-fitting, seems to be: If one is interested in estimating ¥ from
X, then take ¥ = a + bX as the estimate of (2), and therefore of (1), the a and
b being- those values which make the line a good fit in terms of the deviations
(y — Y)—if one were fitting by the method of least squares one would find the
a and b that minimize 2(y — Y)?, £ denoting summation over the observed
values of y and their corresponding ¥ values; on the other hand, if one is in-
terested in estimating X from Y, then X = b + cY is to be fitted, the values
of ¢ and d being chosen so as to make X a good fit in terms of the deviations
(x — X). It does not seem to be generally realized that the fitting should be done in
terms of the deviations which actually represent “‘error.” Thus when the research
worker selects the X values in advance, and holds x to these values without error,
and then observes the corresponding y values, the errors are in the y values, so that
even if he is interested in using observed values of Y to estimate X, he should never-
theless fit ¥ = a + bX and then use the inverse of this relation to estimate X , 1.e.
X = (Y — a)/b, with the best available estimate of Y substituted for Y. The situ-
ation is quite clear if one approaches the problem from the point of view of fitting
the formula to the data with proper attention to which of the variables is in error,
as has been recognized for a long time by writers on least squares. If both
variables are in error, then this approach also leads to the appropriate solution.®

In order to clarify this point it will be helpful to examine the matter a little
closer from the viewpoint of the theory of least squares.

Let us consider the case where the values of X are selected (or adjusted) by
the research-worker and then the corresponding values of Y found by observa-
tion. So far as the method of least squares is concerned in any given instance
one could minimize =(y — Y)’ and =(z — X)? thereby obtaining the two lines

(4) Y =a+bX
5) X = ¢ + dY, respectively,

and, unless there existed a perfect correlation between the observed values of
X and Y—i.e. unless all of the observed points were exactly collinear, these two
fitted lines would differ and yield different estimates of (1). There is nothing
in the method of least squares to help us choose between these, but from the
viewpoint of the theory of least squares the correct choice in a given instance is
quite clear.” The results of the two fitting processes may be given side by side as
follows:

¢ See, for example, Deming [1]. Deming pays his respects to a paper by Kummel in
The Analyst (Des Moines) vol. 6 (1879), pp. 97-105; also to a paper by Uhler, J. Optical Soc.
vol. vii (1923), pp. 1043-1066.
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( 2(y — ¥)? minimized =(z — X)? minimised
p = 2 — Dy —'p) 12—y -9
2(x — 7)? 2(y — 9)?
a=§— bi c=%—dj
Analysis of Variance I df Analysis of Variance I1 df
©) Total variability of ¥’s Total variability of z’s
about their mean: Z(y — ) N — 1 about their mean: =(z — £)* N — 1
Reduction effected by (4): Reduction effected by (5):
bZ(z — 2)(y — 9) 1 dZ(z — 2y — ) 1
Deviations about ¥: Deviations about X:
2y -9 - 2@ - Dy —§) 2@ -2~ d2(z -2 @y — 9
| =24 -7 N-2 =36-23%7 N -2

In all instances = denotes summation of the expression following it over all the
observed values; £ = (1/N)Zz, the arithmetic mean of the chosen values of X;
and § = (1/N)Zy the arithmetic mean of the observed values of Y. The expres-
sion in the middle row of each table of the analysis of variance is an immediate
consequence of the minimizing process employed; the last row is obtained by
subtraction.

Let us now interpret these analysis of variance tables. On the left, =(y — §)’
gives a measure of the observed variability of the y values, a portion of this
variability being due, we suppose, to the dependence of ¥ on X. The second
row of table I gives the portion (the maximum portion on the basis of the ob-
servations) of the observed variability of the y’s that can be attributed to the
dependence of Y on X, and the last row indicates the magnitude of the rest,
that is, the magnitude of the portion of Z(y — #)* that must be attributed to
‘“error” (and, this portion has been minimized by the fitting process). In
short, remembering that we are dealing with the case tn which the values of X are
chosen by the research worker and only the values of Y are subject to error, the relation
between X and Y being as in (1) or its equivalent form (2), we see that the analysts
of variance table on the left separates =(y — ) into portions whose meanings are
clear. In particular, since unrelated variables can exhibit relationship in finite
samples, the test of whether B is really different from zero resolves itself into
examining whether the variance ratio

(bE(:v - al':)(y - ﬂ))/(z(y -9’ —-7\1;2_(902— 2y — ﬂ))

is of a magnitude that may be taken to indicate 8 # 0 in the sense that the risk
of falsely rejecting the hypothesis that 8 = 0 by so doing is of an acceptable
smallness.
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The analysis of variance table on the right, on the other hand, can be misleading
if it is interpreted hastily. In the first place =(z — %)’ represents the variability
in the chosen values of X which resulted from the way in which the research
worker selected (or adjusted) them, and it is to be noted that the corresponding
values observed for ¥ have in no way entered into their determination. Con-
sequently the apparent dependence of the x on the y, measured by d, or more
effectively by the second row of table II, is a spurious dependence, and the last
row of this table cannot be interpreted as being a measure of the “error’’ in the z
values, in the sense of being that portion of the variability of the x values which
cannot be accounted for by the variability of the y values. Briefly stated, when
the values of x have been selected by the research worker and the corresponding y values
observed, the line obtained by minimizing =(x — Y)* is meaningless, and (4) is
accordingly the only correct estimate of the postulated linear relationship between
X and Y, wherefore, if it is desired to reason from Y to X this must be dore by means
of X = (Y — a)/b, namely (4) solved for X.

In the preceding paragraphs we have discussed the case where one of the
variables is subject to random variation, and the other takes only those values
selected (or, to which it is adjusted) by the research worker. Without loss of
generality we took Y to be the former variable, and X the latter. Actually we
have discussed only the case in which (1), or one of its forms, (2) or (3), is as-
sumed to express the ‘true relation’ between X and Y. That is, we have been
discussing the case where y varies about Y as a result of experimental ‘error,’
and we have not treated the case where y is subject to biological variation.

If X takes only those values selected by the research worker, and y is subject
to biological variation but is known without observational error, so thaty = Y,
(1) no longer applies for the reasons given in section 2, but it must be replaced by

(7) [27)) + a;X + az?x =0

where ¥y is the ‘average’ value (but not necessarily the arithmetic mean or
mathematical expectation) of Y for the value of X denoted by the subscript.
Clearly (7) may also be written in a form corresponding to (2),

8) Yx=a+BX, with a = —ap/as and B = —ay/as
or in a form corresponding to (3),

(9) X =(Yx—a)/B=—a/f+ (1/8)¥x.

With this latter form we may contrast

(10) Xy=v+08Y

a relation expressing “the true average value of X for a given Y”’ as a linear
function of Y. Equation (10) is of interest, as well as (8), when X is free to
vary in samples according to the biological variation associated with it, but when
the distribution of values of X is dictated by the wishes of the research worker,
as in the case under discussion, it can be demonstrated that (10) is of no value
for purposes of inference.
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The method adopted for estimating (7), or one of its alternative forms, will
depend on what “average” Yy is taken to be. If, as is usually the case, ¥Yx
denotes the true arithmetic mean (or mathematical expectation) of Y for a given
value of X, then (4) fitted by the method of least squares as above affords an
unbiased estimate of (8). Or, if ¥ x were taken to be the true median of Y for
a given X, then in general one would fit (4) by minimizing 2 |y — Y|, the
summation being taken over the observed y values. As in the discussion of the
case involving experimental error, to estimate X from Y one would estimate (9)
with (4) solved for X, and in a particular instance replace ¥ by the best available
estimate of ¥x from the data in hand. This brings out the strong similarity
between statistical procedures appropriate when the variables are subject to
experimental error and when on the other hand they are subject to biological
variation but can be accurately observed.

A great injustice would be done to many previous writers by failure to mention
at this point that the ideas and the conclusions reached in the preceding para-
graphs have been appreciated for a long time by some of the writers who have
developed the theory and applications of curve fitting. At most, the preceding
paragraphs are but an emphatic way of presenting what these experts would
regard as obvious.

4. Effect of Limiting the Range of Either Variable in the Sampling Process.

In the preceding section we have discussed the situation in which one of the
variables does not vary at random, but assumes only those values selected by the
research workers. We have seen that in such cases this variable must be taken
as the independent variable in applying any curve-fitting procedures. The
same conclusion applies when both of the variables are subject to biological
variation but the sampling process limits the observed range of one of the
variables—only the results obtained by using the restricted variable as inde-
pendent variable can be expected to give an unbiased description of the under-
lying relationship in the population sampled. If X is the variable for which the
range of observable values is constricted by the sampling process, this means
that the relation (8), for the population sampled, can be estimated from the
data; but relation (10) for the population is unattainable.

To illustrate this point it will be sufficient. for our purposes to consider Figure 1
which has been constructed from some artificial data which are especially suited
to this purpose. We shall suppose that Y is the dependent variable and X the
independent variable, and that the complete array of points shown arose from a
sampling process in which neither X nor Y was restricted. It will be noticed
that the observational points lie in a band sloping upward to the right and that
as z increases by one unit the distribution of the corresponding y’s moves up
by one-half a unit. We may consider the points of the entire band shown as
portraying the relationship between X and Y in the large, that is, when a point
(z, ) is selected at random without restrictions on either X or Y. The slanting
line labelled (I) indicates the “average” relationship prevailing between Y and
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X, that is, for a given value of X the arithmetic mean of the corresponding
observed values of Y is given by the point on this line with abscissa X.

Let us now consider the situation in which the points have been selected with
restriction on X. As the results of such a procedure of selection let us take
only those points between the two vertical lines drawn just to the right of X = 3

Y
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and just to theleft of X = 7. It will be seen that this does not upset the average
y for a given value of z within the prescribed limits, i.e. ¥ is unaltered for
3 < X < 7. In other words, the introduction of a restr-ction with regard to X, the
independent variable, has not spoiled the inferences with regard to Y, when Y is
considered as the dependent variable—that is, when we are arguing from X to Y.
Consider now the effect of restricting the observed y in a sampling process
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and then trying to infer about ¥ x in the population at large from given values of
X. In Figure 1 this corresponds to considering, say, only those points that lie
between the horizontal lines just above Y = 3 and just below ¥ = 7. Itisseen
immediately that in this case, i.e., between the horizontal lines, for every value
of X the average of the observed Y valuesis Y = 5, and consequently the relation
of Y to X is portrayed by the line numbered (II). It ¢s seen that in this case the
“apparent’ relation 18 mot the correct ome. Accordingly, we conclude that the
restriction of the dependent variable is liable to seriously distort the relationship, so
that what s observed s not representative of the true underlying situation.

The demonstration that we have chosen is simple and artificial but the conclu-
sions drawn apply in general, namely, the restriction of X does not alter the
regression of ¥ on X, but the restriction of ¥ does. For further illustrations
and a very readable discussion see Chapter 19 of Methods of Correlation Analysis
by Mordecai Ezekiel.

As a special case of a situation in which the “‘observed” y’s are restricted in
some way or other we may turn the problem around and note the limiting case
where Y is not a random variable at all but is given certain assigned values by the
research worker and the corresponding values of X are ascertained by observa-
tion. It is evident from what has gone before that in such a case any formula
that expresses the average value of y for a given value of z for the data thus col-
lected is useless for inferring anything about the average value of ¥ for a given
value of X in the “population” at large.

5. Variables Subject to Biological Variation and also to Errors of Observation.
In the preceding paragraphs we have been supposing that the variables were
subject either to errors of measurement, or to biological variation, but we
excluded the case in which both types of variation were in operation simul-
taneously. It isreasonable to suppose that errors of measurement are present in
biological work just as they are in the physical sciences, though it will usually
be found that the variability between biological specimens is far greater than the
maximum variability that could be attributed to errors of measurement. Ac-
cordingly, in most biological work true biological variations force errors of
measurement into the background. It is usually possible to check up on this
by making two or more determinations for each specimen and then comparing
the variation between determinations with the variation between specimens by
means of the analysis of variance technique developed by R. A. Fisher [3].
When only one determination is made per specimen the two variations cannot be
distinguished.

Even if observational errors are in the background, it is of importance to
know the consequences to be expected when they are superimposed on biological
variation. Ezekiel discusses this phase of the subject in detail in chapter 19 of
his book mentioned earlier, and a survey of his conclusions in terms of what we
have discussed above will be sufficient for our purposes: (a) If ¥x denotes the
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average value of Y corresponding to the X denoted by the subscript (in a certain
sense of the word “average’’) and is a linear function (8) of X, then if the X
values are free from errors of measurement but the y values are subject to
random errors, uncorrelated with the true Y values, and which average out in
the long run (in the same sense of ‘“average’ as above), then (4) fitted by the
method consistent with the meaning of “average” provides an unbiased estimate
of (8), in the sense that its ‘“‘average” value in repeated sampling will be (8),
and the effect of the errors of measurement is merely to decrease the precision
with which (8) can be estimated from the given set of X values; (b) if the situation
is as in (a) with the exception that the errors are correlated with the true Y
values, then not only will their presence affect the precision of (4) as an estimate
of (8), but it will render (4) a biased estimate of (8), the tendency being an
underestimation of the existing correlation; (¢) if random errors affect the inde-
pendent variable correlated or uncorrelated with its true values, then (4) will
be an unreliable estimate of (8), and may be markedly biased whether or not the
errors of measurement affect the dependent variable; and, if non-random errors of
measurement are present they tend to render (4) a more or less unreliable esti-
mate of (8), quite regardless of the variables to which they apply.

The practical significance of these principles in regard to variables subject to
biological variations is that if large errors of measurement enter into the deter-
mination of some variable, provided these errors are random that variable may
still be used as the dependent variable without introducing appreciable bias in
the estimation equation if enough observations are available to approximately
balance out the errors; but any use of that variable as the independent variable
will almost surely yield results that understate the actual relationship, and if the
errors are not random, they will tend to bias the results quite regardless of the
variables affected by them.

6. An Industrial Problem. With the preceding discussion in mind let us now
direct our attention to a problem that arises in connection with the manufacture
of cheese. One of the measures of the quality of a cheese is the percent of fat
it contains. In the cheesemaker’s notation this is given by the fat-drymatter
ratio, /DM, which is usually written as percent since the fat is contained in the
total dry matter. Experience in cheese making has shown that the casein-fat
ratio, C/F, of the milk out of which the cheese is made influences the /DM
of the finished cheese, and that the relationship is approximately linear, with a
negative slope, for the range of values of these variables usually studied.

Since 459, is the lower limit of F/DM for an acceptable cheese as specified by
law, cheese manufacturers are interested in standardizing the C/F ratio of the
milk they use, which they can do by separating the milk and cream from indi-
vidual sources and then putting them together again in proper proportions so
that the resulting cheese will have a good chance of meeting the legal require-
ment at least. Figure 2 portrays some results obtained by standardizing the
C/F ratio at different values, the individual points representing 149 different
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batches of cheese manufactured in October, 1936 at a particular factory.® It
is seen that the relationship prevailing between C/F and F/DM in these data
takes the form of a rather wide sloping band and not as a close clustering of
points about a well-defined trend.

If a cheese manufacturer is able to infer from data of this sort a reliable answer
to a question like the following, he will be able to improve the economic efficiency
of his plant: “To what value should C/F be standardized in order that we may
expect F/DM to exceed 45 in, say, 959, of our future experience?’’ Unfortu-
nately this type of question, very easy to phrase, is usually exceedingly difficult
to answer, and, indeed, the very existence of an answer depends on an assump-
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tion of some sort of stability in the manufacturing process, and in the materials
used, which enables a future observation to be estimated at least within limits

¢ These data were brought to me by Professor Walter V. Price, of the Department of
Dairy Industry of the University of Wisconsin, in connection with a different but related
problem, and I wish to acknowledge my gratitude to him for permission to use them in
the present discussion. It will be noted that F/DM is given as a per cent, whereas C/F
is given as a decimal fraction. This is the customary procedure with dairymen, and
arises from the fact that C/F is merely an index involving two different quantities dis-
tinguishable in the milk, and cannot be interpreted as a per centin the same way as the
F/DM ratio.
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from available experience. In the succeeding paragraphs we shall present a
solution that will depend for its applicability upon the following assumptions:
Let Y denote the true F/DM ratio of a finished cheese, X the true C/F ratio
in the milk from which it was made, and let ¥ x denote the true arithmetic mean
of Y associated with the value of X indicated by the subscript.
Assumption I: We shall assume that the dependence of ¥x on X is linear
and given by

8" Yr=a+BX =d +8(X — %), with o = a+ B%

where Z denotes the arithmetic mean of the true C/F values corresponding to the
points shown in Figure 2.

It should be noted that % and its value do not enter into the specification of
the linear relationship but only into the alternative expression of it.

Assumption II: We shall assume that X is determined without error in a
given instance, and the differences (yx — ¥ x) between the observed values of
F/DM, say yx , and their corresponding mean values, ¥ x , may be regarded as
drawn independently at random from a population in which (yx — ¥x) are
normally distributed about zero with a variance, oy.x , which is the same for
all values of X.

Since these assumptions are restrictive it is necessary in connection with a
given practical problem to ascertain whether they are acceptable on the avail-
able evidence before proceeding to the application to the problem in hand of
methods depending on them for validity. Before applying to a problem of his
own any of the methods presented in the following paragraphs, the reader
should investigate the tenability of these assumptions with regard to his type
of data. Methods for examining whether data of a given type exhibit “sta-
tistical control” are available in the literature and the reader is referred espe-
cially to the writings of W. A. Shewhart [9, 10]. To date experience has shown
that it is very difficult to attain and maintain statistical stability in connection
with industrial processes. On the other hand, it is uselsss to try to answer
questions of inference such as the above until a fair degree of statistical stability
is attained, whether statistical processes are employed or not. The success
along these lines that has been attained in industry is a great tribute to Shewhart
and his insistence on attention to this phase of the application of statistical
methods to practical problems. The sooner workers in other fields turn their
attention to questions of statistical control, the sooner mathematical statistics
will be of some value to them.

From an examination of C/F and F/DM values from the same factory over
a period of months it appears that although a relation of the type (8’) above
seems to exist in most instances, it is not stable with regard to the values of «
and 8. Consequently, unless the source of this instability can be discovered
and either removed, or allowed for, the answer to the above question is more or
less unattainable. In order to exemplify the method, however, we shall proceed
as if statistical control were a fact and assumptions I and II tenable.
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1t is clear, I think, from comments in the early part of this paper that if we
let Y = F/DM and X = C/F, since the C/F values have been chosen by the
cheese makers, we shall have to infer about X from the relation of ¥ to X,
the latter being considered as the independent variable. Furthermore, it is a
consequence of assumption II that fitting

4) VY=a4bX=0¢4+bX —3)

by least squares will provide the most accurate estimates of « and 8 in (8’).
That a’ = §, the arithmetic mean of the observed y values is evident when (4')
is compared with (4) and (6). Performing the calculations it was found that

(11) ¥ = 64.38 — 24.58X = 43.63 — 24.58 (X — .8439),

for the data shown in figure 2.

If now we ask “What value of C/F will to the best of our knowledge result
in F/DM = 45 on the average in the future?’”’, the answer is obtained by setting
Y = 45 in (11), solving for X, from which it is found that C/F (= X) should
be taken equal to (64.38 — 45.00)/24.58 = .7884, and this point is indicated
by the black dot with white center on the line in Figure 2. 'We must remember,
however, that (11) is merely an estimate of (8’), and that the value of ¥, namely
45, obtained by inserting X = .7884 in (11), is merely an estimate of the true
f’.mu , which may not be 45 at all. Indeed the use of Y for a particular value
of X to estimate the true ¥y for that X is mathematically equivalent to the
customary procedure of using 7, the mean of all of the observed y to estimate Y,
the true mean of the Y population.

In recent years it has become customary to perform such estimations, not
by single value, but by means of confidence intervals, a confidence interval for Y
being of the form

V.<Y7<7,

where ¥, and ¥, are functions of the observed values of Y, i.e. of y1, ¥z, - -
y~, and of the confidence coefficient chosen. If a confidence coefficient, of
1 — eis adopted (¢ > 0), then the interpretation of such an inequality is as
follows: If mequahtles of this form are used whenever it is desired to estimate ¥
from the observed y’s, then in the long run we may expect 100-(1 — €)% of
such estimations to be correct, that is, in 100-(1 — €)% of the cases in which
we apply intervals of form (6) they will include ¥ within their limits. Such
limits are sometimes referred to as fiducial limits and the associated degree of
confidence termed the fiducial probability of the estimation being correct.

7 There is an ever-growing literature on this mode of estimation, and a list of references
to expository treatments of the subject will be found at the end of the paper together with
a few other pertinent references.

From Fisher’s 1935 paper it appears that he wishes to restrict the use of the words
fiducial probability, fiducial limits, etc. to the cases in which a sufficient statistic exists for
the parameter tc be estimated. Since he introduced the use of these words in this con-
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We shall now show how to set up confidence intervals for ¥x in terms of ¥
for that X, and by an extension of the argument, we shall show how to make a
probability statement about the difference (3’ — ¥) in repeated sampling,
where y’ is an observation not involved in the evaluation of ¥. The connection
of this type of probability statement to the question asked above will be pointed
out and its relation to the ideal answer to that question discussed.

In the succeeding paragraphs we shall make use of the following mathe-
matical results:

(A) Assumptions I and II imply that in repeated samples involving the
same values of X the fitted line ¥ of (4’) will be normally distributed about
the true line ¥ x of (8’) with a variance

(12) o = a3 + (X — %)%}
in which

o = cr:(.x/N
or.x/Z(X — 3)°

where 2 denotes summation over the N actual values of X involved, & is the
arithmetic mean of these values of X, and o¥.x is the true variance of Y for
a fixed value of X (and assumed independent of X). The condition that the
sampling be confined to the same values of X is an essential part of the state-
ment as can be seen from the original argument by Working and Hotelling
[12] which is outlined by Rider [6]. The result is given by Fisher [3] sec. 26.
(B) When o}.x is unknown, a convenient estimate from the sample is

(14) se = Z(y — ¥)/(N - 2),

the distribution of (N — 2) s}../o¥.x being as x* with N — 2 degrees of freedom
and independent of the distribution of (¥ — ¥y).”

(C) Student-Fisher theorem: The ratio of any quantity d normally distributed
about zero with standard deviation ¢, to an estimate s having the property
that ns’/¢” is distributed independently of d as x* with n degrees of freedom,
is itself distributed as Student’s ¢ for n degrees of freedom.®
Letting S3 denote the estimate of ¢ obtained by substituting s;.. for o¥.x

in the quantities (13), it follows from (A)—(C) that
P
=g

(13)

2
Ob

(15) t

nection, he has some sort of right to specify their usage. Accordingly Neyman’s confidence
intervals are of more general availability, and when a sufficient statistic does exist both
the fiducial limits and the limits of Neyman’s shortest confidence limits (or of his short
unbiased confidence intervals) will be found to depend on this sufficient statistic, although
the interval between the limits may not be the same in the two cases, Neyman bringing an
additional principle into play to assist in the location of his intervals.

8 Fisher [4]; ‘‘Student’’ [11].
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is distributed as Student’s ¢ for N — 2 degrees of freedom. Consequently if
t.os denotes the number for which P{|¢| > t} = .05 where ¢ is as in (15),
and | ¢ | denotes the numerical value of ¢, it follows that the probability is .95
that random variations in the y’s for the values of X chosen will yield a value
of ¥ for which

(16) —tuSe <V — Px < +tusSe
is true, that is, a value of ¥ for which
@17 VY —tsSe < Vx< ¥V + twsSe

is true. Accordingly, if we assert in a given instance that (17) is true, there is
no way of lelling whether our assertion is correct, but in the long run the s
we calculate from the data we observe may be expected to differ from their ¥ x
values in such manner that (16) will be correct in 95%, of our experience, so that
we may expect to be correct in 959, of the assertions we make about ¥y
using (17).

For the data of figure 2 the quantities needed in addition to (11) are

Lo _ooeri1a1  z(X — 2 = 274796

N 149
sp.. = .9448 tos = 1.979, for 147 degrees of freedom.

For X = .7884 it is easy to verify that (X — .8439)* = .0030, and substituting
in (12) with o}.x replaced by s;., gives Sy = .1290 for X = .7884, and, since
Y equals 45 for this value of X, we may assert

(18) 44.744 < Y 15 < 45.256,

and we are correct in this assertion unless a 1 in 20 chance event has occurred.
Since these limits do not differ widely from 45, we see that we may hazard the
prediction that, if X = C/F is standardized to .7884, then the values of ¥ =
F/DM in our future experience will be distributed about a mean fairly close
to45. This prediction is based not only on the assumption that we are sampling
a stable statistical population, but also on the presumption that (18) #s true.
Y 1ss may really lie outside and at quite a distance from this interval. The
results of a sampling experiment which illustrate this point in connection with
confidence limits for a sample mean will be found in Shewhart [10].

Let us now see how the preceding type of argument may be extended to take
into consideration a single additional y (= F/DM) value. Let y’ denote an
additional value of Y not included among those used to construct the regression
¥, and let X’ be the value of X to which y’ corresponds. If y’ be an independent
observation, then

(y, - Yxl) and (Y’ - ?x'),

where Y denotes the value of ¥ corresponding to X = X’, are normally and
independently distributed about zero with variances oy.x and o3 respectively.
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Since the difference of two quantities normally and independently distributed
about zero is also distributed normally about zero with variance equal to the
sum of the respective variances, it follows that (' — Yx) — (Y' — ¥x) =
(y’ — 7) is normally distributed about zero with the variance o)., + o3 .
Using s}.. to estimate o..,, which is involved in both of these terms, it follows
from (C) that

’ 7

(19) t = __'-‘/___Y__,

VS5 + sz
where Y is the value of (4') for X = X’ and ¥’ is an additional value of Y for
X = X'’ and Sy the value of Sy for X = X', is distributed as Student’s ¢ for
N — 2 degrees of freedom. It should be noticed that here the estimate s;..
obtained in connection with ¥ carries all of the burden of estimating o¥.x .
Accordingly, unless our combined experience with regard to y' and Y’ is such as
would occur 1 time in 20, i.e. unless ¢ of (19) numerically exceeds ¢,; for N — 2
degrees of freedom, it follows that

(20) —ta VS + 8. <Y — ¥V <tuSh + 5,
which may also be written as
(21) Y —tuvVSs + 5. Sy SV +tuSh + st

If, therefore, ¥’ denotes a future observation, unless our experience to date
(contained in ¥ and Sp) and our future experience with regard to y’ are such
as to make ¢ of (19) exceed ¢.¢; numerically—it being supposed we are sampling
a statistically stable universe—then if we predict limits for y’ by means of (21)
we can associate a confidence of .95 with this combined procedure—that is, if we
make a habit of evaluating regression lines ¥ and of predicting new observa-
tions with their aid by means of (21), then in 959, of the cases in which we take
independent paired steps of this sort we may expect to be correct with regard to
our prediction of y’. It should be noted that if ¥ is “away out” in the first
place, which may occur by chance, the combined experience of y’ and ¥’ will
probably be “away out” too, although y’ may be near Y x where it belongs.
The 95%, wager applies to the combined steps of getting ¥ and y’ and not to
the single step laying off an interval about ¥ in hopes of “catching” 3. In
consequence one should not keep on using one regression Y over and over
again, but should be continually amending “experience to date’”’ as data accu-
mulate.’

It should be noted that the above procedure does not yield us an interval
which may be expected to include 959, of the future values of y. Such a range

9 H. Working and H. Hotelling discussed this use of regression to forecast future values,
but did not, as far as I can see, emphasize the confidence interval nature of the argument,
nor the fact that the probability concerned refers to the two steps involved, and not merely
to the latter. The same may be said with regard to Schultz’s paper [8].
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would be an estimate of the range within which 959 of the population values
lie. The difficulties attending the estimation of this type of range are dis-
cussed by Shewhart [10], and it appears from his work that in the present state
of our knowledge very large samples are required for this purpose. In addi-
tion, by a beautiful example, Shewhart shows how a failure to distinguish
between confidence intervals associated with a given confidence coefficient, say
.95, and intervals containing 95%, of the population values, can lead to state-
ments which are quite false.

Recalling to mind that we have been going through all of this reasoning with
the aim of finding a way of deciding to what value of C/F (= X) we should
tell the dairyman to standardize his milk if he wishes to produce cheese for
which F/DM (= Y) is 45 at least, we see that our problem consists in getting a
lower limit to ¥’ where X’ is the value at which we shall advise him to stand-
ardize. If, therefore, we leave the right side of the inequality (21) open so that
we have

(22) V- t.’os'\/an + s:., <7,

where ¢/ is the value of ¢ for which P{¢ < —t5s} = .05, the sign of the ¢ value
in (19) being considered now, then we seek that value of X, which makes the
left side of this equal to 45. For, if y’ correspond to this value of X, call it X’,
then unless our experience to date plus our future experience with y’ is such as we
may expect to occur 1 time in 20 in the long run, 3’ will be greater than 45, as
desired. In other words, we want to solve

@ atd® -9 —dug/d {145+ LT 0

for X', where Q@ = 45 in this case. By straightforward algebra the general
solutlon is found to be

(24) X =z 4 b(Q — a') + (t.os)sy-z /‘/B(Q _ a)2 + (N]-:r- 1)0

in whiche = 3, B = l/E(x — z)? and C = b — (t%)(s5..)(B), and the sign
before the last term is < if b is positive and — if b is negative.

From the data involved in the present problem N = 149, Z = .8439

a=14363, b= —24.58 B = 3.6391, s,.= .9448, s,. = .9720
and for t's = 1.656, the one-sided 5%, value for 147 degrees of freedom, C =
594.7479.

Substituting these values in (24) we find X' = .7207, and this is the value to
which the dairyman should standardize his C/F ratio. If he does, then unless
the experience to date, leading to ¥ of (11), and the future experience with
regard to any new y (= F/DM) value—unless these combined experiences are
such as to shove the ¢ of (19) beyond the one-sided 5%, value of ¢ for 147 degrees
of freedom and in the negative direction, the predicted value of y (= F/DM)
will be 45 af least. In this sense we may have 959, confidence that our pre-
diction will be correct.
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It is clear that the preceding solution can be set up for any desired degree of
confidence, say 1 — ¢, by choosing ¢, which is the value of ¢ for which
P{t < —t.} = efor the degrees of freedom involved. Furthermore, if an upper
limit, instead of a lower limit, were desired, the solution would be the same
except for an interchanged usage of the 4+ and — signs before the last term of
(24)—for an upper limit one would take a — if b were positive and a + if b were
negative. For values of @ not too different from 7 it will usually be possible
to find the solution corresponding to the level of confidence desired. How-
ever, it is quite possible that a solution may not exist for the value of Q
desired, if this be too distant from §. This difficulty will arise whenever
[(N + 1)/N](t.)’s..B is larger than B(Q — #)° + [(V + 1)/N1b’, in which case
the radical is imaginary, and no real solution of (24) exists. By graphing the
left side of (22) for several values of X’ the reason why such cases occur can
be readily appreciated.

Since the confidence coefficient in reality relates to the difference (3’ — ¥)
in which both 3’ and ¥ are random variables, when applying this method to a
particular industrial (or other) problem, one should make repeated Y estimates
of ¥x from time to time in order to insure that the ¥ used is not away off
from Yx. As mentioned earlier ¥ will assess ¥y more accurately if the X
values used are spread over a rather wide range—this follows from the nature
of (12). By frequent determinations of Y even better estimates of ¥ x can be
obtained by pooling the data to date, provided no departures from statistical
stability are detected. In this way an increasingly reliable estimate of X’ can be
determined. By standardizing with X = X’ and keeping an eye on the resulting
y values, one will be able to see whether this choice of X’ is operating satis-
factorily. Also, and more important probably, by standardizing X = X’ and
applying control charts as described by Shewhart [9] and Pearson [5] to the
observed y values, one may detect the first signs of a change in conditions ‘‘some
time before this could be discovered by cruder methods, such as mere inspection
of columns of figures.”

7. Assaying an Unknown with the Aid of a Previously Established Rela-
tionship.

Having come this far, only one step farther is required to obtain a solution
to a class of problems having the general nature of the following: A previously
calculated regression, ¥, being available, a new value y’ is observed and the
value of X, say X', to which it corresponds has been lost sight of, or was never
known. What value of X should be taken as the best single estimate of X',
and within what limits can we assess X’ with a confidence coefficient of .95 say?

From our previous discussion it is clear, I think, that in repeated sampling
of both ¥ and ¥’ the inequality (21) should hold 95%, of the time, if ¢.; is the
value for which P{| ¢ |.> t.s} = .05. Accordingly, unless our present experience
with regard to ¥ and y’ is in the upper or in the lower .025 tail of the ¢-distribu-
tion, ' is related to Y as indicated by (21). But the left side of (21) is really
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the same as the left side of (23) with ¢, in place of o5, and the right side of
(21) can likewise be obtained from the left side of (23) by replacing tos by
—t.05 , and in both cases y’ corresponds to4), X’ being unknown as in the previous
problem. In short, by setting Q = y’ in (24) and replacing os-by f.0s, we can
use this revised (24) to obtain upper and lower limits for X’, and wunless our
combined experience with regard to ¥ and y’ is such as would occur 1 time
in 20, the value of X which truly corresponds to y’ will be within these limits.

7 — -
The “best” single estimate will be X’ = & + y 5 y’ which can be obtained

from (24) by setting ¢ = 0, and it should be noted that the upper and lower
limits of X’ for a given confidence level are not symmetrical with respect to
this value. With regard to the data of Figure 2, if our new value y' = 45,
and if the confidence desired were merely .90 (so that we can use fo; = £.10),
the calculations yield .7207 < X’ < .8539 with X’ = .7884 as the best single
estimate.

It is unlikely that a dairyman. would ever be interested in obtaining limits
for C/F from the F/DM value of a finished cheese, so that he would probably
never have any use for this additional technique. On the other hand the pre-
ceding situation is a common one in connection with problems of biological
assay where it is desired to evaluate the potency of a substance by comparing
the response it produces, when administered to one or more animals, with a
dosage-response relation previously established with dosages of known strength.
In the preceding problem we considered the case in which y’ was a single addi-
tional observation corresponding to an unknown X’. If, instead, we had §’,
the mean value of N’ additional observations corresponding to an unknown X’,
it is clear that the denominator of (19) will be /8%, + s.../N’ in this case, so
that confidence limits for X’ corresponding to a confidence coefficient of .95
will be

, -, by -7 tos Sy.z . L, N !
@) X =i+ (yCy)i 06(;14 VB(y_y)z_i_(NLNJ,V)C

and the ‘“best’’ single estimate of X’ will be

-
(26) x=z+47,
where § is the mean of the y’s in the analysis of the original N values;
g« “ ¢ the additional N’ y’s corresponding to the unknown X’;
b “ “ regression coefficient in (4');
8y.; is given by (14) and depends on the scatter of the original y values
about the regression Y, and is based on N — 2 degrees of freedom;
B = 1/3(z — #)’, the summation being over the original X values;
t.os = two-sided 59 significance level of ¢ for N — 2 degrees of freedom;
and C = b* — tos-8;..+B.
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In practice N’ is usually small compared with N, so that sj.. based on the
original analysis will probably be used. However, if it is desired to make use
of the dispersion of the new y’ values to “improve” the estimate of ¢%.x , then
8i. =[N — 2)s.+ (N — 1)s”]/(N + N’ — 3) should be used in place of
8.z, where s” = Z(y’ — 7)’/(N’ — 1), and the ¢4 value corresponding to
(N + N’ — 3) degrees of freedom used. Mathematically this is preferable to
the above, but involves considerably more calculating, and probably would not
be used by the practical man.

We shall illustrate the use of (25) and (26) in connection with the data of
Figure 3 obtained from autopsies of 69 rats which had received doses of estra-
diol varying from 0.025 micrograms to .2 micrograms.® It was found that a
linear relation, with a common variance on the various dosages, existed between
X = logy dose and Y = +/uterine wt. These are the quantities portrayed in
Figure 3. The least squares line is

27 Y = 6.9023 + 3.4004(X + 1.0777) = 10.567 + 3.400X,
and is seen to be a good fit.

Carrying through the necessary calculations we find that 959, confidence
limits for X, the true log dose, corresponding to a mean response of §’ based
on N’ values, are

X' = —1.0777 4 0.2964(5' — 6.9023)

(28) 69 + N’

+ 07074 1/ 1376(7 — 6.9023)2 + (W) (.09062)

and the optimum single estimate is
(29) X' = 0.2941 ' — 3.1077.

Dr. C. 1. Bliss has informed me in correspondence that seldom is the sensi-
tivity of an animal species to a hormone or other drug constant enough for the
actual procedure outlined above to be reliable, so that in assaying any given
sample it should always be tested in parallel with a standard preparation. If
the slope of the regression, i.e. b, is fairly stable, even though the position
changes, it is possible to assay the relative strength of an unknown by admin-
istering it and a standard at a single dilution, but it is preferable to use at least
two dilutions in each assay so that it may be discovered whether the new b
agrees substantially with that given by the standard dosage-response curve.
Discussions of the procedures to be used in these cases will be found in references
[26] to [31] from which I have received much inspiration.

19 These data have been discussed by Lauson, Heller, Golden, and Sevringhaus [32]
of the Wisconsin General Hospital, to whom I extend thanks for permission to use them
in the present paper. Only a portion of their data have been used as the linear relation
discussed below failed outside of the dosage limits given above.
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8. Concluding Remarks. The formulae and ideas presented in this paper
have been drawn in the main from the articles and books listed at the end of
this paper. By turning to these references the reader often will find a fuller
account of methods and applications than has been given here. In many cases
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the reader will find that the author of one of the references has placed emphasis
on getting the answer. In the present paper the emphasis has been on the
ideas and assumptions involved, the aim being to promote understanding of the
methods discussed. In particular, the following two points have been stressed

here:
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(a) When the values of one of a pair of random variables are selected by
‘the research worker, or when one of the variables is allowed to take values
in only a restricted portion of its real range, then inferences with regard to an
unknown value of this variable, say X, based on the corresponding (known)
value of the other variable, say Y, are mathematically valid only when inferred
from the relationship giving Y as a function of X; and

(b) The resulting inference is in the form of a confidence interval whose
confidence coefficient is associated with the joint experience consisting of the
observed regression of ¥ on X and the observed (or future) additional sample
involving the unknown value of X, and not merely with the latter.

The ideas and assumptions which have been discussed have been illustrated

on two examples.

Closer codperation is possible between the practical man and the statistical
theorist when the latter fully appreciates the problems of the former, and
when the former, in turn, understands the methods advocated by the latter.
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