THE ERRORS INVOLVED IN EVALUATING CORRELATION
DETERMINANTS

By Paur G. HoeL

1. Introduction. Many statistical problems require for their solution the
evaluation of correlation determinants. The method usually employed for such
evaluation is that of Chio,' in which the order of the determinant is reduced by
successive operations with selected pivotal elements. The repeated multiplica-
tions and subtractions involved in the method necessitate rounding off the
elements in the successively reduced determinants. The calculated value of the
original determinant is therefore in error; and so the question naturally arises
as to the magnitude of this error.

Previous attempts to answer this question seem to be satisfied with finding
an upper bound for the magnitude of the difference between the value of the
original determinant and its value after its elements have been rounded off.
Moreover, this bound is expressed in terms of the errors in the elements and the
minors of the original determinant, whose values are assumed to be known
exactly from calculation. However, several reductions are often needed before
the value of the determinant can be obtained; and furthermore the minors are
subject to the same type of errors as the determinant itself. The problem,
therefore, is to find an upper bound for the magnitude of the difference between
the final calculated value of the determinant and the determinant itself which
involves only calculated quantities.

This paper treats the problem from two different points of view. In the first
part an upper bound is obtained for the magnitude of the error. In the second
part the first order error terms are given more detailed consideration, with the
result that an upper probability bound is obtained for the error.

2. Absolute Bounds. Consider the correlation determinant A = |r;;|. To
evaluate A by the method of Chio, it is convenient to select diagonal elements
as pivots. It will be assumed without loss of generality that the upper left
diagonal element is always chosen as the pivotal element in each reduction.
After each reduction, elements are rounded off to a fixed decimal accuracy.
Let af; represent the element 4,j after the k-th reduction, z¥; the difference
between the rounded value of element a’f,- and a’fi itself. After k reductions, we
arrive at the determinant
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1 See for example, Whittaker and Robinson Calculus of Observations, p. 71.
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By treating F* as a function of the z*, it may be expanded by Taylor’s formula
as follows:

n 1 n
(1) Fk = Ak + i:§+1 Zf,AZ + §" ZH; x,:jx,;qA?ipq + ... )

where A" is the value of F* for all z* zZero, A'fi is the cofactor of a’f,- in 4%, ete.

For a determinant of order n, the value of the determinant obtained after a
single reduction is the value of the original determinant multiplied by the
n — 2 power of the pivotal element used. Applying this to F¥, it follows that

Ak - (aﬁl + xﬁl)n—k—le—l - Hl:l—k—le—l
A?, — H,icl—k—2p?-i—l
A,:ipq = Hl’c'_k—3F?:T;qy
etc., where the exponents of H, are ordinary exponents rather than notation.
Substituting in (1),
Fk = Hil*k—l Fk—l + H;:—k—2 E x,'c’F{c:—l + _]_-_ H;;_k—3 Z Z x?jxqu?Fj—; + ..
s 2! B+l ? ¢
In order to express F* in terms of the original determinant, this expansion
will be condensed by means of the following operational notation.
2 F* = (1 4D+ D+ ... + D" HH P,

where D’ operates on Hi *~'F*™* by reducing the exponent of Hp by ¢ units,

by summing from k¥ + 1 to n the product of ¢ terms in z* with the corresponding
cofactors of F**, and dividing the result by factorial . Using this as a recursion
formula,

FF=(04D+ ... +D"MH* 0+ ... + D"*™mEp ...

A+ .- + D"HHITF".
However.

au + ru .
F'= . = A,
Gnn + ZTnn
since we assume that z;; = 0 for our original determinant. Consequently,
FF=(04 .. +D"MH* 0+ ... + D™*MHIF ...

®) 1+ ... + D" HHIA.

Since D* operates on F¥* in (2) to extract the proper cofactor of ¢ less rows than
in F*7!, which in turn reduces the exponent of all factors Hi_; in the expansion
of F*"' by ¢ units, D’ reduces the exponent of all H’s following it in the expansion
of F*in (3) by 7 units.
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Following these rules of operation, and expanding so as to collect terms of the
same degree in the z’s, we may write
F*=Hy™* " ... HI7?A + HP ¥ ... HP™ (terms in 2:;) +
Hy ™ ™ ... HY™ (terfns in ij@pg) + - - -

Letting H = HyH—y --- Hiand C = Hy 7' ... H}™ we may write

(4)

I=F-¢CA= [ (terms in ;) + (terms in i x,,) + - ] ;

and hence

k
(5) J = % — A== (terms in z;;) + (terms in z;;,,) + -

Now J is the difference between the calculated value of A, using Chio’s reduc-
tion method and rounding off after each reduction, and the true value of A.
We are interested in finding an upper bound for the magnitude of J. To ac-
complish this we shall first overestimate the number of terms in the various
sums of (5), then find an upper bound for the magnitude of the terms in these
sums, and finally combine the two results.

In counting terms by means of (3), we may ignore the H’s since they merely
serve as coefficients of the z’s. Therefore consider the nature of the terms in

I+ +D"™HA+ - + D . (14 ... + D" A
Z-:i-l xii 7y 2' EZ xuqu 11pq ) etc

Now (1 4+ ... 4+ DA contains the sums

s'(s — 1)°
2

is not greater than s°, ,:C;, ete.; consequently, the number of terms of each type

is not greater than the coefﬁclent of the corresponding power of D in the expan-

sion of (1 + D) Therefore,

(6) (1 + D)(n—k)z(l + l))(n—ld—l)2 . (1 + l))(n—l)2 - (1 + D)m‘,

where m = (n — k)’ + ... + (n — 1)%, contains at least as many terms of each
type as are found in the expansion of F*. This gives us the desired overestimate
of the number of terms in the various sums of (5).

In finding upper bounds for the magnitudes of terms, it is to be noted that (4)
is written with all common factors extracted from each set of terms of the same
degree in the 2’s. In the parenthesis containing terms consisting of the product
of r 2’s, the first sum will have unity for its coefficient while the last sum will have
HiHjy - - - Hj as coefficient, with all sums between having as coefficients prod-
ucts of H’s with exponents < r. Hence an upper bound for all coefficients in
this parenthesis may be written as A", where H is the magnitude of the product
of those H’s whose magnitude is greater than unity, but unity if none exceeds

. . 2 . .
hence it contains s° terms in z;;, terms in z;;z,, , etc. Each of these
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unity. Now terms in z;; are multiplied by A,;, those in z;;z,q by Asjpq , €te.;
therefore let A;; , A;jpq , etc., be the absolute values of the largest in magnitude
of such cofactors. With this notation for upper bounds for magnitudes of
terms, and (6) giving an upper bound for the number of terms, we may write an
upper bound for the magnitude of J as follows:

2
(7) |JI < (ﬁ ) CIA:: +( ) mCzZ.','pq —|— oo,

where ¢ > | z | is the maximum error of rounding. This result is valid for any
determinant with real elements. All quantities on the right are available from
calculations except the A; consequently this upper bound will be useful only if
satisfactory bounds exist for the minors of the determinant. It can be shown
that (7) holds for any minor of A, say A, , if the A have uv added as subscripts;
and therefore it may be applied to the question of the accuracy of least square
solutions.

For the correlation determinant A it can be shown that the magnitude of a
minor of order n — k is bounded by k!/2¥ for k even and k!/2** for k odd.

Setting a = H ¢ and substituting these bounds in (7),

H
|J| £ am + o Cz +a C:;+a (144!+..
am? | om® | od'm'
Ssamt 5ttt
a*m? amd
€)) Sam+T+M’

for am < 1. Since am is obtainable from the calculations for A, this is the
desired upper bound for the error in question.

3. Probability Bounds. In order to find probability bounds for this error,
it will be necessary to expand the H’s since they involve the variables z. Con-
sider Hy = o' + 2%'. Since af%’ came from repeated reductions of 4, it is
expressible in terms of the z’s and the minors of A. To obtain this expansion of
H) consider

k— k—s
Qs+l k—st1 T Thostik—at1
@ =
k—s k—s
are. + Tik

Using the same methods as for F*, this may be written as

k
G'=B+ 2 i'Bii+ EZ z5; %q'B:m + .-

k—s+1
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where B’ is the value of G* for all z*™* zero, etc., and where B* = Hi":¢*",
Bi; = HiZiGi}', ete. Substituting,

8 88— 8 8—. w—8 8 1 8— 8 —8 8
G = HILG™ + HZ 30 a7 G + o Hisl D3 ol a5 Gl + -+
Using operational notation here also, this may be written as

G =Q0+E+E+ ... +E)H,

where the E’s operate the same as the D’s, except that sums are taken from
k — s 4+ 1 to k rather than from n — s + 1 to n. Treating this as a recursion
formula,

Hy=G =0+ EHe(1+E+EY)Hi, - (1+ .- + E)HTGN
However,
an + Tn an
G = . = . = A:.
Gk + Tk Ak
Consequently,
© He=(1+4+BEHL(1+E+E)His- - 1+ ... + EHH A,

Since the E’s operate on the following H’s to reduce their xponents, the number
of terms of various types, that is, of various degrees in the z’s, will not be de-
creased if the order of H’s is disregarded and their exponents held fixed. There-
fore consider

(100 Hi=Q+EQ+E+E)...QA+ ... +EHaHL, ... HY?

as an ordinary recursion formula in the H’s for overestimating the number of
terms of various types. If (10) is substituted for successive H’s within itself

in a systematic manner until no H’s remain, it will be found that
an Hi=(1+4+E) - 1+ - + B,
(A+E) - (4 -+ B0 - [+ B A,

To merely count terms it is permissible to combine like terms to give
Hi=(1+ E)2+2+22+"'”"_‘(1 + E 4 Byttt A4 ... + E*HK
= (1 +E)2k—3(1 +E +E2)2k—4 . (1 + . + Ek—l)K,

where K is the product of the A’s. Since the E’s operate like the D’s, the same
arguments as those used to arrive at (6) may be used to replace (1 + E + ...
+ E)by (1 + E)* for overestimating the number of terms. Hence, the number
of terms of various types in H; is not greater than those in

QA+ B0+ B ... A+ B0 4+ B = (1 + B)™,



ERRORS IN EVALUATING CORRELATION DETERMINANTS 63

where w, = 283 4 222" + ... + k — 2)2.2o + (k — 1)®. Therefore the

number of terms of various typesin Hi ' ... Hf?is not greater than in
(12) (1 + E)(n—k—l)wk+(n—k)wk_1+...+(n-2)w1 — (1 + E)‘.

It is easily shown that ¢ can be condensed into the form
1)t =2 — k) —1] + 2’2 °(n — k)—1] + --- +(k — 1)’2°(n — k)—1].

From (3) it is evident that the number of terms of various types in F* will not
be greater than those in the expansion of F* when the exponents of the H’s
are held fixed. But from (6) we have an upper bound for the number of terms
arising from the D’s, and from (12) those arising from the H’s; hence the number
of terms in question will certainly be bounded by those in

(14) 14+ D)™ =1+ D"

Now consider the magnitude of terms. The terms arising from the operation
of D’s contain minors of A as factors, while those arising from the operation
of E’s contain minors of A; , where ¢ ranges from 1 to k. Let A;; , ete., denote
an upper bound for the magnitudes of all such minors of the same number of
subscripts. It is easily shown that A’ with 2r subscripts is not less than the
magnitude of the product of several minors whose subscripts total 2r in number.
The terms of various types also contain as factors products of the constant
terms in the H’s. The constant term in H;, which will be denoted by hy,
can be obtained from (11) by operating with all ones since it will be unaffected
by disregarding the order of operation. Hence,

he = Mbiabbs -+ A7 AYT
Since the A; are principal minors of a positive definite determinant with no
element greater than unity, A has unity for an upper bound. Thus, an upper
bound for the magnitude of any term in the product of ¢ z’s will be ¢ times A"
with 2¢ subscripts.

With upper bounds now available for the number of terms and the magni-
tudes of terms, we are in a position to consider the complete expansion of I in
which .the coefficients of the z’s will be constants rather than H’s. Evidently
the terms in z;; will come from the terms in z;; of (4) with the H’s replaced by
the constant terms in their expansions. If Z denotes these terms, then

Z=h"". hra[z ohihi + he 2 2 Ay
k1 ¥
(15) n
+ oo +hk ) h’;x}iA‘i]'
Now consider an upper bound for | I — Z|. Since I — Z involves only terms

in the product of two or more z’s, we need consider an upper bound for such
terms only. From the results of the two preceding paragraphs, we obtain

II - ZI S 62,‘02A.{qu + éapC:iAn{quuv + ctt e
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But from the paragraph containing (8), bounds are available for the A’; hence
! 4!
I —2] <50+ 3,.03?2_ + O

62”2 e3y3
< — —— T =9
- 2 + 2(1 — ew) !
for eu < 1. Since Z is of order ¢, ® will ordinarily be small compared with Z;
therefore consider the nature of the distribution of Z.
If we write Z = a1 + --- + a,z,, then, since the 2’s are independently

distributed with rectangular distributions, it is easily shown that u, =
2
% > al,a3=0,00=3— ¢, ai/(D al)’. If the a;are approximately equal

in magnitude, then a4 is approximately equal to 3 — 1/p. But from (15)
p > in—k)’+ --- + 3(n — 1)°, which is sufficiently large for determinants
employing Chio’s method to justify the assumption that Z is approximately
normally distributed. Setting L = hg ¥ ... A7,

2 2 n =
#2=L_3e [(EA?;-F‘IZA'Z')‘F +hi...h§<ZAf,~+4ZAfi>]
o 2

k+1 1< i<i

< gl(n—k)”+ e+ =1 ==K+ .- + (n— 1D}

S—;[(n—k)2+--- +(n—1)2—§(2n—k— 1)]=\Ir2.

Hence, the probability is >.95 that | Z| < 2¥. Since |I — Z| < &, the
probability is >.95 that | I | < 2¥ + &; and therefore the probability is >.95
that

2y + @
o

(16) 7] <

This inequality will usually give a smaller bound for | J | than (8). How-
ever, when A is small the H’s may be small, with the result that C will be small
and (16) may not give a satisfactory bound for | J |. In such cases the bound
given by (8) may not prove. satisfactory either.

4. Example. Consider a correlation: determinant of order 7 in which the
elements are accurate to 4 decimal places. If Chio’s reduction method is
applied until a 2 rowed determinant is obtained, then n = 7, k = 5, ¢ = .00005,
m = 90, p = 176, ¥ = .000054/160/3, and we obtain from (8) that

H H\? FI)“ .00000005
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where H/H is obtained from calculations involved in evaluating the deter-
minant. From (16) we obtain that the probability is >.95 that

.0008

-

The relative advantage of the second inequality over the first depends on the
size of the pivotal elements, as does the usefulness of either inequality.

|J] <
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