ON THE POWER OF THE L, TEST FOR EQUALITY OF SEVERAL
VARIANCES

By GeEorGE W. BROWN

The criterion L, was obtained by Neyman and Pearson' for testing the
statistical hypothesis H; that k samples, known to be from normal universes,
are actually from universes with equal variances, where the means are unspeci-
fied. The test seems to be of importance, when one considers the number of
experiments which are concerned with the comparison of several types of
treatments. The experimenter is in most cases interested in the respective
means, and it is usually assumed, in order to test for significance of the differ-
ence between sample means, that the variances of the distributions are equal.
At present, significance tests for justifying this assumption are rarely applied.
Because of the unsatisfactory status of the problem of testing simultaneously
for means and variances, the L, test is appropriate for justifying first the
assumption of equal variances before testing for the means.

Neyman and Pearson have treated the sampling distribution of L, when H,
is true, and Wilks and Thompson® have discussed the general distribution of the
criterion when H, is not true. Here we shall show that the test is unbiassed
when the number of observations is the same in each sample, and is in general
unbiassed in the limit, in & certain sense. In addition, values of the power
function have been computed for a few selected cases, when k is 2, in order to
exhibit qualitatively the sharpness of the test.

Let the ¢-th sample ({ = 1, 2, ..., k) of n; individuals be denoted by Z;
and suppose Z; has been drawn at random from a normal population with mean
m; (unknown) and variance of = ‘%‘. Denote the observations of =; by
%y (r = 1,2 .-.,n). Then the criterion L, is expressible’ in terms of the
observations as follows:
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where n = Zn; and ¢} = E (zi# — £)*. For convenience we shall let Li™ == )\
re=]

1{1], pp. 461-464.

2 See [4]. Nayer [3], studied the Type I approximation to the criterion L, and tabu-
lated significance limits, etc.

3 See [1], p. 464.
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120 GEORGE W. BROWN
The variables A} are independently distributed according to x-laws with
n; — 1 degrees of freedom, respectivelv, hence the joint distribution of the a,

when %‘ is the true value of o} (z = 1, 2, -- - , k), is given by

©) r n 1 [A¥m D (I F4 g} - de
in =2
2 I.-IP( 2 )

The power function,' which is defined as the probability of rejecting H,, is
given by P(A < o), and is a function of the true values of the parameters
Ay, -+, Ay, where \o is defined so that P(\ < M) = a when H, is true. Thus

F(Ay, -+, A) = PO\ <N)
3) 1 T [adeneo (¥ 24sed get .. ged

- 2;,.1‘11,(1&:— l)'/;<h i

2
Note that when H; is true P(A < )\) is independent of the actual common
value of the parameters, because of the homogeneity of A.
Let us now restrict ourselves to the case in which n; = p, n = kp. ¢))
and (3) become

’ — L¥*P Hc? }h
® ne

and

F(Al) A’) "')Ak)
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We shall prove the following

TaeorEM: If ny = ma = --- = my = p, then F(41, 4, --- , A 2
F(A, A, --- ,A). In other words, the probability of rejecting H, when H,
is true is less than or at most equal to the probability of rejecting the hypothesis
when any alternative is true, that is, the test is unbiassed. It should be noted
that the statement of the theorem is to hold for each value of Xo.

It is evident that F(A41, As, - - - , Ax) remains invariant under permutations
of the arguifients, because of the symmetry in the ¢: of A and of the integrand
in (3'). Moreover, by using the homogeneity of A we obtain the following

relations

4y = (A A L A _(‘iz..._fi.':lﬁ)
(4) F(Al,Aﬁy ,Ak)_F(E:’Ak, ) Ak,l>_F l,Al’ ’ Al,Al

¢ Defined by Neyman and Pearson, [2], p. 5.
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. A;,.
Now if we set a; = i 1=1,2,...,k— 1), wemay replace F(4:, 4z, - -+, As)

by F(a, az,---,0-1, 1) = fla,---,a:); we must now show that
fla, -+ ,a1) 2 f1,1,...,1). From (4) we obtain

as as a1

(4') F(al,aﬂ; "',0};..1,1) = (1 E‘ -a—l R} a'a

and permuting the arguments we have, finally,

(5) fla, az, -+, @) = f(._ u & ,“_H)

al ay

Differentiate (5) with respect to g,
1 1
fl(alpaﬁy" ,ak—l)—_t[f( aa "')'aﬁ'

a

©) wal .
+¢kfz<a— a—; )+ © + G1fia E— ;l— )]
and set @4 = @ =...= @ = 1, obtaining f(1, 1,...,1) =

_th(l 1,...,1). Butfu1,1,...,1) =f{(1,1,...,1), hence

Q) fl,1,...,1)=0; i=1,2-..,k—1.

Now dlﬂerentlatmg (6) with respect to a; and evaluating at a; = 1, we have
fully 1,0, 1) = 2 fui(1, 1, -+, 1), that is,

fu@, 1, o, 1) —fu(, 1, ---, 1) —fa(1, 1, -+, 1)
— s = fora(1, 1, 000, 1) = ‘Zﬁj,-,(l, 1, ---, 1),

hence, by the symmetry of the variables,

(8) ft'i(li 1, "';1) = —k__]:‘ifll(l; 1, "')l)) ";'é])

f"’(ly 1, .-, 1) =f11(1; 1., 1).

It is easily verified from (8) that the f;;(1, 1, ..., 1) are coefficients of a
definite quadratic form in k¥ — 1 variables. Therefore there is an extremum
at (1, 1,...,1). It remains to show that fu(1, 1, ---,1) > 0 in order to
establish that the extremum is actually a minimum.

2
In (3") we make the transformation u; = A,.-c—;; t=1...,k—1;,u =
Ck
Auci, and integrate out the variable ‘ux, since A\ is now independent of wu,
obtaining
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k=1 ul®™®
9 flar,0,:--,a) =B H at®™® f [ L =D G+ -+ duny
Lt 3 |

—1

’i—]l: ir
(10) == - 5w
A= =1 i w>0

14+ 2w

sl

where B is some positive constant independent of the a;. From (9)

BHa“"'”f p—1_  klp—1um
A<M =

sl 201 2[1 + Z a‘u‘]

gl

(11) II ul(p—a)

gom}
: d‘m e du;,_l

[ k—1 k(p—1)
[1 + 2 asu.-:l

g=]

The last step involves differentiation under the sign of integration, which is
certainly justifiable here.

Now consider A for ﬁxed Ug, + -+, U, and variable ;. N < Ao is equivalent
‘o the statement ——— o + P < 0 where ¢ and 6 depend on us, us, - - , Up—;

e
¢, 0 > 0. The function ¥(u;) = o+ w) + 5 has a maximum at u; = P

and has no other extrema, hence the equation (;—%-)7‘ = 6 has but two posi-
1

tive roots, z; and z,, say. Let 23 > z;. Then for fixed uz, us, --- , U
the region A < Ao is composed of the u, intervals (0, ;) and (z;, «). Now
examining the integrand in (11) we see that it is the partial derivative with

respect to u; of the quantity

$(C l)k_l )
3
1 wl I;[,u‘(p—)

a— k=1 (1) *
! [1 + ; a.-u;]

This quantity vanishes at 0 and «, hence

12) fi = H $(o—1) f I_I (p—a)l: :{‘p—n - )]n ;
12 =1 @ 3 A =D | dug - - - dug—
1 $Us
(1 + 3 0w)

T2

where G is some region of positive measure in the space of the variables
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Us, Us, --- , U2 . Now differentiating in (12) with respect to a, , and setting
G = A = 00 = Qpq = l,weget

k-1 - 3 $(p—1) 1
fu(l, 1,---,1) = B/; I;[ ul®™® {p 3 [(¢ _;_‘:‘l){l(p—l)l

1), 4D
[ T .

3o + )" L,

The first term inside the braces has the value #® both at z;, and z:, hence
vanishes when evaluated between those limits, so that

fu, 1, -, 1) = 15_(1’_2__1_)3‘1;ﬁu£(p—:)

it 2ot
{((o F m)Pe0H (4 F zl)"(p—l)-u}dm s dupy

(13)

z; and z; are roots of the equation (q,—_;_‘iﬁ = 0, hence z; = 0(p + z1)* and
1
zy = 0(p + ,)". Putting these values in the numerators in (13), we have

fll(]w 1; M ) 1)

k-1
= k(Pz— 1) B./:’o}(r"l) I’Iug(ﬂ—s) {(¢ + z’)b—l _ (p + zl)k_l} dug - -+ duss.

The integrand is positive, since 6, ¢ > 0 and z2 > z, , hence fu(1,1, --. ,1) > 0.
We have shown, then, that the power function has a relative minimum, at
least, when H, is true. We shall show that the minimum is in fact an absolute
Consider the integrand in (12). The integrand has the same sign as
zt(r—l) zg(r—l)

*—1 (=1 *—1
(1 + a1z + Z’:aaus (1 + a1z: + ; aﬂk)

But z; = 6(1 + z; + Zu.)* and z; = 6(1 + 22 + Zu.)*. Hence the integrand
has the same sign as

k—1 k-1
1+z1+};m l+zz+2’:w

(1) *

’

=1 - k=1
l+a1zx+}’:/a.-ue 1+a1a'4+z’:a.-w

80 thsi the integrand i;i positive or negative accordingly, as (z1 — =)
1 1

[l + Z’: aiu; — 4 (1 + ; u;)] is positive or negative. Since z; < z,, this

last quantity is positive if @, > 1 and a; < a;, and negative if a; < 1 and

a; > a,. Hence we conclude that a%f >0ifa; >1anda; < a, and-;{- <0
1 1
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ifas < 1and a; > a;. By the symmetry in the variables the same is true of

:i,le,:£‘>01fag> land a; = max(a,),anda—f <0ifa; <1land a; =

min (a;). Now suppose (af, -- -, a}) # (1, - 1) Then erther max (af) > 1
or min (ag) <'1. Hence the first partlals can vanish simultaneously only at
a1, , 1), so that f can have no other extrema. Therefore f must have

an absolute ‘minimum at (1, 1, ... ,1). This completes the proof that the L,
test is unbiassed when my = n, = ... =mn,.

It is easily seen that the test is in general biassed when the samples consist
of different numbers of observations. Consider the case k¥ = 2, with samples
of n; and n; observations respectively. In this case we have the single param-

etera = 2!, Asin (9) and (10),

A,
*(ﬂl—a)
= BAm—D u
(14) f(a) = Ba _/; T au)*"-ldu
in iny
n u
(15) A= ( im lng (1 + u)ln

As before, the equation A = Ao has but two positive roots, z; > z; > 0, so that,
as in (12),

‘("1—1) 2y
;(m-s) U
fa) = [(1+au)"‘"‘:|=,

_ Ba“"l_”[ z;(ﬂx—l) _ Mi('lx—l) ]
1+ az)i*t (14 axg)t™ )
$(n1—1) $(n1—1)
' 1 Zs
Therefore £(1) = [(1 +a) T O x,)*"—l]‘
Recalling that 23" it is evident that f 1) = 0 if and only if

(1+ zr (T +z)

n = g Hence if n, # n,, the power function does not have a minimum at

a = 1. It can be shown in this case that a minimum does exist at some point,
and if n — « so that n; = ayn, then the minimum tends to the point ¢ = 1.
The proof is omitted, in view of the fact that a general result of a different
nature will be obtained.

Before proceeding, we shall establish a lemma which is undoubtedly well
known. However, on account of the directness of the argument, the proof is

given here.

LemMA: If 21, 22, - - -, Z4 have joint distribution function fu(zy, Z2, -+ - , Za)
such that E(z;) — m; and E[(z; — E(x.))] — 0, and if y = o(x1, T2, - -+ , T1)
18 continuous tn x;, Tz, - - - , s at the point (m; , Mg, -+, my), then the distri-

bution of y converges stochastically to the point o(my, mg, - -- , mp).
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Proof: By Tschebycheff’s Inequality,

p{m — E()| > g} < % Bl — @)

Let n be large enough so that | E(z)) — m:| < % ;¢ =12 ...,k Then

|2 — ms| > & implies | &5 —E(zs) | > 3, hence

P{lz — mi| > 8} < 5,E[(:c. E(z))).

Let w; denote a cube a side 26 about the point (my, - - - , ms), and let = denote
the point (z1, - -+ , 24).

A
Plz ¢dw) < .gP{Izs - m| > 8},
hence

Pz duwl <53 ZE[(x. E(z))Y,

therefore P[z ¢ w;] — 0, that is P[z C w)] — 1. Given any interval w, about

the point y = o(m,, ma, .-, m;.), there is a cube w; about (my, msg, --- , my)
such that z C w, lmphes yCw,. Plzc w)] < PlyC wl],but Plzx C ws] — 1,
therefore Ply C w,] — 1. That is, y converges stochastically to the point
Y = ¢(m, m,-.-,m).

Referring to (1), we may express A as a function of & — 1 variables as follows:

h H “hc
A= =1 )

a1+ Zu]"

gl $=1

where u; = c—;;i= 1,2,...,k—1. Letn— o, andletn; = am, Za; = 1.
Ck

Then
k—1
. Hw
AT = = =1 9
II o [1 + 2 u.]

=1 t=]

. s = B(S) A= L=
From (2) it is seen that E(u,) E(c;) A, nk e i ,and E(w) =

1Y (ns — 1)(ns + 1) (1 )
(_ (e — D +1)° Therefore E(u.) "’E‘,—and E(ui) — o in other
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2
words, E[(us — E(u))’] = 0. Now we apply the lemma, concluding that A=,
that is, L, converges stochastically to the quantity

1
r =i k=1 P b
IIa [ak + 2 -]
i=1 i=1 G5
TABLE 1
1 2 3
m-é,)u-li m-l(g,zu-lo m-2(§,2u=20
e f(a) ] J(a) a f(a)
1 .05 1 .05 1 .05
4/3 .06 4/3 .07 4/3 .09
2 .09 2 .16 2 .31
3 .15 3 .33 3 .65
4 .21 4 .50 4 .84
5 .27 5 .62 5 .93
10 .52 6 72
20 75 10 .90
TABLE 11
1 2
mal;,)m-8 n1=15(,2u=10
a f(a) a 5 (a)
1/10 .90 1/10 .96
1/5 .61 1/5 74
1/4 47 1/4 .59
1/3 .32 1/3 .40
1/2 .16 1/2 .20
3/5 11 3/5 A1
4/5 .07 1 .05
1 .05 1.5 .09
1.2 .05 2 A7
1.5 .08 3 .38
2 13 4 .60
3 .30 5 .70
4 .45 10 .95
5 .60
6 .67
10 .87
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r is the ratio of weighted geometric mean to arithmetic mean of the quantities

1—1- -!- --,-I—,hencer= lifandonlyifay = as = -+« = @ = 1,

a’ a’ Ax—1
2
otherwise r 2< 1. Therefore when H, is true A\™ converges stochastically to 1,

otherwise A* converges stochastically to some value less than 1.
Let us choose A{™ so that P()\ < M"™) = a when H, is true. Consider some

alternative hypothesis H7 1 )\" converges stochastically to r < 1. Choose ¢
sothatr < ¢ < 1. P()\" < ¢) — 0 when H, is true, but P()\" < )\5")") =a

{@)
!

logna

3 n
when H, is true, thus, for n suﬂiciently large, ;‘ < M™%, that is, §7 < A"

Therefore PN < M™) > P\ < ;") = P()"‘ < ¢). Now, if Hy is true,

P()\" < t) — 1, therefore P\ < A§™) — 1.

We have shown then, that if n — « so that n; = a;n, where the a; are fized,
while the probability level a remains constant, then the power of the test with respect
to any alternative hypothesis Hy tends to unity. It is impossible, of gourse, to
have the power function tend to unity uniformly with respect to all alternative
hypotheses, since the power function is continuous for all #, and since the
power with respect to Hy'is constantly «. What we can conclude, however, is
that for any particular alternative hypothesis, the probability of rejecting H;
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is greater than a for sufficiently large n.® (We might say, then, that the test
is asymptotlcally unbiassed.) Moreover, the fact that the power with respect
to Hi tends to unity implies that the test becomes sharper with increasing =.

In order to illustrate the sharpness of the test, values of the power function
were computed, when k = 2, for the cases n, = ny = 5;ny = n, = 10; n; =
ng = 20;n = 12, n, = 8; and ny = 15, ng = 10. The results are given in
Tables I and II. The computations were made from (14) and (15) by means
of Pearson’s Tables of the Incomplete Beta Function. The roots z; and z; of the
equation A = X\ were determined, for « = .05, by trial and error, making it
possible to use the tables directly to compute as many values of the power
function as desired.

When n;, = 12, n, = 8, and m; = 15, n, = 10, the power functions both
have minima at approximately a = 1.1, lndlcatlng that the bias is certainly
not serious. When n; = n,, the power function has the same value at ¢ and
1/a, in the other cases the values shift slightly. Note that when n; = n, = 20
the test is fairly delicate. For example, f(3) = .65, that is, if 62 = 4/3 a1,
the probability of rejecting H, is .65. In Figure 1, the power functions have been
plotted against log a, because of the symmetry in the values @ and 1/a. The
curves I, , I, I3, correspond to columns 1, 2, 3 respectively of Table I. Simi-
larly, curves II,, II, correspond to columns 1 and 2 of Table II.
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$ Neyman, [5], discusses the similar property of being “unbiassed in the limit.”’



