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A SEQUENCE OF DISCRETE VARIABLES EXHIBITING CORRELATION
DUE TO COMMON ELEMENTS

By Carvu H. Fiscaer
Unaversity of Michigan

1. Introduction. Studies of correlation due to common elements have been
made more or less sporadically over the past thirty years in attempts to throw
more light on the meaning of correlation. Numerous examples may be cited.
One of the earliest was a study by Kapteyn [1] in which he showed that two
sums, each of 7 elements drawn from a normal population with k elements in
common, had a correlation coefficient of k/n. This was considerably generalized
by the writer [3] who considered sums of different numbers of elements drawn
from quite arbitrary continuous distributions. The work was extended to in-
clude sequences of three or more such sums. Antedating this latter paper,
Rietz [2] has devised various urn schemata in one of which pairs of drawings of s
balls each were produced with ¢ balls held in common. The coefficient of
correlation between the numbers of white balls in each of the pairs of drawings
was found to be #/s.

Fairly recently some interest has been shown in this subject in connection
with the study of heredity; hence it appeared that it might be of value to present
the following study by elementary methods of a sequence of discrete variables
in which each member is linked to the adjacent members by various specified
numbers of common elements.

2. Two variables. A pair of discrete variables is defined as follows: The
first, z, is equal to the number of white balls in a set of s; balls drawn one at a
time from an urn which is so maintained that the probability of drawing a white
ball is always a constant, p. The second, y, is equal to the number of white
balls in a second set of s, balls formed by drawing ¢, balls at random from the s,
balls of the first set plus s, — 12 balls drawn directly from the urn. The numbers
s1 and s, may or may not be equal.

Evidently the marginal distribution of z follows the Bernoulli law and is given

by (i‘) ¢ "p".! The first step in finding P(z, y:ts), the bivariate distribution

1 By (Z) is meant the number of combinations of a items taken b at a time. It shall be

a

understood that ( b

)=Oifb<00rb>a.
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function of x and y with ¢, balls in common between the two drawings, is to
write the product of the three probabilities: of obtaining x white balls in the
first set; of drawing d of these whites in the ¢ balls chosen at random from this
set; of drawing exactly y — d white balls among the s, — ¢, balls drawn directly
from the urn to complete the second set. This product may readily be reduced
to the form shown below in (1), symmetric in z and ¥ and in s; and s; , which
is then summed on d from 0 to t;,. Thus

(1) P(:t it ) = ‘Z": 81 = t\(ta\(82 — tu\ stes—tig—a—v+d aty—d
) y' 12, [ ] z — d d y _ d q p .

The marginal distribution of z has already been given. From the symmetry
of (1) it is obvious that the corresponding marginal distribution of ¥ must be

characterized by the Bernoulli distribution function ('Z) ¢"*"Yp’. The variances

of the marginal distributions are s;pg and s;pq, respectively.

We next proceed to demonstrate that both of the regression curves are linear
and to find the equations of the lines. Consider an array of = on y for some
fixed value of y. The mean of the array is

-1 81
(2) Zy = (Sy’) geVp 23 zP(z, yitw).

The summation in the right member of (2) may be expanded and then re-
written as

3) “Zz te (Sz — te\ e-y v ’i z (81 — 2\ sm—t13—z+d_o—d

imo\d y—d 1 p:c-o x—dq po-
The inner summation in (3) is seen to equal d + p(si — #s) and hence (2)
becomes

I, = (?)—l{g (t;>(8; _ 22) [d + pls: — tlz)]}
- () EGIIGZD s -w ()

Then the equation of the line of regression of x on y becomes
(4) Z, = tuy/s: + p(s1— tn).
By symmetry, the line of regression of y on = may be seen to be

F= = tu/s1 + p(s: — to).

The square of the correlation coefficient is equal to the product of the slopes
of the two regression lines, hence

(5) Ty = tlz/ (8182)’.

If s, = s, = s we have the familiar result ¢/s.



CORRELATION DUE TO COMMON ELEMENTS 99

3. Three variables. A third variable, z, may now be defined as the number
of white balls in a set of s; balls formed by drawing #; balls at random from the
s, of the second set plus s; — fy; drawn directly from the urn. It is evident from
the results on two variables that the marginal distribution of z follows the
Bernoulli law and that the equations of the regression lines of z on y and y
on z are

2, = bay/s2 + p(ss — ta);
7. = twz/s3 + p(s2 — ta).

The correlation coefficient, r,. , is equal to s/ (s085)*.

The relationship between z and z remains to be investigated. The proba-
bility of the joint occurrence of x whites on the first drawing and z whites on
the third when it is specified that the s; and s; balls of the two sets shall include
the same ¢ balls in common is given by the right member of (1) with g, 2, and s;
replacing t., y, and s, respectively. When this expression is multiplied by
the probability that the first and third sets do contain exactly g balls in common
and the product is summed on g over the range 0 to fi2 , we have P(z, z:t2 , fs),
the bivariate distribution function of z and z. Thus

6) Pla, 2t ) = 3 (‘“)(82 - "‘2><32)_1 P(z, 2:g).

o=0 \9/\ts — g/ \l=

The mean of the array of z and z for any fixed z may be written, after inverting
the order of summation:

@ n= E{() e Bere 0 [ TENE) )

The expression within the square brackets of (7) is identical in form with the
right member of (2), and hence we now have

&= :l;: {[92/83 + (s — 9)] (?)(Z:—?)(ts:a)—l}

This reduces readily to

_ iz bog 818y — liglas
8 = 208, 4 9192 T 20
(€)] &=t 5 P

By symmetry,

_ tutzsx + 8283 — lialas p.
8182 82

The coefficient of correlation between z and 2 is found to be

_ liotas
9) T = sV
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It will be observed that
(10) Tzz = Taylyz o

Interesting relationships also exist among the partial and multiple correlation
coefficients and the multiple regression surfaces. It will be convenient here to
measure each variate from its mean and to replace the subscripts z, ¥, and 2,
on r by 1, 2, and 3, respectively. Then the multiple regression surface of each
variable on the other two may be conveniently expressed in terms of the cofactors
of the correlation determinant. From the results found by the writer [4] for
the case where each element r;; of the correlation determinant may be expressed
as the product 7;i41°7iq1,i42 - * Tj_1,; , we now have

Ry =1-—ry, Ry = —ru(l — r3),
Ry =1 — 7‘%3, Ry = _7'23(1 - rf3),
Ry =1 — 7’?2, Ry = 0.

Then the regression planes of x on y and z and of z on x and y are given,
respectively, by

_Teor o
a2 S2 !

T2303 tas
2= 20y ="y

o2 S2

The regression plane of ¥ on = and z is

(4] {7‘12(1 - 7‘;3) 4+ 7‘23(1 - sz) z}

(51 g3

y= 2 2
I — ria7res

— (s385 — Sztga)tmx (8183 — Splia)tzs 2

) 2
818283 — lialog 818383 — l12los

The three multiple correlation coefficients are
1—(1— )1 — rﬁa)]’

7 2
1 — riaras

(11) Ti.23 = T12, T3.12 = To3, To.13 = [

The partial correlation coefficients are

2 . 2
— 1 —
(12) rps =7 [—1——2§—] , To3.1 = T3 l:——-——m-] ’ T2 = 0.

2 2 2 2
1 — rigres 1 — rieras

4. kvariables. A sequence of k variables may be formed successively as were
the three considered above. It will be convenient here to designate the variables
byz; ¢ = 1,2, --- k). We also define h; as the total number of balls held in
common between the first and the ¢-th drawings. Then, as special cases,
hl = slandh/; = lp.
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The bivariate distribution functions, regression lines, and correlation coeffi-
cients associated with any two consecutive variables in the sequence and with
any two variables separated by only one other variable can, from the preceding
results, be written at once.

It is not difficult to derive the bivariate distribution function for x; and xx
by an extension of the method used in deriving (6). We, then have

P(xy, xiitie, bis « +  br—rk)

(13) = % hgl e %: {i[a [(h;;‘) (st':“__h";‘) ( Z:i.)_l] P(zy, xk:hk)} .

The equation of the line of regression of z; on z; is
31
I = Eo 21 P(xy, et o3« + br—rt)
Z) =
This may be reduced, by repeated applications of the steps illustrated in the
corresponding case for three variable, to the form

tolis ++* b1k 8182 +* Sp—1 — lioles + ¢ ¢ bp—1k
(14) = —x + p
S283 + - S 8283 « ¢+ Sg—1

By symmetry, we have

tiates -+ ¢ b1,k 8283+ Sk — lizlog * - fr_1 ks
= ———————— 11 + D.
S182 ¢ ¢+ Sg—1 8283 « ¢ Sk—1

Then the simple correlation coefficient between z; and z; is

(15) biolog « * + L1k

T = = Ti2°Te3 *** Th—1,k.
8283+« Sp—1(81 Si)l?

It was shown by the writer [4] that for a sequerice such as we are considering
the multiple correlation coefficient is a function only of the variables immedi-
ately adjacent to the one considered, and that the partial correlation coefficient
is zero for any pairs except those of consecutive variables in the sequence. Thus,
the formulas given in terms of simple correlation coefficients for the case of a
sequence of three variables may be interpreted so as to cover the case for k
variables.
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